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We use hierarchical Bayesian inference with nonparametric Gaussian process models to investigate the
effective inspiral spin parameter, χeff , as a function of primary black hole mass in the third gravitational-
wave transient catalog (GWTC-3). Our analysis reveals a transition in the population at a primary mass of
46þ7

−5M⊙. Beyond this mass, the χeff distribution broadens, becomes consistent with being symmetric

around zero, and has a median of −0.03þ0.36
−0.59 (90% credibility). These results are consistent with the

presence of a pair-instability mass gap that is repopulated by black holes that are the remnant of a previous
merger, formed in dense star clusters. However, asymmetric distributions skewed toward positive χeff are
not excluded by current data. Below the inferred transition mass, we constrain the fraction of second-
generation black holes to be ≲10%. These results provide model-independent support for a high-mass and
high-spin population of black holes in the data, consistent with earlier work using parametric models.
Imminent gravitational-wave data releases will be essential to sharpen constraints on spin symmetry and
clarify the origin of the black holes.
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I. INTRODUCTION

Observations of gravitational waves (GWs) from binary
black hole (BH) mergers have revolutionized our ability to
probe the lives and deaths of massive stars [1–5]. These
mergers encode critical information about the formation,
evolution, and final fates of massive binary systems across
cosmic time. However, interpreting the growing sample of
detections remains challenging, largely due to significant
uncertainties in the physics of binary stellar evolution and
BH formation. These include poorly understood processes
such as mass transfer, common-envelope evolution, natal
kicks, and spin alignment, as well as the sensitivity of
population synthesis models to uncertain initial conditions
and parameter choices [e.g., [6–9] ].
A key open question is the existence and extent of a

predicted mass gap in the BH birth mass distribution,

caused by (pulsational) pair-instability supernovae [(P)
PISNe]. Although the location of the mass gap is subject
to several uncertainties [e.g., [10,11] ], stellar evolution
theory predicts that stars with helium core masses in the
range ≈40–65M⊙ undergo partial mass ejection (pulsa-
tional PISN), while those above ∼65M⊙ are entirely
disrupted (full PISN), preventing the formation of BHs
in the approximate range ∼40–130M⊙ [12–17]. Yet,
current GW observations from the LIGO-Virgo-KAGRA
Collaboration (LVK) show no sharp cutoff or dearth of
mergers in this mass range [2,18–23], raising questions
about either the location of the gap or the mechanisms
responsible for populating it [e.g., [10,14,24] ].
One compelling explanation is the formation of highmass

BHs from previousmergers [25]. Stellar-origin BHs undergo
successive mergers in dense stellar environments, such as
globular clusters, nuclear star clusters, or active galactic
nucleus (AGN) disks [26–35]. In these scenarios, first-
generation BHs merge to form more massive, second-
generation BHs, which can then participate in further
mergers. This process naturally populates the pair-instability
mass gap and leads to distinctive spin signatures. The BH
components involved in such mergers are expected to have
higher spins and isotropic spin orientations [29,36,37].
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Detecting such a subpopulation would not only confirm the
presence of the (P)PISNmass gapbut also offer a direct probe
of dynamical processes in star clusters and galactic nuclei.
The most informative spin parameter for detecting such

effects is the effective inspiral spin, χeff , defined as the mass-
weighted projection of the component BH spins onto the
orbital angular momentum [38,39]. χeff is relatively well
constrained in GW signals and serves as a key discriminator
between isolated and dynamical formation channels. Isolated
binaries formed through common-envelope evolution are
expected to have low and moderately aligned spins, leading
to positive-skewed χeff distributions [40,41], while dynami-
cally assembled binaries are expected to produce broader,
symmetric χeff distributions centred around zero [29,42,43].
Additional parameters—such as the precessing spin param-
eter χp [44], the mass ratio q ¼ m2=m1, the orbital eccen-
tricity, and the redshift z—have also been leveraged to
identify subpopulations and trends indicative of dynamical
formation [45–51]. In recent years, several studies have
investigated correlations between mass and spin as a sig-
nature of dynamical mergers [23,52–57].
A key prediction of the merger scenario in dense clusters

is the emergence of a distinct population of second-
generation BHs with isotropic spin orientations and
well-defined spin magnitude boundaries. In particular, if
the pair-instability mass gap is populated by BHs formed
from a previous merger, the resulting effective spin dis-
tribution is expected to be broad, symmetric about zero, and
truncated at characteristic limits set by the spin of the
merger remnant—typically a ≃ 0.7, where a is the dimen-
sionless spin parameter of the BH, a ¼ cj=Gm2 with j the
spin angular momentum. This feature arises from robust
physical considerations and is largely independent of the
specific properties of the host cluster. In Ref. [58], we
showed that the χeff distribution of BH binaries in which the
primary was formed from a previous merger is a uniform
distribution with boundaries at jχeff j ≃ 0.47. This corre-
sponds to the cumulative distribution function (CDF)

CDFð≤ χeffÞ ≃ 0.5þ χeff : ð1Þ

We note that Refs. [37,59] obtained a similar result, but
with a significantly smaller boundary of the uniform
distribution jχeff j ≃ 0.3. In Ref. [58] we showed that a
larger jχeff j ≃ 0.47 is required to match the results of cluster
simulation models and theoretical expectations.
Other formation channels, such as gas-assisted mergers in

AGN discs, or field evolution of triples or higher multiplicity
systems, can, in principle, also produce high-mass systems in
the mass gap [e.g., [60,61] ]. However, these channels do not
yield similarly robust or universal predictions for the χeff
distribution. For example, the degree of spin alignment in
AGN disks is sensitive to uncertain details of disk structure,
migration, and accretion efficiency, while spin outcomes in
isolated multiple star systems depend heavily on natal spin

distributions, tides, and stellar evolution prescriptions. As a
result, while our analysis—focused on identifying clear,
data-driven signatures in the χeff distribution—can be used to
test the cluster formation hypothesis, it provides limited
discriminatory power for other formation channels with
poorly constrained spin predictions.
In Ref. [58], we developed a parametric mixture model

for the effective spin distribution. In that study, the χeff
distribution was modeled as a mass-dependent combination
of two populations: a low-spin Gaussian component, and a
broad, near-uniform component representing the spin dis-
tribution expected from dynamically assembled, second-
generation BHs. This analysis found strong evidence for a
high-mass component with a broad, near-isotropic spin
distribution becoming dominant above ≃45M⊙, consistent
with the onset of the (P)PISN mass gap. However, the
extent to which these conclusions depend on the specific
parametric form of the model remained an open question.
In this work, we consider hierarchical inference of the

effective spin distribution of BH binaries using data from
the third gravitational-wave transient catalog [GWTC-3,
[62] ], employing flexible, nonparametric models that make
minimal assumptions about the underlying population. Our
primary aim is to determine the mass scale at which a
subpopulation with spin properties consistent with 2nd
generation BHs begins to emerge and to evaluate the
statistical significance and astrophysical interpretation of
this transition. By modeling both the spin and mass
distributions nonparametrically, we allow the data to guide
the inference without imposing strong theoretical priors,
enabling a more robust and data-driven exploration of spin–
mass correlations. We find consistent a transition mass of
≈45M⊙, consistent with our earlier study.
The rest of this paper is organized as follows. In Sec. II

we describe our methods and model used. In Sec. III we
present our results, describing observed trends in BH
effective spins and mass ratios as a function of primary
mass. In Sec. IV, we comment on possible astrophysical
interpretations of these results, and conclude in Sec. V. In
Appendixes A and B we report on the inferred primary
mass distribution and present an additional model where we
model the mass-ratio distribution as a function of primary
mass. More details about the data and the methodology, as
well all priors on the hyperparameters of our models are
reported in Appendixes C and D.

II. DATA AND BASELINE MODEL

In the analysis that follows, we consider the subset of
binary BH (BBH)mergers inGWTC-3with false alarm rates
below 1 yr−1, consistent with Ref. [20]. We exclude all
events which include at least one component with mass
< 3M⊙ and is therefore likely to involve a neutron star [20].
The resulting dataset contains 69 BBH mergers. Selection
effects are accounted for using the set of successfully
recovered BBH injections made publicly available by the
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LIGO-Virgo-KAGRA collaboration, covering their first
three observing runs [20,63]; see Appendix C for further
details.
We assume the merger rate density can be factorized as

Rðm1; m2; χeff ; zÞ ¼ Rref
fðm1Þ

fð20M⊙Þ
�
1þ z
1.2

�
κ

× pðm2jm1Þpðχeff jm1Þ; ð2Þ

where Rref denotes the merger rate per unit mass evaluated
at redshift z ¼ 0.2 and primary mass m1 ¼ 20M⊙. Our
primary object of study is pðχeff jm1Þ, the probability
distribution of effective spins as a function of BH primary
mass. In Sec. III below, we will adopt several different
models for the probability distribution pðχeff jm1Þ, ranging
from parametric to flexible nonparametric approaches.
We will simultaneously infer the distributions of BBH

primary masses, mass ratios q, and redshifts z. Unless
otherwise specified, we model the primary mass distribu-
tion nonparametrically via a Gaussian process (GP). In
particular, we take

fðm1Þ ¼ exp½Φðlnm1Þ� ð3Þ

where Φðlnm1Þ is drawn from a zero-mean GP prior,

ΦðxÞ ∼ GPð0; kðx; x0;am;lmÞÞ ð4Þ

with a squared-exponential kernel

kðx; x0Þ ¼ a2m exp

�
−
ðx − x0Þ2
2l2

m

�
: ð5Þ

Here, am is the amplitude of the GP (controlling vertical
variation), and lm is the length scale (controlling smooth-
ness). We treat both am and lm as free hyperparameters,
assigning priors that allow for flexibility while ensuring the
inference remains robust and the effective sample size
remains sufficient (see the Appendix).
In practice, we evaluate the GP on a uniform grid in

logm1 over the range 2M⊙ to 100M⊙, using grid points

fxi ¼ logmðiÞ
1 g, for i ¼ 1;…; Nbin, with Nbin ¼ 100. The

latent function values y ¼ ½Φðx1Þ;…;ΦðxNbin
Þ�⊤ are then

drawn from the multivariate normal distribution

y ∼N ð0;KÞ;

where the covariance matrix is defined by Kij ¼
kðxi; xj; am;lmÞ. Samples are generated via Cholesky
decomposition of K to ensure numerical stability.
The values of y are then interpolated to evaluate the GP
at the locations of events’ posterior samples and recovered
injections.

We model the conditional distribution of the secondary
mass m2 following Ref. [48]

pðm2jm1Þ ∝ m
βq
2 ; 2M⊙ ≤ m2 ≤ m1: ð6Þ

Meanwhile, we assume that the volumetric merger rate
evolves as a power law in (1þ z) [64,65], such that
probability distribution of merger redshifts is

pðzÞ ∝ 1

1þ z
dVc

dz
ð1þ zÞκ: ð7Þ

III. RESULTS

We begin by highlighting a key result of this study: the
primary mass scale m̃ at which BH spins transition, pre-
viously inferred using strongly parametric models as m̃ ¼
44þ6

−4M⊙ [58], is recovered here using significantly more
flexible, nonparametric models. In Ref. [58], the distribution
of χeff was modeled as a mixture of a Gaussian component,
representing the bulk population at m1 ≲ m̃, and a uniform
component, associated with dynamically assembled
(1stþ 2nd generation BH) mergers at m1 ≳ m̃. The param-
eter m̃ denotes the transition mass where the dominant
formation channel shifts from isolated to dynamical.
Figure 1 displays the inferred posterior distribution of m̃

for all models considered in this work. Across the different
model classes, to be discussed further below, we consis-
tently recover a transition in spin properties at a character-
istic primary mass of m̃ ¼ 46þ7

−5M⊙ (90% credible interval).
Above this mass, we find strong evidence for the emer-
gence of a distinct subpopulation of BHs with systemati-
cally higher spins.
In the sections that follow, we describe the individual

models in detail and examine their respective predictions
for the mass-spin correlation.

A. Mixture fraction

If a (P)PISNemass gap exists, and it is repopulated byBHs
formed from a previous merger, then above a certain mass
threshold (i.e., the lower edge of the gap) the distribution of
χeff should change and become consistent with Eq. (1).
In this section we will return to the model explored in

Ref. [58], in which the distribution of BBH spins is a mass-
dependent mixture of two components: a truncated
Gaussian and the broad and uniform distribution repre-
sented by equation (1). Let ζðm1Þ be the fraction of events
with uniformly distributed spins, such that

pðχeff jm1Þ ¼ ð1 − ζðm1ÞÞN ðχeff ; μ; σÞ
þ ζðm1ÞUðχeff ;w ¼ 0.47Þ: ð8Þ

Here, N ðχeff ; μ; σÞ denotes a normalized Gaussian distri-
bution with mean μ and standard deviation σ truncated

INFERRING THE PAIR-INSTABILITY MASS GAP FROM … PHYS. REV. D 112, 063040 (2025)

063040-3



within ½−1; 1�, and Uðχeff ;wÞ is a uniform distribution
defined over the range jχeff j < w. We set w ¼ 0.47, as
predicted for mergers involving 2nd generation BHs.
InRef. [58],we assumed that ζðm1Þ rose sharply fromzero

to one at the transition scale m1, restricting our model to a
single transition from a purely Gaussian to a purely uniform
effective spin distribution. Here, we instead model the
mixture fraction ζðm1Þ via a GP over lnm1, allowing for
considerably more complex behavior in the mass-dependent
spin distribution. A GP model for ζðm1Þ allows for non-
monotonic behavior, such as multiple transitions back and
forth between spin morphologies. It moreover illustrates at
which masses we have informative spin measurements, and
thus well-measured ζðm1Þ, and in which regions data are
instead uninformative. Finally, ζðm1Þwill allow us to bound
the fraction of systems possibly arising from dynamical
formation across the full range of BH masses.
We specifically model ζðm1Þ via

ζðm1Þ ¼ SðΨ½lnðm1Þ�Þ ð9Þ

where ΨðxÞ is drawn from a zero-mean GP prior,
ΨðxÞ ∼ GPð0; kðx; x0; aζ;lζÞÞ, using a squared exponential

kernel with variance a2ζ , and smoothing length lζ. A
sigmoid function

SðxÞ ¼ 1

1þ e−x
ð10Þ

is then applied to Ψðm1Þ in order to ensure 0 ≤ ζðm1Þ ≤ 1.
The inferred ζðm1Þ is shown in the upper panel of Fig. 2. It

exhibits a clear trend with primary BHmass. Atm1 ≲ 5M⊙,
ζðm1Þ is unconstrained, spanning the full range from 0 to 1.
This indicates that the data are not informative in this regime:
this is expected, given the low number of detections and the
difficulty in distinguishing spin contributions at small
masses. Between m1 ≈ 10M⊙ and 40M⊙, the 95% credible
interval for ζðm1Þ remains consistent with 0 and constrained
below ≃0.15. This implies that in this mass range the
contribution from a dynamically assembled, isotropically
spinning population is statistically small, i.e., less than 15%
of the astrophysical population. The truncated Gaussian
representing χeff is a narrow distribution with positive mean
μ ¼ 0.05þ0.03

−0.03 (90% credibility).
Above m1 ≈ 40M⊙, we observe a marked increase in

ζðm1Þ, with the mixture fraction bounded above ζðm1Þ >
0.1 at 90% credibility, indicating a statistically significant
nonzero contribution from a different population with a
broader χeff distribution. This result indicates a transition in
the BH population around 40M⊙. Above this mass, the
lower 5% bound of the isotropic spin fraction approaches
the 95% upper bound of the distribution below 40M⊙. This
indicates a significant shift in spin properties, consistent
with the emergence of a distinct subpopulation at higher
masses.
In Fig. 2, we show the 90% prior confidence region. The

broad prior on the kernel parameter aζ leads to intervals
that, after applying the sigmoid transformation, lie close to
the prior boundaries. The inferred 5% lower bound on the
isotropic spin fraction in the interval ∼40 to 80M⊙ remains
significantly above zero. This indicates that the data are
constraining this feature: the rise in ζðm1Þ at high masses is
not simply reflecting the edge of a diffuse prior or of an
informative region, but rather represents a data-driven trend
supported by the observed population. At higher masses
still, data again become uninformative due to a low number
of observations, and ζðm1Þ asymptotes back to its prior.

B. Effective spin vs primary mass

To further investigate possible correlations between spin
and primary mass, we consider a model in which the
effective spin parameter χeff is instead described as a single
Gaussian, but one whose mean and standard deviation vary
as functions of the primary BH mass m1

pðχeff jm1Þ ¼ N ðμχðm1Þ; σχðm1ÞÞ: ð11Þ
Here, N ðχeff ; μ; σÞ denotes a truncated normal distribution
where both the mean μχðm1Þ and the standard deviation

FIG. 1. Posteriors of the transitional mass m̃ obtained under the
different models considered in this work. All models yield a
consistent estimate of m̃ ≃ 45M⊙ The black and purple lines
correspond to models in which both the primary mass distribution
and the χeff distribution are described nonparametrically; these
differ only in their prior choices, referred to as model 1 and model
2 in the main text. The yellow line corresponds to a model in
which the mass distribution is represented parametrically using
the standard power-law plus peak prescription commonly used in
previous studies. The red line corresponds to a model in which
the χeff distribution is represented by the parametric form given in
Eq. (12), i.e., a uniform distribution with independent bounds.
Finally, the purple line denotes a model in which the mass ratio
power-law slope parameter βq is modeled as a GP over the
primary BH mass (see Appendix B).
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σχðm1Þ are modeled as nonparametric functions using
independent GPs over logðm1Þ and adopting an exponential
kernel with parameters aμ, lμ, aσ , and lσ . The prior range
of aμ is then constrained to the interval ½−1; 1� using the
sigmoid function 2SðxÞ − 1, while log σχ is constrained to
the interval ½−1.5; 1� using 2.5SðxÞ − 1.5. The mass dis-
tribution is again represented nonparametrically as
described in Sec. II.

In contrast to mixture models that impose a population
split (e.g., below and above a threshold mass), this
framework enables us to search for continuous or gradual
changes in the spin distribution that may signal a gradual
shift in the population, rather than a sharp transition to a
different population above a certain mass (as in Ref. [58])
or an evolving mixture between two starkly different spin
distributions (as in Sec. III A). A sharp increase in the
variance of χeff or a change in its mean above a certain value
ofm1 would be consistent with the emergence of a different
population.
The results of this analysis are presented in the middle

and lower panels of Fig. 2. The mean of the χeff distribution
is measured away from zero at m1 ≃ 10M⊙, where the
merger rate has a strong peak (see Fig. 8). This suggests
that the majority of merging binaries at these masses are
unlikely to originate solely from dynamical interactions in
dense star clusters. A positive mean for the χeff distribution
indicates the presence of a subpopulation with preferen-
tially aligned spins, consistent with formation channels
such as isolated binary evolution in the field [e.g., [66,67] ],
or formation in AGN disks [e.g., [68] ].
Across the entire mass range, the mean of the χeff

distribution shows little variation with primary mass,
although the uncertainty increases with mass such that
the mean becomes consistent with zero above 35M⊙ (90%
credibility). The standard deviation exhibits clear mass
dependence, however, closely mirroring the behavior of
ζðm1Þ. Between 5 and 40M⊙, the distribution is well
described by a narrow Gaussian with a positive mean of
approximately 0.05 and a standard deviation corresponding
to log σ ≃ −1.3. At masses above 40M⊙, the dispersion
increases and becomes log σ ≳ −1 (90% credibility). These
results are consistent with two distinct populations below
and above ≃45M⊙, that are characterized by different spin
distributions. We note that a similar result was recently
obtained by Ref. [69], who inferred the joint component
mass and χeff distribution using an iterative kernel density
estimation-based method.
In Ref. [58], we showed that the low-mass population is

well characterized by a narrow Gaussian, while the high-
mass population exhibits a broader distribution. We argued
that this high-mass component is responsible for the trend
observed in previous studies, where the spin dispersion was
found to increase with mass under parametric models
assuming a linear dependence of the mean and variance
on primary mass [70]. Consistently, the present analysis
shows that such linear models are unlikely to be a good
representation of the real trend [see also [71] ]. However,
our analysis does not fully rule out a smoother transition or
gradual trend in the spin properties of the overall pop-
ulation. For instance, as shown in Fig. 2, several posterior
sample tracers exhibit a more continuous or approximately
linear increase of log σ with mass.

FIG. 2. Upper panel: median and 90% confidence intervals of
the mass-dependent mixture fraction ζðm1Þ as a function of
primary BH mass, representing the relative contribution of the
isotropically spinning BH population to the total merger rate.
Middle and lower panels: the mean and standard deviation of the
χeff distribution, represented here as a truncated Normal distri-
bution with mass dependent mean and variance. Blue-dashed
lines show the prior 90% confidence region. For μχ these intervals
are not shown as they are beyond the range of values plotted.
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C. Symmetry of the effective spin distribution

As identified in Ref. [58] and corroborated above with
more flexible models, current data strongly support a
correlation between BH spins and mass, with BHs above
masses m̃ ≈ 45M⊙ exhibiting a broader spin distribution
than those below. In Ref. [58], we deliberately enforced the
spin distribution of high-mass binary BHs to be isotropic
(i.e. an effective spin distribution that is uniform and
symmetric about zero). This choice was motivated by
the possibility of second-generation BH mergers in dense
environments, which robustly produce isotropic spins.
Here, we seek to more carefully test this hypothesis. In

particular, do the effective spins of massive binary BHs
indeed extend to both larger positive and larger negative
values than their less massive counterparts? Or are con-
clusions about large and negative effective spins primarily
driven by prior choices and modeling assumptions?.

1. Parametric: Independent minimum
and maximum bounds

We first proceed parametrically. As in Ref. [58], we
adopt an effective spin model that transitions from a
Gaussian to a uniform distribution below and above m̃,
respectively. We extend this model, however, by regarding
the upper (χeff;max) and lower truncation bounds (χeff;min) of
the uniform distribution as independent parameters to be
inferred from data

pNþUðχeff jm1Þ ¼
�
N ðχeff ; μ; σÞ; m1 < m̃

Uðχeff ; χeff;min; χeff;maxÞ m1 ≥ m̃:

ð12Þ

Here, Uðχeff; χeff;min; χeff;maxÞ denotes a uniform distribution
over the interval ½χeff;min; χeff;max�.Weplace uniformpriors on
the lower and upper bounds of the uniform component:
χeff;max ∈Uð0.05; 1Þ and χeff;min ∈Uð−1; χeff;maxÞ.
The posterior of the parameters governing the χeff dis-

tribution for the high-mass BH population are shown in
Fig. 3. The posterior distribution of χeff is shown in Fig. 4.
The inferred transition mass is found to be m̃ ¼ 45þ7

−5M⊙,
and the median of the χeff distribution is inferred to be
−0.01−0.21−0.24 (90% credibility). The upper bound of the uni-
form distribution is relatively well constrained by the data,
with χeff;max ¼ 0.57þ0.21

−0.19 . The lower bound χeff;min, however,
is more weakly constrained. We find that χeff;min < 0 at 98%
credibility, indicating evidence for negative effective spin
among high-mass binary BHs. At the same time, we cannot
confidently exclude a minimum effective spin that is zero or
small and positive. We therefore conclude that the broad-
ening effective spin distribution at high masses is primarily
driven bymassiveBHs exhibiting larger,more positive spins.
Whether massive BHs also exhibit larger and more negative
spins remains unclear with current data.

Despite the weak constraints on χeff;min, we note that
current data remain consistent with expectations from
repeated mergers in dense clusters. In a dynamical for-
mation scenario where the primary BH formed from a
previous merger we should expect χeff;max ¼ −χeff;min ≃ 0.5
[58]. The results of Figs. 3 and 4 illustrate that the data are

FIG. 3. The lower and upper bounds of the χeff distribution
inferred using the parametric model of Eq. (12), as well as the
posterior of the transition mass m̃ between the low mass and high-
mass/high-spin BH populations.

FIG. 4. The χeff distribution inferred using the parametric
model of equation (12), where the high mass population is
represented by a uniform distribution with independent lower and
upper bounds. The solid line is the posterior median, while the
dashed lines show the 90% confidence intervals. Individual
posterior draws are shown via light gray traces.
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compatible with this basic prediction; additional data will
be required to further confirm or rule out this hypothesis.

2. Nonparametric: Gaussian process effective spin
distributions

As a further check on these conclusions, we consider a
more flexible version of Eq. (12) in which the spin
distribution at high masses is described via a GP prior

pðχeff jm1Þ ¼
(
N ðχeff ; μ; σÞ m1 < m̃

eΘðχeffÞ=
R
1
−1 e

ΘðχeffÞdχeff m1 ≥ m̃:
ð13Þ

Here, the function ΘðχeffÞ is generated from a GP,

ΘðχeffÞ ∼ GPð0; kðχeff ; χ0eff ; aχ ;lχÞÞ;

with zero mean and a squared-exponential covariance
kernel. We evaluate these GPs on a regular grid of Nbin ¼
100 points in χeff within the range −1 to þ1. We also
consider an additional fit where the nonparametric model
for the primary mass distribution was replaced by the power
lawþ Gaussian peak model often used in the literature
[e.g., [72] ]. The results, however, remain nearly unchanged
and are not reported here. This shows, however, that the

FIG. 5. The distribution of χeff obtained under model (13) for both the Gaussian component at m1 < m̃ (red) and the nonparametric
component at m1 ≥ m̃ (black and green). We show the results for two different choice of priors on the kernel parameters used in
hierarchical analysis, showing how these affect the resulting distributions. Individual posterior draws are shown via light gray and red
traces. Blue-dashed lines show the prior 90% confidence intervals.
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inference about spin properties is robust across different
assumptions about the BH mass spectrum.
We show the inferred distribution of χeff in Fig. 5. The

low and high mass populations can be clearly separated
based on their χeff distributions. We find that the lower
bound of the χeff distribution for the high mass population
depends somewhat on the prior choice for the kernel
parameters. Thus, in Fig. 5 we show the results for two
different choices of prior that are given in Table I of
Appendix D. As shown in the figure, model 2 allows for
larger amplitude variations of eΘðχeffÞ over the χeff grid than
model 1, resulting in a broader prior.
The two priormodels produce overall similar distributions

for χeff. Specifically, the inferred median of the χeff distri-
bution under the two models are −0.03þ0.36

−0.59 (model 1) and
−0.02þ0.34

−0.59 (model 2). However, we observe noticeable
differences in the lower 5% credible bound outside the range
0≲ χeff ≲ 0.7, where model 2 leads to significantly lower
probability values. This indicates that the current gravita-
tional-wave data provide only weak constraints on the shape
of the χeff distribution in these regions. Consequently, the
inferred distribution in this range is more sensitive to the
choice of prior, reflecting the limited information content of
the data.
An interesting feature of the χeff posterior is the

asymmetry observed in the lower tail of the distribution,
which tends to extend more prominently toward positive
values. This asymmetry has previously been interpreted as
a physical signature in the χeff distribution, possibly
pointing to formation channels involving AGN disks,
where accretion disks can efficiently align BH spins with
the orbital angular momentum [73]. Such alignment mech-
anisms would naturally lead to a positive skew in χeff due to
preferentially aligned spins. Alternatively, it could still be
possible that the (P)PISN gap stars at much larger mass
values and that the positive alignment is produced by
binary stellar evolution where tides can align the stellar
progenitor spins with the orbital angular momentum [74].
However, our interpretation is that the observed asymmetry
is not necessarily physical, but rather a consequence of the
data-limited ability to constrain the negative end of the χeff
distribution. This is particularly evident when examining
the cumulative distributions, which reveal that the lower
edge of the posterior spans a much broader range than the
upper edge. This broad lower tail reflects the fact that large
negative values of χeff remain poorly constrained, leading
to an apparent-but not statistically significant-asymmetry.
In Fig. 6 we show the posterior distributions of the CDF

evaluated at specific values of χeff . In particular, we
display the posteriors for CDFðχeff ¼ 0Þ, as well as for
CDFð−χeffÞ and 1 − CDFðχeffÞ evaluated at χeff ¼ 0.3,
0.5, and 0.7. For a population with isotropic spin ori-
entations and randomly aligned angular momenta, the χeff
distribution is expected to be symmetric about zero. This

symmetry implies the two conditions: (1) a median
CDFðχeff¼0Þ¼0.5, and (2) CDFð−χeffÞ ¼ 1 − CDFðχeffÞ
at a given χeff .
From the posterior distributions shown in Fig. 6, we find

that both symmetry conditions (1) and (2) are satisfied
within the uncertainties of the data. Specifically, the median

FIG. 6. Posterior distributions of the CDF of χeff evaluated at
selected values: χeff ¼ 0, 0.3, 0.5, and 0.7. We show the
posteriors for CDFð−χeffÞ and 1 − CDFðχeffÞ to assess the
symmetry of the χeff distribution about zero. For an isotropic
distribution, we expect CDFðχeff ¼ 0Þ ¼ 0.5 and CDFð−χeffÞ ¼
1 − CDFðχeffÞ at each value. The vertical lines give the values
expected under the dynamical formation hypothesis, derived
from Eq. (1). In gray we show the unsmoothed histogram giving
the distribution of the cumulative function evaluated at χeff ¼ 0,
i.e., CDFðχeff ¼ 0Þ. The two panels correspond to different prior
choices for the kernel parameters used in the GP as explained in
the main text.
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values of the CDFs are consistent with the expectations for
an isotropic spin distribution across the selected values of
χeff . However, the posterior distributions remain relatively
broad, highlighting the limited constraining power of
current observations. In particular, the posterior for
CDFðχeff ¼ 0Þ retains nonzero support at zero, indicating
that highly asymmetric spin distributions—such as those
strongly peaked at positive χeff values—are disfavored but
not definitively excluded by the data. Conversely, the data
do rule out a complete absence of systems with positive
χeff , implying that a subpopulation of spin-aligned binaries
is present in the high mass population.

IV. ASTROPHYSICAL IMPLICATIONS

The mass transition we identified in this work has
important implications for the formation and evolution
of BBHs, and for the astrophysical environments in which
they form. The emergence of a broader χeff distribution
above ≃45M⊙, observed consistently across multiple
models, points to the presence of a distinct high-mass
subpopulation. This transition mass lies near the expected
onset of the (P)PISN mass gap [14,17,75] and suggests that
BHs above this threshold are not formed through ordinary
stellar collapse.
One possible origin of the high mass population we

identified is dynamical formation in a dense stellar envi-
ronment where the primary BH was formed from a
previous merger. Such environments include globular
clusters [e.g., [76,77] ], young massive clusters [e.g.,
[78–80] ], and nuclear star clusters [e.g., [27,31] ], where
frequent dynamical interactions can assemble and harden
BH binaries, leading to repeated mergers over time. To
assess whether this hypothesis is consistent with current
data, we evolve a grid of star cluster models using the code
cBHBd [81]. Since the χeff distribution is largely insensitive
to the choice of initial cluster conditions [58], we simulate a
single population of 10,000 clusters with fixed metallicity
Z ¼ 1%Z⊙ and with masses uniformly distributed in
logarithmic space between 103 and 106M⊙. The clusters
are evolved for 10 Gyr. In Fig. 7, we show the resulting χeff
distribution for all mergers occurring in the pair-instability
mass gap, which in our models lies at ≃50M⊙. We find that
the predicted distributions lie almost entirely within the
90% credible intervals of the distribution inferred from the
data. Small differences in the tails of the distributions are
not considered significant, as those regions are partially
shaped by prior assumptions and are not strongly con-
strained by the data.
If a significant fraction of the high-mass BBH mergers

are indeed dynamically assembled—as our analysis tenta-
tively indicates—this would reinforce the idea that dense
stellar clusters play a central role in populating the upper
end of the BH mass distribution. Dynamical formation
models in which clusters dominate the high-mass BH
merger rate often also predict a significant, if not dominant,

contribution from cluster-formed binaries at lower masses,
below the expected pair-instability gap threshold [82].
Thus, identifying a dynamically assembled subpopulation
not only sheds light on the high-mass regime but will also
put constraints on the contribution of clusters across the full
BH mass spectrum. More broadly, evidence for a cluster
origin provides a valuable probe of internal cluster dynam-
ics—offering constraints on BH retention efficiency fol-
lowing gravitational recoil, the role of mass segregation in
binary formation, and the initial structural and dynamical
conditions required for clusters to retain and recycle merger
remnants.
On the other hand, if future data were to rule out a pure

cluster origin for the high-mass, broad-spin population, this

FIG. 7. Comparison between the inferred χeff distribution and
the distribution predicted by cluster models within the pair-
instability mass gap. We show the 90% confidence intervals
inferred using Eq. (13) and for our two prior choices: model 1
(red) and model 2 (green). The blue dotted line is the simple
analytical model of equation (1). The continuous black and blue
lines are obtained from cluster models that were evolved with
cBHBd [81]. We show the results of two different choices for the
natal spins of the BHs, in one all BHs are initially nonspinning,
and in the other model the all have an initial dimensionless spin
parameter a ¼ 0.3.
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would also carry significant astrophysical consequences.
This would imply that the apparent lack of a sharp pair-
instability mass gap in the observed population is not the
result of mass growth through BH mergers. In this case, the
gap may occur at significantly higher masses than pre-
dicted, or might be absent altogether, calling into question
existing models of stellar evolution, particularly the treat-
ment of (P)PISN. Alternatively, other formation channels
could be contributing to the high-mass population. These
include mergers in AGN disks, where gas torques and
accretion can aid binary formation and potentially align
spins [61,83], or consecutive mergers occurring in the field
through the evolution of triples and higher-order systems
[32,60]. Another scenario that can produce high-spin,
aligned binaries is chemically homogeneous evolution
[e.g., [9,84–87] ]. In systems with orbital periods
≲1–2 days, strong tidal forces spin the stars up to near
their critical velocities, driving efficient Eddington-Sweet
circulations and shear instabilities that mix hydrogen from
the envelope into the core and helium outward. This
rotational mixing prevents the development of a deep
convective envelope and suppresses radial expansion on
the main sequence, so the components remain compact and
tidally locked throughout their lives. Consequently, at core
collapse, each star retains most of its angular momentum,
producing BHs with near-maximal spins that are almost
perfectly aligned with the orbital angular momentum. The
resulting χeff distribution is then sharply peaked at high
positive values, in stark contrast to the broad, symmetric
distribution expected from dynamical channels. Such
scenarios typically make different predictions for spin
and eccentricity distributions, redshift evolution, and
merger rates, and distinguishing between them will be a
major goal for future observational campaigns.
Identifying the location of the inferred transition mass

will provide indirect constraints on stellar evolution and
nuclear astrophysics. The pair-instability mass gap depends
sensitively on the properties of massive stars, particularly
on the helium core mass at collapse, which is set by the rate
of the 12Cðα; γÞ16O nuclear reaction during helium burning
[12]. A transition to second-generation mergers at ≃45M⊙
would be consistent with the presence of a (P)PISN mass
gap at the lower end of the final BH masses than is
sometimes assumed. If confirmed, this could favor models
with relatively high 12Cðα; γÞ16O rates, leading to more
massive CO cores and earlier onset of instability. While
current data do not yet allow strong constraints on this
reaction rate, future improvements in mass and spin
measurements could strengthen the connection between
gravitational-wave astronomy and nuclear physics.
Our results also have potential implications for standard

siren cosmology [88]. If the sharp transition from low to
high effective spin values is indeed associated with the
onset of 1stþ 2nd generation mergers, it would constitute a
relatively redshift-invariant mass scale in the source frame.

As such, it provides a physically motivated and stable
reference point for spectral siren cosmology, complemen-
tary but more robust than, for example, the Gaussian excess
at ∼35M⊙, whose astrophysical origin remains uncertain.
However, we note that if metallicity evolution causes the
mass gap location to drift with redshift, employing the gap
as a standard mass scale for spectral sirens cosmology
could introduce systematic offsets in distance estimates. As
a result, improving nuclear reaction rate measurements and
mass loss models is vital not only to map BH formation
channels, but also to establish the (P)PISN gap as a robust
tool in both astrophysical population studies and precision
cosmology [89,90].
It is also important to recognize that theoretical uncer-

tainties in the precise location and width of the (P)PISN
mass gap—driven by factors such as the 12Cðα; γÞ16O
reaction rate [91], wind mass loss prescriptions, progenitor
rotation, and internal mixing [92]—can shift both the lower
and upper edges of the gap by tens of solar masses [93].
Such shifts will naturally smooth out the predicted black-
hole mass function, turning what might appear as a sharp
threshold in χeff into a more gradual transition. In practice,
this means that the high spin population above ≃45M⊙
could partially arise from the smearing of the gap itself,
rather than solely from a distinct second-generation sub-
population; disentangling these effects will require tighter
constraints on stellar evolution physics and more extensive
gravitational wave catalogs [12,94].
Taken together, our results illustrate the potential of

gravitational-wave observations not only to inform BH
formation scenarios but also to probe stellar interiors and
the dynamical environments in which massive binaries
form. Continued accumulation of high-mass merger detec-
tions—particularly those with nonzero spin measurements
—will be crucial for refining constraints on the properties
of the high-mass BH population and clarifying its astro-
physical origin.

V. SUMMARY AND CONCLUSIONS

We have investigated the effective spin distribution of
BBH mergers using nonparametric models that allow for
flexibility in both the spin and mass distributions. We find
that above a primary BH mass of 46þ7

−6M⊙ the spin
distribution becomes broader and more consistent with
isotropic orientation of the spins and orbit. This value of the
transitional mass is in good agreement with our previous
work based on strongly parametric models where the high-
mass and isotropically spinning population was modeled
using a uniform distribution, and where we inferred m̃ ¼
44þ6

−4M⊙ [58].
We explore the phenomenology of this mass-spin corre-

lation using a variety of increasingly flexible models. When
adopting a Gaussian process model for the mass-dependent
fraction ζðm1Þ of binary BH mergers with isotropic spins,
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we find that this fraction rises sharply above m1 ≈ 40M⊙,
reaching ζðm1Þ > 0.1 at 90% confidence and continuing to
increase at higher masses. Similar behavior is seen when
instead modeling effective spins as a Gaussian distribution
with a mass-dependent mean μðm1Þ and standard deviation
σðm1Þ. In the low-mass regime (m1 < 40M⊙), we find the
effective spin distribution to be tightly clustered around
μχ ¼ 0.05þ0.03

−0.03 with a standard deviation log σ ≃ −1.3,
consistent with low natal spins and spin alignment; at
higher masses, the width of the χeff distribution increases,
with log σ > −1 at 90% confidence, indicative of a broader
spin distribution.
We furthermore explored the evidence for spin isotropy

(i.e. symmetry in the effective spin distribution) among
high-mass BHs. When independently measuring the maxi-
mum and minimum effective spin among high-mass, we
constrain the upper bound to χeff;max ¼ 0.57þ0.21

−0.19 , while the
lower bound remains weakly constrained at χeff;min ¼
−0.53þ0.52

−0.42 . However, 98% of the posterior mass for
χeff;min lies below zero, providing weak evidence for
negative effective spins in this subpopulation. Under our
most flexible nonparametric models, the effective spin
distribution for the high-mass BBH population is consistent
with being symmetric about zero, although current con-
straints remain limited by statistical uncertainties.
The data do not exclude alternative possibilities, such as

a spin distribution with an excess of aligned systems. In
particular, weak constraints on χeff;min mean that we cannot
rule a minimum effective spin among high-mass systems
that is zero or small and positive. In contrast, the upper
bound is better constrained, with a posterior consistent with
χeff;max ≃ 0.5, as predicted for 1stþ 2nd generation merg-
ers in a dense cluster. This asymmetry in constraint quality
—tighter on the upper end and looser on the lower—can
give rise to an apparent skew in the posterior distribution of
χeff . However, this should not be taken as evidence for an
intrinsically asymmetric spin population. Rather, it likely
reflects the limited number of current gravitational-wave
observations. Given these limitations, we cannot make a
definitive statement about the symmetry of the underlying
distribution a part that the data remain consistent with a
symmetric, isotropic spin distribution. Putting more strin-
gent constraints on a dynamical formation scenario will
require a larger sample of high-mass mergers from current
and future observing runs.
Main software: ASTROPY [95]; BILBY [96]; cBHBd [81];

JAX [97]; NUMPY [98]; NUMPYRO [99,100]; SCIPY [101].
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APPENDIX A: MASS DISTRIBUTION

In Fig. 8, we present the primary mass distribution
inferred under our suite of models. The recovered features
are consistent with previous findings [20], revealing
prominent peaks in the differential merger rate around
10M⊙ and 35M⊙. These structures align with earlier
studies that attributed such features to underlying astro-
physical imprints in the BH mass function [103,104].
For systems with m1 ≲ 40M⊙, the population is well

described by a single truncated Gaussian effective spin
distribution. In this lower-mass regime, the contribution
from the isotropic spin component remains minimal.
When the model includes a mass-dependent transition

between two spin populations, the inference robustly
recovers a sharp change in the χeff distribution at a
characteristic mass of m̃ ≃ 45M⊙. This is reflected in the
narrow posterior for m̃, as shown in Fig. 1. Importantly, this
transition mass appears to be largely insensitive to the
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specific functional form used to model the primary mass
distribution.
Furthermore, even when using the nonparametric model

described in Sec. III A, which allows the mixture fraction
ζðm1Þ between spin subpopulations to vary with mass, the
data continue to favor a distinct transition to a highly spinning
subpopulation near the same mass scale. However, in this
case, the exact fraction of the isotropic component at high
masses is less well constrained. This is likely due to the
increased flexibility of the model and the limited number of
high-mass mergers in the current dataset. Nonetheless, the
posterior distributions still require a nonzero contribution
from the isotropic population at m1 ≳ 45M⊙.
Finally, we note that the increased variance in the

inferred mass distribution at very low (≲5M⊙) and very
high (≳100M⊙) masses reflects a reversion to the prior in
regions where observational constraints are weak.

APPENDIX B: MASS RATIO vs PRIMARY MASS

Mergers involving a BH that is itself the product of a
previous merger are expected to form a distinct population
compared to mergers involving first generation BHs only.
Not only should this population exhibit larger primary
masses and spins, it should additionally be characterized by
a distinct mass-ratio distribution preferentially favoring
unequal-mass binaries.
If the distinct BH spin distributions described above are

indeed indicative of a high-mass population of second-
generation BHs, then we additionally expect to see signs
of a mass ratio distribution that similarly varies with primary
mass. To search for evidence of such behavior, we extend the
power-law model [Eq. (6)] of secondary masses, promoting
the power-law index βq from a constant to itself be a function
of primary mass: βqðm1Þ. We model βqðm1Þ as

βqðm1Þ ¼ Ξ½lnðm1Þ�; ðB1Þ

where, as before, Ξ is drawn from a GP prior evaluated on a
regular grid in logm1 and we use an exponential kernel with
variance and smoothing lengthaβq andlβq , respectively. This
flexible approach allows us to explore whether the distribu-
tion of mass ratio has a detectable shift above a characteristic
mass scale.
We present the results of this analysis in Fig. 9. There are

indications of possible mass-dependence of βqðm1Þ. In
particular, we see that data constrain βq ≥ 0 at both 10M⊙
and 35M⊙ at 95% credibility, whereas βq is permitted to be
smaller or negative between approximately 15–30M⊙ and
above 40M⊙. However, the data are not sufficiently
informative to determine robustly whether the mass-ratio
distribution exhibits systematic trends or transitions; the

FIG. 8. The differential merger rate as a function of primary mass. In the left panel we use the flexible representation of the χeff
distribution given in Eq. (13). In the right panel we show the merger rate inferred under the model of Eq. (8) where the χeff is a mixture
between a low-spin and a high spin populations, with a mass dependent mixture fraction ζðm1Þ. In both cases the data favor a transition
to a different population above ≃45M⊙, although the mass value at which this occurs becomes more uncertain under the latter model.

FIG. 9. Power-law index of the mass-ratio distribution evalu-
ated using a GP over a uniform grid in logm1. For reference, the
blue-dashed lines show the 90% confidence intervals of the prior.
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results above may be due simply to the elevated uncer-
tainties in the 15–30M⊙ and 40–100M⊙ ranges due to the
small number of events observed with these masses.

APPENDIX C: HIERARCHICAL BAYESIAN
INFERENCE

Wecarryout hierarchical inference on theBBHpopulation
using Hamiltonian Monte Carlo (HMC), as implemented in
NUMPYRO, a probabilistic programming framework built on
JAX. HMC requires the likelihood to be a differentiable
function of the population hyperparameters. However, the
piecewise-defined spin models we use [e.g., Eq. (13)]
introduce discontinuities at m1 ¼ m̃, which result in non-
differentiable behavior in the likelihoodwith respect to m̃. To
address this issue, we replace these discontinuous transitions
with smooth but sharp interpolations between the functional
forms of the effective spin distribution above and below m̃,
ensuring differentiability while preserving the essential
structure of the model. We redirect the reader to [58] for
the details of how this is implemented.
We conduct our analysis within the framework of

standard hierarchical Bayesian inference. For each gravi-
tational-wave event, let pðθijdiÞ denote the posterior
distribution over the source parameters θi (such as com-
ponent masses, redshift, and spins), conditioned on the
observed data di. The posterior on the population hyper-
parameters Λ, given data from all detected events, is then
given by [e.g., [48,64,105] ]

pðΛjfdigÞ ∝ pðΛÞξ−NobsðΛÞ
YNobs

i¼1

Z
dθipðθijdiÞ

pðθijΛÞ
ppeðθiÞ

;

ðC1Þ

where ppeðθiÞ is the prior used in the original parameter
estimation analysis, and pðΛÞ is our prior on the hyper-
parameters governing the population distribution. Rather
than performing the full integral over each posterior, we
approximate the expectation using discrete posterior sam-
ples for each event. This yields

pðΛjfdigÞ ∝ pðΛÞξ−NobsðΛÞ
YNobs

i¼1

�
pðθijΛÞ
ppeðθiÞ

�
; ðC2Þ

where the angle brackets denote an average over the
posterior samples of each event.
The detection efficiency ξðΛÞ accounts for the fraction of

astrophysical signals that we expect to detect under the
population model Λ. It is estimated using injection cam-
paigns consisting of Ninj simulated signals drawn from a
reference distribution pinjðθiÞ. Considering only the Nfound

injections that are successfully recovered by at least one
search pipeline with a false alarm rate below 1 yr−1, we
compute

ξðΛÞ ¼ 1

Ninj

XNfound

i¼1

pðθijΛÞ
pinjðθiÞ

; ðC3Þ

where the ratio reweights the found injections from the
injection prior to the proposed population model. This
approach follows the methodology described in [48], and
uses the injection campaign presented in [63,106].
Finally, to guard against potential biases from finite

sampling effects in the evaluation of Eq. (C2), we compute
the number of effective samples Neff that contribute to the
Monte Carlo estimate of the likelihood for each gravita-
tional-wave event. Given a set of Ni posterior samples
fθi;jgNi

j¼1 for event i, the effective sample count under a
proposed population model Λ is defined as

Neff;iðΛÞ≡
½PNi

j¼1 wi;jðΛÞ�2PNi
j¼1 ½wi;jðΛÞ�2

; ðC4Þ

where the weights wi;jðΛÞ ¼ pðθi;jjΛÞ=ppeðθi;jÞ reweight
each sample according to the proposed population model.
A small value Neff;iðΛÞ≲ 10 indicates that only a handful
of posterior samples are informative under the model Λ,
which may lead to increased sensitivity to Monte Carlo
noise [107].
Similarly, the effective number of injections contributing

to the calculation of Eq. (C3) is defined as

Ninj
effðΛÞ ¼

ðPi wiðΛÞÞ2P
j w

2
jðΛÞ

: ðC5Þ

To ensure that the systematic uncertainty in NexpðΛÞ
remains a subdominant effect in our hierarchical analysis,
it is necessary that Ninj

effðΛÞ≳ 4Nobs [107].
We track the statistic N ≡min log ½Neff;iðΛÞ� and com-

pute Ninj
eff for each population model. We then safeguard the

inference by strongly penalizing models for which Ninj
eff <

4Nobs and/or min logNeff < 0.6. Specifically, we define the
function

SðxÞ ¼ 1

1þ x−30
; ðC6Þ

which approaches unity for large x and falls rapidly to zero
as x approaches zero. We then include the terms

ln S

�
Ninj

eff

4Nobs

�
þ ln S

�
N
0.6

�
ðC7Þ

in the log-likelihood calculation implemented in NUMPYRO.
This ensures the log-likelihood diverges to −∞ if either
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condition is violated, thereby excluding models with
pathologically low effective sample sizes.

APPENDIX D: PRIORS AND HYPERPARAMETER
POSTERIORS

The specific priors adopted for our analysis are sum-
marized in Table I. Figures 10–14 show the posteriors for
the key parameters of our models.
As shown in Sec. III C 2, certain features of the inferred

posteriors are sensitive to the choice of priors for the kernel
parameters, which govern the behavior of the latent
function in the Gaussian process. This kind of sensitivity
is typical in nonparametric models, where one must decide
how smooth the function should be across the grid, and
where the posterior can revert to the prior in regions of the
GP grid where the data are not informative.
To address this, we ran our models multiple times with

different prior choices and selected those that allowed for

flexibility and broad variation in the latent function, while
still yielding accurate and stable likelihood estimates. In
model 1, we adopt normal distributions for the priors on the
kernel amplitude aχ and the logarithm of the length scale
lnlχ , following [22]. Specifically, we take aχ ∼N ð0; 3Þ
and lnlχ ∼N ð−1; 0.5Þ, applied over the χeff grid.
These prior choices are quantitatively motivated as

follows: the maximum fractional variation we physically
expect in the merger rate across the grid is of order ∼103.
The grid size is Δx ¼ 2. For a stationary GP with a squared
exponential kernel and amplitude aχ , the prior typical
fluctuation (in log rate) between two points separated by

a distance Δx is Std½Δf� ¼ ffiffiffi
2

p
aχð1 − exp ½− ðΔxÞ2

2l2χ
�Þ1=2. For

large Δx=lχ , this saturates to
ffiffiffi
2

p
aχ . Setting aχ ¼ 3, we

expect a prior standard deviation in log rate of about 4.2
(since

ffiffiffi
2

p
× 3 ≈ 4.2), comfortably covering the expected

physical variation of up to three orders of magnitude, but
without being overwhelmingly broad. The prior on lχ

centers the length scale at expð−1Þ ≈ 0.37 (with most prior
weight between about 0.2 and 0.6), so that the GP can
model features ranging from fairly localized to nearly flat
across the grid, but discourages extremely rapid oscillations
or excessively global trends unless strongly favored by the
data. We find that these choices provide a balance between
flexibility and regularization, and ensure that the GP adapts
to physically plausible variations while penalizing models
that are too rigid.
Similar prior choices were adopted for the remaining

models, and can be similarly justified. In model 2, we
adopted log-uniform priors on the kernel parameters a2 and
l to model both the χeff and m1 distributions. We set a
lower bound on l to avoid short-scale variations that would
result in small, unphysical features and poor sampling
efficiency. The upper bound is fixed at logl ¼ 2, which is
significantly larger than the grid full width Δx ¼ 2 used for
both logm1 and χeff . To allow for large but physically
plausible variations in the log rate, we impose an upper
bound which is again derived from the maximum expected
variation across the parameter space, δmaxR ∼ 1000. This
requires a2 ≳ lnð1000Þ2 ∼ 50 to ensure that the GP prior is
flexible enough to capture significant features in the data,
while maintaining numerical stability and well-behaved
posteriors.

TABLE I. Priors adopted for the hyperparameters with which
we describe the primary mass, mass ratio, and redshift distribu-
tions of the BBH population.

Prior Defined in Parameter

HN ð3Þ Eq. (13) model 1 aχ
N ð−0.5; 1Þ Eq. (13) model 1 lnlχ

LUð0; 2Þ Eq. (13) model 2 a2χ
LUð−1; 1Þ Eq. (13) model 2 lχ

HN ð3Þ Eq. (3) model 1 am
N ð0; 1Þ Eq. (3) model 1 lnlm
LUð0; 2Þ Eq. (3) model 2 a2m
LUð−1; 1Þ Eq. (3) model 2 lm
HN ð4Þ Eq. (9), (11) aζ , aμ, aσ
N ð−0.5; 1Þ Eqs. (9), (11) lnlζ , lnlμ, lnlσ

HN ð5Þ Eq. (B1) aβq
N ð−0; 5; 1Þ Eq. (B1) lnlβq

Uð20; 100Þ Eq. (12) m̃
Uð−1; 1Þ Eq. (8) μ
LUð−1.5; 0Þ Eq. (8) σ
Uð0.05; 1Þ Eq. (12) χeff;max

Uð−1; χeff;maxÞ Eq. (12) χeff;min

N ð0; 3Þ Eq. (6) βq
N ð0; 6Þ Eq. (7) κ
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FIG. 10. Posteriors on the parameters that govern the hierarchical model where the χeff distribution is represented by a fixed Gaussian
below m̃ and a nonparametric distribution above m̃. In this case the priors on the kernel parameters of the GP prior corresponding to
model 1 in Fig. 5 and Table I. Here Ninj

eff=Nobs gives the total number of injection divided by the number of detections. Rref represents the
differential merger rate value in units of Gpc−3yr−1M−1

⊙ evaluated at 20M⊙ and at redshift z ¼ 0.2.
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FIG. 11. Posteriors on the parameters that govern the hierarchical model where the χeff distribution is represented by a fixed Gaussian
below m̃ and a nonparametric distribution above m̃. In this case the priors on the kernel parameters of the GP prior corresponding to
model 2 in Fig. 5 and Table I. Here Ninj

eff=Nobs gives the total number of injection divided by the number of detections. Rref represents the
differential merger rate value in units of Gpc−3yr−1M−1

⊙ evaluated at 20M⊙ and at redshift z ¼ 0.2.
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FIG. 12. Posteriors on the key parameters that govern the hierarchical model of Eq. (8) where the χeff distribution is represented as
mixture between a Gaussian and a uniform distribution with the mixing fraction modeled as a GP over logm1. Here N

inj
eff=Nobs gives the

total number of injection divided by the number of detections. Rref represents the differential merger rate value in units of Gpc−3yr−1M−1
⊙

evaluated at 20M⊙ and at redshift z ¼ 0.2.

INFERRING THE PAIR-INSTABILITY MASS GAP FROM … PHYS. REV. D 112, 063040 (2025)

063040-17



FIG. 13. Posteriors on the key parameters that govern the hierarchical model of Sec. III B where the χeff distribution is represented as
truncated Gaussian with mass dependent mean and variance, both modeled nonparametrically as a GP. Here Ninj

eff=Nobs gives the total
number of injection divided by the number of detections. Rref represents the differential merger rate value in units of Gpc−3yr−1M−1

⊙
evaluated at 20M⊙ and at redshift z ¼ 0.2.
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