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Forward and reverse genomic screens
enhance the understanding of phenotypic
variation in a large Chinese rhesus
macaque cohort

Bao-Lin Zhang1,2,3,12, Yongxuan Chen 1,4,12, Yali Zhang2,12, Yicheng Qiao4,5,
YangWu 6, Yi Zhang1,2, YizhengLu1,4, XinranYou1, YanlingLi2,Hong-DiHuang2,4,
Qiong Wang2,7, Yijiang Li2,7, Yun Wang2,7, Wenxian Xiao2,7, Hexian Duan2,7,
Ming-Hao Qiu2, Nan-Hui Chen2, Xiaomei Yu2, Min-Min Yang1, Longbao Lv2,4,7,
David N. Cooper 8, Ping Zheng 1,2,9,10, Yong-Gang Yao 1,2,4,9,10 ,
Ning Liu 4,5 , Jian-Hong Wang 2,9 & Dong-Dong Wu 1,2,10,11

Combining genotype and phenotype data promises to greatly increase the
value ofmacaque as biomedicalmodels for humandisease. Herewe launch the
Macaque Biobank project by deeply sequencing 919 captive Chinese rhesus
macaques (CRM) while assessing 52 phenotypic traits. Genomic analyses
reveal the captive CRMs are a mixture of multiple wild sources and exhibit
significantly lower mutational load than their Indian counterparts. We identify
hundreds of loss-of-function variants linked to human inherited disease and
drug targets, and at least seven exert significant effects on phenotypes using
forward genomic screens. Genome-wide association analyses reveal 30 inde-
pendent loci associated with phenotypic variations. Using reverse genomic
approaches, we identify DISC1 (p.Arg517Trp) as a genetic risk factor for neu-
ropsychiatric disorders, with macaques carrying this deleterious allele exhi-
biting impairments in working memory and cortical architecture. This study
demonstrates the potential of macaque cohorts for the investigation of
genotype-phenotype relationships and exploring potential spontaneous
models of human genetic disease.

Over the past decades, rhesus macaque (Macaca mulatta) bior-
esources have played a crucial role in deepening our understanding of
human physiology, metabolism, reproduction, development, cogni-
tion, and pathology1–3. More recently, the importance of this species as
an experimental model increased substantially during the COVID-19
pandemic, a dire public health crisis that urgently necessitated the
recruitment of many animal models for vaccine testing and drug
treatments4. However, this global pandemic also triggered, either

directly or indirectly, a worldwide shortage of rhesus macaques for
research5,6. In consequence, fully appreciating and efficiently utilizing
macaque bioresources has become a major challenge currently faced
by all biologists7,8.

Effectively utilizing rhesus macaques as an experimental animal
model benefits from the greater resolution of genetic variation and
detailed phenotypic examination in parallel9,10. Additionally, insights
into the genetic diversity of macaque populations will greatly assist in
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the rational genetic management of research colonies11. Rhesus
macaques are geographically widespread and consequently geneti-
cally diverse12–14. Three distinct lineages are nevertheless well recog-
nized: Indian, Chinese and Indochinese15. Currently, the most
significant macaque bioresource, macaque genotype and phenotype
(mGAP)16, primarily concentrates on Indian rhesus macaques (IRM),
with only a limited number of samples being of Chinese origin. How-
ever, it is now clear that Chinese rhesus macaque (CRM) populations
exhibit considerable genetic variations, potentially surpassing that of
their Indian counterparts17, and they vary markedly in traits such as
body size, pelage, and other morphological characteristics18,19. To
effectivelymonitor and preserve the diversity of CRM, and with an eye
to utilizing them as biomedical experimental models, a national pri-
mate facility known as “National Research Facility of Phenotypic and
Genetic Analyses of Model Animals (Primate Facility)” has been
established at the Kunming Institute of Zoology (KIZ), Chinese Acad-
emy of Sciences (CAS)20. Thanks to more than 80 years of dedicated
artificial breeding efforts since the 1960s, along with the occasional
introduction of new monkeys into the colony, the population now
exceeds 1800 CRMs, descended from a diverse range of wild ances-
tors. This invaluable bioresource not only offers an opportunity to
explore the genetic variation that underlies observable phenotypic,
physiological and behavioral differences between macaques, but the
identification of functionally significant genetic variations will also
enhance our understanding of existingmodels thereby paving the way
for the discovery of novel genetic models for inherited human
diseases.

Two complementary approaches, namely forward genomics and
reverse genomics, can be utilized to achieve these goals. Forward
genomics, a phenotype-driven strategy (i.e., genome-wide association
study [GWAS]), starts with the measurement or observation of a phe-
notype and proceeds to the mapping of the causative loci or genes21.
This method is particularly powerful in deciphering the molecular
mechanisms underlying natural phenotypic variation, in those cases
where we have no prior knowledge of the genes involved in the bio-
logical process. Conversely, reverse genomics is a gene-driven
approach that involves identifying mutations in specific genes of
interest, followed by phenotypic assessment22. Whereas reverse
genetic studies tend to be more straightforward and shorter in dura-
tion by comparison with forward genetic studies, they can be ham-
pered by challenges such as inefficient gene knockdown or genetic
background effects23,24. Until now, both approaches have been suc-
cessfully applied to a number of model organisms, including
mouse25,26, zebrafish27, Drosophila28, and Arabidopsis23.

Accordingly, we have launched the Macaque Biobank (MB) pro-
ject, with the aim of capturing a wide range of phenotypic and omics
data across large numbers of individual macaques. In the initial phase,
we densely genotyped 919 CRMs and assessed 52 phenotypic traits
that were collected from the colony of KIZ. We first explored the
ancestry, genetic diversity and sequence variations present in this
cohort. Next, we performed forward genomic screens to identify the
genetic variants responsible for specific phenotypes. Finally, we
employed reverse genomic screens, focusing mainly on neurological
disease genes, to examine the phenotypic consequences arising from
specific mutations. Overall, the MB introduced here promises to serve
as an invaluable resource for the study of the genotype-phenotype
relevance of macaques to molecular medicine, as well as for the dis-
covery of new spontaneous models of human genetic diseases.

Results
Genetic ancestry and status of the CRM cohort
The initial dataset comprised 919 captive CRM individuals that were
sequenced to a highmeandepth (~30.47X) (SupplementaryData 1) and
80 wild CRM samples18 with moderate genomic coverage (~11.71X).
After applying a series of sample and variant quality controls (see

Methods), we obtained a total of 84,480,388 high-quality sequence
variants across 961 individuals, including 74,752,163 single-nucleotide
variants (SNVs) and 9,728,225 insertions or deletions (Indels) (Fig. 1a).
This corresponds to an average of one variant per 35 base-pairs (bp)
genomic DNA. Nearly 59% of these variants occurred at low allele fre-
quencies (AF <0.01) whereas approximately 8.0% were classified as
very common (AF >0.05). The comparison of variant dataset with the
largest mGAP cohort (v2.2)16 revealed that more than 62 million of the
SNVs and Indels (73.94%, Fig. 1a) were newly identified, despite the
much smaller sample size of our cohort compared to that of themGAP
project16 (961 vs. 2,425). This is perhaps not surprising given that the
reference genome per se is an Indian-origin lineage, which is phylo-
genetically distinct from the CRM29. Nevertheless, we cannot exclude
another possibility that our CRM cohort may possess higher levels of
genetic diversity compared to the mGAP cohort16, which is evident
from the results presented below.

We traced the genetic ancestry of the CRM cohort by incorpor-
ating samples from diverse geographical regions of China alongside
samples from India. The PCA results show a clear separation between
the CRMs and the IRMs (Fig. 1b), thereby corroborating the marked
genetic divergence of these two geographically separated
subpopulations18,30. Within the Chinese samples, the captive CRMs
were indistinguishable from the wild population, irrespective of whe-
ther or not the Indian-origin sampleswere excluded. Suchpronounced
admixture between captive CRM samples and the wild population was
further corroborated in FRAPPE31 -inferred ancestral clusters (Fig. 1c),
implying that the captiveCRMs are likely an admixture ofmultiplewild
sources, aligning with the maintenance history of the cohort. The
combination of multiple genetic ancestries introduces increased
nucleotide variation into the recipient population. As expected, we
found that the captive CRMs showed the highest genetic diversity
(mean π =0.0016), which is comparable to that of the wild population
(average π =0.0015) and 1.7-fold higher than the mGAP cohort16

(averageπ =0.0001) (Fig. 1d). Theobservationof slightly lower genetic
diversity among wild individuals than captive CRMs was likely caused
by their lower sequencing depth (R² = 0.61, p-value = 6.065e-09, Sup-
plementary Fig. 1). This notwithstanding, the mutational load pattern
indicated that both the captive CRMs and the wild population carried
significantly fewer deleterious mutations (Fig. 1e) and homozygous
loss-of-function (LoF) (Fig. 1f) than themGAP cohort16 (Mann–Whitney
U test, p-value < 2.2 × 10–16). This pattern consistent with the anticipa-
tion that a more inbred population would logically exhibit a higher
genetic load32. High genetic diversity and low genetic load are reliable
indicators of a population’s long-term viability33,34. These results imply
that the genetic status of our captive CRMs compares favorably with
the mGAP16 samples, with a lower risk of inbreeding, germplasm
degradation, and loss of genetic diversity.

Variant annotation and mutational profiling
We classified the variants into different categories based on their
location and functional impact. As seen in human cohorts35,36, the
majority of the CRM variants were found in intergenic and intronic
regions, accounting for 45.13% and 39.75%, respectively, whereas the
variants located in coding and splicing regions made up 0.89% of the
total (Fig. 2a and Supplementary Fig. 2a–c). The number of synon-
ymous variants (~328 K) was slightly higher than the non-synonymous
variants (~315 K); they together comprised 85.22% of the variants in
coding and splice regions. The allele frequency distribution indicated
that the non-synonymous and frameshift mutations, start/stop gains
or losses, and splice site variants aremore likely tobe rareor singletons
(Fig. 2b), reflecting the putative purifying selection acting on them.

We next examined the mutational constraint on different genes
and pathways. To calibrate the number of mutations resulting from
mapping to a distant reference genome (Indian rhesus macaque) and
accounting for local sequence features (e.g., gene length), we utilized
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the number of synonymous variations as a control baseline37. Specifi-
cally, we computed the ratio of non-synonymous to synonymous
substitutions (nsyn/syn) for each gene. After controlling for the false
discovery rate (FDR), our results showed that the most evolutionarily
constrained pathways (involving genes with no observed non-
synonymous mutations) were related to core biological processes,
e.g., ribosome, spliceosome and proteasome components (adjusted p-
value < 0.05, Fig. 2d), consistent with previous findings in human
cohorts37,38. By contrast, the immune-related pathways, such as the
chemokine signaling pathway, cytokine−cytokine receptor interac-
tions, viral protein interactions with cytokine and cytokine receptors,
were among the least constrained pathways (nsyn/syn > 4). Interest-
ingly, several neurodegeneration pathways, such as those evident in
amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), Hun-
tington disease (HD), and Alzheimer’s disease (AD), were also found to
be markedly conserved (adjusted p-value < 0.05), implying their
functional importance and strong purifying selection in rhesus maca-
ques. It is reasonable to suppose that these categories of conserved
pathways are also less tolerant to deleterious mutation.

Loss of function (LoF) variants and association with phenotypes
LoF variants, including nonsense, frameshift, or canonical splice-site
mutations, are of particular interest as they have the potential to
severely disrupt the functionality of protein-coding genes, thereby

could serve as naturally occurring gene knockouts to explore gene
function39. However, LoF variants are known to have a high false-
positive rate due to various factors, including incomplete and imper-
fect genome annotation, occurrence on non-canonical transcripts or
within the last 5% of the transcript40,41. To increase the probability of a
given variant being accurately annotated as a predicted loss-of-
function (pLoF) mutation, we applied a set of filtering strategies to
the rawLoF variants derived fromthe SnpEff prediction42 (seeMethods
for detail). In total, we identified 4,166 high-confidence pLoF variants
across 2746 genes (Supplementary Data 2), where at least one copy of
the gene was predicted to be inactivated based on both rhesus
macaque and human genome annotations. Of these, the majority
(83.08%)were found tobe rare (MAF < 0.01) andonly 5.61%of thepLoF
variants were very common (MAF >0.05). On average, each individual
macaque carried 97 pLoF variants, similar to the numbers found in
human genomes39,40.

The very common pLoF alleles are likely to be LoF-tolerant
because they are less constrained by purifying selection. We observed
a significant enrichment in olfactory receptors among these alleles
(adjusted p-value = 1.809 × 10–4, Supplementary Table 1), consistent
with the findings of previous studies37,38,43. It is intriguing to find that
seven mouse essential genes (PPP1R15B, IFT52, CYP1A2, ETV2, NFASC,
SLC2A9, PLRG1) and two human essential genes (MAK16, PLRG1) were
tolerant to biallelic inactivation in CRMs (Supplementary Data 2). For
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example, the PLRG1 gene, which encodes a core component of the cell
division cycle 5-like (CDC5L) complex, is crucial for both mouse
embryonic and human cells in terms of their viability44,45. Analysis of
the transcriptome data confirmed that the splice acceptor mutation in
PLRG1 (c.10-2_10-1insA) observed in CRMs likely influences the fusion
of exon1 and exon2, resulting in the transcript of PLRG1 with a loss of
the exon1 fragment (Supplementary Fig. 3). However, our observations
suggest that the homozygous knockout of this gene does not result in
severe consequences or a disease state in CRMs, probably the evolu-
tionary change of gene essentiality across species46 or a compensation
effect from gene family members47. By contrast, rare pLoF alleles
(MAF < 0.01) are expected to be less tolerated and likely associated
with a strong functional effect. We found a strong depletion of
homozygosity among rare pLoF variants, with only 78 (2.29%) of the
variants being homozygous. These genes were significantly enriched
for metabolic pathways, such as arachidonic acid metabolism, gly-
cerophospholipid metabolism, and glycerolipid metabolism (adjusted
p-value < 0.05, Supplementary Table 2). Interestingly, we identified
338 genes as potential drug targets within the high-quality pLoF cat-
alog (Fig. 3b and Supplementary Data 2). These genes exhibited vary-
ing degrees of gene loss, which could potentially lead to inter-
individual differences in pharmacological efficacy. Consequently, the
compilation of high-confidence LoF variants could serve as a key
resource to guide the selection of suitable “druggable” targets, and it
would be rewarding to have a primary screening for these druggable
targets in CRMs for selecting the proper individuals for the pharma-
cological evaluations.

To further characterize the phenotypic consequences of the rare
pLoF variants, we performed an association screen against 52 distinct
phenotypes (Supplementary Tables 3 and 4). Association results sur-
passed the Bonferroni significance threshold (p-value = 2.83 × 10−5, see
“Methods”) for seven pLoF-trait pairs (Supplementary Table 5). The
most significant association was a splice acceptor variant in ANO10
(c.203-2 AG >G), which was related to the full-leg length (p-
value = 8.97 × 10−6). Compared to the non-carriers, ANO10 (c.203-2
AG >G) heterozygotes displayed a significant reduction in full-leg

length (Mann–Whitney U test, p-value = 0.0251, Fig. 3c). Notably,
ANO10 (c.203-2 AG >G) heterozygous carriers also exhibited a nom-
inally significant reduction in full-arm length (Mann–WhitneyU test, p-
value = 0.0139, Fig. 3d), although the association test (p-
value = 4.12 × 10−5) did not surpass the level of significance required by
Bonferroni correction, likely because the correction approach is highly
conservative and would tend to “overcorrect” the variants in the con-
text of a mild or small effect48. ANO10 encodes a transmembrane
protein that belongs to the transmembrane 16 family. Defects in this
gene can cause ataxia, a neurological condition characterized by gait
and balance impairment, upper limb coordination problems, as well as
impairment of speech and eye movements49,50. However, to our
knowledge,ANO10has never been reported to be associatedwith limb
length. Similarly, we could identify a heterozygous splice acceptor
mutation at PRRC2B (c.6379-2 A >G), which was predicted to play a
role in embryonic development51, was significantly associated with a
higher body weight (p-value = 9.67 × 10−6, Fig. 3c). If employing a less
conservative association p-value threshold (e.g., 1× 10−4), we could
identify another 13 associations that was aligned with the gene func-
tion (Fig. 3d). For instance, the carriers of a stop gain mutation in the
ATR gene possess a smaller head length (Mann–Whitney U test, p-
value = 0.0072). It has been suggested defects of this gene was a cause
of Seckel syndrome 1, a syndrome characterized by severe intrauterine
and postnatal growth retardation, microcephaly and mental
retardation52. In addition, the heterozygous knock-out of ALOX15,
which encodes an enzyme that acts on various polyunsaturated fatty
acid substrates53, was associated with lower high-density lipoprotein
(HDL) and low-density lipoprotein (LDL) concentrations in serum of
CRMs (p-value = 0.0042 and 0.0073, respectively).

Genome-wide association for 52 phenotypes in CRMs
The availability of multiple genomes coupled with phenotypic data
also provides anunprecedented opportunity to investigate the genetic
foundations of phenotypic variation in CRMs. To this end, we per-
formed GWAS analyses for each quantified trait on the common var-
iants (SNVs + Indels) with a mixed linear model by fitting relevant
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covariates, e.g., age, sex, genetic relationship, population structure
(see Methods). The genomic control factor λ did not show any sign of
inflation for all tests (λ < 1.03), suggesting that population structure

has beenwell controlled. The resulting statistical power of a GWASwas
0.0046 (Supplementary Fig. 4) when assuming amean heritability ðĥ2Þ
of 0.5 for the traits. This indicates that 0.46% of the causal variants

Fig. 3 | pLoF genes and their association with phenotypes. a Number of het-
erozygous (blue) and homozygous (red) pLoF genes in the CRM cohort. b UpSet
plot depicting the intersection of pLoF genes with the following gene lists: hap-
loinsufficient gene determined by the ClinGen Dosage Sensitivity Map (hap-
loinsufficient), essential gene in multiple cultured cell lines (essential in cultured),
essential gene for the viability of mice (essential in mice), OMIM disease genes of
autosomal dominant and autosomal recessive, and drug target in DrugBank. The
first five gene lists are available at https://github.com/macarthur-lab/gene_lists,
corresponding to the “ClinGen haploinsufficient genes”, “Essential in culture”,
“Essential in mice”, “All dominant genes”, and “All recessive genes” lists, respec-
tively. The drug target genewere annotatedbyMetascape108. Details were provided
in Supplementary Data 2. Associations of pLoF gene with the phenotypic trait that
surpassed (c) the Bonferroni significance threshold (p-value = 2.83 × 10−5), and (d)
p-value of 1 × 10−4 based on a mixed linear model. These results are ordered

according the significance of association p-value. Please refer Supplementary
Table 5 for detail variant type and exact p-value for each gene. The values on the
y-axis represent the trait that were separately normalized using inverse normal
transformation (INT) and were adjusted for age and sex. Numbers in brackets (x-
axis) indicate the sample size with the mutation. P-values were estimated by two-
tailed Mann–Whitney U test. The center line of the boxplot represents the median,
the box spans the interquartile range (IQR, 25th to 75th percentile), and the whis-
kers extend to theminimumandmaximumvalueswithin 1.5 × IQR.Outliers beyond
this range are shown as individual points. Asterisks denote the level of significance
of the compared groups by a two-tailed Mann–Whitney test. “Het” denotes the
group of heterozygous allele carriers. “Non” represents the non-carriers. *, p-
value < 0.05; **, p-value < 0.01; ***, p-value < 0.001. Source data are provided as a
Source Data file.
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could be detected given a sample size of 875 (the number of captive
CRMs possessed the phenotypic data). In total, we identified 44 var-
iants associatedwith 16phenotypic traits thatpassed the genome-wide
significance threshold (p-value = 5.13 × 10−8). These variants were
clumped into 30 independent loci across 18 chromosomes, explaining
3.36–5.97% of phenotypic variations (Supplementary Fig. 5 and Sup-
plementary Table 6).

The annotation of these significant variants revealed six genes
(DCDC2C, TRIB1, EDIL3, GGT1, SHISA9, WWOX) have been reported to
be associated with specific human traits (Supplementary Table 6). For
instance, the EDIL3 gene, which encodes an integrin ligand, has been
previously suggested to be related to human bodymass index (BMI)54.
In this study, we discovered that a downstreamvariant of this genewas
significantly associated with a reduction in BMI in rhesus macaques
(beta = −1.0737, p-value = 6.30× 10–9, Supplementary Fig. 5c). We also
observed associations of the SHISA9 locus link to hip
circumference55(beta = –0.6693, p-value = 3.69 × 10–8), and the WWOX
locus with body weight56(beta= 0.3909, p-value = 3.87 × 10–8) (Supple-
mentary Fig. 5j, p). Apart from these known associations, we identified
11 significant associations that had not previously been reported in the
human GWAS catalog57 (Supplementary Table 6). Of these, the most

significant association was observed for a 5ʹ-UTR variant at the IGLL1
locus (c.-1436C >T), which was related to the serum gamma-glutamyl
transpeptidase concentration (γ-GGT) level in CRMs (p-
value = 2.76 x 10−11, Fig. 4a, b and Supplementary Table 6). This gene
encodes an immunoglobulin lambda-like polypeptide 1 protein which
plays an important role in B cell development58. In CRMs, the hetero-
zygous andhomozygous carriers exhibited a gradual increase in γ-GGT
concentration as compared to non-carriers (Fig. 4d). Interrogation of
human ENCODE databases59 revealed that this signal region exhibited
distinct active enhancer signatures in a range of human cell types
(Supplementary Fig. 6). It is noteworthy that this peak also encom-
passed an independent locus of GGT1 (p-value = 2.59 × 10–8), which has
previouslybeen reported tobeassociatedwith γ-GGT level inhuman60.
However, regional association analysis indicated that these two var-
iants were in weak linkage disequilibrium (LD) (r2 = 0.01, Fig. 4c),
suggesting they are being independently linked to the GGT level.

Reverse genetic screen identifies DISC1 (p.Arg517Trp) as a
genetic risk factor for neuropsychiatric disorders
The above classical forward genetic approaches enabled the identifi-
cation of multiple genetic variants associated with the phenotypic

Fig. 4 | Illustrative examples of GWAS. a Manhattan plots showing the GWAS
result for γ-GGT concentration in CRMs. The genetic loci that satisfied the genome-
wide significance threshold of p-value < 5.13 × 10−8 (red dashed line) are presented.
This threshold was estimated by using a uniform threshold of 1/n, where n is the
effective number of independent variants. The locus of GGT1 has been previously
reported to be associated with γ-GGT concentration60 in the human GWAS catalog
and is highlighted in blue. b Q-Q plots corresponding to the Manhattan plot of γ-
GGT. Gray shaded areas show 95% confidence intervals for the expected dis-
tributions. c LocusZoomplots for the two independent SNPs (chr10:28504973 and
chr10:28427768) related to the γ-GGT concentration on chromosome 10. The
purple diamond (chr10:28504973) represents the most significant SNP; all other

variants are colored by their r2 values. SNP positions and gene boundaries are
based on the gene build of Mmul_1079. d Carriage of the most significant SNP
(chr10:28504973), c.-1436C> T, in 5’-UTR region of IGLL1, was associated with a
step increase of γ-GGT concentration. Phenotypic data were normalized using INT
method. Numbers in brackets (x-axis) indicate the sample size with the mutation.
The center line of the boxplot represents the median, the box spans the inter-
quartile range (IQR, 25th to 75th percentile), and the whiskers extend to the
minimum and maximum values within 1.5 × IQR. Outliers beyond this range are
shown as individual points. The summary statistics of GWAS results can be
download fromNon-HumanPrimate BioBank database (https://nhpbiobank.kiz.ac.
cn/Home/Download). Source data are provided as a Source Data file.
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variations inCRMs. It is intriguing to verifywhether a distinct genotype
can predict a specific phenotype. In a reverse genetic screen, we
identified 3192 non-synonymous mutations across 2216 genes that
were predicted to be deleterious based on the intersection results of
SIFT4G61 and PolyPhen-262 (Supplementary Data 3).We are particularly
interested in the genes related to human neurological disorders (NDs)
as these complex diseases are difficult to investigate using rodent
models3,63. Non-human primates (NHPs) are not only phylogenetically
close but they also share similar brain structure and function with
humans, making themmore suitable for the study of human NDs than
othermammalian species64. Below, we highlight the case regarding the
phenotypic consequences arising from a deleterious missense muta-
tion in the DISC1 (Disrupted-In-Schizophrenia 1) gene (p.Arg517Trp,
c.1549 C > T, SIFT4G score = 0.01).

In this cohort, we identified eight CRMs that carried the DISC1
p.Arg517Trp mutation in the homozygous state versus 725 non-
carriers. These macaques included three adults (aged 5–7 years) and
five elderly individuals (aged over 19 years). Given that aging could
potentially affect the results obtained (e.g., working memory), we
focused on the three adults and excluded the elderly monkeys from
the behavioral and brain imaging experiments. We observed a sig-
nificant reduction in neurological function in carriers of the risk allele
(Trp) than 19 non-carriers (Arg, two-tailed t-test, p-value < 0.0001,
Fig. 5d). This reduction wasmanifested by diminished limb reflexes, as
well as a decreased response to pain and teasing. We further assessed
the working memory under mild-stressful and non-stressful condi-
tions, respectively. Our results showed that risk allele carriers con-
sistently exhibited lower working memory performance with
increasing delay lengths, and this pattern was particularly evident in
the trials with 30 s delays (Fig. 5a, b). When a restraint stress was
applied, the risk allele carriers displayed markedly more errors under
these stressful conditions (two-tailed t-test, p-value = 0.0363, Fig. 5c).
Since stress is a risk factor for psychiatric disorders associated with
impaired prefrontal function65,66, these data may help to explain why
the deleterious missense mutation of DISC1 increases the risk of psy-
chiatric disorders.

Next, we carried out magnetic resonance imaging (MRI) to
examine whether any cortical structure was altered in DISC1 Trp car-
riers. Although we did not detect a significant reduction in graymatter
volume and thickness (Supplementary Fig. 7), we observed an increase
in gray matter surface area in the frontal lobe of the Trp risk allele
carriers (p-value = 0.0338, Fig. 5e), particularly in themotor cortices of
the caudal frontal lobe. Additionally, we detected a significant reduc-
tion of white matter volume in the temporal lobe (p-value = 0.0064,
Fig. 5f) and a significant increase in ventricular volume (p-value =
0.0169, Fig. 5g). Further region-level results confirmed that the
majority of changes in gray matter surface area and white matter
volume were localized to the frontal lobe and temporal lobe, respec-
tively (Supplementary Figs. 8, 9). We also collected resting-state
functional magnetic resonance imaging (rs-fMRI) data. Although no
significant group differences in functional connectivity (FC) were
observed at thewhole-brainor lobe levels, the lobar analysis revealed a
trend toward reduced parietal-frontal FC and increased subcortical
and frontal-frontal FC in Trpmonkeys (Supplementary Fig. 11a, b). The
network-based statistic (NBS) was further conducted across a range of
primary thresholds (t = 3.0–3.4) to identify differences in functional
connectivity between the Trp-bearing macaques and the Arg controls
under the general anesthesia. As the primary threshold increased, a
stable set of differing functional connectivity persisted (Supplemen-
taryFig. 10),with the results at themedian threshold (t = 3.2) presented
in Fig. 5h,i. Among these findings, the majority of increased functional
connectivity measures in Trp-bearing monkeys were localized within
the frontal lobe (n = 11), while a subset was observed between the
frontal lobe and subcortical regions (n = 7) (Fig. 5h). Additionally, we
identified 27 connections that displayed a reduction in strength in the

Trp-bearing macaques compared to controls, with the majority of
these reductions occurring between the frontal lobe and parietal lobe
(n = 13) (Fig. 5i). At the regional level, Trp monkeys showed altered
functional connectivity density (FCD) in the SII, areas 24a/b prime, and
the nucleus accumbens (Acb) (Supplementary Fig. 11c, d). Since the
sample size in the current study is relatively small, especially con-
sidering the challenge in identifying group difference in resting state
fMRI with only 3 Trp-bearing macaques, the functional connectivity
results should be interpreted with caution. Further studies with larger
sample sizes are needed to validate these findings.

Discussion
The macaque cohort presented here represents one of the most
extensive sequencing studies so far performed in rhesus macaques,
although our data have primarily been derived from the CRM popu-
lation. This notwithstanding, we have for the first time incorporated a
diverse array of phenotypic data fromnumerousmacaque individuals.
The current cohort comprises genomic data from 961 CRMs, sup-
ported by 52 hematological, biochemical and anthropometric mea-
surements. Our preliminary analyses indicate that the captive CRMs
are a mixture of animals from multiple wild sources, which was con-
sistent with the introduction of wild animals into the colony to avoid
potential inbreeding. Together they harbor over 62 million variants
(74%) that were previously undetected in the mGAP project16, thereby
demonstrating the distinctness of the CRM and IRM lineages, which
serves as a caveat for their use as nonhuman primate models. The
higher nucleotide diversity in the CRM cohort was also supported, but
our new data with its large sample size and high coverage genomic
sequencing indicate that the captive CRMs carry a significantly lower
genetic load, andhence are less susceptible to inbreeding compared to
the mGAP individuals16.

The relatively large sample size of the genomic data obtained
enables us to assess the sensitivity of genes to functional variations in
non-human primates, thereby enhancing our capacity to discover
disease-related genes, especially in these monkeys with spontaneous
diseases67–69. Our results corroborate previous findings performed on
large human cohorts37,38, indicating that genes implicated in core
biological processes (e.g., ribosome, spliceosome and proteasome
components) belong to the most constrained categories, whereas
immune-related genes are the least constrained. Notably, we dis-
covered that human orthologous genes associated with neurological
disorders, such as ALS, PD, HD and AD, are also under strong selective
constraints (Fig. 2d). This implies that these neural genes are of func-
tional importance and have been conserved in rhesus macaques,
making them less tolerant to LoF mutations or detrimental non-
synonymous mutations. Our findings therefore provide compelling
genetic evidence to support the use of rhesus macaques as a suitable
model for studying neurological diseases3,64,70.

Employing a reverse genomic approach, we successfully demon-
strated a case arising from a deleterious missense mutation in the
macaque DISC1 gene (p.Arg517Trp, Fig. 5), a well-recognized risk gene
for several types of human neuropsychiatric disorder. This gene
encodes a multi-compartmentalised protein that functions as a scaf-
fold hub, interacting with numerous partners involved in brain devel-
opment and disease processes. Defects inDISC1 have been reported to
be associated with impaired working memory71. Anatomical changes
mostly involve cortical abnormalities, including the prefrontal cortex
as this area plays an important role in executive functions and working
memory72. In this study, our data collectively indicated that the
macaques carrying the risk allele of DISC1 p.Arg517Trp exhibited
alterations in cortical architecture and functional connectivity
(Fig. 5e–i), which may ultimately contribute to the observed neurolo-
gical deficits and impairment of working memory (Fig. 5a–d). As
working memory impairment is a contributing symptom to most
neuropsychiatric disorders linked toDISC1mutations, thesepromising
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data provide a remarkable bridge across human andmacaque species,
albeit the number of macaques with DISC1 p.Arg517Trp were relatively
small. The naturally occurrence of disease in captive macaques pro-
vided a unique resource for establishing non-human primate models
for human diseases. With the genome information affiliated predic-
tion, it would be interesting to monitor the onset of spontaneous
diseases in these macaques with the pLoF and deleterious missense
mutation.

Although we have identified hundreds of pLoF variants and
missense variants that were matched to known human diseases
and drug target genes. However, as demonstrated in previous
studies73,74, we cannot be certain that these functional mutations

will be associated with an increased susceptibility to certain
inherited diseases. Distinguishing the disease-causing mutations
from benign genetic variation is challenging and problematic for
organisms like macaques as there are few sources of genomic
annotations, relative to human or mouse. Detailed phenotypic
data offer a promising approach for understanding these func-
tional mutations, as exemplified by the phenotypic consequences
observed in ANO10, PRRC2B, ATR and ALOX15 (Fig. 3c, d and
Supplementary Table 5) in this study and human biobank75,76. The
integration of extensive phenotyping data in the future will
enhance the accuracy and reliability of predicting the significance
of genetic mutations in macaque genome20,77.
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Fig. 5 | Phenotypic consequences arising froma deleteriousmissensemutation
inDISC1 (p.Arg517Trp). a Schematic diagramof spatial workingmemory test using
theWisconsin General Test Apparatus (WGTA), where themacaque was allowed to
choose food (e.g., peanut) from one of the two covered wells with various time
delays. Macaque drawings by Mu-Ru Zhou; full painting by Hong-Di Huang.
b Performance (percentage of correct choice) of Trp-bearingmacaques (n = 3, red)
and Arg controls (n = 3, blue) across six tested delays (0 s, 6 s, 12 s, 18 s, 24 s, 30 s).
Data here and below are presented as the mean ± SEM. c Inhibition of working
memory (ratio of errors score) caused by restraint stress between the Trp-bearing
macaques (n = 3) andArg controls (n = 3). P-value inworkingmemory examinations
was estimated by two-tailed t-test. d Neurological function scores performed for 3
adults of homozygous carriers (Trp) vs 19 non-carriers (Arg). P-value were esti-
mated by two-tailed unpaired t-test. eQuantification of brain structure differences
in macaques with 3 Trp carriers compared to 3 Arg controls that involved in
working memory examinations. Left: gray matter surface area of four lobes in Trp-
bearing macaques and Arg controls. Right: visualization of frontal brain regions
showing significant differences between Trp-bearing macaques and Arg controls

on themid-gray surfaces of themacaque template. Red indicates the surface area of
Trp-bearing macaques is larger than Arg controls, blue is the opposite. Fro, frontal
lobe; Par, parietal lobe; Tem, temporal lobe; Occ, occipital lobe. f White matter
volume of the four lobes (left) and visualization of temporal brain regions showing
significant differences (right) between the 3 Trp carriers and 3 Arg controls.
g Ventricle volume of the whole-brain between the Trp carriers (n = 3) and Arg
controls (n = 3). e–g Quantitative data in Arg and Trp groups are presented as
means ± SEM, with data collected from the two hemispheres of each monkey.
Generalized linear mixed models (GLMMs) were used to estimate the statistical
significance. Number of pairs of brain areas exhibiting increased (h) and decreased
(i) functional connectivity within and across lobes and subcortical area at the
median threshold (t = 3.2), respectively, inTrpmacaques compared toArg controls.
Detailed information is presented in the right panels adjacent to thematrices. Red,
yellow, green, blue and purple dots represent regions of frontal (Fro), parietal (Par),
temporal (Tem), occipital lobe (Occ) and subcortical (Sub) regions, respectively. *,
p <0.05; **, p <0.01; ****, p <0.0001.
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Despite these significant observations, several limitations deserve
attention. First, althoughwe have applied a series of filtering strategies
as well as liftover to human coordinate to utilize human data sources,
any given mutation annotated as pLoF may not truly lead to loss of
protein function. Therefore, experimental validation such as reverse-
transcription PCR of transcript and/or western blotting of protein will
ultimately be required in order to address this issue. A second limita-
tion is reduced statistical power to establish unambiguous
genotype–phenotype correlations if the pLoF is observed in only one
or two participants, a similar issue also seen in GWAS analyses. The
limited sample size also restricts the statistical power of our findings in
brain structure and resting state fMRI under sedation. This could be
improved if larger sample sizes were employed in the future. Cur-
rently, we have started the breeding of Trp-bearing macaques to
expand the mutant colony. Finally, our analysis was limited to readily
available phenotypes; in future analyses, a standardized clinical phe-
notyping protocol would be desirable for each participant.

In short, we provided a large-scale genome dataset for CRMs,
which serve as an invaluable resource for the study of the genotype-
phenotype ofmacaques and for potential usage of precisionmedicine.
This resource can also guide the selection of appropriate models for
experimental and pharmaceutical tests, facilitating the discovery of
new genetic models for human disease research, and further improv-
ing and refining the rational genetic management of macaque
colonies.

Methods
Sample collection and sequencing
We enrolled a total of 919 Chinese rhesus macaques (Supplementary
Data 1) that were housed in KIZ, for genomic sequencing during their
annual physical checks (normally September or October, outside the
breeding season) since 2021. The initial cohort comprised 293 males
and 626 females, aged from 3 to 30 years. To ensure that our blood
collection did not adversely affect the safety of the monkeys, we
extracted a 3–5ml peripheral blood sample fromeach individual using
conventional intravenous sampling method. One half of each blood
sample was used for hematological trait examination while the other
half was used for genomic DNA extraction using the QIAGEN®
extraction kit. After DNA quality assessment, libraries were prepared
following the standard protocol of the DNBseq platform and
sequenced to a target depth of ~30× per individual, generating about
90 GB sequencing data. All samples were collected in accordance with
the policy of the Institutional Animal Care andUseCommittee (IACUC)
of KIZ, CAS (Approval ID: IACUC-PE-2022-11-003 and IACUC-PE-2024-
11-002), which conforms to the regulatory standards for the human
care and treatment of animals in research.

Phenotypic data collection
Hematological trait examination was performed using a hematology
analyzer (Mindray, BC-5000Vet, China), which recorded 21 standard
sets of blood cell traits.We also obtained a number of biochemical and
anthropometric body measurements (summarized in Supplementary
Tables 3, 4) during the following year (2022). Prior to biochemical
testing, participant animals fasted overnight or at least 6 h prior to the
peripheral blood sample being drawn, and the blood was centrifuged
within 60min of venipuncture. The serum samples were subsequently
used to measure the biochemical traits via an automated autoanalyser
(Dimension EXL200). For anthropometric body measurements, all
individual animals received an intramuscular injection of 5mg/kg
ketamine to ensure sedation on the operating table while the various
measurements were being obtained. We took 11 body measurements
as well as the body weight for each animal. These measurements were
taken following the standardized procedures as described in Supple-
mentary Table 3.

Variant calling and filtration
To explore the genetic ancestry of our sequenced individuals, we
additionally included 80 wild CRMs18 in our cohort. We followed the
Genome Analysis Toolkit (GATK) best practices pipeline78 to call the
variants. Briefly, raw sequence reads were mapped to the reference
genome of IRM (Mmul_10)79 using BWA-MEM v0.7.17-r1119880 with
default parameters. Sambamba81 was used to removemultiple aligned,
duplicated and unaligned reads. We first obtained the GVCF file for
each sample using the HaplotypeCaller function in GATK version 4.182.
Then joint calling was performed to generate ‘raw’ variant data via the
GenotypeGVCFs function. We used the following hard quality filter
criteria (QD < 2.0 | | QUAL < 50.0 | | FS > 60.0 | |MQ < 40.0 ||
MQRankSum< -12.5 || ReadPosRankSum< -8.0) for SNPs filtering, and
(QD < 2.0 | | QUAL < 50.0 | | FS > 200.0 | |MQ < 40.0 || Read-
PosRankSum< -20.0) for Indels filtering, respectively, as suggested by
the pipelines. After this, the filtered variant call files were merged
together for subsequent quality control.

Variant level quality control. To reduce false positive calls, we
removed SNPs occurring in a cluster (more than three SNPs within
10 bp) using the VariantFiltration function in GATK (--cluster-size 3
--cluster-window-size 10) because these tightly spaced SNPs are more
likely to result from read mis-alignment. In addition, variants located
within 6 bp of predicted indels, presenting in fewer than 80% of indi-
viduals, and the approximate read depth exceeded 97.5%or lower than
2.5% of the quantile distribution, were also filtered using BCFtools
v1.983. Triallelic alleles were further filtered out in the population
genetic analyses (e.g., PCA, STRUCTURE).

Sample level quality control. For quality control of samples, we first
removedduplicate samples (number = 8)with kinship coefficient >0.35
based on the estimations from KING software84. Then we removed
samples (number = 26) with an excess of heterozygosity calls
(inbreeding coefficient<−0.1) or outlier numberof SNPs (>17,000,000)
which roughly equal three standard deviations of the mean. We also
examined whether the self-reported information on gender could be
verified by the “check-sex” option implemented in PLINK software
(v1.90b6.9)85. This procedure identified two samples with discrepancy
of sex identity which subsequently removed in downstream analyses.
Finally, having removed samples (number = 2) with high missingness
(>0.05), we retained 961 samples in the final cohort.

Variant annotations
Identification of loss-of-function variants. The effects of filtered
variants were annotated and classified by software SnpEff version 4.342

based on the latest rhesus macaque gene build (Mmul_10)79. The
putative loss-of-function (LoF) annotations, e.g., stop gains, stop los-
ses, start losses, frameshifts, splice-disrupting mutations, were
extracted and filtered using the accompanying software of SnpSift42.
We retained those LoF variants thatwerepredicted to affectmore than
50% of transcripts (LOF[*].PERC>0.5) and where the nonsense-
mediated mRNA decay (NMD tag) occurred within more than half of
the transcripts. The LoF variants locatedwithin the last 5%of the length
of the transcript were filtered out using in-house Perl scripts. These
steps led to 12,012 LoF variants retained. Despite these filtering stra-
tegies, LoF variants are known to be enriched for annotation artefacts,
e.g., exons flanked by non-canonical splice sites or incomplete
transcripts40,41.Weutilized LOFTEE37, a pluginof Ensembl Variant Effect
Predictor (VEP)62, to filter out the aforementioned LoFs. As LOFTEE is
currently only available for the human genome, we utilized the Lift-
Over function in Picard (v2.23.9) (http://broadinstitute.github.io/
picard) to transfer the variants in macaque (Mmul_10) position to the
human genome (hg38) based on the overchain file download from the
UCSC database. Only the successfully transferred (9136, 76%) and
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labeled high-confidence (HC) LoF variants were then considered as
predicted LoF variants (pLoFs, n = 4166) in the following analyses.

Inferring the pathogenicity of missense variants. We used the soft-
ware of SIFT4G61 to predict the deleteriousness of missense variants.
Prior to this step, a custom database was built with the genomic
annotation file of Mmul_1079. The scores of SIFT4G range from 0 to 1,
and SNPs are predicted to be deleterious if the score is <0.05 and
tolerated if the score is ≥0.05. We also utilized human genome anno-
tation to further infer the potential pathogenicity of missense variants
detected in the macaque genome. Again, the LiftOver tool in Picard
(v2.23.9) (http://broadinstitute.github.io/picard) was used to transfer
the variants in themacaque (Mmul_1079) position to the corresponding
human coordinates (hg38) based on the overchain file download from
the UCSC database. Then, the functional impact of amino acid sub-
stitutionswas predicted by SIFT and PolyPhen-2 implemented in VEP62.

Function enrichment analyses
The web-server g:Profiler86 was used to explore whether specific types
of biological function were over-represented among the discovered
genes. The speciesMacacamulatta (Rhesus macaque) was selected as
the background organism. P-values were adjusted by means of the
Benjamini–Hochberg correction algorithm and the terms with false
discovery rate (FDR) q < 0.05 were deemed to be significant.

Analyses of genetic ancestries
We performed principal component analysis (PCA) in software GCTA
(v. 1.94.0)87 to infer the genetic ancestries of the sequenced rhesus
macaques. Two sample sets were used: one included the Indian-origin
rhesus macaque (mGAP v2.2)16 in our cohort and one without. The
variant data from the mGAP project were filtered in the same manner
and then merged with our cohort via BCFtools software83. For each
sample set, we restricted our analyses to bi-allelic SNPs on autosomes
and common variants with MAF above 1%. We further reduced the
number of sites by applying a linkage disequilibrium (LD) pruning filter
using PLINK v1.90b6.9 (–indep-pairwise 50 5 0.1)85. We also used
Frappe 1.1 (EM algorithm)31 to infer the individual ancestries. The
postulated number of ancestral clusters (K) was set to range from 2 to
6, and the maximum number of EM iterations was set to 10,000.

Analyses of genetic diversity and genetic load
The level of nucleotide diversity (π) was estimated in a 50-kb sliding-
window size with no step using VCFtools (v0.1.17)88. However, esti-
mating genetic load is challenging without information on the fitness
effects of deleteriousmutations. An alternative approach is to estimate
changes in mutational load (i.e., number of deleterious mutations)89.
For the CRMcohort in this study and themGAP cohort16, we calculated
the ratio of the number of derived homozygous LoF variants to
homozygous derived synonymous variants, as well as the number of
homozygous derived missense variants to homozygous derived
synonymous variants for each individual, respectively, based on the
annotation of SnpEff results (version 4.3)42. Since no ancestral allele
information is available for macaques, we followed the example of a
previous study in adopting the minor allele as the derived allele90.

Association analyses with rare pLoFs
From the list of high confidence rare LoF mutations identified above,
we sought to determine whether any of the pLoF variants was asso-
ciated with phenotypic trait variation. We employed a mixed linear
model-based association analysis (GCTA-MLMA)91,92 for each
pLoF–trait pairing. Quantitative traits were inverse normalized and
age, sex and the first four ancestral clusters of FRAPPE31 results were
used as covariates. To reduce the likelihood of false positives, we only
considered the pLoF–trait pairs in which there were at least three LOF
alleles genotyped, yielding 1767 (2373) pLoF–trait pairs for analysis.

After Bonferroni correction, we considered 2.83 × 10−5 (0.05/1767) as a
threshold of significance.

Phenotype data processing and GWAS analyses
In order to focus on determinants of variation in the general population
rather thanon specific diseases, each quantitative trait wasfiltered those
data over seven standard deviations of the mean value prior to GWAS
analysis. Subsequently, the filtered trait data were standardized by rank-
based inverse normal transformation (INT) using in-house R scripts.
Genotype data were further filtered to exclude variants with a missing
genotype rate greater than 0.02, minor allele frequency (MAF) less than
0.01, and deviation from Hardy-Weinberg equilibrium smaller than
1 × 10–6, leaving 32,588,339 autosomal alleles for downstream analysis.
After that, GWAS analyseswere performedusing themixed linearmodel
with the option of leaving one chromosome out (--mlma-loco) imple-
mented in GCTA software87 for each quantitative trait. This GCTA-LOCO
approach91 provides amore robust association estimate by employing a
genetic relatedness matrix (GRM) to account for genomic relationships,
and the Leave One Chromosome Out (LOCO) method to control for
proximal contamination93. The data were adjusted for covariates
including age, sex, and the first four ancestral clusters from FRAPPE31

results. We further employed a deep neural network of DeepNull94 to
model and account for potential non-linear or interactive effects among
phenotypic data and their covariates. Thismethod allows one to control
for type I errors while enhancing phenotypic prediction94. The genome-
wide significance thresholds (5.13 × 10−8) were determined using a uni-
form threshold of 1/n, where n is the effective number of independent
variants calculated using the Genetic type 1 Error Calculator (v.0.2)95.
This method utilized a divide-and-conquer algorithm to speed up the
calculation of correlations between the genetic markers and ultimately
gave the effective number of independentmarkers (Me) that inweak LD.
The proportion of variance in the phenotype explained by a given SNP
(PVE) was estimated using the formula from Shim et al.96.

Analyze statistical power of GWAS
The statistical power of GWAS was determined by the non-centrality
parameter (NCP) of the χ2 test statistic97, i.e.,
NCP =n2f ð1� f Þb2

=ð1� 2f ð1� f Þb2Þ, where b is the per allele effect
size, f is theminor allele frequency, and n is the sample size.We fixed n
to 875 which equals the number of captive macaques that possess
phenotypic data and sampling f from uniform distribution between
0.01 and 0.5. The effect size b was drawn from Nð0,h2

=mÞ, where h2

represents the mean estimated heritability across traits (e:g:0:5) and
m (the number of causal variants) was assumed to be 100. To estimate
power, we ran 10,000 simulations and calculated the proportion of
tests surpassing the genome-wide significance threshold of 5.13 × 10−8.

Behavioral and brain imaging experimentation on CRMs with
DISC1 mutation p.Arg517Trp
Animals. We identified 3 adult samples (ages 5–7 years, two male and
one female) and 5 elderly samples (ages >19 years, all female) har-
boring the homozygous missense mutations (p.Arg517Trp) in the
cohort. Considering the old age of some of the monkeys, and our
inability to eliminate the potential influence of aging on the results
obtained, we performed the behavioral and brain imaging detection
specifically on the three younger adult samples. All animal experi-
mental procedureswereapprovedby the Institutional Animal Care and
Use Committee (IACUC) of KIZ, CAS (IACUC-PE-2022-07-001).

Behavioral experiments. We first estimated the neurological function
of 3 homozygous carriers vs. 19 non-carriers using a neurological
deficit score developed in our previous study (Supplementary
Table 7)98. This scoring system assigned points to three aspects of
neurological function: the motor system (16 points), skeletal muscle
coordination (9 points) and the sensory system (25 points), totaling a
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maximum of 50 points. A score of 0 indicated normal behaviors
whereas higher scores reflected neurological deficits. Next, we per-
formed a spatial working memory test using the WGTA (Wisconsin
General Test Apparatus) that modified from our previous studies99,100.
Considering the significant amount of time required for the training
and experimental stages, we selected three non-carriers, who were of
similar age and gender as the controls. Briefly, the macaque was
allowed to choose food (e.g., peanut) from one of the two covered
wells with six time delays (0 s, 6 s, 12 s, 18 s, 24 s, 30 s; Fig. 5a). The
delays were semi-randomly distributed over the trials with totaling 36
trials conducted in one session. We performed one session per day for
each macaque and 10 sessions were performed. To investigate the
spatial working memory under stress, restraint stress was performed
by fixing the macaque in a narrow space in its home cage for 30min,
then working memory was tested immediately after the stress. The
next session was conducted after a recovery interval of at least three
days when the macaque attained the average performance level
without stress. Three trials were performed for each macaque under
stress. The inhibition of working memory was obtained using the for-
mula of ((Pre - Post stress)/(Pre + Post stress)) × 100. Differences of the
behavioral performance were estimated by unpaired t-test.

Brain imaging. Magnetic resonance imaging (MRI) and resting state
functional MRI (rs-fMRI) data were acquired with a 3.0 T UMR790MRI
scanner (United Imaging, Shanghai, China) at KIZ. T1-weighted images
were acquired using a 3D T1-weighted fast spoiled gradient echo
(gre_fsp) sequence (voxel size = 0.5mm isotropic, TE = 5.6ms, TR =
13.01ms, flip angle: 8°) and T2-weighted images were acquired using a
fse_mx sequence (voxel size = 0.5mm isotropic, TE = 396.48ms, TR =
3400ms,flip angle: 59°) byusing a 12-channel headcoil. The structural
data were processed using Analysis of Functional NeuroImages soft-
ware (AFNI)101, FMRIB Software Library (FSL)102, Advanced Normal-
ization Tools (ANTs)103 and FreeSurfer104 (see details in Supplementary
materials). Rs-fMRI images were collected using an echo planar ima-
ging (EPI) sequence (voxel size = 1.5mm isotropic, TE = 29ms, TR =
1700ms, flip angle: 80°). During rs-fMRI scanning, macaques were
placed under the general anesthesia, similar to structural imaging, to
alleviate stress and minimize motion artifacts. Note that resting-state
functional activity is an inherent characteristic of the brain, observed
in both humans and macaques, even under anesthesia105,106. The rs-
fMRI data preprocessing was performed using the workflow outlined
in a previous study107 (see details in Supplementary materials).

Quantification and statistical analysis
Mann–Whitney U test was used to compare the phenotype difference
between the pLoF allele carriers and non-carriers. Two-tailed Student’s
t-test were used to determine the significance of behavioral difference
between DISC1 (p.Arg517Trp) carriers and controls. Structural differ-
ence at the global, lobe, and region levels were conducted under
Generalized Linear Mixed Models (GLMMs), using Hemisphere as the
random factor, and all structural data were corrected with the intra-
cranial volume of the corresponding hemisphere. Other statistical
analyses can be found in the relevant sections of the method details,
also have given in figure legends and supplementary tables.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data needed to evaluate the conclusions in the paper are present in
either the paper and/or the Supplementary Materials. The raw whole
genomic sequencing data generated in this study have been deposited
in the Genome Sequence Archive (GSA) of National Genomics Data
Center under accession number CRA014717. The raw phenotypic data

and the summary statistics of GWAS results can be download from
Non-Human Primate BioBank database (https://nhpbiobank.kiz.ac.cn/
Home/Download). Source data are provided with this paper.

Code availability
No specific custom codes were developed in this study. All commands
and pipelines used for data analyses were conducted according to the
manuals or protocols provided by the corresponding software devel-
opment team, which are described in detail in the Methods section.
Default parameters were employed if no detailed parameters were
mentioned for the software used in this study.
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