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Development of a genetic priority score to
predict drug side effects using human
genetic evidence

Áine Duffy1,2,3,4, Robert Chen1,2,3,5, David Stein 1,2,3,6, Joshua K. Park1,2,3,5,
Matthew Mort7, Marie Verbanck 8,9, Avner Schlessinger 6,10,
Yuval Itan 1,2,3,11, David N. Cooper 7, Daniel M. Jordan1,2,3,4,
Ghislain Rocheleau 1,2,3,4 & Ron Do 1,2,3,4

Many drug failures in clinical trials are due to inadequate safety profiles. We
developed an in-silico side effect genetic priority score (SE-GPS) that leverages
human genetic evidence to inform side effect risk for a given drug target. We
construct the SE-GPS in the Open Target dataset using post-marketing side
effect data, externally test it in OnSIDES using side effects reported from drug
labels and then generate a SE-GPS for 19,422 protein coding genes and 502
phecodes, of which 1.7% had a SE-GPS > 0. To consider drug mechanism, we
incorporated the direction of genetic effect into a directional version of the
score called the SE-GPS-DOE.Weobserve that restricting to at least two lines of
genetic evidence conferred a 2.3- and 2.5-fold increased risk in side effects in
Open Targets and OnSIDES respectively, with increased enrichments in severe
drugs. We make all predictions publicly available in a web portal.

The development of a novel therapeutic from discovery to market is a
rigorous and expensive process1, yet side effects often remain unde-
tected until the later stages of clinical trials or even after drug
approval2. A considerable proportion of these later-stage side effects
are linked to the drug’s action at the primary biological target (‘on-
target’) rather than secondary targets (‘off-target’)3, underscoring the
inherent challenges in drug discovery, including the limited time frame
and sample size of clinical trials and poor translation from animal to
human studies4–6. These shortcomings can result in millions of dollars
lost annually and account for approximately a quarter of all clinical trial
safety failures3. Since such safety failures represent a significant bot-
tleneck in drug discovery, optimizing prioritization frameworks of drug
targets at the preclinical stage is essential to selecting safer targets.

Although numerous factors influence a drug’s safety profile7,
understanding the biological role of the intended drug target is fun-
damental to selecting an effective and safe target. Human genetic data
provides a valuable resource that can help predict the effect of lifelong
modulation of a drug target by providing support for a causal rela-
tionship between the perturbed drug target and phenotypic
outcomes4. Providing evidence of phenotypic risk, or lack of it, can
provide support foror against the on-target safety of drugmodulation.
For example, the discontinuation of the SPR inhibitor (Quartet Medi-
cine) due to the observation of concerning neurological effects in
toxicology studies4, is supported by loss of function (LOF) variants in
the SPR gene associated with neurological disorders8,9. Evidence
showing that rare homozygotes for LOF variants have markedly lower
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low-density lipoprotein cholesterol but have no apparent deleterious
health consequences supported the probable safety of inhibition of
PCSK910,11.

With the continual expansion of human genetic data, numerous
retrospective analyses have utilized Mendelian disease and genome-
wide association data to demonstrate the predictive value of incorpor-
ating diverse types of genetic evidence, encompassing common and
rare variants, to predict side effects7,12,13. These studies have shown that
drug targets supported by human genetic evidence have an increased
risk of side effect occurrence. However, despite the development of
several prioritization scores that use multiple lines of genetic evidence
to predict drug indications14,15, there is currently no framework that
predict targets likely to elicit side effects. Furthermore, the direction-
ality of the genetic effect has not been considered in these previous
studies; this is required to determine if the genetic risk for the pheno-
typic outcome is in the same direction as the drug target modulation.

In this study, we have developed a side effect genetic priority
score (SE-GPS) for 19,422 genes and 502drug side effects, based on the
presence of genetic evidence from four distinct genetic features using
nine sources of genetic evidence. These features include: 1) clinical
variant evidence from ClinVar16, HGMD17 and OMIM18, consolidated
into a single feature quantified as the number of overlapping entries; 2)
single coding variants encompassing pLOF and missense single var-
iants curated fromGenebass19 andRAVAR20; 3) Gene burden tests from
Open Targets15 and RAVAR and 4) genome-wide association (GWA)
loci, represented by two separate features: Locus2Gene21 and eQTL
phenotype22. This approach extends from our prior work on the
development of a genetic priority score (GPS) for drug indications14.
Wehave utilized two sources of side effectdata to consider side effects
reported during clinical trials and those detected following market
approval. Our method demonstrates that the SE-GPS can effectively
highlight drug targets likely to elicit a drug side effect and provides a
useful framework for incorporating direction of genetic effect with
clinical trial safety data.

Results
Construction of the drug genetic dataset
In this study, we calculated the SE-GPS to inform the likelihood of a
side effect across 19,422 genes and 502 phecodes, using a similar
approach to our previously published GPS14. We summarize this fra-
mework in Fig. 1.

We utilized two datasets that report side effect data: Open
Targets15 as our discovery dataset, which compiles post-marketing
surveillance data from the FDA Adverse Event Reporting System
(FAERS)23, and OnSIDES as our validation dataset24, which extracts
adverse drug reactions from drug labels reported during clinical trials.
To measure the frequency of reported side effects and compare dif-
ferences in side effect reporting across clinical trial data (OnSIDES) and
post-marketing data (Open Targets), we plotted the ratio of reporting
frequency (RRF), calculated as the normalized count of drugs asso-
ciated with a given side effect from Paccanaro et al.5. Supplementary
Fig. 1 shows the RRF of each side effect in Open Targets, correlated
against the side effect data in OnSIDES. Both datasets indicate that
most reported side effects are drug-specific, with similar reported
frequency (r =0.71). To construct the drug datasets, we mapped the
side effects and drug indication data to phecodeX integer terms across
16 phecode categories, similar to the GPS, and outlined additional
quality control steps in the Methods. We observe that a proportion of
side effects in Open Targets and OnSIDES shared their phecode terms
with the drug indication (9.18% and 11.41%, respectively). This overlap
is likely due to several reasons, including side effects that result from
an exaggerated pharmacological response directly related to the
drug’s therapeutic effect,misclassificationof disease symptoms as side
effects, and issues with data reporting. For example, the drug levo-
thyroxine sodium reports hypothyroidism as both an indication and
side effect. To ensure this overlapdid not drive our genetic enrichment
analyses, we excluded those side effects where the drug was approved
for an indication that shared the same phecode term.We retained this
side effect filter, i.e. removal of phecode terms that matched a drug
indication, for all subsequent analyses, as in previous studies7,12. Fol-
lowingquality control, theOpenTarget dataset comprised 1003drugs,
752 genes, 360 unique drug indications and 445 unique side effects,
whereas the OnSIDES dataset consisted of 777 drugs, 688 genes, 366
unique drug indications and 424 unique side effects.

Using gene–phecode pairs as the common identifier, we com-
bined both side effect datasets with the nine human genetic data
sources at the gene–phecode level, consolidating these into four
genetic features to use for analysis: Clinical Variant, Single Variant,
Gene Burden, and GWA Trait to reflect the different types of genetic
support. These features were constructed as follows: the Clinical Var-
iant feature was derived from genetic data fromClinVar16, HGMD17 and
OMIM18, consolidated into a single feature recorded as the number of

Fig. 1 | Schematic of steps to build the SE-GPS to assess side effect risk. A
workflow of the data sources and steps to construct the SE-GPS and SE-GPS-DOE as
outlined in this analysis. The SE-GPS and SE-GPS-DOE were created in the Open
Target dataset (discovery), validated in OnSIDES and then generated for 19,422

genes and 502 phecodeX integers, for which 15,139 genes linked to 499phenotypes
had support from at least one genetic feature and directional evidence
(n = 146,011). SE side effect, OT Open Targets, SE-GPS side effect genetic priority
score, SE-GPS-DOE side effect genetic priority score with direction of effect.
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overlapping entries. The Single Variant feature comprised pLOF single
variants curated fromGenebass19 and RAVAR20, while the Gene Burden
feature consisted of gene burden tests curated from Open Targets15

and RAVAR. Lastly, the GWA trait feature consisted of genes identified
from genome-wide association significant variants identified using
Locus2Gene21 and eQTL phenotype22. For Single Variant, Gene Burden
and GWA trait, we binarized the features based on the presence or
absence data from either source. A detailed description of each data
source is provided in the Methods, resulting in an analyzable data
matrix in which the Clinical Variant predictor is encoded as 0, 1, 2 or 3
and all other predictors are binary (0 or 1), across 9,749,844
gene–phecode pairs comprising 19,422 protein-coding genes, 502
phecode terms and 16 phecode categories. Across this matrix, 1.7% of
gene–phecode pairs had a least one source of genetic evidence. An
overview of these gene–phecode observations across is shown in
Supplementary Fig. 2.

Association of genetic features with drug side effects
We performed univariate associations assessing the enrichment of the
four genetic features with the drug side effects outcome in the Open
Target and OnSIDES datasets. Given the variation in the number of
unique drug-side effect pairs across the PhecodeX categories (Sup-
plementary Fig. 3), and to account for disease heterogeneity, we
adjusted for the 16 phecodeX categories as covariates. We observed
significant associations of each feature in both datasets (Fig. 2). Fur-
thermore, we examined the association between each genetic feature
and drug side effects within each disease category, which revealed
variability in the strength of enrichments across categories and
between genetic features (Supplementary Figs. 4, 5). Notably, the
single variant feature had a lower number of observations overall, and
thus when stratified by category, this resulted in much wider con-
fidence intervals.

Construction of the SE-GPS
Wenext constructed the SE-GPS based on the cumulative effects of the
four genetic features with drug side effects. Specifically, we used 80%

of the Open Target dataset as the training set and applied a multi-
variable mixed-effect regression model of the association of the four
genetic features with drug side effects as the outcome to obtain the
effect sizes from the associationof each feature to use asweights in the
score (Eq. (1)). Similar to the univariate model, we included the 16
phecode categories as covariates in themodel. We included each drug
as the random-effect variable and included a crowdsourced severity
score to weight the occurrence of the side effects by their severity25.
With the remaining 20% of the data, we used the effect sizes of the
genetic feature as weights to calculate the SE-GPS by summing the
observations corresponding to each genetic feature, weighted by the
effect size estimate (Eq. (2)). We repeated this process in a five-fold
cross-validation framework and observed consistent effects of each
genetic feature with drug side effects between the five cross-validated
sets (Supplementary Fig. 6; Supplementary Table S1). We note that
across the five-training test splits, only ~ 3% of all gene–phecode pairs
had a SE-GPS greater than zero (Supplementary Figs. 7, 8). Within each
cross-validated test set, we assessed the association between the SE-
GPS and drug side effects using a logistic regression model, with drug
side effect as the outcome, the SE-GPS as the predictor, and the 16
phecodeXcategories included as covariates (Supplementary Table S2).
We used cross-validated test 2, which had the highest OR and applied
the coefficients from this mixed-effect model to further validate the
SE-GPS in the OnSIDES dataset. In both Open Targets and OnSIDES we
see that, similar to the GPS, multiple genetic features with varying
effects, contribute to the highest SE-GPS (Supplementary Figs. 7, 9).

Association of the SE-GPS with drug side effects
In Open Targets and OnSIDES, 3.6% and 3.2% of gene–phecode pairs
had a SE-GPS > 0. We evaluated the overall association of the SE-GPS
with drug side effects. We observed a 1.8-fold increase risk in drug
side effects (95% confidence interval (CI) = 1.7–1.9, P < 7.1 ×10−169) in
Open Targets and 1.9-fold (95% CI = 1.8–2.0, P < 1.2 ×10−240) in
OnSIDES.

We next explored the strength of enrichment of the SE-GPS by
stratifying the drug dataset. First, we considered the number of gene

Fig. 2 | Association of genetic features with drug side effects in the Open Tar-
gets and OnSIDES dataset. Forest plot of ORs with 95% CI calculated for each
genetic feature with drug side effects, adjusted for 16 phecode categories using a
logistic regression model. Side effects were removed where the drug is approved
for an indication that shares the same phenotype term. The genetic features are
groupedby color according to their genetic evidence category. For each feature the
proportion of unique genes with genetic evidence and an observed side effect over
the total number of unique genes with genetic evidence is shown is recorded in red

on the y-axis and the proportion of unique phenotypes with genetic evidence and
an observed side effect over the total number of unique phenotypes with genetic
evidence is recorded in blue. Panel a displays results for Open Targets
(n = 1,254,900 independent drug–gene–phenotype combinations), whereas panel
b displays results for OnSIDES (n = 1,158,368 independent drug–gene–phenotype
combinations). The statistical test was two-sided and ORs with 95% CIs are defined
in the forest plot as circles and error bars. The red dashed line represents the null
odds ratio (OR = 1). CI confidence interval, OR odds ratio.

Article https://doi.org/10.1038/s41467-025-63762-y

Nature Communications |         (2025) 16:8713 3

www.nature.com/naturecommunications


targets per drug, the number of side effects per drug and the number
of drugs per side effect. We found that drugs with one gene target and
drugs with only a few side effects exhibited the strongest enrichments
in both Open Targets (Fig. 3a) and OnSIDES (Fig. 3b). This is likely due
to the reduced complexity of these drugs, enabling a clearer rela-
tionship between the target and phecode to be defined. Additionally,
we found that drug-specific side effects had a stronger enrichment
than side effects more commonly observed, recapitulating similar
findings shown by Minikel et al.7. Second, we stratified the SE-GPS by
the side effect phecode category (Fig. 3c, d). We observed significant
variability in the odds ratio, highlighting that the impact of genetics is
more pronounced in certain side effect categories than others. Infec-
tious disease-related SEs had large odds ratios in both Open Targets
and OnSIDES, whereas congenital-related SEs were not significant in
either dataset. Furthermore, the degree of enrichment differs between

categories when comparing side effects reported in Open Targets and
OnSIDES, potentially reflecting differences in side effect reporting
between clinical trials and post-marketing surveillance.

The most serious side effects reported are denoted as boxed
warnings, the highest safety-related warnings assigned by the FDA.
Thus, these side effects are arguably themost important to predict. To
investigate the utility of our score to predict severe side effects, we
next restricted our dataset to drugs with a boxed warning, or drugs
withdrawn due to the risk of toxicity. Within this restricted set of
drugs, we observed an increase in OR of 2.0 (95% CI = 1.6–2.4, P < 1.6 ×
10−12) in Open Targets and an OR of 3.7 in OnSIDES (95% CI = 2.8–4.9,
P < 4.1 ×10−22). We further evaluated these enrichments stratified by
drug grouping anddisease category (Supplementary Fig. 10); however,
we note much larger overlapping confidence intervals due to lower
observations.

Fig. 3 | Association of the SE-GPS with drug side effects in the Open Target and
OnSIDES datasets by drug side effect groupings. a Forest plot showing ORs with
95%CI for the associationbetween the presence of a SE-GPS > 0 (binarized as 1) and
drug side effects, adjusted for 16 phecode categories using logistic regression. This
was performed across the full Open Target dataset (n = 1,254,900 independent
drug–gene–phenotype combinations) with the OR colored in red and stratified by
the number of gene targets per drug (1, 2–5, 5+; blue), the number of side effects
per drug (1–4, 5–10, 10+; purple) and the number of drugs per side effect
(1–10,11–30, 30+; green). For each feature, unique genes (red) and unique pheno-
types (blue) are recorded on the y-axis. b Replication analysis of (a) using the

OnSIDES dataset (n = 1,158,368 independent drug– gene–phenotype combina-
tions). c Forest plot showing ORs with 95% CI for the association between the
presence of a SE-GPS> 0 (binarized as 1) and drug side effects, stratified by phe-
notype category in the Open Target dataset. d Replication analysis of (c) using the
OnSIDES dataset. The sample size of each stratified group is detailed in the Source
Data. The statistical test was two-sided and ORs with 95% CIs are defined in the
forest plot as circles and error bars. Filled circles indicate an OR with a significant
P-value. The red dashed line represents the null odds ratio (OR= 1). CI confidence
interval, N number, OR odds ratio, SE side effect.
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Association of the high SE-GPS extremes with drug side effect
We previously observed that at increased increments of the GPS there
was an increased likelihood of a gene being a successful drug target14.
Thus, by applying score thresholds, we next considered whether
higher SE-GPS had a greater side effect risk. In the Open Targets
dataset, using 0.3 increment cutoffs of the SE-GPS, we observed a
similar relationship. The top 0.49%, 0.08% and 0.02% of the SE-GPS
(equivalent to scores greater than 0.6, 1.2 and 1.8) conferred a 2.3-, 3.2-
and 4.8-fold increased effect of having a drug side effect, respectively
(Fig. 4a). We selected a cutoff greater than 0.6 as our initial threshold
to define a high SE-GPS, corresponding to evidence from at least two
genetic features (Supplementary Fig. 7), which reflects anOR> 2.3 and
corresponds to 358 genes and 254 phecodes. We replicated these
findings using the OnSIDES dataset, however the enrichment was less
pronounced and lacked a clear linear progression. The top 0.49%,
0.06% and 0.01% of the SE-GPS (equivalent to scores greater than 0.6,
1.2 and 1.8) conferred 2.5-, 2.0- and 2.4-fold increased effect of having a

drug side effect, respectively (Fig. 4b). Nonetheless, despite not
observing increased enrichment across higher thresholds in OnSIDES,
we observed in both datasets that incorporating evidence from at least
two lines of genetic evidence can identify a subset of targets with a
greater likelihood of side-effect risk.

We further assessed the enrichment of high SE-GPS when using
threshold cutoffs in the severe side effect dataset. We observed a
marked enrichment of the SE-GPS with severe side effects for drugs
with boxed warnings or withdrawn inOpen Targets with the top 0.73%
and 0.10% of the SE-GPS (equivalent to scores greater than 0.6 and 1.2)
conferring 2.5 and4.5-fold increased effect of having a drug side effect,
respectively. A similar marked enrichment was also observed in
OnSIDES, with the top 0.65% and 0.10% of the SE-GPS (equivalent to a
score greater than 0.6 and 1.2) conferring 5.2- and 6.1-fold increased
effect of having a drug side effect, respectively. However, much larger
confidence intervals were also observed due to the lower number of
observations (Fig. 5).

Fig. 4 | Association of the SE-GPSwith drug side effects in the Open Target and
OnSIDES datasets at increments of 0.3 bins.The association of increasing SE-GPS
with drug side effects was investigated by binning the drug dataset into 0.3
increments of the SE-GPS and comparing SE-GPSs greater or equal to each incre-
ment with SE-GPSs equal to zero. A logistic regression model was performed for
each increment bin with drug side effect as the outcome variable and the SE-GPS
bin as the predictor variable, adjusting for phecode categories as covariates. The
statistical test was two-sided and ORs with 95% CIs are defined in the forest plot as

circles and error bars, with filled circles indicating an OR with a significant
P-value <0.05 after correcting for multiple testing. Points are colored along a blue-
to-red gradient, with blue representing lower OR values and red representing
higher OR values. Panel a displays results for Open Targets (n = 1,254,900 inde-
pendent drug–gene–phenotype combinations)whereas panelbdisplays results for
OnSIDES (n = 1,158,368 independent drug–gene–phenotype combinations). The
gray vertical line represents the null odds ratio (OR= 1). CI confidence interval, OR
odds ratio, SE-GPS side-effect genetic priority score.

Fig. 5 | Association of the SE-GPS at increments of 0.3 with severe drug side
effects in the Open Target and OnSIDES datasets. The Open Target and OnSIDES
datasets were restricted to drugs with a boxed warning or drugs withdrawn due to
toxicity risk and the side effect phecodesmatching the toxicity class. The association
of increasing SE-GPSswith these severe drug side effects was investigated by binning
the boxed warning dataset into 0.3 increments of the SE-GPS and comparing SE-GPS
greater or equal to each increment with SE-GPS equal to zero. A logistic regression
model was performed for each increment bin with drug side effect as the outcome
variable and the SE-GPS bin as the predictor variable, adjusting for phecode

categories as covariates. The statistical test was two-sided and ORs with 95% CIs are
defined in the forest plot as circles and error bars, with filled circles indicating an OR
with a significant P-value <0.05 after correcting for multiple testing. Points are
colored along a blue-to-red gradient, with blue representing lowerOR values and red
representing higher OR values. Panel a displays results for Open Targets (n=69,290
independent drug– gene–phenotype combinations) and panel b displays results for
OnSIDES (n= 30,652 independent drug– gene–phenotype combinations). The gray
vertical line represents the null odds ratio (OR= 1). CI confidence interval, OR odds
ratio, SE-GPS side-effect genetic priority score.
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Incorporating the direction of genetic effect
When determining whether a gene target is likely to elicit a side effect,
it is crucial to consider the drug’s mechanism of action, as inhibition
and activation can lead to distinct phenotypic outcomes. To consider
this mechanism, we next adapted the directional version of the GPS to
create a side effect genetic priority score with direction of effect (SE-
GPS-DOE) that mimics the response of a drug. Using the Open Target
dataset for each gene target-phecode pair, we incorporated loss-of-
function (LOF) evidence for targets with an inhibitory mechanism and
gain-of-function (GOF) evidence for targets with an activation
mechanism across the four combined genetic features. We used
LoGoFunc26, a machine-learning method for genome-wide prediction
of pathogenic LOF, GOF and neutral genetic variants, and estimates of
effect from quantitative trait loci (QTL) to infer the direction of the
associated genetic effect14. We provide a summary of the number of
genes and phecodes for each of the predicted LOF genetic features in
Supplementary Fig. 11 and GOF features in Supplementary Fig. 12,
noting a much larger number of LOF observations. We restricted the
analysis to drugs with either an activator or inhibitor mechanism and
observed similar effects of each genetic feature with drug side effects
between the five cross-validated sets (Supplementary Fig. 13; Supple-
mentary Table S3). We then used these effect sizes as weights to cal-
culate the SE-GPS-DOE. We recorded the SE-GPS-DOE as either a
positive score, if the weighted sum of effect sizes across the LOF
predictions reflected drug inhibition, or negative, if the weighted sum
of effect sizes across the GOF predictions reflected drug activation
(Supplementary Figs. 14, 15). We evaluated the association of the
positive SE-GPS-DOE with drug side effects restricting to inhibitor
drugs and observed a 1.9-fold (CI = 1.8–2.0, P < 4.9 × 10−86) increase in
drug side effects. Similarly, restricting the analysis to the negative SE-
GPS DOE within activator drugs resulted in a 2.1-fold (CI = 1.8–2.5,
P < 1.2 × 10−18) increase (Fig. 6). Similar to the SE-GPS, we evaluated the
association of the SE-GPS-DOE within each cross-validated test set
(Supplementary Table S4) to select the coefficients to calculate the SE-
GPS-DOE in the OnSIDES dataset. In OnSIDES, we observed similar
enrichments for the positive SE-GPS DOE and negative SE-GPS-DOE

(Fig. 6). In Open Targets and OnSIDES, the proportion of
gene–phecode pairs with an inhibitory drug mechanism was sig-
nificantly greater (88.2% and 81.9%, respectively) than those with an
activator mechanism.

We next considered whether applying threshold cutoffs for SE-
GPS-DOE, was associated with a greater side effect risk. In the Open
Targets dataset, restricting to inhibitor drugs, we observed that the
top 0.27% and 0.04% of the positive SE-GPS-DOE (equivalent to a SE-
GPS-DOEgreater than0.6 and 1.2, respectively) conferred a 2.4- and3.7
-fold increased effect of having a drug side effect, respectively (Sup-
plementary Fig. 16). When restricting to activator drugs, however, we
did not observe this increase enrichment. The top 0.08% and 0.02% of
the negative SE-GPS-DOE (equivalent to a SE-GPS-DOE greater than0.6
and 1.2, respectively) conferred a 3.3- and 2.5- fold increased effect of
having a drug side effect, respectively (Supplementary Fig. 16). We did
not observe the same increased enrichment in OnSIDES, but note that
there were limited number of observations with directional evidence
(Supplementary Fig. 17). Due to the fewer observations and the fact
that LOF and GOF directional predictions are based on inference, we
suggest using the SE-GPS-DOE as a complementary score to the
SE-GPS.

Extending the SE-GPS to 19,422 genes and 502 phecodes
Finally, we extendedbothmethods to 19,422protein-coding genes and
502 phecodes, of which 18,436-genes and 46 phecodes were not
included in either the Open Target or OnSIDE dataset. We identified
15,139 genes linked to 499 phecodes for a total of 146,011 observations
with support from at least one genetic feature and directional evi-
dence. Among these observations, 74.8% had a directional score for
target inhibition. Furthermore, given that only a small fraction of
protein-coding genes is currently considered druggable, we assessed
the proportion of targets with genetic evidence classified as druggable
genes. Out of 15,139 genes, 3818 genes were identified as druggable
with significantly higher SE-GPS compared to non-druggable genes
(Mann–Whitney test, P < 2.5 ×10−215).

We demonstrate how this prediction tool could be used to sup-
plement additional safety informationduringpre-clinical development
or even inform the likelihood of a side effect for a novel gene target
with no prior clinical trial evidence. First, we highlight several known
examples of side effects where the direction of genetic effect supports
the side effect observed in the Open Target or OnSIDES dataset (all
with a SE-GPS >0.6, Supplementary Data 1). Each example emphasizes
the importance of fully understanding the mechanism of the gene
targets involved in the therapeutic response. For example, it is
unsurprising that inhibitors targeting SCN5A result in cardiac side
effects as SCN5A encodes the main cardiac sodium channel Nav1.5.
Furthermore, the identification of on-target side effects using this
score can also reveal potential therapeutic targets by modulating the
target in the opposite direction. Such an example in this table is the
identification of alopecia as a side effect of daclizumab, an IL2RA
inhibitor indicated to treat multiple sclerosis. The SE-GPS corrobo-
rated this observation, with Mendelian evidence from OMIM and
genome-wide association evidence from L2G. IL2RA activation by
rezpegaldesleukin is currently in phase IIb clinical trials to treat
patients with severe to very severe alopecia areata (NCT06136741)27.
Second, we evaluated the performance of the SE-GPS using two
examples of well-known targets discussed by Carss et al.4, where
genetic evidence has previously provided strong support for the
observation of severe side effects for drugs that led to clinical trial
failure (Supplementary Data 2). The SE-GPS provides strong support
for gastrointestinal side effects following inhibition of DGAT1 and
neurological disorders from inhibition of SPR. Despite the side effects
associated with DGAT1, it remains an attractive target for many auto-
immune, metabolic and oncological diseases28–30. Therefore, recog-
nizing the possible gastrointestinal side effects of DGAT1 can enable

Fig. 6 | Association of the SE-GPS-DOEwithdrug side effects in theOpen Target
and OnSIDES datasets. Association between positive SE-GPS-DOE and drug side
effects among inhibitor drugs in the Open Target (n=853,065) and OnSIDES
(n=625,606) datasets, and between negative SE-GPS-DOE and drug side effects
among activator drugs in the Open Target (n=297,705) and OnSIDES (n= 385,215)
datasets. In logistic regression models, non-zero SE-GPS-DOE values were binarized
and compared to scores of 0, adjusting for 16 phecode categories. The statistical test
was two-sided and ORs with 95% CIs are defined in the forest plot as circles and error
bars. The reddashed line represents the null odds ratio (OR= 1). CI confidence interval,
OR odds ratio, SE-GPS-DOE side-effect genetic priority score with direction of effect.
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appropriatemonitoring, risk assessment and thedevelopmentofmore
selective inhibitors31. Third, we highlight examples of current
undrugged targets with high predicted druggability (DrugnomeAI
>0.5)32, showcasing how the SE-GPS can be applied at target discovery
to help identify potential on-target side effects for targetswith noprior
clinical trial evidence (Supplementary Data 3).

A large proportion of gene-phecodes prioritized by the SE-GPS are
known therapeutic targets (10.8%, 17.9% and 42.9% with SE-GPS >0,
>0.6 and >1.2 in Open Targets, and 18.9%, 24.4% and 46.8% with SE-
GPS >0, >0.6 and >1.2 inOnSIDES, respectively). This is expected since
we previously showed that targets with a high GPS are enriched for
drug indications14 and as mentioned previously, a considerable pro-
portion of side effects result from an exaggerated pharmacological
response directly related to the drug’s therapeutic effect. Ultimately,
weighing the value of the genetic evidence pointing to drug efficacy
versus potential side effect risk is essential to integrating this data into
the drug discovery pipeline. We have created a web portal sharing the
results of the SE-GPS and SE-GPS-DOE for 15,139 protein-coding genes
and 499 drug side effects (https://rstudio-connect.hpc.mssm.edu/
sideeffect-geneticpriorityscore/).

Discussion
In this study, we introduce the SE-GPS to aid the prediction of side
effects likely to be elicited by each target. By incorporating human
genetic evidence to model the effect of target modulation, we estab-
lish a framework to identify potential on-target side effects related to
the biology of the intended pharmacological target. We demonstrate
how integratingmultiple lines of genetic evidence can help inform the
likelihood of an on-target side effect, providing evidence of known
side effects while also suggesting potential side effect risk for targets
with no clinical trial evidence. Furthermore, by incorporating the
direction of genetic effect, we demonstrate the relevance of each
genetic score to the direction of the therapeutic hypothesis, distin-
guishing between targets inhibited and targets activated. This dis-
tinction can separate a side effect from a drug repurposing
opportunity, as illustrated by IL2RA.

We propose the SE-GPS as a tool for evaluating the safety of
therapeutic targets, offering insights into potential side effects that
could arise during clinical development. By predicting side effects at
target discovery, we hope this can help reduce late-stage failures and
prioritize drug targets with minimal adverse effects. Furthermore,
using this framework to identify likely side effects can help inform
preclinical and clinical trial design to ensure that these side effects are
known and monitored. To facilitate the use of the SE-GPS, we have
provided all scores for 15,139 genes linked to 499 phecodes. In addi-
tion, it may be preferrable to recalculate the SE-GPS in combination
with additional sources of evidence or for phecodes not captured in
our framework. We have thus provided the feature weights in Sup-
plementary Table S5.

The overlap between targets with predicted side effect risk and
known drug targets for similar drug indications emphasizes the
importance of integrating all aspects of genetic evidence and disease
biology when selecting a potential drug target to ensure that it is both
effective and safe. Although we prioritize associations supported by
multiple lines of genetic evidence by suggesting a cut-off of 0.6, this
approach may overlook signals captured by a single line of evidence.
For example, prior work by Walker et al.6 highlighted the association
between HMGCR inhibition and increased diabetes risk, for which we
observed a SE-GPS of 0.36, captured exclusively through GWA evi-
dence. Thus, we provide this cut-off and framework as a starting point
and recommend the addition of complementary genetic methods to
further strengthen this evidence and capture genetic associations not
currently included in the SE-GPS. One such example is the incorpora-
tion of somatic variant data from tumor tissues, included by Minikel
et al., who similarly demonstrated that side effects with humangenetic

support are 2.0 times more likely to occur7. Additional methods
includes Mendelian Randomization, which offers several advantages,
particularly the ability to infer causality rather than associations6 and
polygenic risk scores, which offer the opportunity to stratify patients
in clinical trials according to disease risk33.

Although only 3.6% and 3.2% of gene–phecode pairs in Open
Targets and OnSIDES have a SE-GPS >0, this still reflects 11,620 and
9416 gene–phecode pairs associated with a 1.8- and 1.9-fold increased
risk of side effects. This subset of gene-phecodes with SE-GPS > 0
highlights how genetic evidence can point to biologically relevant
mechanisms underlying on-target adverse effects and provides a
starting point for deeper phenotypic profiling. We expect this pro-
portion to increase as GWA and rare variant evidence continues to
expand.However, the absenceof a SE-GPS shouldnot be interpretedas
evidence for the absence of a side effect, and additional functional and
experimental validation is required when modulating a particular
target.

There are several limitations to this study. First, there is a con-
siderable difference in the side effects reported in clinical trials in the
OnSIDES dataset compared to post-marketing data in the Open Target
dataset. Clinical trials have a limited duration and a relatively small
number of participants; therefore the side effects reported during this
stage tend to be more common34. By contrast, post-marketing studies
offer the advantage of capturing a broader range of side effects due to
a larger, more diverse patient population and the extended period of
exposure35. However, post-marketing data rely on spontaneous
adverse event reporting systems, and hence there is less certainty that
the reported side effect is solely attributable to the associated drug36.
While Open Targets evaluates significant drug-ADR pairs using the
likelihood ratio test (LRT) to control false discovery rates37, it is
important to be aware of these potential misclassified side effects. In
addition, there are also several limitations to the OnSIDES database, as
described by the authors24. This database is constructed using com-
putational extraction methods and therefore some side effects are
incorrectly labeled or not extracted accurately. The use ofMedDRA to
record these events meant that not all side effects were included.
Second, studies have indicated that clinical trials are biased toward
White participants of European ancestry38. Since the likelihood of a
drug resulting in a side effect can vary between people of different
ancestry, a greater representation of clinical trial participants is
necessary. This limitation is also reflected in the limited diversity of
genetic data. Third, we do not distinguish between severe and mod-
erate side effects when providing the SE-GPS. Therefore, the overall
severity of each predicted side effect needs to be further explored to
determine thepotential impacton clinical trials. Fourth, whilewemake
a significant effort to compile evidence across clinical variants, coding
variants and GWAS variants, a significant limitation of this study is the
use of binary case-control phenotypes. Expanding the breadth of
phenotype data to incorporate predicted disease phenotypes that
integrate a wealth of multi-modal data across diverse populations, will
further expand thewealth of genetic associations available to elucidate
the biological mechanisms of drug targets39,40. Furthermore, because
we use a similar method and datasets as the GPS, many limitations
discussed here14 also apply to this study. This includes discrepancies in
the ascertainment of drug data between the Open Targets and
OnSIDESdatasets, potentialmisclassifications andexclusiondue to the
useofmultipleontologies, including ICD-10 andphecode terminology,
the absence of a genetic feature that does not equate to evidence
against a drug target and reliance on LoGoFunc inference for LOF and
GOF predictions.

In conclusion, we have developed the SE-GPS to aid the prediction
of side effects in drug discovery. Our findings demonstrate that inte-
grating multiple lines of genetic evidence can inform a range of side
effects, mirroring our findings using the GPS to identify therapeutic
targets. Further, the SE-GPS has increased predictive ability when
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considering severe side effects indicated by boxed warnings. We
believe that this score will provide a valuable resource for assessing
potential side effects, which should then be further explored to assess
their risk compared to the overall therapeutic benefit.

Methods
Generation of discovery dataset
We collected and processed the drug, gene target, drug indication,
drug side effect, drug mechanism of action and drug warnings data
from the Open Targets Platform (version 25.03)15 as previously
described14. We removed commonly observed side effects that were
observed in at least 5% of drugs (corresponding to side effects
observed in >187 drugs), similar to previous studies, as these side
effects are less likely to reflect target-mediated mechanisms, and
instead a likely consequence of off-target or systemic effects12. We
excluded 62 common side effects (Supplementary Data 4) after which
10,208 side effects remained. We removed oncology drugs using the
Anatomical Therapeutic Chemical (ATC) classification (version
2022AA) with an ATC code L01 and L02 (‘Antineoplastic agents’ and
Endocrine Therapy) following the reasoning that oncology drugs have
a different acceptable side effect profile. Wemapped drug indications,
recorded as EFO terms and drug side effects, recorded usingMedDRA,
(mappings outlined below) to phecodeX terms41, restricting the phe-
code terms to the integer part to aggregate similar codes.We excluded
the phecode categories Neonatal and Pregnancy, resulting in 16
remaining PhecodeX categories. Finally, we removed any phecodes
that lacked genetic evidence, excluding 46 phecode integer terms
(Supplementary Data 5). We removed any drugs fromour Open Target
dataset that were also present in the replication dataset OnSIDES,
however we note that 18.2% of gene-side effect pairs are still found in
both datasets (Supplementary Fig. 18). In total, we extracted 1003
drugs, 752 genes, 360 unique drug indications and 445 unique side
effects mapped to phecode integers. We list the side effects and drug
indications mapped to phecode integers in Supplementary Data 6 and
Supplementary Data 7.

Generation of validation dataset
We used the OnSIDES database (version 2.0_20231113)24 as our drug
validation set and extracted drugs, side effect and drug warning data.
Drug side effect and drug indication data were both recorded using
MedDRA vocabulary terms. We extracted the drug indication data
from ChEMBL42,43 and identified the gene targets of these drugs using
the same target sources as described previously14: DrugBank (filtered
to targets with known pharmacological action)44, ChEMBL (filtered to
targets with a single protein)42,43, and a published list of FDA-approved
therapeutic efficacy targets45. We repeated the same filtering steps as
in Open Targets, removing common side effects (>101 drugs, 278 side
effects removed), after which 4302 side effects remained and removed
any phecodes that lacked genetic evidence, excluding 52 phecode
integer terms (Supplementary Data 8; Supplementary Data 9). In total,
we extracted 777 drugs, 688 genes, 366 unique drug indications and
424 unique side effects mapping to phecode integer terms.We list the
side effects and drug indications mapped to phecode integers in
Supplementary Data 10 and Supplementary Data 11.

Generation of boxed warnings datasets
We subsetted both drug datasets to drugs that either had a box
warning or had been withdrawn due to toxicity risk. In Open Targets,
these side effects are annotated as toxicity classes, which we then
mapped to phecode categories as detailed in Supplementary Table S6.
For each drug in the Open Targets warning set, we included only
phecodes annotated with a side effect where the phecode category
matched the toxicity class. In total, we extracted 135 drugs, 220 genes
and 169 side effects mapped to phecodes and binarized each side
effect as 1/0 across the 169 side effect phecode integers. In OnSIDES,

the actual side effect terms were reported for the boxed drugs, hence
we restricted the drugs in the OnSIDES warning set to these phecode
side effects. Thus, this set represented a more accurate set of serious
side effects. In total, we extracted 115 drugs, 225 genes and 79 side
effects mapped to phecodes.

Genetic databases
We compiled genetic evidence from three types of genetic data (clin-
ical variants, coding variants and GWAS traits) to explore the associa-
tion between human genetic variation in drug target genes and drug
side effects by utilizing multiple publicly available data sources. We
mapped all genetic phenotypes to phecodeX terms, removed any
phecodes mapping to Neonatal and Pregnancy categories, and
restricted these codes to the phecodeX integer terms. We use ‘phe-
codes’ to reflect phecodeX integer codes throughout. We restricted
our analysis to protein-coding genes, for which we obtained a list of
19,422 protein-coding genes from Ensembl (release 110)46. Each of
these genetic features is described below.

Clinical variants
We collected clinical variant genetic evidence from three sources as
previously described. EVA-ClinVar (sourced from Open Targets Plat-
form version 25.03)16,47, HGMD Professional (version 2023.3)17 and
OMIM (accessed August 28, 2023)18. We applied a more stringent fil-
tering approach than previously described14, which resulted in a
smaller number of gene–phenotype pairs. First, we extracted ClinVar
evidence based on two steps. This evidence was filtered on clinical
significance terms: likely pathogenic and pathogenic, and based on the
confidence of the submission: criteria provided, multiple submitters,
no conflicts, reviewed by expert panel and practice guidelines. We
mapped these phenotype terms, recorded as EFO terms, to phecodes.
In total, 1238 genes were associated with 1240 phenotypes that map-
ped to 192 phecodes. Second, we extracted disease-causing genes and
likely disease-causing genes with at least three variant observations
from HGMD, removing any variants classified as of unknown sig-
nificance.Wemapped these phenotype terms, recorded as HPO terms,
to phecodes. In total, there were 13,486 genes associated with 14,705
phenotypes that mapped to 343 phecodeX integers. Third, we used
Mendelian evidence from OMIM and used the same filtering steps
performed by Nelson et al.48, restricting our selection, to entries with
phenotype mapping code 3 (‘the molecular basis for the disorder is
known; a mutation has been found in the gene’) and filtering these
phenotypes by removing any terms containing ‘susceptibility’,
‘somatic’ or ‘response’ (drug response associations), as well as any
flagged as questionable (‘?’) or representing non-disease phenotypes
(‘[’)48. In total, 4009 genes were associated with 6622 phenotypes that
mapped to 426 phecodeX integers.

Coding variants
Single variants. We used two different datasets to collate single var-
iant genetic evidence. We used single variant tests from Genebass19

with P < 4.3 × 10−7 and confined our study to variants labeled either
pLOF or missense. We restricted the analysis to traits labeled ‘ICD first
occurrence’. We extracted 1021 genes associated with 464 phenotypes
that mapped to 246 phecodeX integer codes. Secondly, we used the
Rare Variant Association Repository (RAVAR)20, an open database that
compiles rare variant associations obtained via a literature search
using P < 1.0 × 10−6 and a minor allele frequency (MAF) less than 0.02.
We mapped these phenotype terms, recorded as EFO terms, to phe-
codes. In total, 552 genes were associated with 297 phenotypes that
mapped to 198 phecode integers.

Geneburden.Weused twodifferent datasets to combine geneburden
genetic evidence. We used gene burden data sourced from Open
Targets15 with, P < 1.0 × 10−7, and gene burden tests from RAVAR20 with
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P < 1.0 × 10−4. We mapped these phenotype terms, recorded as EFO
terms, to phecodes. In total, 387 genes were associated with 148
phenotypes that mapped to 163 phecodeX integers from Open Tar-
gets, and 8694 genes associatedwith 1206phenotypes thatmapped to
390 phecodeX from RAVAR.

GWAS traits
Weused two sources of GWAS evidence to combine GWAS trait genetic
evidence. First, the eQTL phenotype was defined as genes with a shared
association between a GWA phenotype from the Pan-UK Biobank22 and
an expression quantitative trait loci (eQTL) using eQTL summary sta-
tistics from the Genotype-Tissue Expression (GTEx, v8) Portal across 49
tissues49, following the same filtering process as previously described14.
Briefly, Pan-UK Biobank variants were lifted over from hg19 to hg38
using liftOverPlink50, genome-wide significant single-nucleotide variants
(P < 5 × 10⁻⁸) were extracted, and these were intersected with eQTL
significant variants that, for each tissue, had a nominal P-value less than
the gene level threshold. We identified 5278 genes associated with 619
phenotypes that mapped to 188 phecodeX integers, collapsing across
tissues. Second, we extracted GWAS association evidence with a
Locus2gene21 score >0.5 from Open Targets15,21. To infer directionality,
we incorporated the corresponding colocalization results for the GWAS
credible sets with the overlapping molecular credible sets from
expression QTL, protein QTL and splice QTL. The Open target Platform
uses two methods, coloc, and eCAVIAR, and we restricted to coloc
results with an H4>0.8, and eCAVIAR results with a colocalization
posterior probability (CLPP) >0.01. We identified 9,079 genes asso-
ciated with 2364 phenotypes that mapped to 408 phecodeX integers.

Phenotype mapping
To integrate our drug and genetic data, we used phecodeX terms
which represent clinically meaningful terms across the medical
phenome41. We used several different ontologies and mapping meth-
ods tomap each data source to phecode terms. These data sources are
listed as follows:

Disease/Phenotype file from the Open Targets Platform (version
25.03)15.

Unified Medical Language System (UMLS) MRCONSO.RRF (ver-
sion 2023AA)51.

HPO to PhecodeX restricting to ‘StrongEvidenceSpecific’52.
HPO to phecode map - Supplementary Table 1253.
EMBL-EBI Ontology Lookup Service (EBISPOT OLS) file that maps

UK Biobank traits to EFO terms54.
MedDRA to ICD10 map, https://www.meddra.org/news-and-

events/news/icd-10-meddra-mapping-now-available.
CUI to ICD codes, https://bioportal.bioontology.org/ontologies/

ICD10CM/?p=summary (version 2023AA).
PhecodeX (Extended), version 1.0 Map to ICD-10, Phecode defini-

tions and Phecode 1.2 to PhecodeX mapping Supplementary Table 741.
In addition, we manually mapped 1443 MedDRA codes to ICD10.

All phenotype ontology terms were mapped first to ICD10 codes and
then to phecodes, except for HPO terms which we were able to map
directly to phecodeX terms.

Generation of the integrated drug-genetic dataset
At the gene–phecode integer level, we integrated the drug datasets
with the nine data sources described above.Webinarized each feature,
drug indication and side effect across the 445 side effect phecode
integers. Clinical variant features were consolidated into one feature,
recorded as the number of overlapping entries. The two single variant
features, two gene burden features and two GWA trait features were
each combined to reflect the presence of either data source. In cases
where drugs had multiple gene targets, these were repeated as mul-
tiple rows in the dataset to allow comparison between the drug side
effects and genetic features at the gene level. Each drug-gene

(n = 2820) pair is repeated for 445 side effect phecode integers giv-
ing a total of 1,254,900 rows. We formatted the OnSIDES validation
dataset similarly where each drug-gene (n = 2732) pair is repeated for
424 side effect phecode integers giving a total of n = 1,158,368 rows.

Generation of the integrated gene–phecodeX integer dataset
across 19,422 protein-coding genes and 502 phecodeX
integer pairs
Similar to generating the drug-genetic datasets, we integrated the nine
data sources described above for all 19,422 protein-coding genes for
502 unique phecodes. This resulted in a matrix of 9,749,844
gene–phecode pairs, for which 17,214 genes and 502 phecodes had
support from at least one genetic feature. We integrated the drugno-
meAI probability score32 and druggable genes were defined using the
following sources: drugbank44, chembl55 and two published supple-
mentary tables which list druggable genes45,56.

SE-GPS
We adapted the GPS method to construct the SE-GPS, which informs
the likelihood of a drug side effect using genetic evidence from clinical
variants, coding variants and GWA traits. We applied a mixed-effect
regression model (using the lme4 R package, version 1.1-35.1)57 within a
fivefold cross-validation framework, and extracted the association
coefficients as weights for each genetic feature contributing to the
score as detailed in Eq. (1) (Supplementary Table S1). In themixed-effect
model, the outcome variable was drug side effect,modeled against four
phenotype-specific features (where clinical variant was coded as the
number of overlapping features with values 0,1,2 or 3 while the
remaining three features were binarized as 1 or 0) and 16 covariate
categories, with each drug included as a random-effect variable.

logit P SEð Þð Þ=β0 +β1:CV +β2:GB+β3:GW + β4:SV

+ β5:Category+ 1jDrugð Þ ð1Þ

where P(SE) represents the probability of the outcome, and βi are the
fixed effect coefficients for the covariates: Clinical Variant (CV), Gene
Burden (GB), GWA trait (GW) and Single Variant (SV), and the 16 Phe-
codeX categories included as covariates. A random intercept was
included for drugs.

The occurrence of side effects was weighted by severity using a
crowdsourced severity score across 2929 MedDRA terms25. We map-
ped these terms to phecodeX terms as described above. This model
was carried out using the Open Target dataset, which was randomly
split into five non-overlapping groups of unique gene–phenotype
pairs. For each of the five folds, one-fold was used as the test set, while
the remaining four folds were used as the training set in the mixed-
effect regressionmodel. In each 20% test set, scores were calculated as
the weighted sum of the phenotype-specific features across each
gene–phenotype as defined in Eq. (2):

SE � GPSOTi =
Xn

j

βjXOTji ð2Þ

where i = gene–phenotype, j = genetic feature, n = number of features,
βj is the estimated association coefficient for the jth feature in theOpen
Target train dataset, and XOTji is the value for the feature column (0/1)
from the Open Target test dataset for each gene–phenotype pair. We
combine the five test folds for downstream analyses.

To validate the scores using OnSIDES, we first determined which
beta estimates to use asweights from the five cross-validated folds.We
used a logistic regression model to assess the association between the
SE-GPS and drug side effects. In this model, drug side effect was the
outcome variable, the SE-GPS was the predictor, and the 16 phecodeX
categories were included as covariates. We selected the cross-
validated test set that yielded the highest OR (Supplementary
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Table S2) and used the corresponding beta coefficients from the 80%
training set to construct the SE-GPS in the OnSIDES dataset (Supple-
mentary Table S5). In addition, we also applied these weights to the
entire integrated gene–phecodeX integer dataset for each genetic
feature across 19,422 protein-coding genes and 502 phecodeX integer
pairs, of which 17,214 genes and 502 phecodes had support from at
least one genetic feature.

Association analysis of the SE-GPS with drug side effects at 0.3
increments
The enrichment of drugs with side effects in relation to increasing SE-
GPS was evaluated by binning the drug data into 0.3 increments,
ranging from 0 to 2.1. At each 0.3 score increase, using a logistic
regressionmodel, the proportion of gene–phenotypes associatedwith
drug side effects was determined by comparing gene–phenotypes
with a SE-GPS greater than each bin threshold to drug data with no
genetic evidence. The response variable was the presence of drug side
effects, with the 16 phecode categories included as covariates.

SE-GPS-DOE
We developed a complementary directional version of the score,
termed the SE-GPS-DOE, which integrates LOF evidence for
gene–phenotype pairs associated with an inhibitory drugmechanism
and GOF evidence for gene–phenotype pairs with an activator drug
mechanism. This differs from our initial implementation of the GPS-
DOE, where we used the strongest prediction of direction of effect to
determine if the gene–phenotype pair suited an inhibitory or acti-
vation mechanism. We used the same methods to identify the
direction of effect for each predictor as described for the GPS14. We
used LoGoFunc26 to predict pathogenic LOF and GOF variants for
ClinVar, HGMD, OMIM, Genebass single variant and RAVAR single
variant. We restricted to predictions with a predicted probability
>0.5; for genes with multiple variants, we used the prediction with
the highest predicted probability for both LOF and GOF. For GWA
traits, eQTL and Locus2gene, we used DOE from the QTL with the
estimate of effect from the GWAS study. Similar to the LoGoFunc
method, we used the strongest effect for LOF and GOF for genes with
multiple variants.

We restricted the datasets to drugs classified as inhibitors or acti-
vators to match the direction of genetic effect with the direction of
therapeutic modulation. Inhibitor drugs included drug mechanisms
labeled as ‘inhibitor’, ‘blocker,’ ‘antagonist, ‘sequestering agent,’ ‘nega-
tive allosteric modulator,’ ‘inverse agonist,’ ‘allosteric antagonist,’
‘antisense inhibitor,’ and ‘RNAi inhibitor’. Activator drugs encompassed
‘agonist,’ ‘positive modulator,’ ‘opener,’ ‘activator’ and ‘positive allos-
teric modulator’. We removed gene–phenotype pairs which had both
an activator and an inhibitor mechanism from the dataset. The Open
Target dataset was subsetted to 913 drugs, 723 genes, 356 drug indi-
cations and 445 side effects mapped to phecode integers. The OnSIDES
datasetwas subsetted to 698drugs, 591 genes, 359drug indications and
421 drug side effects mapped to phecode integers. To construct the SE-
GPS DOE, we implemented a mixed-effect regression with fivefold
cross-validation as described for the SE-GPS. In this model we included
mechanism of action, categorized as either inhibitor or activator as an
additional covariate. We then applied these weights to the remaining
20% test set, with GOF annotated as −1, LOF annotated as 1, and no
genetic evidence or estimates of neutral annotated as 0. The GPS-DOE
was calculated for each gene–phenotype observation, with positive
scores reflecting LOF evidence for gene targets with an inhibitor
mechanism and negative scores reflecting GOF evidence for gene tar-
gets with an activator mechanism. We validated these scores using the
OnSIDES dataset, applying the association coefficients from the cross-
validated sample that yielded the highest OR in a logistic regression
model (Supplementary Table S4). In addition, we also applied these
weights to the 19,422 protein-coding genes and 502 phenotype pairs.

Statistical analysis
We calculated the side effect ratio of reporting frequency (RRF) as
detailed in equation 6 fromPaccanaro et al.5. Specifically, for each side
effect, the side effect ratio of reporting frequency (RRF) represents a
normalized count of the number of associated drugs. This equation is
as follows:

RRF jð Þ=
Pn

i X ij

Z
ð3Þ

where Xij represents the entry in row i, column j of the matrix X, n
represents the total number of drugs and Z is themaximumnumber of
associations for the side effects.

We tested the association of each genetic feature, the SE-GPS and
the SE-GPS-DOE with drug side effects in a univariate logistic regres-
sion model with drug side effects as the outcome using the glm
function, adjusting for the 16 phecode categories as covariates. This
equation is as follows:

P SEð Þ= 1

1 + e�ðβ0 +β1Feature+β1Category+
Pk

j = 1
γj :Categoryj Þ

ð4Þ

where P(SE) represents the probability of the side effect outcome,
β1Feature is the effect of the genetic feature of interest and Categoryj
represent the k disease categories included as covariates to account
for confounding across side effect classes.

Upset plots were generated using the UpSetR package (version
1.4.0) and violin plots were generated using the geom_violin function
and specifying the scale =width from the R Package ggplot2 (version
3.3.6). All analyses were performed within the Mount Sinai High Per-
formance Computing resource (Minerva) using R58.

Ethics statement
This study complies with all relevant ethical regulations, and no spe-
cific approval was needed.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The processed Open Target and OnSIDE drug-genetic datasets are
available at https://zenodo.org/records/1533413659. We provide the
weights used to create the SE-GPS and the SE-GPS-DOE in Table S5.
Furthermore, the SE-GPS and SE-GPS-DOE for 15,139 genes and 499
drug side effects are publicly available at https://rstudio-connect.hpc.
mssm.edu/sideeffect-geneticpriorityscore/. Public data used in this
study mentioned in the methods are available via the listed URLS:
Open Target genetic evidence and clinical trial data (v25.03), https://
platform.opentargets.org/downloads. OnSIDE drug data (version
2.0_20231113), https://github.com/tatonetti-lab/onsides/releases/tag/
v2.0.0-20231113, Gene target and drug indication and mechanism of
action data from ChEMBL (release 33), https://ftp.ebi.ac.uk/pub/
databases/chembl/ChEMBLdb/releases/chembl_33/, Drugbank (5.1.11),
https://go.drugbank.com/releases/5-1-11. Supplementary table 2 from
Santos et al.45.ADR severity score reported from Gottlieb et al. (Sup-
plementary table 2)25. Ensembl (release 110), http://ftp.ensembl.org/
pub/release-110/gtf/homo_sapiens/, Online Mendelian Inheritance in
Man (OMIM) (accessed August 28, 2023), https://www.omim.org/
downloads. Human Gene Mutation Database (HGMD) Professional
(version 2023.3), https://www.hgmd.cf.ac.uk/ac/index.php. Single
Variant association results from Genebass, gs://ukbb-exome-public/
500k/results/variant_results.mt. Genebass (500K), gs://ukbb-exome-
public/300k/results/variant_results.mt. RAVARgene level associations,
http://www.ravar.bio/api/download/static/gene_fulltable.txt. RAVAR
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variant level associations, http://www.ravar.bio/api/download/static/
snp_fulltable.txt. GTEx Analysis V8, https://www.gtexportal.org/home/
datasets. Pan-UK Biobank, https://pan.ukbb.broadinstitute.org/
downloads/index.html. UCSC liftover chain file, https://hgdownload.
cse.ucsc.edu/goldenpath/hg19/liftOver/. ATC classification (Version
2022AA, uploaded 08/09/2022), Disease/Phenotype file from the
Open Targets Platform (version 25.03)15. Unified Medical Language
System (UMLS) MRCONSO.RRF (version 2023AA)51, https://www.nlm.
nih.gov/research/umls/licensedcontent/umlsknowledgesources.html.
PhecodeX map, https://phewascatalog.org/phewas/#phex. HPO to Phe-
codeX, https://github.com/emcarthur/phecode-HPO-map/blob/main/
data/finalHPO-phecodeLinks/mapsFilteredByEvidenceType/hpo-
phecode1.2_linkswithHPOchildrenExpansion_StrongEvidenceSpecific.
tsv52. HPO to phecode map - Supplementary Table 1253. EMBL-EBI
Ontology Lookup Service (EBISPOTOLS) file thatmaps UKBiobank traits
to EFO, https://github.com/EBISPOT/EFO-UKB mappings/blob/master/
ISMB_Mapping_UK_Biobank_to_EFO.pdf54. MedDRA to ICD10 map,
https://www.meddra.org/news-and-events/news/icd-10-meddra-
mapping-now-available CUI to ICD codes, https://bioportal.bioontology.
org/ontologies/ICD10CM/?p=summary (version 2023AA) Source data are
provided with this paper.

Code availability
Analytic code to create the SE-GPS and SE-GPS-DOE is available at
https://github.com/rondolab/SE-GPS60.
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