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Abstract

Starting with a k-linear or DG category admitting a (homotopy) Serre functor,
we construct a k-linear or DG 2-category categorifying the Heisenberg algebra of
the numerical K-group of the original category. We also define a 2-categorical ana-
logue of the Fock space representation of the Heisenberg algebra. Our construction
generalises and unifies various categorical Heisenberg algebra actions appearing in
the literature. In particular, we give a full categorical enhancement of the action
on derived categories of symmetric quotient stacks introduced by Krug, which itself
categorifies a Heisenberg algebra action proposed by Grojnowski.
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calculus.
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CHAPTER 1

Introduction

The Heisenberg algebra of a lattice is a much investigated object originating in
quantum theory. It appears in many areas of mathematics, including the represen-
tation theory of affine Lie algebras. For a smooth projective surface, Grojnowksi
and Nakajima [24, 37] identified the total cohomology of its Hilbert schemes of
points with the Fock space representation of the Heisenberg algebra associated to
the cohomology of the surface. As proposed by Grojnowksi [24, footnote 3] and
proved by Krug [33], this occurs more generally for the symmetric quotient stacks
of any smooth projective variety on the level of K-theory, and, more fundamentally,
on the level of derived categories of coherent sheaves.

On the other hand, Khovanov [31] introduced a categorification of the infinite
Heisenberg algebra associated to the free boson or, equivalently, a rank 1 lattice.
It used a graphical construction involving planar diagrams. A related graphically
defined category was constructed by Cautis and Licata [13] for ADE type root
lattices. Both of these Heisenberg categories admit categorical representations on
categorifications of the corresponding Fock spaces. They were much studied since
[20, 41, 9, 10, 42].

In this paper we unify and generalise many of these constructions. We start
with a k-linear and Hom-finite category V equipped with a Serre functor S. That
is, S is a k-linear autoequivalence equipped with natural isomorphisms

(1.1) ηa,b : HomV(b, Sa)∗ ∼= HomV(a, b) ∀ a, b ∈ V.
A typical example is the derived category Db

coh(X) of a smooth and proper variety
X with S = (−)⊗ ωX [dimX]. We further allow V to be graded or a DG category.
In the latter case, S only needs to be a homotopy Serre functor. The following
summarises our main results:

Theorem (Summary of the main results). There exists a Heisenberg 2-
category HV of V defined using a graphical calculus, together with a Fock space
representation on the categories of SN -equivariant objects in V⊗N .

We now make this statement more precise.

1.1. Heisenberg algebras of categories

The numerical Grothendieck group Knum
0 (V) has a bilinear pairing χ given by

the dimension of HomV(a, b) or its Euler characteristic in the graded or DG case,
cf. Section 4.9. If χ is symmetric, we can define a Heisenberg algebra HV with
generators

{ab(n)}b∈Knum
0 (V), n∈Z\{0}

and relations
[ab(m), ac(n)] = mδm,−n〈b, c〉χ.

1



2 1. INTRODUCTION

However, in practice χ is rarely symmetric, cf. Example 4.431.
As observed in [31, 13], it can be more convenient to choose a different set of

generators {
p

(n)
b , q

(n)
b

}
b∈Knum

0 (V), n∈Z≥0

and a different set of relations

(1.2) p
(0)
b = q

(0)
b = 1

(1.3) p
(n)
a+b =

∑n
k=0 p

(k)
a p

(n−k)
b and q

(n)
a+b =

∑n
k=0 q

(k)
a q

(n−k)
b ,

(1.4) p(n)
a p

(m)
b = p

(m)
b p(n)

a and q(n)
a q

(m)
b = q

(m)
b q(n)

a ,

(1.5) q(n)
a p

(m)
b =

∑min(m,n)
k=0 sk (〈a, b〉χ) p

(m−k)
b q

(n−k)
a ,

and sk(n) = dim Symk kn. These relations are consistent even when χ is non-
symmetric. Thus the above defines the Heisenberg algebra HV of any V. We prove
in Corollary 2.6 that it is always isomorphic to one induced by a symmetric pairing.

1.2. Categorification

The goal is to define a monoidal categoryHV with objects generated by symbols
Pa and Qa for each a ∈ V and the morphisms set up so that we can define P(n)

a and
Q

(n)
a in terms Pa’s and Qa’s and so that the relations above become isomorphisms

of objects. For example, relation (1.5) should become an isomorphism

(1.6) Q(m)
a P

(n)
b
∼=
min(m,n)⊕
i=0

Symi HomV(a, b)⊗k P
(n−i)
b Q(m−i)

a .

We construct HV as a 2-category with objects Z, 1-morphisms generated by
Pa : N → N + 1 and Qb : N → N − 1, and appropriate 2-morphisms. A representa-
tion of HV is a 2-functor into the 2-category of categories, sending each integer to a
“weight space category”. This idempotent modification is done for convenience, and
our construction can be easily repackaged into a monoidal category, cf. Section 8.3.

The crux of the categorification is to define “useable” 2-morphism spaces which
imply only the necessary isomorphisms such as (1.6). We define these by planar
string diagrams such as

(1.7)

Pa

α

Pe

Pb QSb Qc

β

Qd

γ

read from bottom to top. These are built out of a handful of generators, subject
to relations.

1In particular, in [33, Corollary 1.5] the algebra HK(X) is a priori not well-defined for a
general smooth and projective variety X. We are thankful to Pieter Belmans for this remark.
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1.3. Main results

Our approach differs depending on whether our input datum V is a graded ad-
ditive category with a genuine Serre functor or a DG category with only a homotopy
Serre functor. We call these two setups the additive and DG settings, respectively.
We construct the Heisenberg 2-categoryHV in the additive setting in Chapter 3 and
in the DG setting in Chapter 5. We then prove Theorems A, B and C stated below
for the DG setting and Theorem B in the additive setting. Theorems A and C are
also expected to hold in the additive setting if the numerical Grothendieck group
Knum

0 (V) is a finitely generated abelian group. In such case, our DG proofs can
be adapted and even simplified for the additive setting. Let us therefore state our
main results in the language of the DG setting.

Let V be a smooth and proper DG category. We view it as a Morita enhanced
triangulated category, cf. Chapter 4.4. It is the noncommutative analogue of a
smooth and proper algebraic variety X: the enhanced derived category of X is an
example of such V. The graphical calculus described in Chapter 5 yields a DG
bicategory HV together with maps of k-algebras

(1.8) π : HV → Knum
0 (HV , k),

where HV is the Heisenberg algebra of Knum
0 (V). Here, a bicategory is a certain

kind of weak 2-category. To be precise, we actually mean a bicategory enriched
over the homotopy 2-category Ho(dgCat) of DG categories, see Chapter 4.1. We
treat these subtle differences carefully in the main text of the paper, but here refer
to these merely as DG bicategories.

As in the literature of Heisenberg categorification (numerical) Grothendieck
groups appear more frequently, let us first state our results towards this direc-
tion. Our first main result shows that a 2-full subcategory of HV categorifies the
Heisenberg algebra HV :

Theorem A (Theorem 6.20). The map π : HV → Knum
0 (HV , k) is injective.

Indeed, Theorem A implies that the 2-full subcategory of HV comprising the
objects whose class in Knum

0 (HV , k) lies in the image of π is a categorification ofHV .
Since this subcategory is 2-full and contains the objects Pa and Qa for a ∈ V, which
generate HV under taking 1-compositions and perfect hulls, any 2-representation of
this subcategory extends uniquely to one of HV . Thus we work with HV instead.

Let EnhCatdg
kc be the DG bicategory of enhanced triangulated categories,

cf. Chapter 4.4. Here and throughout the paper the subscript kc means “Karoubi-
complete”. Let FV be its 2-full subcategory comprising the symmetric powers SNV.
If V is the derived category of a variety X, then SNV is the derived category of the
symmetric quotient stack [XN/SN ].

Our second main result constructs a 2-action of HV on FV which implies that
a 2-full subcategory of FV categorifies the classical Fock space representation FV
of HV :

Theorem B (Theorem 7.30). There is a 2-representation of HV on FV . More
precisely, there is a homotopy strong DG 2-functor ΦV : HV → FV .

Indeed, this 2-action induces a representation of Knum
0 (HV , k) and hence of

HV on Knum
0 (FV , k). We analyze it in Section 8.2 and show that it induces an

embedding of φ : FV ↪→ Knum
0 (FV , k) as the subrepresentation generated by 1 ∈
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Knum
0 (S0V, k) ∼= k. Thus the 2-full subcategory of FV comprising the objects

whose class in Knum
0 (FV , k) lies in the image of φ gives a categorification of FV .

In many cases, for example if Knum
0 (V) satisfies a Künneth-type formula for

symmetric powers, the embedding φ above is an isomorphism. Then the whole of
FV is a categorification of FV . In any case, we call FV the categorical Fock space
of V.

Our third main result gives another sufficient condition for FV to exactly cate-
gorify FV , while at the same time exhibiting an obstruction for π to be an isomor-
phism.

Theorem C (Theorem 8.13). If HV categorifies HV , that is, if π is an iso-
morphism, then FV categorifies FV . In particular, in such case for all N ≥ 0

Knum
0 (SNV) ∼=

⊕
1λ12λ2 ···aN

Symλ1 Knum
0 (V)⊗ Symλ2 Knum

0 (V)⊗ · · ·

where the direct sum is taken over all integer partitions of N .

We conjecture that the converse of this statement holds as well.

Conjecture D. If FV categorifies FV , then π : HV → Knum
0 (HV , k) is an

isomorphism.

We provide examples in Section 8.2.2 where φ is an isomorphism. We also
give an example in Section 8.2.3 where it fails to be an isomorphism. In the lat-
ter case π also can not be an isomorphism by Theorem C. In fact, the numerical
Grothendieck group decategorifications of HV and FV are generally larger than the
classical Heisenberg algebra HV and its Fock space FV . However, our decategori-
fications always contain HV and FV . It becomes an interesting new problem to
compute the surplus and find ways to interpret it.

In the sequel paper [27], we show that our 2-categoryHV can also be decategori-
fied using the Hochschild homology HH•. Specifically, we settle some foundational
issues to define the Heisenberg algebra HH

V of the Z2-graded vector space HH•(V).
We then prove the following:

Theorem ([27]). For any smooth and proper DG category V:
(1) There exists an injective map πH : HH

V −→ HH•(HV).
(2) The map πH and the 2-representation ΦV induce an action of HH

V on
HH•(FV). There is an injective map φH : FHV ↪→ HH•(FV) which em-
beds the Fock space FHV of HH

V as the subrepresentation generated by
1 ∈ HH•(FV).

(3) The map φH is always an isomorphism and therefore FV always categori-
fies FHV .

This leads us to conjecture the following:

Conjecture. The map πH is always an isomorphism, so HV always categori-
fies HH

V .

1.4. Relation to earlier results

Our results recover as special cases the earlier Heisenberg categorification and
Fock space action results mentioned above. We bring forward these specialisations
throughout the paper as sequences of examples; here we just preview them briefly.
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For V = k, the field k considered as a single object DG category concentrated in
degree 0, our category HV is a DG enhancement of Khovanov’s original category
[31]; see Examples 3.14, 5.9 and 6.22. When X is a smooth and projective variety
and V its DG enhanced coherent derived category, a subcategory of HV categorifies
the Heisenberg algebra modeled on the numerical K-theory of X. Its action on FV
constructed in Theorem B coincides, after taking homotopy categories, with that of
Krug [33]; see Examples 4.39, 7.1, 7.11 and 8.3. This answers the questions raised
in [33, Section 3.5]. When X is Calabi-Yau, the direct sum of the Hochschild
(co)homologies of X carries the structure of a Frobenius algebra. In this case
our categories essentially coincide with those of [41], although we do not consider
super-Frobenius algebras. Let Γ ⊂ SL(2,C) be a finite subgroup and let V be the
DG enhanced derived category of coherent sheaves supported on the exceptional
divisor E of the minimal resolution X of the quotient singularity C2/Γ. Then our
construction yields the Heisenberg category constructed by Cautis and Licata [13],
see Examples 5.10, 6.16 and 7.16.

There are several advantages to our approach compared to the earlier ones.
Our definition allows any DG category V as the input of the machinery. This fits
well into the framework of noncommutative motives [48]. We do not need the form
χ on the Grothendieck group to be symmetric. In particular, if V comes from a
variety, the latter does not have to be a Calabi-Yau. In fact, our construction works
with V being a DG enhancement of any smooth and proper scheme X, as opposed
to the construction in [13] which is specific to the case where X is (a local model of)
the minimal resolution of a Kleinian surface singularity. Finally, working with DG
categories, we obtain a natural framework for working with complexes of operators,
as is necessary when categorifying alternating sums which appear, for example, in
the Frenkel–Kac construction [17, Chapter 7].

1.5. The additive construction

We now describe our construction of HV in more detail. We begin with the
simpler additive construction.

In categorification, one often encounters the following diagram of categories
and functors:

(1.9) C D
E

F

Frequently, these functors are required to be biadjoint. For example, in Khovanov’s
Heisenberg category [31] the generating objects Q+ and Q− are biadjoint, while in
the Cautis–Licata categorification [13] the 1-morphisms Pi and Qi are biadjoint up
to a shift.

The biadjointness assumption can be a powerful tool, but it can also be very
restrictive. For example, in Krug’s action of a Heisenberg algebra on derived cate-
gories of symmetric quotient stacks [33] the functors Q(n)

β are only right adjoint to

P
(n)
β .

Inspired by [5], we use Serre functors to overcome this. In (1.9), if E is the left
adjoint of F and SC and SD are Serre functors on C and D, then SDES

−1
C is the

right adjoint of F. We use this to relax Khovanov’s biadjunction condition for our
categorification.



6 1. INTRODUCTION

Thus, let V be a Hom-finite graded k-linear category endowed with a Serre
functor S. To construct the additive Heisenberg category Hadd

V we first construct
a simpler 2-category Hadd′

V whose objects are the integers N ∈ Z and whose 1-
morphisms are freely generated by

Pa : N → N + 1 and Qa : N → N − 1

for each a ∈ V and N ∈ Z. The identity 1-morphism of each N is denoted by 1.
The 2-morphisms of Hadd′

V we define below ensure that Pa is the left adjoint
of Qa. Motivated by the above, we also ensure that PSa is the right adjoint of Qa.
Thus, we have

(1.10) Pa a Qa a PSa.

We define the 2-morphisms by planar string diagrams similar to those of Kho-
vanov [31]; an example is (1.7) above. Similarly to the work of Cautis and Licata
[13] our strings are decorated by morphisms of V. For every α ∈ HomV(a, b) we
have vertical oriented strings

Pa

α

Pb

and

Qa

α

Qb

As a shorthand, the strings decorated by the identity morphism are drawn un-
adorned. Strings are also allowed to cross and bend. Thus, for any a, b ∈ V we have
the crossings

Qa

Qa

Qb

Qb

,

Pa

PaPb

Pb

,

Pa

PaQb

Qb

,

Pb

Pb

Qa

Qa

.

The cups and caps that appear at the bends need to take into account the Serre
functor. For any a ∈ V we have the following cups and caps

(1.11)

Pa

1

Qa

,

PSa

1

Qa

,
Qa

1

PSa
,

Qa

1

Pa
.

As in [31], the planar diagrams generated by the above are subject to a number
of relations. The full list is in Chapter 3. For example, for any a ∈ V we have the
straightening relations

Pa

Pa

=

Pa

Pa

=

Pa

Pa

,

Qa

Qa

=

Qa

Qa

=

Qa

Qa

,

ensuring the 2-categorical adjunctions (1.10) with units and counits given by the
caps and cups (1.11).
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The relations on the planar string diagrams take into account the Serre functor.
The details are in Chapter 3, while here we give one representative example. In
Khovanov’s category one has the “biadjunction” or “bubble” relation specifying that
the diagram composition

1
unit−−→ QP

counit−−−−→ 1, pictorially

1

1

is the identity. Here we set Q = Q− and P = Q+ in the notation of [31], and the
first map is the unit of (P,Q)-adjunction, while the second map is the counit of
(Q,P)-adjunction.

In the absence of biadjunction, the above cannot possibly hold. Instead, we
demand that for any α ∈ HomV(a, Sa) the composition

1
unit−−→ QaPa

(idQa )α
−−−−−→ QaPSa

counit−−−−→ 1, pictorially α

1

1

is the multiplication by the Serre trace Tr(α) ∈ k, defined in Section 2.1.
Finally, as in some previous works on the categorification of Heisenberg alge-

bras, having constructed the smaller 2-categoryHadd′
V 1-generated only by Pa = P

(1)
a

and Qa = Q
(1)
a for a ∈ V, we define Hadd

V to be its idempotent completion. The
remaining elements P(n)

a and Q
(n)
a are then the direct summands of 1-compositions

Pna and Qna defined by the symmetrising idempotents of the action of the permuta-
tion group Sn by braid diagrams. Thus, for constructing a 2-representation of HV
one only needs to specify the actions of Pa and Qa.

In Section 3.5 we give such an action on the categorical version of the Fock
space, consisting of the categories of SN -equivariant objects in V⊗N .

1.6. The DG construction

From the viewpoint of algebraic geometry, we want to work with a DG cate-
gory V which Morita enhances the derived category of an algebraic variety X. This
means that the compact derived category Dc(V) of DG modules over V is equivalent
to the bounded derived category Db

coh(X) of coherent sheaves on X. This is differ-
ent from the older notion of a (non-Morita) DG enhancement, which required V to
have special properties (being pre-triangulated) and the triangulated category it en-
hanced was H0(V). The two notions are connected: if V Morita enhances Db

coh(X),
then the perfect hull Hperf V enhances it in the usual sense. On triangulated level,
the perfect hull corresponds to taking the Karoubi-completed triangulated hull.
Thus, with Morita enhancements we can work with smaller DG categories which
explicitly enhance only a small part of the triangulated category from which the
rest can be generated by taking cones, shifts, and idempotent completions.

A nice example is provided by the symmetric quotient stacks. A naive sym-
metric power of a triangulated category is not triangulated. In [21] Kapranov and
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Gantner took a pretriangulated category A and defined its completed n-th sym-
metrical power ŜnA which ensured that H0(ŜnA) is the correct symmetric power
of H0(A). In §4.8 we give for any DG category A a simpler construction SnA which
ensures that Dc(SnA) is the correct symmetric power of Dc(A). It is a categorifica-
tion of the skew group algebra construction and its perfect hull coincides with the
Kapranov-Gantner’s ŜnA on the DG level (see Lemma 4.41). It is, in a sense, the
smallest natural DG category which does this job. In particular, when V Morita
enhances Db

coh(X), SNV Morita enhances the symmetric quotient stack [XN/SN ].
Let V be a smooth and proper DG category (see Chapter 4 for a review on

DG categories). Then Hperf V always possesses a homotopy Serre functor , i.e. a
quasi-autoequivalence S together with quasi-isomorphisms

ηa,b : HomV(a, b)→ HomV(b, Sa)∗,

natural in a, b ∈ V (see Section 4.7). In other words, S is only a Serre functor up
to homotopy.

Thus the adjunction relation Q
(n)
a a P

(n)
Sa in the DG Heisenberg category HV

needs to be homotopically weakened. One option would be to upgrade HV to an
(∞, 2)-category and have the additional homotopical information come from the
topology of string diagrams. However, at the moment the authors still find it
difficult to construct (∞, 2)-categories by means of generators and relations. In
this paper we take a different approach which stays entirely within the realm of DG
categories.

Our main idea is to introduce three sets of generating objects Pa, Qa and Ra,
related by strict adjunctions Pa a Qa and Qa a Ra. To relate the left and right
adjoints of Qa, we add for each a ∈ V the starred string 2-morphism

?a :

PSa

Ra

.

By the considerations above, all these ?a should be homotopy equivalences. To
impose this in a consistent way, without having to specify the higher homotopies
by hand, we take the Drinfeld quotient by the cone of ?a. This makes ?a a homotopy
equivalence, and thus makes each PSa a homotopy right adjoint of Qa.

Thus, we first define a strict DG 2-category H′V with objects N ∈ Z, 1-
morphisms freely generated by Pa, Qa and Ra, and 2-morphisms given by planar
string diagrams similar to those in Hadd′

V with the addition of the star-morphisms
?a : PSa → Ra. We then take the h-perfect hull Hperf(H′V) to obtain a DG bicate-
gory whose 1-morphism DG categories are pretriangulated and homotopy Karoubi
complete. Finally, we define HV to be the Drinfeld quotient of Hperf(H′V) by the
two-sided ideal IV generated by the cones of ?a and of another 2-relation we only
want to hold up to homotopy. This is one of the subtler points of our construc-
tion: the original Drinfeld quotient construction [14] is very much incompatible
with monoidal structures such as that of a 1-composition in a 2-category. However,
this was already considered by Shoikhet [44] who refined Drinfeld’s construction
to obtain on it the structure of a weak Leinster monoid. We use this to define the
notion of a monoidal Drinfeld quotient of a DG bicategory by a two-sided ideal
of 1-morphisms. It has all the expected universal properties. The price is that
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HV becomes a Ho(dgCat)-enriched bicategory. In other words, its 1-composition
is now given by quasi-functors: compositions of genuine DG functors with formal
inverses of quasi-equivalences. However, the homotopy category of HV is a genuine
2-category whose 1-morphism categories are triangulated and Karoubi-complete.
In particular, it recovers all the combinatorics of the additive setting.

In Chapter 7 we construct a categorical version of the Fock space for the DG
setting. As noted in [7], the naive tensor product of categories does not behave
well with respect to triangulated structures. In the DG enhanced setting this is
solved by taking the h-perfect hull of the naive tensor product (often called the
completed tensor product). This was one of our reasons to develop the machinery
of Heisenberg categories on the level of DG categories.

We thus proceed in two steps again: first, we define a strict 2-functor Φ′V from
H′V to the strict DG 2-category dgModCat of DG categories, DG functors between
their module categories and natural transformations. The image of Φ′V is contained
in the 1-full subcategory F′V whose objects are the symmetric powers SNV. This
concrete definition is at the heart of our categorical Fock space representation.

We next apply some abstract DG wizardry. We use the bimodule approximation
2-functor Apx to approximate the 1-morphisms of F′V by DG bimodules. This yields
a homotopy strong 2-functor from H′V into the bicategory EnhCatdg

kc of enhanced
triangulated categories. We next take perfect hulls and verify that on the homotopy
level the resulting 2-functor Hperf(H′V)→ EnhCatdg

kc kills all 1-morphisms of IV
and thus descends to a homotopy strong 2-functor ΦV : HV → EnhCatdg

kc . Its
image is our categorical Fock space FV .

1.7. Results on DG categories

To construct the DG Heisenberg algebra and its Fock space representation,
we needed to develop several new results on DG categories. Most of these are
2-categorical analogues of common DG-categorical constructions. We hope that
these results and techniques may have applications outside of our work. We thus
summarise them here in the order in which we perceive them to be potentially
useful to others. For the technical details, see the indicated sections.

In Section 4.6, we use Shoikhet’s construction [44] to define a monoidal Drin-
feld quotient C/I of a DG bicategory C by a two-sided 1-morphism ideal I. We
want this to be a 2-category with the same objects as C whose 1-morphism cat-
egories are Drinfeld quotients of those of C by I. The problem is to define the
1-composition, as the interchange law would force relations to exist between the con-
tracting homotopies, which were freely introduced. Following Shoikhet [44], we de-
fine 1-composition by resolving tensor products of Drinfeld quotients of 1-morphism
categories of C by a refined construction which admits a natural 1-composition
functor. The resulting 1-composition is then a quasi-functor in the homotopy cat-
egory Ho(dgCat) of DG categories. In Theorem 4.37 we prove that the resulting
Ho(dgCat)-enriched bicategory C/I has the expected universal property with re-
spect to the 2-functors out of C which are null-homotopic on the 1-morphisms of
I.

In Chapter 4.4, we define the DG bicategory EnhCatdg
kc of enhanced triangu-

lated categories. It is where the main action of this paper takes place. Its homotopy
category, the strict 1-triangulated 2-category EnhCatkc has been understood for a
while [51],[36]. However, there are well-known technical difficulties in constructing
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a DG bicategory enhancing it. We propose two constructions which are both almost
a DG bicategory. One uses the technology of bar-categories of modules [2]. The
result is a homotopy unital DG bicategory. Its unitor morphisms are homotopy
equivalences with canonical homotopy inverses which are genuine inverses on one
side. This approach is more elegant and its structures are explicitly defined and thus
easily computable. Alternatively, we use our new notion of the monoidal Drinfeld
quotient to construct EnhCatdg

kc as the quotient of the Morita 2-category of DG
bimodules by acyclics. The result is a bicategory, but enriched over Ho(dgCat)
and not dgCat. This definition is simpler, not requiring familiarity with [2], but
less explicit and less practical to compute with. Either construction works well for
the purposes of this paper.

In Section 4.5, we define the h-perfect hull of a DG bicategory C. It is a DG
bicategory with the same objects as C whose 1-morphism categories are h-perfect
hulls of those of C.

In Section 4.3, we define the bimodule approximation 2-functor Apx which ap-
proximates DG functors by DG bimodules. Some of these formalities are well-known
to experts [30, Section 6.4], but it may be useful to have them written down.

In Section 4.7 we define the notion of a homotopy Serre functor and show that
every smooth and proper DG category V admits one on Hperf V. Again, this is
well-known to experts, but the point is that the genuine Serre functor constructed
on H0(Hperf V) in [43] lifts together with all its natural morphisms to Hperf V
itself.

1.8. Further questions and remarks

Next, we outline some further questions and related results that we believe to
be interesting for future investigations.

Gal [20] showed that the structure of a Hopf category on a semisimple sym-
metric monoidal abelian category implies the existence of a categorical Heisenberg
action in the sense of Khovanov. It would be interesting to see whether this con-
struction can be generalised to obtain a category isomorphic to HV for any V.
Several examples of categorifications of algebraic structures seemingly related to
ours carry actions of braid groups. It would also be interesting to see if there is a
deeper relationship between our categorification, Hopf categories and braid group
actions.

Extending the work of Grojnowski and Nakajima, Lehn [34] constructed Vira-
soro operators on the cohomology of Hilbert schemes of points of smooth projective
surfaces. The present article is motivated in part by a desire to generalise this
construction to the Heisenberg algebra action on derived categories of symmetric
quotient stacks. Such operators should arise as convolutions of certain complexes
of 2-morphisms on HV . The desire to obtain a good framework for working with
such complexes is one of the reasons we work with DG categories in this paper. We
intend to return to this question in future work.

In a different direction, the BGG category O of prominence in representation
theory has a Serre functor (see Example 2.2 and [32]). It would be enlightening to
understand the associated Heisenberg category and its Fock space in detail.

Theorem C shows that it is interesting to consider when the morphism (1.8) is
an isomorphism. Following [10], one way to understand surjectivity of this mor-
phism seems to be via a suitable generalisation of degenerate affine Hecke algebras
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and their categorifications. This may also lead to the answers for the questions
raised in [13, Section 10.3].

1.9. Structure of the paper

The structure of the paper is as follows. In Chapter 2 we give preliminaries
relevant to both the additive and the DG settings. We recall the concept of Serre
functors and introduce the idempotent modification of Heisenberg algebras which
we categorify. In Chapter 3 we construct the additive Heisenberg 2-category Hadd

V
and investigate its properties.

In Chapter 4 we give preliminaries required for the DG setting. We encourage
the reader uninterested in DG technicalities to skip this section and refer back to
it when needed.

In Chapter 5 we construct the Heisenberg 2-category HV in the DG setting.
In Chapter 6, we investigate the structure of HV and, in particular, deduce the
categorical version of the Heisenberg commutation relations and prove Theorem A.
In Chapter 7 we construct the categorical Fock space representation FV and the
2-functor HV → FV , and prove Theorem B. We note that the proof of Theorem A
depends on Theorem B. Finally, in Chapter 8 we investigate the properties of FV
and prove Theorem C.
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1.11. Notation

Throughout the paper, k is an algebraically closed field of characteristic 0.
All categories and functors are assumed to be k-linear. By a variety we mean an
integral, separated scheme of finite type over k. All of our tensor products are
over k, unless indicated otherwise. The tensor product of two complexes over k
is understood as the total complex of the double complex containing the tensor
products of the terms.

We always denote 2-categories in bold (such as HV or dgCat) and 1-categories
in calligraphic letters (such as V). Objects in a 1-category are denoted by lowercase
Latin letters, while morphisms are denoted in lowercase Greek letters.





CHAPTER 2

Preliminaries

2.1. Serre functors

Let A be a graded k-linear category with finite-dimensional Hom-spaces. A
“graded k-linear” category means a category enriched in graded vector spaces.

A Serre functor on A is a degree zero autoequivalence S of A equipped with
isomorphisms

ηa,b : HomA(a, b)
∼−→ HomA(b, Sa)∗,

natural in a, b ∈ A [5]. If a Serre functor exists, then it is unique up to an isomor-
phism [8, Proposition 1.5].

Example 2.1. IfX is a smooth and proper variety over k, then Db
coh(X) admits

a Serre functor S = (−) ⊗X ωX [dimX], where ωX is the canonical line bundle of
X.

Example 2.2. Let G be a reductive algebraic group over k, with Borel sub-
group B. Then the category of Schubert-constructible sheaves on the flag variety
G/B has a Serre functor given by the square of the intertwining operator associated
to the longest element of the Weyl group [3]. We note that by Beilinson–Bernstein
localisation and the Riemann–Hilbert equivalence this category is the same as the
principal block of the Beilinson–Gelfand–Gelfand category O associated to the Lie
algebra of G. The Serre functors for similar categories of importance to represen-
tation theory are further explored in [19].

Remark 2.3. Serre functors are particularly useful for producing adjoint func-
tors. If F : C → D is a functor between k-linear categories with Serre functors SC
and SD respectively, then

FL ∼= S−1
C FRSD,

where FR and FL are the right and left adjoint of F . Indeed, for x ∈ C and y ∈ D
one has

HomD(y, Fx) ∼= HomD(Fx, SDy)∗ ∼= HomC(x, F
RSDy)∗ ∼= HomC(S

−1
C FRSDy, x).

Our usage of the Serre functor in the definition of the Heisenberg category is closely
related to this observation.

The Serre functor S induces a Serre trace map

(2.1) Tr: HomA(a, Sa)→ k, α 7→ ηa,a(ida)(α).

Proposition 2.4. Let C be a Hom-finite k-linear category which admits a Serre
functor S. For any a, b ∈ C and any α ∈ HomC(a, b), β ∈ HomC(b, Sa) we have

Tr(β ◦ α) = (−1)degα deg β Tr(Sα ◦ β).

13
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Proof. We note that if C is a graded category, then composition of two mor-
phisms α and β in Copp is twisted by (−1)degα deg β . Thus acting on the first
argument of the bifunctor HomC(−,−) : Copp × C → gr-Vectk involves a sign twist.
Naturality of η therefore implies that the diagram

HomA(b, b) HomA(b, Sb)∗

HomA(a, b) HomA(b, Sa)∗

HomA(a, a) HomA(a, Sa)∗.

(−1)deg(−) deg(α)(−)◦α

η

∼

f(−)7→(−1)deg(f) deg(α)f(Sα◦(−))

η

∼

η

∼

α◦(−) f(−)7→(−1)(deg(f)+deg(−)) deg(α)f((−)◦α)

commutes.
Chasing idb through the upper square and ida through the lower square yields

Tr(Sα ◦ −) = η(α)(−) = (−1)degα deg(−) Tr(− ◦ α),

whence the desired assertion follows. �

2.2. Heisenberg algebras

Recall that a lattice is a free Z-moduleM of finite rank equipped with a bilinear
form

χ : M ×M → Z, v, w 7→ 〈v, w〉χ.
We do not require the form χ to be symmetric or antisymmetric; to the knowledge
of the authors no treatment of Heisenberg algebras has been this general. If the
bilinear form χ on M is degenerate, then the Heisenberg algebra defined as below
has a non-trivial centre. Thus it is common to assume that χ is non-degenerate
and we do so from now on.

Let (M,χ) be a lattice. As a preliminary definition of the Heisenberg algebra
we let HM := H(M,χ) to be the unital k-algebra with generators p(n)

a , q(n)
a for a ∈M

and integers n ≥ 0 modulo the following relations for all a, b ∈M and n,m ≥ 0:

(2.2) p(0)
a = 1 = q(0)

a ,

(2.3) p
(n)
a+b =

n∑
k=0

p(k)
a p

(n−k)
b and q

(n)
a+b =

n∑
k=0

q(k)
a q

(n−k)
b ,

(2.4) p(n)
a p

(m)
b = p

(m)
b p(n)

a and q(n)
a q

(m)
b = q

(m)
b q(n)

a ,

(2.5) q(n)
a p

(m)
b =

min(m,n)∑
k=0

sk〈a, b〉χ p(m−k)
b q(n−k)

a .

Here for any pair of integers k ≥ 0 and r we set

skr :=

(
r + k − 1

k

)
=

1

k!
(r + k − 1)(r + k − 2) · · · (r + 1)r,

which for positive r coincides with the dimension of the k-th symmetric power of a
vector space of dimension r, that is,

skr = dim(Sk(Cr)),
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and for negative r analogously

skr = (−1)k dim(Λk(C−r)).

We use the convention that p(n)
a = q

(n)
b = 0 for n < 0.

Let r = rankM and fix an identificationM ∼= Zr. Let S and T be integral r×r
matrices which are invertible over Z. In particular, both S and T are unimodular.
Moreover, the form

(2.6) 〈a, b〉SχT := 〈Sta, T b〉χ
gives again a new pairing on M . It is non-degenerate if and only if χ is non-
degenerate. If X denotes the matrix of χ in the chosen basis of M , then the matrix
of SχT is SXT . To the knowledge of the authors, the following observation has
not yet appeared in the literature.

Lemma 2.5. Let S and T be as above. The algebras H(M,χ) and H(M,SχT ) are
isomorphic.

Proof. Define a map H(M,SχT ) → H(M,χ) on generators by

(2.7) q(n)
a 7→ q

(n)
Sta and p(n)

a 7→ p
(n)
Ta .

As S and T are invertible, it is a bijection on the sets of generators. It remains
to show that it respects the relations. This is immediate for relations (2.2)–(2.4),
while for relation (2.5) it follows from (2.6). �

Corollary 2.6. The Heisenberg algebra on every lattice is isomorphic to one
which is induced by a symmetric (in fact, a diagonal) form.

Proof. The Smith normal form of χ (or more precisely of its matrix X) pro-
vides matrices S and T , such that SχT (in fact, SXT ) is diagonal. �

Remark 2.7. The result above says that every Heisenberg algebra arises as
the Heisenberg algebra of a lattice with a symmetric pairing. In the geometrical
context, our lattice is the numerical Grothendieck group of an algebraic variety and
our pairing is the Euler pairing. Drawing loose parallels, it is tempting to interpret
the result above as saying that Heisenberg algebra is an intrinsically Calabi–Yau
construction. It is certainly the case in the original constructions by Khovanov [31]
who works on a point, by Cautis and Licata [13] who work on a minimal resolution
of an ADE singularity, and by Grojnowski and Nakajima [24, 37] who make use
of the Poincaré duality on cohomology.

The authors hope to revisit this issue in a future work which would extend our
categorification from Heisenberg agebras to the associated vertex algebras.

Remark 2.8. When χ is symmetric, the matrices S and T can be chosen to be
equal. Hence, they represent a base change on the underlying latticeM . Moreover,
in this case there is another common set of generators of the Heisenberg algebra.
It is given by polynomials (possibly with constant term) on the symbols ab(n) for
n ∈ Z \ {0}, b ∈M . The set of relations between these is given by[

ab(m), ac(n)
]

= δm,−nm〈b, c〉χ.
The proof that these (in the symmetric case) define the same algebra is given for
example in [33, Lemma 1.2]. The advantage of using the presentation (2.2)–(2.5)
is that it also makes sense when χ is not symmetric. Hence, it is more natural in
our context.
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2.2.1. Idempotent modification. In this paper, we do not work with the
Heisenberg algebra HM itself, but with its idempotent modification HM . We define
it as follows.

Recall that a unital k-algebra R is the same as a k-linear category C with a
single object whose endomorphism space is R. Similarly, a unital algebra R with
a choice of a decomposition 1R =

∑n
1 1i of its unit into a finite sum of orthogonal

idempotents can be viewed as a k-linear category C whose objects are {1, . . . , n} and
whose Hom-spaces are given by HomC(i, j) = 1jR1i. Conversely, we can recover R
from C as a direct sum of its Hom-spaces.

We would like to decompose the unit of HM into an infinite sum of idempo-
tents

∑
i∈Z 1i. This is not possible directly, as infinite sums of elements are not

well-defined. However, the categorical analogy above suggests the following con-
struction.

Introduce a Z-grading on HM by setting deg p
(m)
a = m and deg q

(n)
a = −n for

all n,m ∈ Z and a ∈ M . Let CM be a category whose object set is Z and whose
Hom-space HomCM (i, j) is the degree j − i part of HM . The identity element 1i in
each HomCM (i, i) is the corresponding copy of the unit 1 of HM . The composition
is given by multiplication in HM . For any element x ∈ HM of degree j− i we write
1jx, 1jx1i or x1i to differentiate the copy of x in HomCM (i, j) from its counterparts
in any other HomCM (l, l + j − i).

Now let HM be the direct sum of Hom-spaces of CM :

HM :=
⊕
i,j∈Z

HomCM (i, j).

This is a non-unital algebra as it does not contain the infinite sum
∑
i∈Z 1i. Instead,

it has a collection of orthogonal idempotents {1i}i∈Z and each defining relation
(2.2)–(2.5) of the unital algebra HM gives rise, for each i ∈ Z, to a relation in HM .
Namely, take the original relation and add the idempotent 1k at the end of each
expression. For example,

p(n)
a p

(m)
b 1i = p

(m)
b p(n)

a 1i, a, b ∈M, n,m ∈ N, i ∈ Z.

Note that elements p(m)
a and q(n)

a themselves do not exist in HM anymore, as they
should correspond to infinite sums

∑
i∈Z p

(m)
a 1i and

∑
i∈Z q

(n)
a 1i.

We have a canonical projection HM → HM given by sending each idempotent
1i to the unit 1HM . A representation of the category CM into the category of vector
spaces is the same as a graded module over HM . Moreover, any graded module
over HM induces a representation of HM via restriction of scalars.

2.2.2. The transposed generators. Fix a ∈ M and let z be a formal vari-
able. Let ∑

n≥0

p(n)
a zn and

∑
n≥0

q(n)
a zn

be the generating series of the p, resp. q elements associated with a. Define a new
set of elements p(1n)

a and q(1n)
a , n ∈ Z>0 so that the generating series∑

n≥0

(−1)np(1n)
a zn and

∑
n≥0

(−1)nq(1n)
a zn
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are the inverses of those of p(n) and q(n) respectively:∑
n≥0

p(n)
a zn

∑
n≥0

(−1)np(1n)
a zn

 = 1

and ∑
n≥0

q(n)
a zn

∑
n≥0

(−1)nq(1n)
a zn

 = 1.

Compare [13, Section 2.2.2] and [33, Section 3.2]. One can show that the relations
among these generators are exactly the same as those between the p(n)

a and q
(n)
a ,

just replace (n) by (1n) everywhere. In particular, they also give a set of generators
of HM . Additionally, for all a, b ∈M one has the following relations:

p(n)
a p

(1n)
b = p

(1n)
b p(n)

a , q(n)
a q

(1n)
b = q

(1n)
b q(n)

a

q(1n)
a p

(m)
b =

∑min(m,n)
k=0 sk (−〈a, b〉χ) p

(n−k)
b q

(1m−k)
a .

2.2.3. The Fock space. Let H−M ⊂ HM denote the subalgebra generated by
the set {

q(n)
a 1k : a ∈M, k ≤ 0, n ≥ 0

}
.

Let triv0 denote the trivial representation of H−M , where 10 acts as identity and 1k
acts by zero for k < 0. The Fock space representation of the Heisenberg algebra
HM is defined as the induced representation

FM = IndHM
H−M

(triv0) ∼= HM ⊗H−M k.

We note that in FM one has 1k ⊗ 1 = 1k ⊗ (10 · 1) = 1k10 ⊗ 1 = 0 for all k 6= 0.
It follows that FM is generated by elements p(n)

a 10 for a ∈ M and n ≥ 0. The
Z-grading on HM induces a grading on FM where the degree k part is canonically
isomorphic to

(2.8) F kM
∼=

⊕
k1+2k2+···=k

⊗
i

Symki(M ⊗Z k).

The idempotent 1k ∈ HM acts by projection onto F kM . Alternatively, the Fock
space can be described as FM = HM/I where I is the left ideal generated by the
operators 1k for k 6= 0 and q(n)

a 1k for k = 0 and n > 0.
For χ non-degenerate, the Fock space is an irreducible and faithful represen-

tation of HM with highest weight vector 1. If χ is of rank 1, irreducibility and
faithfulness follows from the description of the Fock space representation as dif-
ferential operators on an infinite polynomial algebra [16, Section 2]. As the form
can be chosen to be diagonal, the higher rank case follows by taking a direct sum;
the Fock space of the Heisenberg algebra of a direct sum of lattices is the tensor
product of the Fock spaces of the Heisenberg algebras of the summands. Hence the
representation can be described as differential operators on a polynomial algebra.

The next claim follows from the definition and irreducibility of the Fock space.

Lemma 2.9. Let HM → End(V ) be a representation and let v ∈ V be an element
annihilated by H−M \{10} which is invariant under 10. Then the map 1 7→ v induces
an embedding FM → V of HM -representations.





CHAPTER 3

The Additive Heisenberg 2-category

In this section, we fix a Hom-finite graded k-linear category V which is closed
under shifts and has a Serre functor S. We then define a 2-category Hadd

V , the
(additive) Heisenberg category of V. We present the results in this section for
graded categories for comparison with the homotopy category of the dg version in
Chapter 5. Any k-linear category can be seen as graded k-linear by viewing the
Hom-spaces as placed in degree 0. In such case all sign rules in this section can be
ignored.

The category Hadd
V is the Karoubi completion of a simpler 2-category Hadd′

V
which we set up in the following first two subsections. This additive version of the
Heisenberg category is less powerful than the DG version constructed in Chapter 5.
We include it in the paper as it might be of wider interest and because the simi-
larities and differences to the earlier constructions are more readily apparent in the
purely k-linear setting.

In our constructions, we want to work with objects of the form a ⊗ V where
a ∈ V and V ∈ GrV ectfin, the category of finite-dimensional graded vector spaces.
By this we mean a direct sum of dimV shifted copies of a indexed by a choice of
basis of V . The maps between two such objects a⊗ V and b⊗W then correspond
to matrices with values in HomV(a, b).

To do this without having to choose a basis, we replace V by the category
V ⊗k GrV ectfin which is (non-canonically) equivalent to V. The equivalence is
defined by choosing a homogeneous basis {e1, . . . , en} for every V ∈ GrV ectfin and
setting

(a, V ) 7→
⊕

ei∈{e1,...,en}

a[deg(ei)] a ∈ V, V ∈ GrV ectfin

α⊗ β 7→
∑

βij

(
a[deg(ej)]

α−→ b[deg(fi)]
)

α ∈ HomV(a, b), β ∈ Hom(V,W )

where (βij) is the matrix of β with respect to the chosen bases.
The inverse equivalence is given by

a 7→ (a, k) a ∈ V

α 7→ α⊗ id α ∈ HomV(a, b).

3.1. The category Hadd′
V : generators

We now define a (strict) 2-category Hadd′
V . The objects of Hadd′

V are the integers
N ∈ Z.

19
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The 1-morphism categories are additive graded k-linear categories whose 1-
morphisms are freely generated under 1-composition by symbols

Pa : N → N + 1 and Qa : N + 1→ N

for each a ∈ V and N ∈ Z. Thus the objects of HomHadd′
V

(N, N ′) are direct sums
of finite strings generated by the symbols Pa and Qa with a ∈ V, such that the
difference of the number of P’s and the number of Q’s in each summand is N ′−N .
The identity 1-morphism of any N ∈ Z is denoted by 1.

Strictly speaking, one should distinguish between 1-morphisms with differ-
ent sources in the notation, i.e. write Pa1N and 1NQa. However, we will have
HomHadd′

V
(N, N ′) = HomHadd′

V
(N + i, N ′ + i) for each integer i, and do not distin-

guish these in our notation.
The 2-morphisms between a pair of 1-morphisms form a k-vector space. These

vector spaces are freely generated by a number of generators listed below, subject to
the axioms of a strict 2-category as well as certain relations which we detail in the
next subsection. We usually represent these 2-morphisms as planar diagrams. This
requires certain sign rules, see Remark 3.1 below. The diagrams are read bottom
to top, i.e. the source of a given 2-morphism lies on the lower boundary, while the
target lies on the upper boundary.

The 2-morphism spaces are generated by three types of symbols. Firstly, for
every α ∈ HomV(a, b) there are arrows

Pa

α

Pb

and

Qa

α

Qb

.

These 2-morphisms are homogeneous of degree |α|. The remaining generators listed
below are all of degree 0. By convention a strand without a dot is the same as one
marked with the identity morphism. Any such unmarked strand is an identity 2-
morphism in Hadd′

V . The identity 2-morphisms of the identity 1-morphism 1 are
denoted by blank space.

Secondly, for any object a ∈ V there are cups and caps

Pa

1

Qa

,

PSa

1

Qa

,
Qa

1

PSa
,

Qa

1

Pa
.

Thirdly, for any pair of objects a, b ∈ V there is a crossing of two downward1

strands:

Qa

Qa

Qb

Qb

.

1We use the downward crossing rather than the upward crossing as a basic generator since
in the DG version of the Heisenberg category described in Chapter 5 this will lead to a more
symmetric presentation.
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For convenience, we define three further types of strand crossings from this
basic one by composition with cups and caps:
(3.1)

Pa

PaQb

Qb

:=

Pa

Pa

Qb

Qb

,

Pb

Pb

Qa

Qa

:=

Pb

Pb Qa

Qa

,

(3.2)

Pa

PaPb

Pb

:=

Pa

Pa

Pb

Pb

.

Remark 3.1. We draw compositions of basic 2-morphisms as planar diagrams,
as in (3.1)-(3.2). In the ungraded case, the interchange law of 2-categories guaran-
tees that such diagrams can be read without ambiguity.

However, the interchange law for graded 2-categories includes a sign:

(3.3) (α ◦1 β) ◦2 (γ ◦1 δ) = (−1)|β||γ|(α ◦2 γ) ◦1 (β ◦2 δ),
where we write ◦1 and ◦2 for the 1- and 2-composition operations respectively. This
can lead to ambiguities. For example, the diagram

Pb

β

Pa

α

could be read either as the 1-composition of

Pb

β and

Pa

α

or the 2-composition of

Pb Pa

α atop
Pb

β

Pa
.

These differ by a factor of (−1)|α||β|.
We impose the latter convention. Thus to read a diagram, one first slices it

into lines containing no 2-composition of basic 2-morphisms and no dots at different
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heights. Every such line is a 1-composition of basic 2-morphisms, and the overall
diagram is then the 2-composition of these 1-compositions.

With this convention, a diagram with two or more dots at the same height
represents the same 2-morphism as the diagram with the rightmost of these dots
moved a small distance downwards. Graphically, 1-composition corresponds to
placing diagrams side-by-side and 2-composition corresponds to stacking diagrams
on top of each other.

Remark 3.2. When the domain or target of a diagram is irrelevant or evident
from the context, we may omit the labels. This is the case usually with the empty
string occurring as the target of caps and the domain of cups. We also usually
smooth out the strings in the diagram. For example, we may draw the left definition
of (3.1) more succinctly as

:= .

3.2. The category Hadd′
V : relations between 2-morphisms

In Section 3.1 we gave a list of generating symbols. The 2-morphisms in Hadd′
V

are 1- and 2-compositions of these symbols, subject to the following list of rela-
tions. As a shorthand, a relation specified by an unoriented diagram holds for all
permissible orientations of this diagram.

First, we impose the linearity relations

α + β = α+ β c α = cα

for any α, β ∈ Hom(a, b) and any scalar c ∈ k for any compatible orientation of the
strings.

Neighboring dots along a downward string can merge with a sign twist:

(3.4) α
β = (−1)|α||β| β ◦ α .

Dots may “slide” through caps and downwards crossings as follows:

(3.5)

Pa

α

Qb

=

Pa

α

Qb Qb

α

PSa

=

Qb

Sα

PSa

(3.6)
α

=
α
.

Note that when drawing diagrams, dots need to keep their relative heights when do-
ing these operations in order to avoid accidentally introducing signs (cf. Lemma 3.3
below).
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Next, there are two sets of local relations for unmarked strings: the adjunction
relations

(3.7) = =

and the symmetric group relations on downward strands

(3.8) = , = .

Further, for any α ∈ HomV(a, Sa) and with Tr being the Serre trace (2.1) we
have:

(3.9)

Qa

QSa

= 0, α = Tr(α).

Finally, we have relations for crossings of opposite oriented strands. Consider
the map

Ψ: HomV(a, b)⊗k HomV(a, b)∗ → Hom(QaPb, QaPb)

sending α⊗ β ∈ Hom(a, b)⊗k Hom(a, b)∗ ∼= Hom(a, b)⊗k Hom(b, Sa) to

Ψ(α⊗ β) =

Qa

α

Pb

1

Qa

β

Pb

.

Consider id ∈ Endk

(
Hom(a, b)

) ∼= Hom(a, b)⊗k Hom(a, b)∗. The final two relations
are

(3.10)

Pa

Pa Qb

Qb

=

Pa

Pa

Qb

Qb

,

Qa

Qa Pb

Pb

=

Qa

Qa

Pb

Pb

− Ψ(id)
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3.3. Remarks on the 2-morphism relations in Hadd′
V

In order to reduce the number of relations necessary to verify when defining
a representation of the Heisenberg category, we have chosen to keep the number
of generators and relations on the definition of Hadd′

V small. We now note some
of their consequences. One such consequence is that essentially we can homotopy
deform string diagrams. This is made precise in the following sequence of lemmas.

Lemma 3.3. Dots may freely “slide along” strands as well as through cups, caps
and all types of crossings, picking up a sign when sliding past each other. That is,
one has the following additional relations:

α · · · β = (−1)|α||β|
α · · ·

β

Qa
α

Pb
=

Qa
α

Pb PSb

Sα

Pa
=

PSb
α

Pa

α
=

α

α
=
α

.

Proof. The first relation is simply a graphical depiction of the interchange law
in graded 2-categories. The relations in the second line follow from those in (3.5)
by applying (3.7):

α = α = α .

Relations (3.6) and (3.8) imply:

α
=

α
=

α
=

α

= α .

The remaining interactions of dots and crossings follow from the relations for down-
ward crossings, cups and caps via the definition of the crossings. �

Lemma 3.4. Dots on upward strands merge without a sign twist:

α
β = β ◦ α
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Proof. With ε = (−1)|α||β| we have

α
β (3.7)

=
α
β (3.5)

=
α

β = ε α
β

(3.5)
= ε α

β

(3.4)
= β ◦ α

(3.5)
= β ◦ α

(3.7)
= β ◦ α .

�

Remark 3.5. The adjunction relations (3.7) say that we have adjunctions of
1-morphisms (Pa, Qa) and (Qa, PSa) for any a ∈ V.

Lemma 3.6 (Pitchfork relations, part I). The following relations hold in Hadd′
V :

= =

= =

= =

Proof. These relations follow immediately from the definition of the crossings
in (3.1) and (3.2) together with the adjunction relations (3.7). For example, for the
first relation one has

(3.1)
=

(3.7)
= .

�

Lemma 3.7 (Counter-clockwise loops). The following relations hold in Hadd′
V :

= 0, = 0, = 0.

Proof. Using the left relation in (3.9) and a pitchfork move across the bottom
cup, we have

0 = = .

Straightening out via (3.7), one obtains the first relation. The other two relations
are obtained in a similar manner. �
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Lemma 3.8. The following relations hold in Hadd′
V :

=

= =

Proof. These relations are obtained by adding appropriate cups and caps to
(3.8) and using the pitchfork and adjunction relations. For example, for the first
relation, one has

= = = = ,

where the second equality is relation (3.7), the third equality is the interchange
law in the 2-category Hadd′

V and the fourth is obtained by applying the pitchfork
relations twice at the top and twice at the bottom. The first relation now follows
by (3.8). �

Remark 3.9. Relations (3.8) imply that we have an action of the symmetric
group Sn on Qna by twisted unmarked downward strands, i.e., we have a morphism
k[Sn] → End(Qna). Similarly, Lemma 3.8 shows that there exists an action of the
symmetric group on Pna .

Fixing a basis {β`} of Hom(a, b) one can write the term Ψ(id) in (3.10) as

Ψ(id) =
∑
`

β`

β∨`

,

where {β∨` } is the dual basis of Hom(b, Sa) ∼= Hom(a, b)∨. It can also be written
as the composition of 2-morphisms

(3.11) ψ1 : QaPb → Hom(a, b)⊗k 1 and ψ2 : Hom(a, b)⊗k 1→ QaPb.

Here ψ1 is obtained form the map Hom(a, b)∨ → Hom(QaPb,1) sending β ∈
Hom(b, Sa) ∼= Hom(a, b)∨ to β and ψ2 is similarly obtained from the nat-
ural map Hom(a, b) → Hom(1,QaPb). We note that the right relation in (3.9)
implies that the composition ψ1 ◦ ψ2 is the identity on Hom(a, b)⊗k 1.

Lemma 3.10 (Pitchfork relations, part II). The two remaining pitchfork rela-
tions hold in Hadd′

V , that is, one has

= =
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In particular, these relations show that we could have defined the upward cross-
ing as a rotation of the left-wards crossing (instead of the right-wards one in (3.2))
and obtained the same 2-morphism. The proof is inspired by the proof of [9,
Lemma 2.6].

Proof. These two pitchfork relations are slightly harder to see than the ones
in Lemma 3.6. First, the relations in Section 3.2 imply that for any a, b ∈ V the
morphism

(3.12)

[
, ψ2

]
: PaPSbQb ⊕

(
Hom(b, Sb)⊗k Pa

)
→ PaQbPSb

is an isomorphism with inverse
ψ1

 : PaQbPSb → PaPSbQb ⊕
(
Hom(b, Sb)⊗k Pa

)
.

Next, we show that

(3.13) = .

Precomposing with isomorphism (3.12), it remains to show that for any α ∈
Hom(b, Sb):

= and α = α .

The right diagram of the left equality has a counter-clockwise curl, hence is vanish-
ing. Applying the third equality (read from its right to left) of Lemma 3.8 to the
left diagram of the left equality, we can move the upward diagonal arrow to below
the counter-clockwise curl. Hence, this diagram also equals zero. Further we have

α = α = α = α ,

which is Tr(α) times the identity 2-morphism and thus agrees with the rightmost
2-morphism.

Finally, applying (3.13) to the first pitchfork relation we get

= = +
∑
`

β̃`

β` = ,

where the last equality holds because of the presence of counter-clockwise curls.
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The second relation immediately follows from the first one:
(3.7)
=

first rel.
=

(3.7)
= .

�

Using the pitchfork relations one shows that the remaining triple moves also
hold.

Lemma 3.11 (Triple moves). The following relations holds in Hadd′
V :

=

Remark 3.12. For any object a ∈ V, α ∈ Hom(a, a) and β ∈ Hom(a, Sa) one
has

α
β

=
β

α = (−1)|α||β| βα = (−1)|α||β| β
Sα

This matches the identity of Proposition 2.4.

3.4. The category Hadd
V : Karoubi-completion

A category is Karoubian or idempotent complete if all its idempotents are split.
Given a category C, its Karoubi envelope or idempotent completion is the universal
pair (kar(C), ι) where kar(C) a Karoubian category and ι is a functor C → kar(C).
The functor ι is necessarily fully faithful, see [26, Exercice 7.5].

Definition 3.13. The (additive) Heisenberg category Hadd
V of V is the Karoubi

envelope of Hadd′
V .

The objects of Hadd
V are those of Hadd′

V . Its 1-morphisms are pairs (R, e), where
R is a 1-morphism of Hadd′

V and e : R → R is a idempotent in EndHadd′
V

(R). Its
2-morphisms (R1, e1) → (R2, e2) are 2-morphisms f : R1 → R2 from Hadd′

V which
satisfy f = e2 ◦ f ◦ e1.

Example 3.14. Let V = Vectf
k be the category of finite-dimensional vector

spaces over k. It is the additive hull of the field k considered as a single-object
category. Then the Serre functor on V is the identity, and the category Hadd

V
reproduces Khovanov’s categorification of the infinite Heisenberg algebra [31]. More
precisely, collapsing our category Hadd

V to a monoidal 1-category by identifying the
objects, the morphism Pk corresponds to Q+ in [31], while Qk corresponds to Q−.
Since Pk⊕k

∼= Pk ⊕ Pk, and similarly for Q, all data is encoded in the relations
between these two morphisms.
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By Remark 3.9, for each object a ∈ V there are canonical morphisms k[Sn]→
End(Pna) and k[Sn]→ End(Qna). Let

etriv =
1

n!

∑
σ∈Sn

σ ∈ k[Sn]

be the symmetriser idempotent of k[Sn]. Abusing notation, we denote the image of
the symmetriser under either of the above maps again by etriv. The 2-morphisms
etriv are idempotent endomorphisms of Pna and Qna respectively, and hence split in
Hadd
V . We write P

(n)
a and Q

(n)
a for the corresponding 1-morphisms (Pna , etriv) and

(Qna , etriv).

Theorem 3.15. For any a, b ∈ V and n,m ∈ N we have the following relations
in Hadd

V :

P(m)
a P

(n)
b
∼= P

(n)
b P(m)

a , Q(m)
a Q

(n)
b
∼= Q

(n)
b Q(m)

a ,

Q(m)
a P

(n)
b
∼=

min(m,n)⊕
i=0

Symi HomV(a, b)⊗k P
(n−i)
b Q(m−i)

a .

The symmetric powers of HomV(a, b) in the last isomorphism of Theorem 3.15
categorify the coefficient sk〈a, b〉 in (2.5). In Remark 6.5 we explain that from
any P

(i)
a to any P

(i)
b there are morphisms which correspond to i parallel strands

labelled by elements of Symi HomV(a, b). The last isomorphism of Theorem 3.15
is then naturally expressed in terms of these morphisms. In particular, in the case
m = n = 1, the 1-precomposition of this 2-isomorphism with idPa on the left is the
isomorphism used in the proof of Lemma 3.10.

The proof of Theorem 3.15 is entirely combinatorial and virtually the same
as the one for the DG version, Theorem 6.3. We thus skip it. Similarly, the
constructions and the results of Section 6.3 have obvious analogues in the additive
setting.

3.5. The categorical Fock space in the additive case

In this section we construct a categorical Fock space Fadd
V of the base category

V. It consists of the categorical symmetric powers of V. We show that Hadd
V has a

representation on the categorical Fock space.
Once this is established, the same decategorification argument as in Section 8.2

shows that Knum
0 (Hadd

V ) acts on Knum
0 (Fadd

V ). Theorem 3.15, we have a group
homomorphism from the classical Heisenberg algebra HV to Knum

0 (Hadd
V ). Thus

HV acts on Knum
0 (Fadd

V ) and the same argument as in Section 8.2.2 shows that the
subrepresentation of Knum

0 (Fadd
V ) generated by 1 ∈ Knum

0 (S0V) ∼= k is the Fock
space representation FV of HV .

If Knum
0 (V) is a finitely generated abelian group and if we have for all N ≥ 0

Knum
0 (SNV) ∼=

⊕
1λ12λ2 ···aN

Symλ1 Knum
0 (V)⊗ Symλ2 Knum

0 (V)⊗ · · ·

then a dimension count shows that FV is the whole of Knum
0 (Fadd

V ). In other words,
our categorical Fock space categorifies the classical Fock space.
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The N -fold tensor power V⊗N is the additive hull ( that is, the closure under
finite direct sums) of the category of N -tuples a1 ⊗ · · · ⊗ aN of objects of V with
morphism spaces

HomV⊗N (a1 ⊗ · · · ⊗ aN , b1 ⊗ · · · ⊗ bN ) := HomV(a1, b1)⊗k · · · ⊗k HomV(aN , bN ).

The category V⊗N can be endowed with an action of SN , given on objects by

(3.14) σ(a1 ⊗ · · · ⊗ aN ) := aσ−1(1) ⊗ · · · ⊗ aσ−1(N).

The category of SN -equivariant objects in V⊗N

SNV := (V⊗N )SN

has as objects all tuples
(
a, (εσ)σ∈SN

)
with a ∈ V⊗N and εσ : a

∼−→ σ(a) isomor-
phisms compatible with the SN -action. A morphism

(
a, εσ) →

(
b, τσ) is a mor-

phism α : a → b in V⊗N such that σ(α) ◦ εσ = τσ ◦ α for all σ ∈ SN . We refer to
[21, Section 2] for details. For ease of notation, we set S0V = Vectf

k and SNV = 0
for N < 0.

Remark 3.16. If V is a k-linear category equipped with additional structure
and/or conditions, e.g. an abelian category, then V⊗N will not automatically also
have these. In such case, in the definition above one should replace the additive hull
with an appropriate completion. For example, Deligne’s tensor product of abelian
categories takes the abelian hull of N -tuples. We are particularly interested in
the case of DG enhanced triangulated categories, which we discuss in detail in
Section 4.8 and Chapter 7.

Let Fadd′
V be the strict 2-category with objects SNV, 1-morphisms k-linear

functors and 2-morphisms natural transformations. We want to define a 2-functor
Ψ′V : Hadd′

V → Fadd′
V . For this, we need the functors of restriction and induction.

Let 1×SN−1 ≤ SN be the subgroup comprising the elements fixing the first letter.
The restriction functor is defined as

Res
1×SN−1

SN
: SNV →

(
V⊗N

)1×SN−1(
a, (εg)g∈SN

)
7→

(
a, (εg)g∈1×SN−1

)
on objects and by id on morphisms. Its left and right adjoint, the induction functor,
is

IndSN1×SN−1
:

(
V⊗N

)1×SN−1 → SNV(
a, (εh)h∈1×SN−1

)
7→

(⊕
[f ]∈SN/(1×SN−1) f(a), (εg)g∈SN

)
on objects. Here SN/(1 × SN−1) is the set of left cosets, the summation happens
over a fixed choice of their representatives f , and the isomorphism

εg :
⊕

[f ]∈SN/(1×SN−1)

f(a)→
⊕

[f ′]∈SN/(1×SN−1)

gf ′(a)

maps each summand f(a) to the summand gf ′(a) with [f ] = [gf ′] via the isomor-
phism f(εh) where h ∈ 1×SN−1 is such that gf ′ = fh. On morphisms, IndSN1×SN−1

is given by
α→

∑
[f ]∈SN/(1×SN−1)

f(α).

A more general treatment of these functors is given in Section 4.8 below.



3.5. THE CATEGORICAL FOCK SPACE IN THE ADDITIVE CASE 31

On objects, we define Ψ′V as

Ψ′V(N) = SNV, ∀ N ∈ Z.

On 1-morphisms Ψ′V sends Pa : (N − 1)→ N to the composition

Pa : SN−1V a⊗−−−−→
(
V⊗N

)1×SN−1
Ind

SN
1×SN−1−−−−−−−→ SNV,

and Qa : N → N − 1 to the composition

Qa : SNV
Res

1×SN−1
SN−−−−−−−→

(
V⊗N

)1×SN−1 HomV(a,−)⊗id−−−−−−−−−−→ SN−1V.

Tensor-Hom adjunction implies that Pa is left adjoint to Qa and the definition of a
Serre functor further implies that Qa is left adjoint to PSa.

Example 3.17. Let (a1 ⊗ · · · ⊗ aN , (εσ)σ∈SN ) be an object in SNV. There
are N + 1 cosets of the subgroup SN < SN+1 fixing the symbol 1. A set of
representatives of these cosets is given by the cycles {

(
i . . . 1

)
}1≤i≤N+1. Denote

each
(
i . . . 1

)
by ξi.

By definition of the Pb, we have

Pb(a1 ⊗ · · · ⊗ aN ) = IndSN+1
1×SN (b⊗ a1 ⊗ · · · ⊗ aN ) =

N+1⊕
i=1

ξi (b⊗ a1 ⊗ · · · ⊗ aN ) .

By the definition (3.14) of the action of SN+1 on V⊗N+1, ξi acts by placing the
ξ−1
i (j)th factor into jth place. Thus we have

ξi (b⊗ a1 ⊗ · · · ⊗ aN ) = a1 ⊗ · · · ⊗ ai−1 ⊗ b⊗ ai ⊗ · · · ⊗ aN

and therefore

Pb =

N+1⊕
i=1

a1 ⊗ · · · ⊗ ai−1 ⊗ b⊗ ai ⊗ · · · ⊗ aN .(3.15)

We describe the SN+1-equivariant structure on this direct sum. Let σ ∈ SN+1. For
each ξi, the element σξσ−1(i) lies in the same coset as they both send 1 to i. Thus

ξ−1
i σξσ−1(i) =

(
1 · · · i

)
σ
(
σ−1(i) · · · 1

)
∈ 1× SN ⊂ SN+1.

Let τi be the corresponding element of SN . By definition, the isomorphism

εσ :

N+1⊕
i=1

ξi (b⊗ a1 ⊗ · · · ⊗ aN ) −→
N+1⊕
i=1

σξi (b⊗ a1 ⊗ · · · ⊗ aN )

is a sum of components

ξi ◦ (b⊗−)(ετi) : ξi (b⊗ a1 ⊗ · · · ⊗ aN )→ ξi (b⊗ (τi (a1 ⊗ · · · ⊗ aN ))) .

Hence, in terms of (3.15), εσ is the sum of the components

a1 ⊗ · · · ⊗ ai−1 ⊗ b⊗ ai ⊗ · · · ⊗ aN
ξi◦(b⊗−)(ετi )−−−−−−−−−→ aτ−1

i (1) ⊗ · · · ⊗ aτ−1
i (i−1) ⊗ b⊗ aτ−1

i (i) ⊗ · · · ⊗ aτ−1
i (N).
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It follows that

QaPb(a1 ⊗ · · · ⊗ aN ) = Qa

(
N+1⊕
i=1

ξi(b⊗ a1 ⊗ · · · ⊗ · · · ⊗ aN )

)

= Qa

(
N+1⊕
i=1

a1 ⊗ · · · ⊗ ai−1 ⊗ b⊗ ai ⊗ · · · ⊗ aN

)
= Hom(a, b)⊗k a1 ⊗ · · · ⊗ aN⊕

N⊕
i=1

Hom(a, a1)⊗k a2 ⊗ · · · ⊗ ai ⊗ b⊗ ai+1 ⊗ · · · ⊗ aN .

We describe the SN -equivariant structure on this direct sum. Let σ ∈ SN . Let
1×σ be the corresponding element of 1×SN ⊂ SN+1 and note that 1×σ(i) = 1 if
i = 1 and 1 + σ(i− 1) if i > 1. As before, we have ξ−1

i (1× σ)ξ(1×σ−1)(i) ∈ 1× SN ,
so let τi be the corresponding element of SN .

Restricting the SN+1-equivariant structure on Pb(a1⊗· · ·⊗aN ) described above,
we see that the isomorphism

ε′σ : QaPb(a1 ⊗ · · · ⊗ aN ) −→ σ (QaPb(a1 ⊗ · · · ⊗ aN ))

is the sum
N+1∑
i=1

(Hom(a,−)⊗ id) ◦ ξi ◦ (b⊗−)(ετi).

When i = 1 we have ξ1 = ξ(1×σ−1)(1) = id, so τ = σ and the corresponding
summand of ε′σ is

Hom(a, b)⊗k a1 ⊗ · · · ⊗ aN
id⊗εσ−−−−→ Hom(a, b)⊗k aσ−1(1) ⊗ · · · ⊗ aσ−1(N).

When i > 1, observe that τi(1) = 1. This is because

τi(1) = ξ−1
i (1× σ)ξ(1×σ−1)(i)(2)− 1 = ξ−1

i (1× σ)(1)− 1 = ξ−1
i (1)− 1 = 2− 1 = 1.

The corresponding summand ε′σ is therefore

Hom(a, a1)⊗k a2 ⊗ · · · ⊗ ai−1 ⊗ b⊗ ai ⊗ · · · ⊗ aN

Hom(a, a1)⊗k aτ−1(2) ⊗ · · · ⊗ aτ−1(i−1) ⊗ b⊗ aτ−1(i) ⊗ · · · ⊗ aτ−1(N).

(Hom(a,−)⊗id)◦ξi◦(b⊗−)
(
ετi

)
If a = b, then the adjunction unit

a1 ⊗ · · · ⊗ aN → QaPa(a1 ⊗ · · · ⊗ aN )

embeds a1 ⊗ · · · ⊗ aN into the first summand as {ida} ⊗k a1 ⊗ · · · ⊗ aN .

Example 3.18. In the same way, we obtain

PbQa(a1 ⊗ · · · ⊗ aN ) = Pb
(
Hom(a, a1)⊗k a2 ⊗ · · · ⊗ aN

)
=

N⊕
i=1

Hom(a, a1)⊗k a2 ⊗ · · · ⊗ ai ⊗ b⊗ ai+1 ⊗ · · · ⊗ aN .

The equivariant structure is the same as in the preceding example, keeping in mind
that

(Hom(a,−)⊗ id) ◦ ((i+ 1) · · · 1) ◦ (b⊗−) = (i...1) ◦ (b⊗−) ◦ (Hom(a,−)⊗ id).
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The adjunction counit

PaQa(a1 ⊗ · · · ⊗ aN )→ a1 ⊗ · · · ⊗ aN
first applies the adjunction map Hom(a, a1)⊗ a→ a1 on each summand yielding

N⊕
i=1

a2 ⊗ · · · ⊗ ai ⊗ a1 ⊗ ai+1 · · · ⊗ aN .

Then the equivariant structure of a1 ⊗ · · · ⊗ aN provides a morphism
N⊕
i=1

a2 ⊗ · · · ⊗ ai ⊗ a1 ⊗ ai+1 · · · ⊗ al
∑
ε(12···i)−−−−−−→ a1 ⊗ · · · ⊗ aN .

Example 3.19. In the same way one sees that the unit of the adjunction
Qa a PSa is given by the canonical map a1 → Hom(a, a1) ⊗k Sa coming from the
Hom(a,−) a − ⊗k Sa adjunction followed by the diagonal map into the product.
The counit is projection onto the factor Hom(a, Sa) ⊗k a1 ⊗ · · · ⊗ aN followed by
the Serre trace applied to Hom(a, Sa).

It follows from the explicit computations above that there is an isomorphism

(3.16) QaPb ∼=
(
HomV(a, b)⊗k 1

)
⊕ PbQa

natural in a, b ∈ V.
We can now define the action of Ψ′V on 2-morphisms. Firstly, the dotted strings

α and α for α ∈ HomV(a, b) are sent to the natural transformations Pa ⇒ Pb
and Qb ⇒ Qa induced by the natural transformations

a⊗− α⊗id
===⇒ b⊗− and HomV(b,−)

α◦−
==⇒ HomV(a,−)

respectively.
Next, the caps and cups

Pa Qa
,

QaPSa
,

Qa Pa

and
PSaQa

are sent to the adjunction maps

PaQa → id, QaPSa → id, id→ QaPa, and id→ PSaQa.

Finally, the downward crossing

Qa

Qa

Qb

Qb

is sent to the following functorial isomorphism. As functors SNV → SN−2V we
have

QaQb ∼=
(
HomV(a,−)⊗HomV(b,−)⊗ idSN−2V

)
◦ Res

1×1×SN−2

SN
,

QbQa ∼=
(
HomV(b,−)⊗HomV(a,−)⊗ idSN−2V

)
◦ Res

1×1×SN−2

SN
.

The latter can be further rewritten as

QbQa ∼=
(
HomV(a,−)⊗HomV(b,−)⊗ idSN−2V

)
◦ (12) ◦ Res

1×1×SN−2

SN
.
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With these identifications in mind, we send the downward crossing to the functorial
isomorphism QaQb

∼−→ QbQa induced by the natural isomorphism

Res
1×1×SN−2

SN

∼−→ (12) ◦ Res
1×1×SN−2

SN

given on any object (a, εσ) by ε(12).
Explicit computations (making particular use of the decomposition (3.16)) show

that this definition of Ψ′V is compatible with all 2-relations on Hadd′
V . Thus we have

the following result:

Proposition 3.20. The above definition gives a 2-functor

Ψ′V : Hadd′
V → Fadd′

V .

Let Fadd
V be the 2-category with objects the Karoubi completions Kar(SNV),

1-morphisms k-linear functors, and 2-morphisms natural transformations. We call
Fadd
V the Fock category or, equivalently, the categorical Fock space of Hadd

V . By the
universal property of the Karoubi envelope, we have:

Corollary 3.21. The functor Ψ′V induces a 2-functor

ΨV : Hadd
V → Fadd

V .

Remark 3.22. The functors Pa and Qa in the above definition have both a
right and left adjoint. Hence, if V is abelian they are exact. Thus they extend to
the Deligne tensor product, i.e. there exists an action of Hadd

V on the 2-category
with objects ŜNV = (V⊗̂N )SN , where ⊗̂ is the Deligne tensor product of abelian
categories [15, Proposition 1.46.2].



CHAPTER 4

Preliminaries on DG Categories

In this section, we review the existing formalism of DG categories and enriched
bicategories and introduce several new results we need for our construction of a DG
Heisenberg 2-category. Below we summarise the key items of notation we employ.

Given a DG category A, we denote by Mod -A its DG category of right A-
modules. We denote by P(A) and Perf (A) the full subcategories ofMod -A com-
prising h-projective modules and perfect modules, respectively. We write Hperf (A)
for their intersection. We denote by D(A) the derived category of right A-modules,
and by Dc(A) its full subcategory of compact objects. Note that D(A) ∼= H0(P(A))
and Dc(A) ∼= H0(Hperf (A)).

Given a scheme X, we write Dqc(X) for the derived category of complexes of
sheaves on X with quasi-coherent cohomology and Db

coh(X) for its full subcategory
of complexes with bounded, coherent cohomology. Let I(X) be the standard DG
enhancement of Db

coh(X).
In this paper we arrange DG categories into a ménagerie of 1-categories, strict

2-categories and DG bicategories. Figure 1 gives an overview of these and their
relation to each other:

• dgCat1 is the 1-category of DG categories and DG functors between them,
see Section 4.1, Definition 4.1,

• Ho(dgCat1) is the localisation of dgCat1 by quasi-equivalences, see Sec-
tion 4.4 and [51],

• EnhCat1 is the full subcategory of Ho(dgCat1) comprising pretriangu-
lated DG categories. We view it as the 1-category of enhanced triangu-
lated categories, see Section 4.4.

• Mor(dgCat1) is the localisation of dgCat1 by Morita equivalences. We
view it as the 1-category of Morita enhanced triangulated categories, see
Section 4.4 and [46],

• dgCat is the strict 2-category of the isomorphism classes of DG cate-
gories, DG functors, and closed degree zero DG natural transformations,
see Section 4.1, Definition 4.1,

• Ho(dgCat) is a strict 2-categorical version of Ho(dgCat1) constructed
using the main results of [51], see Section 4.1, Definition 4.1 and [51],

• EnhCat is the strict 2-category of enhanced triangulated categories, see
[36, Sec. 1]. It is the 1-full subcategory of Ho(dgCat) comprising pretri-
angulated DG categories.

• Mor(dgCat) is the strict 2-category of Morita enhanced triangulated
categories, see Section 4.4, Definition 4.14. It is also known as EnhCatkc,
because it can be realised as the 1-full subcategory of EnhCat comprising
homotopy Karoubi complete DG categories. Here and throughout the
paper the subscript kc means ‘Karoubi complete’.

35
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Figure 1. Summary of various categories of DG categories.
Dashed arrows represent 1-categorical truncation and the squiggly
arrow represents taking homotopy categories of the 1-morphism
categories.

• dgCatdg is the strict DG 2-category of DG categories, DG functors, and
(all) DG natural transformations,

• dgModCat is the strict DG 2-category of DG module categories. It is
the 1-full subcategory of dgCatdg consisting of all DG categories of form
Mod -A for some small DG category A, see Section 4.3, Definition 4.9,

• dgMor is the DG bicategory whose objects are small DG categories and
whose 1-morphism categories are DG categories of DG bimodules, see
Section 4.3, Definition 4.10,

• dgMorlfrp is the 2-full subcategory of dgMor comprising the same ob-
jects and the 1-morphisms given by left-h-flat and right-perfect bimodules,
see Sec. 7.5,

• EnhCatdg
kc is the lax-unital DG bicategory of Morita enhanced triangu-

lated categories. It is a DG enhancement of EnhCatkc and is a new
object introduced in this paper, see Definition 4.16. Alternatively, it can
be constructed as a strictly unital Ho(dgCat)-enriched bicategory, see
Section 4.4, Definition 4.17.

4.1. Enriched bicategories

The DG version of the Heisenberg category, which we define in Chapter 5, is a
certain weak 2-category and its representations are given by weak 2-functors. The
notion of a weak 2-category we use is a bicategory . We refer to [4] for the original
definition and a comprehensive technical treatment of bicategories.
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We need to work with enriched bicategories. The natural structure to enrich
bicategories over is a monoidal bicategory or, more generally, a tricategory. The
formal definitions can be found in [23], and they are rather involved. However, a
reader comfortable with the properties of cartesian products of categories and tensor
products of DG categories need not consider the formal definition of a tricategory
for the purposes of reading this paper. We only work with enrichments over one of
the following three strictly monoidal strict 2-categories:

Definition 4.1.

(1) Cat: The 2-category of isomorphism classes of small categories, of func-
tors, and of natural transformations. The monoidal structure is the carte-
sian product ×.

(2) dgCat: The 2-category of isomorphism classes of small k-linear DG cat-
egories, of DG functors, and of (closed degree zero) DG natural transfor-
mations. The monoidal structure is the tensor product ⊗k over k. We
further write dgCat1 for the underlying 1-category of dgCat, where we
only consider DG categories and DG functors between them.

(3) Ho(dgCat): The 2-categorical version considered in [51] of the localisa-
tion of dgCat1 by quasi-equivalences. Its objects are the isomorphism
classes of small k-linear DG categories, its 1-morphisms are the isomor-
phism classes of right quasi-representable bimodules in D(A-B), and its
2-morphisms are the morphisms between these in D(A-B). The monoidal
structure is given by the tensor product ⊗k.

For the general definition of an enriched bicategory we refer the reader to [22,
Section 3]. Considering only enrichments over strictly monoidal strict 2-categories
allows us to give a simpler definition which is nearly identical to the original defi-
nition of a bicategory in [4].

Definition 4.2. Let (M,⊗, 1M) be a strictly monoidal strict 2-category. A
bicategory C enriched over M comprises the following data:

(1) a collection of objects ObC;
(2) ∀ a, b ∈ ObC a 1-morphism object C(a, b), which is an object in M;
(3) ∀ a ∈ ObC an identity element 1a : 1M → C(a, a), which is a 1-morphism

in M;
(4) ∀ a, b, c ∈ ObC the 1-morphism composition, which is a 1-morphism in

M:

µ : C(b, c)⊗C(a, b)→ C(a, c);

(5) ∀ a, b, c, d ∈ ObC the associator α which is a 2-isomorphism in M:

C(c, d)⊗C(b, c)⊗C(a, b)

C(b, d)⊗C(a, b)

C(a, d)

µ⊗id

µ

α−−−−→∼

C(c, d)⊗C(b, c)⊗C(a, b)

C(c, d)⊗C(a, c)

C(a, d);

id⊗µ

µ
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(6) ∀ a, b ∈ ObC the unitors ρ and λ which are 2-isomorphisms of 1-
morphisms in M:

C(a, b)

C(a, b)⊗ 1M

C(a, b)⊗C(a, a)

C(a, b)

id⊗1a

µ

ρ−−−−→∼

C(a, b)

C(a, b)

id

and
C(a, b)

1M ⊗C(a, b)

C(a, a)⊗C(a, b)

C(a, b)

1a⊗id

µ

λ−−−−→∼

C(a, b)

C(a, b)

id

which must satisfy the following conditions:
(7) ∀ a, b, c, d, e ∈ ObC the following diagram of 2-morphisms between 1-

morphisms C(d, e)⊗C(c, d)⊗C(b, c)⊗C(a, b)→ C(a, e) must commute
in M:

µ ◦ (µ⊗ id) ◦ (µ⊗ id⊗ id) µ ◦ (µ⊗ id) ◦ (id⊗µ⊗ id) µ ◦ (id⊗µ) ◦ (id⊗µ⊗ id)

µ ◦ (id⊗µ) ◦ (µ⊗ id⊗ id) µ ◦ (id⊗µ) ◦ (id⊗ id⊗µ);

µ◦(α⊗id)

α◦id

α◦id

µ◦(id⊗α)

α◦id

(8) ∀ a, b, c ∈ ObC the following diagram of 2-morphisms between 1-
morphisms C(b, c)⊗C(a, b)→ C(a, c) must commute in M:

µ ◦ (µ⊗ id) ◦ (id⊗1b ⊗ id) µ ◦ (id⊗µ) ◦ (id⊗1b ⊗ id)

µ

α◦(id⊗1b id)

µ◦(ρ⊗id) µ◦(id⊗λ)

.

Remark 4.3. The objects of the three 2-categories we define in Definition
4.1 are isomorphism classes of categories. This is to make the strictly associative
monoidal structures provided by × and ⊗k also strictly unital. To work with
individual categories one only needs to adjust the definition above to allow the
monoidal structure on M to be lax-unital.

Examples 4.4.
(1) A bicategory enriched over Cat is an ordinary bicategory in the sense of

[4]. We refer to these simply as bicategories. Special cases are:
(a) A bicategory with a single object is a monoidal category .
(b) A bicategory whose associator and unitor isomorphisms are identity

maps is a strict 2-category.
(2) A bicategory enriched over dgCat is a DG bicategory .
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Remark 4.5. Consider a DG bicategoryC. Then the data of the 1-composition
functor µ = ◦1 : C(b, c)⊗C(a, b)→ C(a, c) gives rise to the graded interchange law

(α ◦1 β) ◦2 (γ ◦1 δ) = (−1)|β||γ|(α ◦2 γ) ◦1 (β ◦2 δ),
where we write ◦2 for the 2-composition, i.e., the composition in the 1-morphism
categories.

Definition 4.6. Let (M,⊗, 1M) be a strictly monoidal strict 2-category. Let
C and D be two bicategories enriched over M. An enriched 2-functor F : C→ D
comprises

(1) a map F : ObC→ ObD;
(2) ∀ a, b ∈ ObC a 1-morphism Fa,b in M,

Fa,b : C(a, b)→ D(Fa, Fb);

(3) ∀ a ∈ ObC a unit coherence 2-morphism ι in M between the following
1-morphisms 1M → D(Fa, Fa):

ι : 1Fa → Fa,a ◦ 1a;

(4) ∀ a, b, c ∈ ObC a composition coherence 2-morphism φ in M between the
following 1-morphisms C(b, c)⊗C(a, b)→ D(Fa, Fc):

φ : µD ◦ (Fb,c ⊗ Fa,b)→ Fa,c ◦ µC;

which must satisfy the following conditions:
(5) associativity coherence: ∀ a, b, c, d ∈ ObC the following diagram of 2-

morphisms between 1-morphisms C(c, d)⊗C(b, c)⊗C(a, b)→ D(Fa, Fd)
must commute in M:

µD ◦ (µD ⊗ id) ◦ (Fc,d ⊗ Fb,c ⊗ Fa,b) µD ◦ (id⊗µD) ◦ (Fc,d ⊗ Fb,c ⊗ Fa,b)

µD ◦ (Fb,d ⊗ Fa,b) ◦ (µC ⊗ id) µD ◦ (Fc,d ⊗ Fa,c) ◦ (id⊗µC)

Fa,d ◦ µC ◦ (µC ⊗ id) Fa,d ◦ µC ◦ (id⊗µC);

αD◦(Fc,d⊗Fb,c⊗Fa,b)

µD◦(φ⊗Fa,b) µD◦(Fc,d⊗φ)

φ◦(µC⊗id) φ◦(id⊗µC)

Fa,d◦αC

(6) unitality coherence: ∀ a, b ∈ ObC the following diagrams of 2-morphisms
between 1-morphisms C(a, b)→ D(Fa, Fb) must commute in M:

µD ◦ (id⊗1Fa) ◦ Fa,b µD ◦ (Fa,b ⊗ Fa,a) ◦ (id⊗1a)

Fa,b Fa,b ◦ µC ◦ (id⊗1a)

µD◦(id⊗ι)◦Fa,b

ρD◦Fa,b φ◦(id⊗1a)

Fa,b◦ρC

µD ◦ (1Fb ⊗ id) ◦ Fa,b µD ◦ (Fb,b ⊗ Fa,b) ◦ (1b ⊗ id)

Fa,b Fa,b ◦ µC ◦ (1b ⊗ id)

µD◦(ι⊗id)◦Fa,b

λD◦Fa,b φ◦(id⊗1a)

Fa,b◦λC

Definition 4.7. A 2-functor is said to be:
• strict if its unit and composition coherence maps are the identity maps;
• strong if its unit and composition coherence maps are isomorphisms;
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• homotopy strong if its unit and composition coherence maps are homotopy
equivalences.

• lax if its unit and composition maps are not necessarily isomorphisms;

4.2. DG-categories

For an introduction to DG categories, DG modules, and the related technical
notions, we refer the reader to [1, Section 2]. For an in-depth treatment in the
language of model categories see [52]. Below we review the main notions we use.

4.2.1. DG categories and DG modules. A DG (differential graded) cat-
egory A is a category enriched over the monoidal category Mod -k of complexes
of k-modules. A (right) module E over A is a functor E : Aopp → Mod -k. For
any a ∈ A we write Ea for the complex E(a) ∈ Mod -k, the fibre of E over a.
We write Mod -A for the DG category of (right) A-modules. Similarly, a left A-
module F is a functor F : A →Mod -k. We write aF for the fibre F (a) ∈ Mod -k
of F over a ∈ A and A-Mod for the DG category of left A-modules. For any
a ∈ A define the right and left representable modules corresponding to a to be
hr(a) = HomA(−, a) ∈ Mod -A and hl(a) = HomA(a,−) ∈ A-Mod . We further
have Yoneda embeddings A ↪→Mod -A and Aopp ↪→ A-Mod whose images are the
representable modules.

Given another DG category B, an A-B-bimodule M is an Aopp ⊗k B-module,
that is, a functor M : A ⊗k Bopp → Mod -k. For any a ∈ A and b ∈ B we write
aM ∈Mod -B for the fibreM(a,−) ofM over a,Mb ∈ A-Mod for the fibreM(−, b)
of M over b, and aMb ∈Mod -k for the fibre of M over (a, b). We write A-Mod -B
for the DG category of A-B-bimodules. The categories Mod -A and A-Mod of
right and left A-modules can therefore be considered as the categories of k-A- and
A-k-bimodules. For any DG category A, we write A for the diagonal A-A-bimodule
defined by aAb = HomA(b, a) for all a, b ∈ A and morphisms of A acting on the
right and on the left by pre- and post-composition, respectively:
(4.1)
A(α⊗ β) = (−1)deg(β) deg(−)α ◦ (−) ◦ β, ∀ α ∈ HomA(a, a′), β ∈ HomA(b′, b).

DG bimodules over DG categories admit a closed symmetric monoidal struc-
ture. Given three DG categories A, B and C, we define functors

(−)⊗B (−) : A-Mod -B ⊗ B-Mod -C → A-Mod -C,
HomB(−,−) : A-Mod -B ⊗ C-Mod -B → C-Mod -A,
HomB(−,−) : B-Mod -A⊗ B-Mod -C → A-Mod -C,

by

M ⊗B N = Coker(M ⊗k B ⊗k N
act⊗ id− id⊗ act−−−−−−−−−−−→M ⊗k N),

c (HomB(M,N))a = HomB(aM, cN)

for M,N with right B-action, and

a (HomB(M,N))c = HomB(Mc, Na)

for M,N with left B-action, cf. [1, Section 2.1.5].



4.2. DG-CATEGORIES 41

4.2.2. The derived category of a DG category. Let A be a DG category.
Its homotopy category H0(A) is the k-linear category whose objects are the same
as those of A and whose morphism spaces are H0(−) of the morphism complexes
of A.

The category H0(Mod -A) has a natural structure of a triangulated category
defined fibrewise in Mod -k, that is: the homotopy category H0(Mod -k) of com-
plexes of k-modules has a natural triangulated structure, and we apply it in each
fibre over each a ∈ A to define the triangulated structure on H0(Mod -A). A DG
category A is pretriangulated if H0(A) is a triangulated subcategory of H0(Mod -A)
under the Yoneda embedding.

An A-module E is acyclic if it is acyclic fibrewise in Mod -k. We denote by
AcA the full subcategory ofMod -A consisting of acyclic modules. A morphism of
A-modules is a quasi-isomorphism if it is one levelwise inMod -k. The derived cat-
egory D(A) is the localisation of H0(Mod -A) by quasi-isomorphisms, constructed
as the Verdier quotient H0(Mod -A)/AcA.

The derived category can also be constructed on the DG level. An A-module P
is h-projective (resp. h-flat) if HomA(P,C) (resp. P⊗AC) is an acyclic complex of k-
modules for any acyclic C ∈Mod -A (resp. C ∈ A-Mod). We denote by P(A) the
full subcategory ofMod -A consisting of h-projective modules. It follows from the
definition that in P(A) every quasi-isomorphism is a homotopy equivalence, and
therefore we have D(A) ∼= H0(P(A)). Alternatively, one uses Drinfeld quotients
[14]: Given a DG category A with a full subcategory C ⊂ A, we can form the
Drinfeld quotient A/C. When A and C are pretriangulated, this recovers the Verdier
quotient as H0(A/C) ∼= H0(A)/C. Thus D(A) = H0(Mod -A/AcA).

An object a of a triangulated category T is compact if HomT (a,−) commutes
with infinite direct sums. We write Dc(A) for the full subcategory of D(A) compris-
ing compact objects. An A-module E is perfect if E ∈ Dc(A). We write Perf (A)
and Hperf (A) for the full subcategories ofMod -A comprising perfect modules and
h-projective, perfect modules.

Let A be a DG category. We denote by Pre-Tr A the DG category of one-sided
twisted complexes over A, see [1, Section 3.1]. It is a DG version of the notion of
triangulated hull. There is a natural fully faithful inclusion Pre-Tr A ↪→ Mod -A
and H0(Pre-Tr A) is the triangulated hull of H0(A) in H0(Mod -A). Moreover, we
have Pre-Tr A ⊂ Hperf (A) and Dc(A) ∼= H0(Hperf (A)) is the Karoubi completion
of H0(Pre-Tr A) in H0(Mod -A). We say that A is strongly pretriangulated if A ↪→
Pre-Tr A is an equivalence.

Let A and B be DG categories and let M be an A-B-bimodule. We say that
M is A-perfect (resp. B-perfect) if it is perfect levelwise in A (resp. B). That is,
aM (resp. Mb) is a perfect module for all a ∈ A (resp. b ∈ B). Similarly, for other
properties of modules such as h-projective, h-flat, or representable.

A DG category A is smooth if the diagonal bimodule A is perfect as an A-A-
bimodule. It is proper if A is Morita equivalent (see Section 4.4) to a DG algebra
which is perfect over k. Equivalently, A is proper if and only if the total cohomology
of each Hom-complex is finitely-generated and D(A) is compactly generated. See
[53, Section 2.2] for further details on these two notions.

4.2.3. Restriction and extension of scalars. Let A and B be two DG
categories and let M be an A-B-bimodule. Moreover, let A′ and B′ be another
two DG categories and let f : A′ → A and g : B′ → B be DG functors. Define the
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restriction of scalars of M along f and g to be the A′-B′-bimodule fMg defined as
M ◦ (f ⊗k g). In particular, for any a ∈ A and b ∈ B we have a(fMg)b = f(a)Mg(b).
We write fM and Mg for fMid and idMg, respectively.

Let A and B be two DG categories and let f : A → B be a DG functor. We
have:

(1) The restriction of scalars functor

f∗ : Mod -B →Mod -A,

is defined to be (−) ⊗B Bf . It sends each E ∈ Mod -B to its restriction
Ef ∈Mod -A, and therefore sends acyclic modules to acyclic modules.

(2) The extension of scalars functor

f∗ : Mod -A →Mod -B,

is defined to be (−) ⊗A fB. For each a ∈ A it sends the representable
module hr(a) ∈Mod -A to the representable module hr(f(a)) ∈Mod -B.
It follows that f∗ restricts to a functor Hperf (A)→ Hperf (B).

(3) The twisted extension of scalars functor

f ! : Mod -A →Mod -B,

is defined to be HomA(Bf ,−).
By Tensor-Hom adjunction, (f∗, f∗) and (f∗, f

!) are adjoint pairs. As f∗ preserves
acyclic modules, f∗ preserves h-projective modules and f ! preserves h-injective
modules.

4.3. Bimodule approximation

In this section, we define and describe the basic properties of a lax 2-functor
Apx which approximates DG functors between DG module categories by (the ten-
sor functors defined by) DG bimodules. On per-functor basis, this was already
examined by Keller in [30, Section 6.4]. We will apply the bimodule approximation
to the first step in our construction of a categorical Fock space for our Heisenberg
DG bicategory HV (see Section 7.5). At this first step, a representation of a sim-
pler strict DG 2-category H′V is constructed with (non-derived) DG functors. The
bimodule approximation turns these into DG bimodules which are then considered
as enhanced exact functors, see Section 4.4.

We first look at bimodule approximation on the 1-categorical level.

Definition 4.8. Let A and B be DG categories. The bimodule approximation
functor is

Apx: DGFun(Mod -A,Mod -B)→ A-Mod -B,
F 7→ F (A),

where F (A) ∈ A-Mod -B is the evaluation of F at the diagonal bimodule A. In
other words, aF (A)b = F (aA)b for all a ∈ A, b ∈ B.

The bimodule approximation functor Apx is right adjoint to the ‘tensor functor’
functor:

⊗ : A-Mod -B → DGFun(Mod -A,Mod -B),

M 7→ (−)⊗AM.
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The adjunction unit η : id→ Apx ◦⊗ is given by the natural isomorphism

M
∼−→ A⊗AM for M ∈ A-Mod -B,

and thus ⊗ is a fully faithful embedding.
The adjunction counit ε : ⊗◦Apx→ id is given by the natural transformation

(4.2) (−)⊗A F (A)→ F for F ∈ DGFun(Mod -A,Mod -B),

defined by the map

(4.3) E ⊗A F (A)→ F (E), for E ∈Mod -A
which is adjoint to the composition

E
∼−→ HomA(A, E)

F−→ HomB(F (A), F (E)).

The map (4.3) is an isomorphism for representable E, and thus a homotopy equiva-
lence for E ∈ Hperf (A). This implies, as noted in [30, Section 6.4], that (4.2) yields
an isomorphism of derived functors Dc(A)→ D(B) and hence, for F continuous, of
functors D(A)→ D(B).

We now consider two DG bicategories whose 1-morphisms are DG functors
and DG bimodules, respectively. The objects of these bicategories are the same:
morally, they are the categories of DG modules over small DG categories. For
brevity, however, we define these objects to be the small DG categories themselves:

Definition 4.9. Define dgModCat to be the strict DG 2-category whose ob-
jects are small DG categories and whose 1-morphism categories dgModCat(A, B)
are the DG categories DGFun(Mod -A,Mod -B) of DG functors between their DG
module categories.

Definition 4.10. Define dgMor to be the following DG bicategory:
(1) Its objects are small DG categories.
(2) ∀ A, B ∈ Ob, the DG category of 1-morphisms from A to B is A-Mod -B.
(3) ∀ A, B, C ∈ Ob the 1-composition functor is the tensor product of bimod-

ules:

B-Mod -C ⊗ A-Mod -B → A-Mod -C
(N,M) 7→M ⊗B N.

(4) ∀ A ∈ Ob the identity 1-morphism of A-Mod -A is the diagonal bimodule
A.

(5) The associator isomorphisms are the canonical isomorphisms

(M ⊗B N)⊗C L
∼−→M ⊗B (N ⊗C L).

(6) ∀ M ∈ A-Mod -B the left and right unitor isomorphisms are the natural
maps

A⊗AM
∼−→M and M ⊗B B

∼−→M.

The 1-categorical functors ⊗ package up into an obvious strong 2-functor.

Definition 4.11. Define the strong 2-functor

⊗ : dgMor→ dgModCat,

(1) On objects, ⊗ is the identity map,
(2) On 1-morphism categories, ⊗ is the 1-categorical functor ⊗ defined above.
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(3) For any small DG category A, the unit coherence 2-morphism

1⊗A → ⊗(1A),

is the natural isomorphism:

idMod -A
∼−→ (−)⊗A A.

(4) For any small DG categories A, B, C, and any M ∈ A-Mod -B and N ∈
B-Mod -C, the composition coherence 2-morphism

⊗(N) ◦1 ⊗(M)→ ⊗(N ◦1 M),

is the natural transformation defined by canonical isomorphisms

(−⊗AM)⊗B N
∼−→ (−)⊗A (M ⊗B N).

Since the 2-functor⊗ is strong, it induces a natural structure of a (lax) 2-functor
on the right adjoints of its 1-categorical components.

Definition 4.12. Define the lax 2-functor

Apx: dgModCat→ dgMor,

as follows:
(1) On objects, Apx is the identity map,
(2) On 1-morphism categories, Apx is the 1-categorical functor Apx defined

above.
(3) For any small DG category A, the unit coherence 2-morphism

1ApxA → Apx(1A),

is the identity morphism of the diagonal bimodule A.
(4) For any small DG categories A, B, C, and any

F ∈ DGFun(Mod -A,Mod -B)

and
G ∈ DGFun(Mod -B,Mod -C),

the composition coherence 2-morphism

Apx(G) ◦1 Apx(F )→ Apx(G ◦1 F ),

is given by the adjunction counit of (⊗, Apx) for G:

(4.4) F (A)⊗B G(B)
εG−→ GF (A).

In general, the 2-functor Apx is not even homotopy strong. However, its unit
coherence morphism is the identity map, while below we show that under certain
assumptions on the DG functors F and G their composition coherence morphism
(4.4) is a fibrewise homotopy equivalence or quasi-isomorphism. This is important
for us, because then the composition of Apx with one of the homotopy quotients of
dgMor by acyclics discussed in Section 4.4 below becomes homotopy strong when
restricted to such DG functors.

Proposition 4.13. Let A, B, C be small DG categories, and let

F ∈ DGFun(Mod -A,Mod -B) and G ∈ DGFun(Mod -B,Mod -C).
Then

(1) If G ∼= (−)⊗BM for some M ∈ B-Mod -C, then (4.4) is an isomorphism.
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(2) If G ∼= HomB(N,−) for some N ∈ C-Mod -B which is B-perfect and
B-h-projective, then (4.4) is fibrewise a homotopy equivalence inMod -A.

(3) If F restricts to a functor Hperf (A)→ Hperf (B), then (4.4) is fibrewise
a homotopy equivalence inMod -C.

Proof. Assertion (1) is clear.
(2): If G ∼= HomB(N,−), then the morphism (4.4) is the evaluation map

F (A)⊗B HomB(N, B)
eval−−→ HomB(N, F (A)).

Since the fibres of N over C are perfect and h-projective B-modules, the fibres of
this map over C are homotopy equivalences inMod -A.

(3): Morphism (4.4) is the (⊗,Apx)-adjunction counit for G applied to F (A).
Thus the fibres of (4.4) inMod -C are given by applying the natural transformation

id⊗BG(B)
(4.3)−−−→ G,

to the fibres of F (A) inMod -B. By assumption these fibres lie in Hperf (B). Hence
(4.3) is a homotopy equivalence. �

4.4. DG enhanced triangulated categories

DG enhancements were introduced by Bondal and Kapranov in [6]. A DG
enhancement of a triangulated category T is a pretriangulated DG category A
together with an exact equivalence H0(A) ∼= T . These are considered up to
quasi-equivalences and are naturally objects in Ho(dgCat1), the localisation of
dgCat1 by quasi-equivalences [51]. We write EnhCat1 for the full subcategory of
Ho(dgCat1) comprising pretriangulated DG categories and consider this to be the
1-category of enhanced triangulated categories.

A Morita DG enhancement of a triangulated category T is a small DG category
A whose compact derived category Dc(A) is equivalent to T . These are considered
up to Morita equivalences: functors φ : A → B such that φ∗ : D(A) → D(B)
restricts to an equivalence Dc(A)→ Dc(B). They are thus naturally the objects of
Mor(dgCat1), the localisation of dgCat1 by Morita equivalences [46].

Let A be a DG category. The Yoneda embedding A ↪→ Hperf (A) is a Morita
equivalence. Moreover, it identifies Mor(dgCat1) with the full subcategory of
Ho(dgCat1) consisting of pretriangulated categories whose homotopy categories
are Karoubi-complete. Thus working in the Morita setting means working with
small Karoubi-complete triangulated categories, such as bounded derived categories
of abelian categories. If A is an enhancement of a Karoubi-complete triangulated
category T , then it is also its Morita enhancement. Conversely, if A is a Morita en-
hancement of a triangulated category T , then T is Karoubi-complete andHperf (A)
is an ordinary enhancement of T .

The advantage of Morita enhancements is that morphisms in Mor(dgCat1)
admit a nice description. The morphisms from A to B in Mor(dgCat1) are in
bijection with the isomorphism classes in D(A-B) of B-perfect A-B bimodules [51,
Theorems 4.2, 7.2]. We define an enhanced exact functor A → B to be a B-perfect
bimodule M ∈ D(A-B). The underlying exact functor between the underlying
triangulated categories is (−)⊗L M : Dc(A)→ Dc(B). An enhanced natural trans-
formation is a morphism in D(A-B) between B-perfect bimodules.
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The 1-category Mor(dgCat1) is thus refined to the following strict 2-category
of Morita enhanced triangulated categories.

Definition 4.14. Define the strict 2-category EnhCatkc, with kc referring to
Karoubi-complete, also denoted by Mor(dgCat), to consist of the following data:

(1) Its set of objects is the set of all small DG categories.
(2) For any two A,B ∈ ObEnhCatkc, the category EnhCatkc(A,B) of 1-

morphisms from A to B is the skeleton of DB-Perf (A-B).
(3) For any triple A,B, C ∈ ObEnhCatkc the 1-composition functor is given

by the derived tensor product of bimodules:

EnhCatkc(B, C)×EnhCatkc(A,B)→ EnhCatkc(A, C)

(M,N) 7→M
L
⊗BN.

(4) For any A ∈ ObEnhCatkc the identity 1-morphism of EnhCatkc(A,A)
is the diagonal bimodule A.

We have the 2-functor EnhCatkc → Cat which sends each Morita enhance-
ment A to its underlying triangulated category Dc(A), each enhanced functor
M ∈ DB-Perf (A-B) to its underlying exact functor (−)⊗L M , and each morphism
in DB-Perf (A-B) to the induced natural transformation of these underlying exact
functors.

The 2-category EnhCatkc can be identified, via the assignment A 7→ Hperf (A)
with the 2-full subcategory of Karoubi-complete categories in the strict 2-category
EnhCat of enhanced triangulated categories defined in [36, Section 1]. The strict
2-category EnhCat is a 2-categorical refinement of the 1-category EnhCat1. It
coincides with the homotopy category of the (∞, 2)-category of DG categories in
[18].

We next introduce a DG enhancement EnhCatdg
kc of EnhCatkc:

Definition 4.15. A DG enhancement of a strict 2-category A is a DG bicat-
egory C such that A is 2-equivalent to the strictification H̃0(C) of the bicategory
H0(C) obtained by taking skeletons of its 1-morphism categories.

We define the DG bicategory EnhCatdg
kc in terms of the bar categories of

modules and bimodules introduced in [2]. Given small DG categories A and B,
the bar-category A-Mod -B of A-B-bimodules is isomorphic to the DG category of
DG A-B-bimodules with A∞-morphisms between them [2, Prop. 3.5]. However,
the bar-category has a simpler definition which avoids the complexities of the fully
general A∞-machinery.

We have H0(A-Mod -B) ∼= D(A-B), since all quasi-isomorphisms in A-Mod -B
are homotopy equivalences. The bar-category A-Mod -B can be viewed as a more
natural way to factor out the acyclic modules than taking the Drinfeld quotient:
one does not introduce formal contracting homotopies which do not interact with
the old morphisms, and thus retains the natural monoidal structure in the form of
the bar-tensor product ⊗ of bimodules. It corresponds to the A∞-tensor product
of A∞-bimodules under the identification of the bar-category with the category of
DG bimodules with A∞-morphisms, see [2, Section 3.2].

Definition 4.16. Define the homotopy unital DG bicategory EnhCatdg
kc as

follows:
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(1) Its set of objects is the set of small DG categories.
(2) For any two A,B ∈ ObEnhCatdg

kc , the category of 1-morphisms from A
to B is the full subcategory of A-Mod -B comprising B-perfect bimodules.

(3) For any triple A,B, C ∈ ObEnhCatdg
kc the 1-composition functor is given

by the bar tensor product of bimodules:

B-Mod -C ⊗ A-Mod -B → A-Mod -C
(N,M) 7→M ⊗B N.

(4) For any A ∈ ObEnhCatdg
kc the identity 1-morphism of A-Mod -A is the

diagonal bimodule A.
(5) The associator isomorphisms are the natural isomorphisms

(M ⊗B N) ⊗C L
∼−→M ⊗B (N ⊗C L).

(6) The left and right unitor morphisms are given for any 1-morphism
M ∈ A-Mod -B by the natural homotopy equivalences defined in [2, Sec-
tion 3.3]:

A ⊗A M
αA−−→M and M ⊗B B

αB−−→M.

Note that the DG bicategory EnhCatdg
kc is homotopy unital: its unitor mor-

phisms are not isomorphisms, but only homotopy equivalences. On the homotopy
level, such bicategories become genuine bicategories. Indeed, the strictified homo-
topy bicategory H̃0(EnhCatdg

kc ) is 2-isomorphic to EnhCatkc. This is because
H0(A-Mod -B) ∼= D(A-B) and H0(⊗) ∼= ⊗L, see [2, Section 3.2].

The homotopy unitality of EnhCatdg
kc does not interfere with our constructions.

Its unitor morphisms have homotopy inverses which are genuine right inverses, see
[2, Section 3.3].

We offer the following alternative construction of EnhCatdg
kc where we use the

monoidal Drinfeld quotient instead of bar-categories to kill the acyclic bimodules
in dgMor. The original Drinfeld quotient [14] is not compatible with monoidal
structures such as 1-composition in a bicategory. A construction by Shoikhet [44]
fixes this, and in Section 4.6 we define the monoidal Drinfeld quotient of a DG
bicategory. The price is the 1-composition no longer being a DG functor but a
quasifunctor, that is, a 1-morphism in Ho(dgCat). Thus, in this alternative con-
struction EnhCatdg

kc is only a Ho(dgCat)-enriched bicategory.

Definition 4.17 (Alternative construction of EnhCatdg
kc ). Let dgMorlfrp de-

note the 2-full subcategory of dgMor comprising all objects and the 1-morphisms
given by left-h-flat and right-perfect bimodules. The Ho(dgCat)-enriched bicat-
egory EnhCatdg

kc is the Drinfeld quotient of dgMorlfrp by its two-sided ideal of
1-morphisms given by acyclic bimodules.

For this paper, it does not matter which of the two constructions one uses. We
use EnhCatdg

kc as the target for a 2-represention of our Heisenberg Ho(dgCat)-
enriched bicategory HV . First, we construct a 2-functor from a simpler strict
DG 2-category H′V to dgMorlfrp, which is naturally a subcategory of both above
versions of EnhCatdg

kc . The two constructions should be viewed merely as two
different ways to kill the acyclics in dgMorlfrp. Thus we obtain the (same) 2-
functor H′V → EnhCatdg

kc whichever version of the latter we use. This 2-functor is
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turned into the desired 2-representation of HV via a formal construction for which
it is only important that acyclics are null-homotopic in EnhCatdg

kc .

4.5. The perfect hull of a DG bicategory

In this section, describe the formalism of taking the perfect hull of a dgCat-
or Ho(dgCat)-enriched bicategory. On the homotopy level, this corresponds to
taking a Karoubi-completed triangulated hull of each 1-morphism category.

Let A and B be DG categories. We have a natural functor

(4.5) Mod -A⊗Mod -B →Mod -(A⊗ B)

which is defined as the composition

DGFun(Aopp,Mod -k)⊗DGFun(Bopp,Mod -k)

DGFun(Aopp ⊗ Bopp,Mod -k⊗Mod -k)

DGFun(Aopp ⊗ Bopp,Mod -k)

whose first map is due to functoriality of the tensor product of DG categories, and
whose second map is due to the natural monoidal structure onMod -k given by the
tensor product over k. Explicitly, given E ∈ Mod -A and F ∈ Mod -B the functor
(4.5) maps E ⊗F to an A⊗B-module whose fibre over (a, b) ∈ A⊗B is the tensor
product Ea ⊗ Fb.

Let C be a DG category and let µ : A ⊗ B → C be a DG functor. It extends
naturally to

µ : Mod -A⊗Mod -B →Mod -C
which is defined as the composition

Mod -A⊗Mod -B (4.5)−−−→Mod -(A⊗ B)
µ∗−→Mod -C.

Explicitly, given E ∈Mod -A and F ∈Mod -B we have for all c ∈ C

µ(E ⊗ F )c =
⊕

a∈A, b∈B

(Ea ⊗ Fb)⊗HomC
(
c, µ(a⊗ b)

)
/relations,

where the relations identify the actions of A⊗ B on Ea ⊗Fb and on µ(a⊗ b).
The above generalises to the following.

Definition 4.18. Let A1, . . . ,An, C be DG categories.
(1) Define the functor

$ : Mod -A1 ⊗ · · · ⊗Mod -An →Mod -(A1 ⊗ · · · ⊗ An)

to be the composition
n⊗
i=1

DGFun
(
Aopp
i ,Mod -k

)
→ DGFun

( n⊗
i=1

Aopp
i ,

n⊗
i=1

Mod -k
)

→ DGFun
( n⊗
i=1

Aopp
i ,Mod -k

)
,
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whose first map is due to the functoriality of tensor product of DG cate-
gories and whose second map is due to the natural monoidal structure on
Mod -k.

(2) Define the functor

Υ: DGFun
(
A1 ⊗ · · · ⊗ An, C

)
→ DGFun

(
Mod -A1 ⊗ · · · ⊗Mod -An,Mod -C

)
to be the composition of the extension of scalars functor

(−)∗ : DGFun
(
A1 ⊗ · · · ⊗ An, C

)
→ DGFun

(
Mod -(A1 ⊗ · · · ⊗ An),Mod -C

)
with the functor of precomposition with $.

Lemma 4.19. For any DG categories A1, . . . ,An, C we have:
(1) The functor Υ commutes with Yoneda embeddings, i.e. the following dia-

gram commutes for any µ ∈ DGFun(A1 ⊗ · · · ⊗ An, C):

A1 ⊗ · · · ⊗ An C

Mod -A1 ⊗ · · · ⊗Mod -An Mod -C.

µ

Υ(µ)

(2) When n = 1, for any µ1 : A1 → C we have Υ(µ1) = µ∗1.
(3) Υ(id) = $.
(4) Let C1, . . . , Cn be DG categories and µ1, . . . , µn be DG functors

µi : Ai → Ci.
Then

(µ1 ⊗ · · · ⊗ µn)∗ ◦$ ∼= $ ◦ (µ∗1 ⊗ · · · ⊗ µ∗n).

(5) Let µ ∈ DGFun(A1 ⊗ · · · ⊗ An, C). Let m1, . . . ,mn ∈ Z, let

{Bij}1≤i≤n,1≤j≤mi
be DG categories, and {λi} be DG functors

λi : Bi1 ⊗ · · · ⊗ Bimi → Ai.
Then

Υ
(
µ ◦ (λ1 ⊗ · · · ⊗ λn)

) ∼= Υ(µ) ◦
(
Υ(λ1)⊗ · · · ⊗Υ(λn)

)
.

Proof. This is a straightforward verification.
For example, to establish (1), let µ be a functor A1 ⊗ · · · ⊗ An → C. Then for

any a1 ∈ A1, . . . , an ∈ An we have

Υ(µ)(hr(a1)⊗ · · · ⊗ hr(an)) = µ∗(hr(a1 ⊗ · · · ⊗ an)) = hr (µ(a1 ⊗ · · · ⊗ an)) . �

Lemma 4.20. For any DG categories A1, . . . , An, C the functor

Υ: DGFun(A1 ⊗ · · · ⊗ An, C)→ DGFun(Mod -A1 ⊗ · · · ⊗Mod -An,Mod -C).
restricts to a functor

Υ: DGFun(A1 ⊗ · · · ⊗ An, C)→ DGFun(Hperf A1 ⊗ · · · ⊗ Hperf An, Hperf C).

Proof. For any µ : A1 ⊗ · · · ⊗ An → C the functor Υ(µ) : Mod -A1 ⊗ · · · ⊗
Mod -An →Mod -C takes tensor products of representables to representables, and
therefore tensor products of h-projective, perfect modules to h-projective perfect
modules. �
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We have the following key result.

Proposition 4.21. Let C be a DG (resp. Ho(dgCat)-enriched) bicategory.
The following set of data defines a DG (resp. Ho(dgCat)-enriched) bicategory C̃:

• Ob C̃ := ObC.
• For each a, b ∈ Ob C̃,

C̃(a, b) := Hperf C(a, b).

• For each a ∈ C̃,
1̃a := hr(1a).

That is, it is the representable module defined by the identity 1-morphism
of a in C.
• For each a, b, c ∈ Ob C̃ the 1-composition functor

µ̃ : Hperf C(b, c)⊗Hperf C(a, b)→ Hperf C(a, c)

is the extension Υ(µ) given in Lemma 4.20 of the 1-composition functor
of C

µ : C(b, c)⊗C(a, b)→ C(a, c).

• For each a, b, c, d ∈ Ob C̃ the natural associator isomorphism

α̃ : µ̃(µ̃⊗ id) ∼= µ̃(id⊗µ̃)

of functors

Hperf C(c, d)⊗Hperf C(b, c)⊗Hperf C(a, b)→ Hperf C(a, d)

is the conjugate of the extension Υ(α) of the associator isomorphism α of
C by the isomorphism of Lemma 4.19 (5):

Υ(µ(µ⊗ id)) Υ(µ(id⊗µ))

Υ(µ) (Υ(µ)⊗ id) Υ(µ) (id⊗Υ(µ)) .

Υ(α)

∼=∼=

α̃

• Similarly, for each a, b ∈ Ob C̃ the unitor isomorphism λ̃ (resp. ρ̃) is the
conjugate of the extension Υ(λ) (reps., Υ(ρ)) of the corresponding unitor
isomorphism λ (resp., ρ) of C by the isomorphism of Lemma 4.19 (5).

Proof. This is a straightforward verification. For example, to show that the
diagram of Definition 4.2 (7) commutes for C̃ we write, according to the definition,
each instance of α̃ in this diagram as a conjugate of Υ(α) by the isomorphisms from
Lemma 4.19 (5). The resulting diagram can then be simplified to the image under
Υ of the the same associativity coherence diagram for C. The claim then follows
since the image of a commutative diagram under a functor is itself a commutative
diagram. �

Definition 4.22. Let C be a DG or Ho(dgCat)-enriched bicategory. The
perfect hull of C, denoted Hperf(C), is the bicategory defined in Proposition 4.21.

Remark 4.23. Even when C is a strict 2-category, its perfect hull Hperf(C) is
in general only a bicategory. Indeed, since Υ(id) is only isomorphic to the identity
(being given by an extension of scalars), the unitor and associator isomorphisms of
Hperf(C) will not be equal to the identity.
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Proposition 4.24. Let C and D be DG or Ho(dgCat)-enriched bicategories
and F : C→ D a 2-functor. Then the following set of data defines a 2-functor

Hperf(F ) : Hperf(C)→ Hperf(D).

• The map
F : ObHperf(C)→ ObHperf(D)

which equals the map F : ObC → ObD as taking the perfect hull of a
bicategory does not change the objects.

• For every a, b ∈ ObHperf(C) the functor

Hperf(F )a,b : Hperf C(a, b)→ Hperf D(Fa, Fb)

is defined to be the extension of scalars functor F ∗a,b.
• For every a ∈ ObHperf(C) the 2-morphism

ι : 1Fa → Hperf F (1a)

is the image under the Yoneda embedding of the corresponding 2-morphism
ιF for F .

• For each a, b, c,∈ ObHperf(C) a natural transformation

φ : µHperf(D) ◦ (Hperf(F )b,c ⊗Hperf(F )a,b)→ Hperf(F )a,c ◦ µHperf(C),

which is the conjugate by the isomorphisms from Lemma 4.19 (5) of the
extension Υ(φF ) of the corresponding natural transformation for F .

Proof. This is a straightforward verification. �

Remark 4.25. By replacing the perfect hull Hperf C(a, b) with the pretrian-
gulated hull Pre-Tr C(a, b) in Proposition 4.21 and Definition 4.22, one obtains the
pretriangulated hull Pre-Tr(C) of a Ho(dgCat)-enriched bicategory C.

4.6. Monoidal Drinfeld quotient

In this section we give a generalisation of the notion of the Drinfeld quotient of a
DG category [14]. The original notion is not compatible with monoidal structures,
which led Shoikhet to introduce in [44] the notion of a refined Drinfeld quotient
and use it to construct the structure of a weak Leinster monoid on the Drinfeld
quotient of a monoidal DG category by a two-sided ideal of objects.

Here, we use Shoikhet’s construction to define the Drinfeld quotient of a DG bi-
category by a two-sided ideal of 1-morphisms. The result is a Ho(dgCat)-enriched
bicategory. That is, the 1-composition is no longer given by DG functors, but
by quasi-functors: compositions of genuine DG functors with formal inverses of
quasi-equivalences.

We actually get a richer structure: 1-morphism spaces in the quotient bicate-
gory are not abstract objects of Ho(dgCat), but concrete DG categories. These
admit a multi-object analogue of a weak Leinster monoid structure. Localising by
quasi-equivalences simplifies it to an ordinary, associative 1-composition, whence
we obtain a Ho(dgCat)-enriched bicategory.

Finally, our quotient construction works just as well with a bicategory that is
already Ho(dgCat)-enriched and produces again a Ho(dgCat)-enriched bicate-
gory.

Recall the original construction by Drinfeld:
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Definition 4.26 ([14, Section 3.1]). Let C be a DG category and A ⊆ C a full
DG subcategory. The Drinfeld quotient C/A is the DG category freely generated
over C by adding for each a ∈ A a degree −1 contracting homotopy ξa : a→ a with
dξa = ida.

Explicitly:
(1) The objects of C/A are those of C.
(2) ∀ c, d ∈ C the morphism complex HomC/A(c, d) comprises all composable

words
fnξanfn−1 · · · f1ξa1f0

with a1, · · · , an ∈ A and f0 ∈ HomC(c, a1), fn ∈ HomC(an, d). Compos-
able here means that fi ∈ HomC(ai, ai+1) for 0 < i < n. The degree of
such a word is (

∑
deg fi) − n. The differential is given by the Leibniz

rule and, when differentiating one of the ξi, the subsequent composition
of fi−1 and fi in C.

(3) The composition in C/A is given by the concatenation of words and the
subsequent composition in C of the two letters at which the concatenation
happens.

(4) The identity morphisms in C/A are the identity morphisms of C.

We have the natural embedding C → C/A which is the identity on objects.
On morphisms, it considers morphisms of C as length 1 composable words; that
is, n = 0 in the notation of Definition 4.26 (2). We thus have an embedding
Dc(C) → Dc(C/A). It sends the objects of Dc(A) ⊂ Dc(C) to zero, and therefore
by the universal property of the Verdier quotient it filters through a unique functor
Dc(C)/Dc(A)→ Dc(C/A).

The main properties of the Drinfeld quotient are summarised as follows:

Theorem 4.27 ([14, Theorem 1.6.2], [47, Theorem 4.0.3]). Let C be a DG
category and let A ⊆ C be a full subcategory. Then:

(1) The natural functor Dc(C)/Dc(A)→ Dc(C/A) is an exact equivalence.
(2) Let B be a DG category. The natural functor C → C/A gives a fully

faithful functor

HomHo(dgCat)(C/A, B)→ HomHo(dgCat)(C, B),

whose image comprises the quasi-functors whose underlying functors

H0(C)→ H0(B)

send the objects of A to zero.

Let C be a DG bicategory. For any collections A,B of 1-morphisms of C,
write A ◦1 B for the collection of 1-morphisms of C 2-isomorphic to a ◦1 b with
a ∈ A, b ∈ B. The two-sided ideal IA generated by A is the 2-full subcategory of C
supported on objects and 1-morphisms of C ◦1 A ◦1 C. Here, by abuse of notation,
C denotes the collection of all its 1-morphisms.

Let C be a DG bicategory and A a collection of 1-morphisms of C. For any
a, b ∈ C write C(a, b)/A for the Drinfeld quotient C(a, b)/A(a, b). These do not
apriori form a bicategory. First of all, any 1-composition involving a contractible
1-morphism would have to be contractible. Were a bicategory structure to exist,
for any f ∈ A(a, b) and any g ∈ C(b, c) the 1-composition idg ◦1ξf would have to
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be a contracting homotopy for g◦1 f . Unless g◦1 f lies in A(a, c), there is no reason
for it to be contractible in C(a, c)/A.

This could be rectified by replacing A with two-sided ideal IA. We could then
attempt to define the 1-composition idg ◦1ξf to be contracting homotopy ξg◦1f .
However, the interchange law (3.3) for 1-composition demands that for any 2-
morphism α : g → h in C(b, c) we have:

(idg ◦1ξf ) ◦2 (α ◦1 idf ) = α ◦1 ξf = (−1)deg(α)(α ◦1 idf ) ◦1 (idg ◦1ξf ).

If we define idg ◦1ξf = ξg◦1f , this would then ask for ξg◦1f to supercommute with
(α ◦1 idf ). But, by definition, there are no relations between ξg◦1f and any 2-
morphisms in C(a, c)!

This is why the original Drinfeld quotient works poorly with monoidal struc-
tures: it is freely generated by the contracting homotopies ξf over the original
category. Thus ξf cannot satisfy the relations in the definition of 1-composition.
The 1-composition functor

◦1 : C(b, c)/IA ⊗C(a, b)/IA → C(a, c)/IA

could not exist because its target is a free category generated by ξf , while its source
is not.

In [44], Shoikhet solves this by constructing a free resolution of

C(b, c)/IA ⊗C(a, b)/IA,

which admits a natural 1-composition functor into C(a, b)/IA. He defines:

Definition 4.28 ([44, Section 4.3]). Let C be a DG category and letA1, . . . ,An
be full subcategories. The refined Drinfeld quotient C/(A1, . . . ,An) is the DG cat-
egory whose underlying graded category is freely generated over that of C by intro-
ducing for any

i1 < i2 < · · · < ik and a ∈ Ai1 ∩ · · · ∩ Aik
a new degree k element

ξi1...ika .

The differential on these new elements is defined by setting

dξi1a = ida

and for k > 1

dξi1...ika =

k∑
j=1

(−1)j−1ξi1...̂ij ...ika .

Remark 4.29. When n = 1, the refined Drinfeld quotient C/A1 coincides with
the ordinary Drinfeld quotient. In this case we therefore omit the superscript in
the notation above and write ξa for ξ1

a.

The reason for considering the above as a refinement of the original Drinfeld
quotient is the following theorem by Shoikhet:

Theorem 4.30 ([44, Lemma 4.3]). Let C be a DG category and let A1, . . . ,An
be full subcategories. The functor

Ψ: C/(A1, . . . ,An)→ C/
n⋃
i=1

Ai
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defined as the identity on objects and morphisms of C and as

Ψ(ξi1a ) = ξa,

Ψ(ξi1...ika ) = 0 for k > 1,

is a quasi-equivalence of DG categories.

Observe that C/(A1, . . . ,An) and C/
⋃n
i=1Ai are therefore isomorphic in

Ho(dgCat). It follows from Theorem 4.27 that the former enjoys the same unique
lifting property as the latter with respect to quasifunctors out of C which kill⋃n
i=1Ai on the homotopy level.
At the same time, the next example shows that the refined Drinfeld quotient

serves as a free resolution of the tensor product of ordinary Drinfeld quotients.

Example 4.31. Let C1 and C2 be DG categories and Ai ⊂ Ci be full subcate-
gories. Let

βDr : C1 ⊗ C2/(A1 ⊗ C2, C1 ⊗A2)→ (C1/A1)⊗ (C2/A2)

be the functor defined as the identity on objects and the morphisms of C1⊗C2 and
as follows on the contracting homotopies:

βDr(ξ
1
a1⊗c2) = ξa1 ⊗ idc2 ,

βDr(ξ
2
c1⊗a2) = idc1 ⊗ξa2 ,

βDr(ξ
12
a1⊗a2) = ξa1 ⊗ ξa2 .

It can be readily verified that βDr is a quasi-equivalence of DG categories.

The above example can be formalised as follows:

Definition 4.32 ([44, Section 4.4]). Let PdgCat be the following category:
• Its objects are pairs (C; A1, . . . ,An) where C is a DG category and
A1, . . . ,An is an ordered n-tuple of full subcategories of C.

• A morphism

(C; A1, . . . ,An)→ (D; B1, . . . ,Bm)

is a pair (F, f) where f : {1, . . . , n} → {1, . . . ,m} is a map of sets and
F : C → D is a DG functor such that F (Ai) ⊂ Bf(j).

We define a monoidal structure on PdgCat by setting

(C; A1, . . . ,An)⊗ (D; B1, . . . ,Bm)

to be
(C ⊗ D; A1 ⊗D, . . . ,An ⊗D, C ⊗ B1, . . . , C ⊗ Bm)

and the unit to be (k; ∅).

Theorem 4.33 ([44, Section 4.4]). The refined Drinfeld quotient defines a
functor:

Dr : PdgCat→ dgCat1,

which has a natural homotopy monoidal structure given by quasi-equivalences

β : Dr
(
(C; A1, . . . ,An)⊗ (D; B1, . . . ,Bm)

)
→ Dr (C; A1, . . . ,An)⊗Dr (D; B1, . . . ,Bm) .
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The case considered in Example 4.31 follows by observing that in PdgCat we
have

(C; A)⊗ (D; B) = (C ⊗ D; A⊗D, C ⊗ B).

We now return to the problem of constructing the Drinfeld quotient of a DG
bicategory. Let C be a DG bicategory and A a collection of its 1-morphisms. The
1-composition functor

◦1 : C(b, c)/IA ⊗C(a, b)/IA → C(a, c)/IA,

which does not exist in dgCat, can now be defined in Ho(dgCat) as follows. The
homotopy monoidal structure of the refined Drinfeld quotient functor gives us a
quasi-equivalence

βDr : C(b, c)⊗C(a, b)/ (IA ⊗C,C⊗ IA) −→ C(b, c)/IA ⊗C(a, b)/IA.

On the other hand, since IA is a two-sided ideal, the original 1-composition functor

◦old
1 : C(b, c)⊗C(a, b)→ C(a, c),

takes IA(b, c)⊗C(a, b) and C(b, c)⊗IA(a, b) to IA(a, c), and thus uniquely extends
in Ho(dgCat) to a quasi-functor

◦old
1 : C(b, c)⊗C(a, b)/ (IA ⊗C,C⊗ IA)→ C(a, c)/IA.

We can therefore define ◦1 in Ho(dgCat) as the composition

C(b, c)/IA ⊗C(a, b)/IA
β−1
Dr−−→ C(b, c)⊗C(a, b)/ (IA ⊗C,C⊗ IA)

◦old1−−→ C(a, c)/I.

Theorem 4.34. Let C be a DG bicategory, or more generally a Ho(dgCat)-
enriched bicategory. Let A be a collection of 1-morphisms in C, and let IA be the
two-sided ideal generated by A. Then the following data defines a Ho(dgCat)-
enriched bicategory:

• The same set of objects as C.
• For any a, b ∈ C, the DG category of 1-morphisms from a to b is
C(a, b)/IA.
• For any a, b, c ∈ C, the 1-composition functor

◦1 : C(b, c)/IA ⊗C(a, b)/IA
β−1
Dr−−→ C(b, c)⊗C(a, b)/ (IA ⊗C,C⊗ IA)

◦old1−−→ C(a, c)/IA,

• The associator and unitor 2-isomorphisms in Ho(dgCat) which are sim-
ilarly obtained from the associator and unitor 2-isomorphisms of C via
the precomposition with β−1

Dr .
For example, for any a, b, c, d ∈ C, the quasi-functors ◦1(◦1 ⊗ id) and

◦1(id⊗◦1) :

C(c, d)/IA ⊗C(b, c)/IA ⊗C(a, b)/IA → C(a, d)/IA

are the composition of the quasi-functor β−1
Dr :

C(c, d)/IA ⊗C(b, c)/IA ⊗C(a, b)/IA →
C(c, d)⊗C(b, c)⊗C(a, b)/ (IA ⊗C⊗C,C⊗ IA ⊗C,C⊗C⊗ IA)

with the quasi-functors ◦old
1 (◦old

1 ⊗ id) and ◦old
1 (id⊗◦old

1 ):
C(c, d)⊗C(b, c)⊗C(a, b)/ (IA ⊗C⊗C,C⊗ IA ⊗C,C⊗C⊗ IA)

→ C(a, d)/IA.
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We thus define the new associator by precomposing the old associator with
β−1

Dr .

Proof. Shoikhet began his proof of [44, Theorem 5.4] by constructing a Le-
inster monoid FA in PdgCat out of a certain monoidal DG category A0 and the
two-sided ideal I0 of acyclic objects in it. His construction works exactly the same
for an arbitrary monoidal DG category A and an arbitrary two-sided ideal I in A.

In general, a Leinster monoid L• is a simplicial structure, generalising the
notion of an algebra in a monoidal category, cf. [44, Defn. 2.1]. It has colax maps
βm,n : Lm+n → Lm ⊗ Ln which are weak equivalences, and thus each Ln is weakly
equivalent to (L1)⊗n. The non-extremal face maps Ln → Ln−1 should be thought
of as analogues of applying the algebra operation to subsequent pairs of L1’s in
(L1)⊗n, and the degeneracy maps Ln → Ln+1 as applying the algebra unit in
between two subsequent L1’s. It follows that if the colax maps are not just weak
equivalences, but isomorphisms, we have a unital algebra structure on L1 whose
algebra operation is

L1 ⊗ L1

β−1
1,1−−→ L2

the unique non-extremal face−−−−−−−−−−−−−−−−−−→ L1

and whose unit is the degeneracy map 1 ∼= L0 → L1.
The colax maps of the Leinster monoid FA in PdgCat constructed by Shoikhet

are the identity maps and (FA)1 = (A; I). Applying the refined Drinfeld quotient
functor, we obtain Leinster monoid Dr(FA) in dgCat1 whose colax maps are the
quasi-equivalences βDr and (Dr(FA))1 = A/I. We then view it as a Leinster monoid
inHo(dgCat1). There its colax maps become invertible, and we obtain the induced
structure of unital algebra on A/I in Ho(dgCat1). This structure is the one
claimed in the assertion of this Theorem. Thus we have proved the Theorem for
an arbitrary monoidal DG category, i.e. a DG bicategory with a single object. The
proof for a general DG bicategory works identically, but with a more cumbersome
notation. �

Definition 4.35. Let C be a Ho(dgCat)-enriched bicategory. Let A be a
collection of 1-morphisms in C and IA be the two-sided ideal generated by A.
The monoidal Drinfeld quotient C/IA is the Ho(dgCat)-enriched bicategory con-
structed in Theorem 4.34.

We have a natural functor C→ C/IA which is a strict 2-functorial embedding:

Definition 4.36. Let C be a Ho(dgCat)-enriched bicategory. Let A be a
collection of 1-morphisms in C, and let IA be the two-sided ideal generated by A.
Define a strict 2-functor

ι : C ↪→ C/IA,

to be the identity on the objects. On 1-morphisms, for any a, b ∈ C define

ι : C(a, b)→ C/IA(a, b),

to be the natural inclusion of the category into its Drinfeld quotient

C(a, b) ↪→ C(a, b)/IA(a, b).

We can now formulate an analogue of Theorem 4.27 summarising the main
properties of our monoidal Drinfeld quotient:



4.6. MONOIDAL DRINFELD QUOTIENT 57

Theorem 4.37. Let C be a Ho(dgCat)-enriched bicategory. Let A be a col-
lection of 1-morphisms in C, and let IA be the two-sided ideal generated by A.
Then:

(1) For any a, b ∈ C, the following natural functor is an exact equivalence

Dc

(
C/IA(a, b)

)
→ Dc

(
C(a, b)

)/
Dc

(
IA(a, b)

)
.

(2) Let D be another Ho(dgCat)-enriched bicategory and let F : C → D be
a 2-functor. If F (IA) is null-homotopic in the 1-morphism categories of
D, then there exists a unique lift of F to a 2-functor F ′ : C/IA → D:

C D

C/IA.

F

ι ∃! F ′

Proof. (1): This is immediate from the corresponding result for ordinary
Drinfeld quotients.

(2): This is due to the 2-categorical unique lifting property of ordinary Drinfeld
quotients (Theorem 4.27), as follows:

The data of a 2-functor consists of a map of object sets, a collection of functors
between 1-morphisms categories and composition/unit coherence morphisms. Since
the embedding ι : C→ C/IA is the identity on object sets, the condition F = F ′ ◦ ι
completely determines the action of F ′ on objects. Next, let a, b ∈ C be any pair
of objects. Since

ιa,b : C(a, b) ↪→ C(a, b)/IA(a, b)

is the canonical embedding of a category into its Drinfeld quotient, and since, by
assumption, H0(Fa,b) kills IA(a, b), the quasifunctor

Fa,b : C(a, b)→ D(Fa, Fb),

lifts to a unique quasifunctor

F ′a,b : C(a, b)/IA(a, b)→ D(Fa, Fb),

such that F ′a,b ◦ ιa,b = Fa,b.
It remains to show that composition and unit coherence morphisms exist and

are unique. This is due to the lifting property in Theorem 4.27 being 2-categorical
in Ho(dgCat). We treat the composition coherence morphism below, the proof for
unit coherence is similar.

Let a, b, c ∈ C be objects. Consider the diagram

C(b, c)⊗C(a, b) C(a, c)

C(b, c)/IA(b, c)⊗C(a, b)/IA(a, b) C(a, c)/IA(a, c)

D(Fb, Fc)⊗D(Fa, Fb) D(Fa, Fc).

ιb,c⊗ιa,b

µC

ιa,c

F ′b,c⊗F
′
a,b

µC/IA

F ′a,c

µD

It follows from our definition of µC/IA that the top square commutes on the nose.
Indeed, this can be takes as an alternative definition of µC/IA sinceC(b, c)/IA(b, c)⊗
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C(a, b)/IA(a, b) is quasi-equivalent to C(b, c)⊗C(a, b)/(IA(b, c)⊗C(b, c),C(a, b)⊗
IA(a, b)) and thus enjoys its unique lifting property with respect to the quasi-
functors out of C(b, c)⊗C(a, b).

On the other hand, by our definition of F ′a,b and F
′
b,c it follows that the outer

perimeter of the above diagram composes to

C(b, c)⊗C(a, b) C(a, c)

D(Fb, Fc)⊗D(Fa, Fb) D(Fa, Fc).

Fb,c⊗Fa,b

µC

Fa,c

µD

The composition coherence morphism φF is a choice of a 2-morphism inHo(dgCat)
which makes this diagram commute. Since the lifting property of Drinfeld quotients
is 2-categorical, there exists a unique 2-morphism φ′F which makes the bottom
square in the first diagram commute, and composes with ιb,c ⊗ ιa,b to give φF . �

4.7. Homotopy Serre functors

Let A be a pretriangulated DG category. A homotopy Serre functor on A is
a quasi-autoequivalence S of A equipped with a closed degree zero A-A-bimodule
quasi-isomorphism

η : A → (SA)
∗
,

such that S and η induce a Serre functor on H0(A) in the sense of Section 2.1. Here
(−)∗ denotes the dualisation over k and S denotes the twist of the left A-action by
S. Explicitly, the data of η can be thought of as a collection of quasi-isomorphisms
natural in a, b ∈ A:

ηa,b : HomA(a, b) ∼= HomA(b, Sa)∗,

Since the k-dualisation (−)∗ commutes with taking cohomologies, the dual of
a quasi-isomorphism is a quasi-isomorphism. It also follows that the natural map

SA → (SA)
∗∗
.

is a quasi-isomorphism if A is proper. The composition

SA → SA∗∗
η∗−→ A∗,

is then also a quasi-isomorphism. By abuse of notation, we also denote it by η∗.

Lemma 4.38. Let A be a smooth and proper DG category. Then Hperf (A)
admits a homotopy Serre functor given by S = (−)⊗A A∗.

Proof. It was shown in [43] that S descends to a Serre functor on
H0(Hperf A) ∼= Dc(A). It remains to demonstrate that there is a quasi-isomorphism
η : Hperf (A)→ (SHperf (A))

∗. Since Serre functors are unique, such η would then
necessarily be a DG lift of the bifunctorial isomorphisms η of the Serre functor on
Dc(A).

We prove a more general statement. Let P ∈ Hperf (A) and Q be any DG
A-module. Consider the natural morphism functorial in P

P ⊗A Homk(A, k) −→ Homk

(
HomA(P,A), k

)
.

It is an isomorphism on representable P and hence a homotopy equivalence on
P ∈ Hperf (A). We thus obtain a bifunctorial homotopy equivalence

β : HomA
(
Q, P ⊗A Homk(A, k)

)
−→ HomA

(
Q, Homk(HomA(P,A), k)

)
.
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By Tensor-Hom adjunction, the RHS is canonically isomorphic to

Homk

(
Q⊗A HomA(P,A), k

)
,

and since P ∈ Hperf (A), the natural morphism Q⊗AHomA(P,A)→ HomA(P,Q)
is a homotopy equivalence. Thus β can be rewritten as a homotopy equivalence

η : HomA
(
Q, P ⊗A Homk(A, k)

)
−→ Homk

(
HomA(P,Q), k

)
,

or, in other words, as

η : HomA(Q, SP ) −→ HomA(P, Q)∗. �

Example 4.39. For X a smooth and proper scheme over k, the enhanced
derived category I(X) is smooth and proper, and hence admits a homotopy Serre
functor lifting the Serre functor on Db

coh(X) from Example 2.1.

As before, a homotopy Serre functor S induces a Serre trace map

Tr: HomA(a, Sa)→ k, α 7→ ηa,a(ida)(α) = ηa,Sa(α)(ida).

As in Proposition 2.4, we have

Tr(β ◦ α) = (−1)deg(α) deg(β) Tr(Sα ◦ β).

for any a, b ∈ A and any α ∈ HomA(a, b), β ∈ HomA(b, Sa).

4.8. G-equivariant DG categories for strong group actions

Let A be a small DG category with a strong action of a finite group G. That
is, with an embedding of G into the group of DG automorphisms of A.

Definition 4.40. The semi-direct product AoG is the following DG category:
• ObAoG = ObA,
• For any a, b ∈ Ob(AoG) their morphism complex is

Homi
AoG(a, b) :=

{
(α, g)

∣∣ α ∈ Homi
A(g.a, b), g ∈ G

}
with degAoG(α, g) = degA α and dAoG(α, g) = (dAα, g),
• The composition in AoG is given by

(α1, g1) ◦ (α2, g2) = (α1 ◦ g1.α2, g1g2).

• For any a ∈ Ob(AoG) the identity morphism of a is (ida, 1G).

One can think of this as taking A and formally adding for every object a ∈ A
a closed degree 0 isomorphism a→ g.a for every g ∈ G. We then impose relations:
these isomorphisms compose via the multiplication in G, and their composition
with the native morphisms of A is subject to the relations

(4.6) g ◦ α = g.α ◦ g ∀ g ∈ G,α ∈ A.

Therefore an action of A o G is equivalent to the action of A and an action of G
subject to (4.6). Here by action of G we mean the action of the above tautological
isomorphisms corresponding to the elements of G.

We have a natural embedding

η : A ↪→ AoG
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given by the identity on objects and α 7→ (α, idG) on morphisms. On the other
hand, the projections (α, g) = α ◦ g 7→ α and (α, g) = g ◦ g−1.α 7→ g−1α give rise
to the decompositions

(4.7) HomAoG(a, b) ∼=
⊕
g∈G

HomA(g.a, b) ∼=
⊕
g∈G

HomA(a, g−1.b).

We can think of these as decompositions of the diagonal bimodule:

(4.8) AoG ∼=
⊕
g∈G
Ag ∼=

⊕
g∈G

gA,

where g denotes the autoequivalence g : A → A. Both decompositions respect
the A-A-action and so the direct summands are themselves A-A-bimodules. The
induced right and left actions of any h ∈ G on the first decomposition are given by

Ag
id−→ Agh,

Ag
h.(−)−−−→ Ahg,

and similarly for the second decomposition.
The action of G on A induces the action of G onMod -A where each g ∈ G acts

via the extension of scalars functor g∗ with respect to the action functor g : A → A.
A G-equivariant A-module is a pair (E, ε) where E ∈Mod -A and ε = (εg)g∈G is a
collection of isomorphisms

εg : E
∼−→ g∗E g ∈ G

such that
εhg = E

εg−→ g∗E
g∗εh−−−→ g∗h∗E = (hg)∗E g, h ∈ G.

The DG category ModG -A has as its objects G-equivariant A-modules and as
its morphisms the morphisms between the underlying A-modules which commute
with the isomorphisms ψg. See [21, Section 2.1] for further details. The following
generalises the classical correspondence between representations of a group and
modules over the associated skew group algebra [35, Chapter 5, Remark 5.56]:

Lemma 4.41. There are mutually inverse isomorphisms of categories

Mod -(AoG) �ModG-A.

Proof. Given a G-equivariant A-module (E, ε) we can extend the action of
A on E to the action of A o G by having g act by εg : Ea → Eg−1.a = (g∗E)a.
Conversely, given a A o G-module E we can define a G-equivariant structure on
the A-module η∗E by defining εg to be the action of g. These operations are
functorial and mutually inverse. �

Generalizing the setting from Section 3.5, for any subgroup H ⊂ G there is a
functor

ι : AoH → AoG

given by the identity on objects, and by the identity times the inclusion on mor-
phisms. This functor induces restriction and induction functors

ResHG := ι∗ : Mod -(AoG)→Mod -(AoH),

IndGH := ι∗ : Mod -(AoH)→Mod -(AoG).
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From the viewpoint of equivariant modules, the restriction functor can be writ-
ten as

ResHG : ModG-A → ModH-A(
E, (εg)g∈G

)
7→

(
E, (εg)g∈H

)
on objects and as the identity on morphisms. Similarly, the induction functor is

IndGH : ModH-A → ModG-A(
E, (εh)h∈H

)
7→
(⊕

[f ]∈G/H
f∗E, (εg)g∈G

)
on objects where for every g ∈ G

εg :
⊕

[f ]∈G/H
f∗E →

⊕
[f ′]∈G/H

g∗f ′∗E

maps the f -permuted component in the domain to the gf ′-permuted component in
the target via f∗εh when [f ] = [gf ′] ∈ G/H and h ∈ H is such that gf ′ = fh. A
similar formula applies to morphisms.

For us actions by symmetric groups, and in particular symmetric powers of
categories, will be of interest. The n-fold tensor power A⊗n of a DG category A
has as objects n-tuples a1 ⊗ · · · ⊗ an of objects of A and has morphism complexes

HomA⊗n (a1 ⊗ · · · ⊗ an, b1 ⊗ · · · ⊗ bn) := HomA(a1, b1)⊗k · · · ⊗k HomA(an, bn).

We therefore have a natural strong action of the symmetric group Sn on A⊗n by
permuting the factors of objects and the factors of morphisms.

Definition 4.42. Let A be an enhanced triangulated category. We define
SnA, the n-th symmetric power of A, to be the semidirect product A⊗n o Sn.

The corresponding triangulated category is Dc(SnA) ∼= H0
(
Hperf (SnA)

)
. We

have
Mod(SnA) ∼=ModSn(A⊗n)

by Lemma 4.41. It follows from the decomposition (4.7) that this further restricts
to

Hperf (SnA) ∼= Hperf Sn(A⊗n),(4.9)

where Hperf Sn(A⊗n) is the full subcategory ofModSn(A⊗n) consisting of the equi-
variant modules which are perfect in Mod(A⊗n) after forgetting the equivariant
structure. Since Hperf Sn(A⊗n) was the definition of the completed n-th symmetri-
cal power ŜnA of A in [21, Section 2.2.7], that category is equivalent to the Hperf
hull of our SnA. This discrepancy is due to us working in the Morita enhancement
setting, where to pass to the underlying triangulated category one first takes the
Hperf hull, and then its homotopy category.

4.9. The numerical Grothendieck group and the Heisenberg algebra of
a DG category

Consider a smooth and proper DG category V. The Grothendieck group of V,
K0(V) = K0(Dc(V)),

comes equipped with the Euler (or Mukai) pairing〈
[a], [b]

〉
χ

:= χ
(
HomHperf V(a, b)

)
=
∑
n∈Z

(−1)n dim Homn
Dc(V)(a, b).
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Example 4.43. The Euler pairing is in general neither symmetric nor anti-
symmetric. A simple example is given by the Grothendieck group of K0(P1) =
K0(Db

coh(P1)). It has a semiorthogonal basis given by the classes {[O], [O(1)]} for
which the matrix of χ is (

1 2
0 1

)
This matrix is clearly not diagonalisable over the integers.

Proposition 4.44. Let V be a smooth and proper DG category.
(1) For every pair of objects a, b of Dc(V),〈

[a], [b]
〉
χ

=
〈
[b], [Sa]

〉
χ

=
〈
[S−1b], [a]

〉
χ
,

where S is the Serre functor on Dc(V).
(2) The left and right kernels of χ agree.

Proof. This is Lemma 4.25 and Proposition 4.24 of [48]. �

The numerical Grothendieck group Knum
0 (V) of a smooth and proper DG cate-

gory V is K0(V)/ ker(χ). We further set Knum
0 (V, k) := Knum

0 (V)⊗Z k.

Proposition 4.45 ([50, Theorem 1.2], [49, Theorem 1.2]). The numerical
Grothendieck group Knum

0 (V) of a smooth and proper DG category V is a finitely
generated free abelian group.

As χ is non-degenerate and integral on Knum
0 (V), we call the pair (Knum

0 (V), χ)
the Mukai lattice of V.

Example 4.46. For V = I(X), where X is smooth and projective, the Euler
form can be computed by Hirzebruch–Riemann–Roch theorem (see, for example,
[11, Section 6.3]):

χ
(
Hom(a, b)

)
= χ(a∨ ⊗ b) =

∫
X

ch(a∨ ⊗ b) · td(TX).

This implies that the kernel of χ equals the kernel of the Chern character map to
Chow groups tensored with Q.

Definition 4.47. Let V be a smooth and proper DG category. We write HV
for the idempotent modified Heisenberg algebra H(Knum

0 (V), χ). The corresponding
Fock space representation is denoted by FV .

Example 4.48. For V = I(P1) as in Example 4.43, χ is nondegenerate and its
Smith normal form is the unit 2× 2 matrix Id2. Therefore,

HI(P1)
∼= HZ2,Id2

= HI(pttpt)

by Corollary 2.6.

Lemma 4.49. Let A, B be smooth and proper DG categories, and let F : A →
B be a DG functor. Then F ∗ : D(A) → D(B) and F∗ : D(B) → D(A) preserve
compactness and induce

F ∗ : Knum
0 (A)→ Knum

0 (B),

F∗ : Knum
0 (B)→ Knum

0 (A).
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Proof. As explained in 4.2.3, for any A and B, not necessarily smooth or
proper, the extension of scalars functor F ∗ : Mod -A →Mod -B always restricts to
a functor Hperf (A)→ Hperf (B). Thus its derived functor preserves compactness.

We now show that F∗ : Mod -B → Mod -A restricts to Perf (A) → Perf (B),
whence its derived functor preserves compactness. As F∗ is tensoring with the B-A-
bimodule BF , it suffices to show BF to be A-perfect [1, Prop. 2.14]. Let b ∈ B. For
an A-module bBF to be perfect it suffices, since A is smooth, for it to be k-perfect
[1, Cor. 2.15]. In other words, for any a ∈ A the total cohomology of the k-module
bBFa has to be finite. This holds since B is proper.

The remaining assertions now follow by adjunction of F ∗ and F∗. Indeed, for
any a ∈ Dc(A) and for any b ∈ Dc(B) we have

χ(F ∗(a), b) =
∑

(−1)i dim Homi
Dc(B)(F

∗(a), b)

=
∑

(−1)i dim Homi
Dc(A)(a, F∗(b)) = χ(a, F∗(b)).

Thus F ∗ and F∗ take kerχ to kerχ and so induce maps of numerical Grothendieck
groups. �





CHAPTER 5

The DG Heisenberg 2-category

Let V be any smooth and proper DG category. We fix this choice throughout the
rest of the paper. Now, recall from Section 4.4 that we work with DG categories up
to Morita equivalence, viewing them as enhanced triangulated categories. Replace
therefore V by its perfect hull Hperf V. This doesn’t change the Morita equivalence
class of V. However, it ensures that V is homotopy direct summand complete and
admits a homotopy Serre functor. Note that, as explained in Section 4.7, any
homotopy Serre functor S induces a Serre trace map Tr: HomV(a, Sa)→ k for any
a ∈ V.

In this section we define a Ho(dgCat)-enriched bicategory HV , the Heisenberg
category of V. This category is a monoidal Drinfeld quotient of the perfect hull of a
simpler strict DG 2-category H′V which we set up in the following paragraphs. We
take the Drinfeld quotient to impose certain relations in HV which we only expect
to hold on the level of homotopy categories, unlike the relations we impose on H′V
which must hold on the DG level.

5.1. The category H′V : generators

The objects of H′V are the integers N ∈ Z.
As in the additive setting of Chapter 3, we have 1-morphisms labeled Qa for

a ∈ V. However, as we have only a homotopy Serre functor, we need to more
carefully distinguish between the left and right duals of Qa. The 1-morphisms are
therefore freely generated by

• Pa : N → N + 1,
• Qa : N + 1→ N ,
• Ra : N → N + 1,

for each a ∈ V and N ∈ Z. Thus the objects of HomH′V
(N,N ′) are finite words in

the symbols Pa, Qa, and Ra with a ∈ V, such that the difference of the number of
Ps and Rs and the number of Qs is N ′−N . The identity 1-morphism of any N ∈ Z
is denoted as 1.

The 2-morphisms between two 1-morphisms form a complex of vector spaces.
These vector spaces are freely generated by the generators listed below, subject to
the axioms of a (strict) DG 2-category as well as the relations we detail in the next
section. As before, we represent these 2-morphisms as planar diagrams, using the
same sign rules as in Remark 3.1. We recall that diagrams are read bottom to top,
i.e., the source of a given 2-morphism lies on the lower boundary, while the target
lies on the upper boundary.

65
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We now list the generating 2-morphisms. For every α ∈ HomV(a, b) there are
arrows

Pa

α

Pb

,

Qa

α

Qb
,

Ra

α

Rb

.

These 2-morphisms are homogeneous of degree |α|. The remaining generators listed
below are all of degree 0. By convention a strand without a dot is the same as one
marked with the identity morphism. Any such unmarked string is an identity 2-
morphism in H′V . The identity 2-morphisms of the 1-morphisms 1 are usually
pictured by a blank space.

For every a ∈ V, there is a special arrow marked with a star:

(5.1)

PSa

Ra

.

Furthermore, for any objects a, b ∈ V there are cups and caps

Pa

1

Qa

,

Ra

1

Qa

,
Qa

1

Ra
,

Qa

1

Pa
,

as well as crossings of two downward strands:

(5.2)

Qa

Qa

Qb

Qb

We recall again the sign convention for reading planar diagrams from Re-
mark 3.1. As before, we often “prettify” diagrams by smoothing them out.

We give each 2-morphism space a DG structure. With the grading defined
above, it remains to define the differential. If f is a single strand with one dot
labelled α, then d(f) is the same diagram with the label replaced by d(α). In
particular, the differential of a strand labelled with the identity is d(id) = 0. The
differentials of the remaining generating 2-morphisms — the caps, the cups, the
crossings, and the star — are zero. The differential of a general 2-morphism is then
determined by the following graded Leibniz rules for 1- and 2-compositions. These
follow from the definition of a DG bicategory:

• d(h ◦1 g) = d(h) ◦1 g + (−1)|h|h ◦1 d(g),
• d(h ◦2 g) = d(h) ◦2 g + (−1)|h|h ◦2 d(g).
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For convenience, we define four further types of strand crossings from the basic
one in (5.2) by composition with cups and caps:

Pa

PaQb

Qb

:=

Pa

PaQb

Qb

,

Qa

QaRb

Rb

:=

Qa

QaRb

Rb

,

Pa

PaPb

Pb

:=

Pa

PaPb

Pb

,

Ra

RaRb

Rb

:=

Ra

RaRb

Rb

.

(5.3)

5.2. The category H′V : relations between 2-morphisms

In the preceding subsection we gave the list of the generating symbols for 2-
morphisms. We obtain all 2-morphisms in H′V 1- and 2-compositions of these
symbols, subject to the axioms of a strict DG 2-category and a list of relations we
impose in this section.

First, we impose the linearity relations:

(5.4) α + β = α+ β c α = cα

for any scalar c ∈ k and any compatible orientation of the strings.
Neighboring dots along a downward string can merge with a sign twist:

(5.5) α
β = (−1)|α||β| β ◦ α .

A dot can swap with a star according to the following rule:

(5.6) α =
Sα

.

Dots may “slide” through the generating cups and crossing as follows:

(5.7)

Pa

α

Qb

=

Pa

α

Qb Qb

α

Ra

=

Qb

α

Ra

(5.8)
α

=
α
.

Note that when drawing diagrams, dots need to keep their relative heights when do-
ing these operations in order to avoid accidentally introducing signs (cf. Remark 5.2
below).
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There are two sets of local relations for unmarked strings: the adjunction rela-
tions

(5.9) = =

and the symmetric group relations on downward strands

(5.10) = =

Finally there are three relations involving a star-marked string

(5.11)

Qa

QSa

= 0, α = Tr(α),

where α ∈ HomV(a, Sa), and

(5.12)

PSa

Ra Qb

Qb

=

PSa

Ra

Qb

Qb

.

The relations (5.11) are the analogues of the relations (3.9). As leftward caps
involve an R but rightward cups involve a P, a star needs to be added between
the two. Similarly, to get a consistent diagram a star must appear in both sides of
(5.12), the analogue of the left relation from (3.10).

We do not have an equivalent of the right relation in (3.10) because to define
the map Ψ we need the natural isomorphism Hom(b, Sa) ∼= Hom(a, b)∗ afforded to
us by the genuine Serre functor. In the present DG setup we only have a homotopy
Serre functor which only gives us a natural homotopy equivalence Hom(b, Sa) →
Hom(a, b)∗, but not its natural inverse. We can’t therefore define the map Ψ.
More spefically, of the two composants ψ1 and ψ2 of the term Ψ(id) described after
Remark 3.9 in Section 3.3 we have ψ2, but not ψ1. However, the two relations in
(3.9) and the left relation in (3.10) together are equivalent to the map

QaPb

[
, ψ1

]
−−−−−−−→ PbQa ⊕

(
Hom(a, b)⊗k 1

)
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being the left inverse of the map

PbQa ⊕
(
Hom(a, b)⊗k 1

) [ , ψ2

]
−−−−−−−→ QaPb,

while the right relation in (3.10) is equivalent to it being the right inverse.
Thus, having imposed the equivalents of the two relations in (3.9) and the left

relation in (3.10), to have the equivalent of the right relation in (3.10) we only need
the map

[
, ψ2

]
be a homotopy equivalence. We impose it in Section 5.4 by

taking the Drinfeld quotient by its cone.

5.3. Remarks on the 2-morphism relations in H′V

Let us remark on some of the above relations for 2-morphisms and their con-
sequences.

Remark 5.1. The reader familiar with the categorifications of Khovanov and
Cautis–Licata [31, 13] or the classical Heisenberg algebra might find the appearance
of the third type of 1-morphisms, i.e. Ra, confusing. In the Fock space representation
constructed in Chapter 7, the 1-morphism Qa is sent to a pushforward functor φa,∗,
while Pa and Ra are sent to the left adjoint φ∗a and right adjoint φ!

a respectively. In
H′V this is expressed by the relations (5.9) which state that there are adjunctions
of 1-morphisms (Pa, Qa) and (Qa, Ra) for any a ∈ V.

Up to homotopy, the Serre functor lets us switch between left and right adjoints:
φ∗Sa and φ!

a are identified in the homotopy category (note that in Khovanov’s case
the Serre functor is trivial, while in the Cautis–Licata setting it is a shift by 2,
see Examples 5.9 and 5.10). However, on the DG level, there is only a canonical
natural transformation φ∗Sa → φ!

a. This natural transformation is represented by
the starred arrow (5.1). In Section 5.4, we take the Drinfeld quotient by this arrow,
forcing it to be an isomorphism on the homotopy level.

Remark 5.2. Since composing with the identity on either side doesn’t change
2-morphisms, dots may freely “slide along” straight strands as long as the relative
height of all dots is kept the same. The interchange law introduces a sign when two
dots slide past each other:

(5.13) α · · · β
= (−1)|α||β|

α · · ·
β .

The axioms governing the differential in a DG 2-category are compatible with this
super-commutativity:
(5.14)

d

(
α

β

)
= α

dβ
+(−1)|β|

dα
β = (−1)|α||β|d

(
α

β

)
In particular, it does not matter which dot one “moves” to the bottom of the
diagram.

Lemma 5.3. Dots on upward strands merge without a sign change:

α
β = β ◦ α
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Proof. The same proof as in Lemma 3.4 applies. �

The sign rules also imply that merging of dots is compatible with the graded
Leibniz rules for V and HomH′V

(N,N ′). See (5.14) and note that in V we have:

d(β ◦ α) = d(β) ◦ α+ (−1)|β|β ◦ d(α).

Lemma 5.4. Dots may freely slide through cups, caps and all types of crossings:

Qa
α

Pb
=

Qa
α

Pb Rb
α

Qa
=

Rb
α

Qa

α
=

α

α
=

α
.

Proof. The same proof as in Lemma 3.3 applies. �

Lemma 5.5. The following relations hold in H′V for all objects a, b, c ∈ V.
(1) All allowed pitchfork relations:

Pa QaQb

=

Pa QaQb Pa QaPb

=

Pa QaPb

Qa RaQb

=

Qa RaQb Qa RaRb

=

Qa RaRb

Qa PaQb

=

Qa PaQb Qa PaPb

=

Qa PaPb

Ra QaQb

=

Ra QaQb Ra QaRb

=

Ra QaRb

(2) All counterclockwise curls vanish:

Ra QSa

= 0,

RSa

Ra

= 0,

PSa

Pa

= 0,

PSa Qa

= 0.

(3) The symmetric group relations on upward strands of the same type:

Pa Pb

=

Pa Pb Pa Pb Pc

=

Pa Pb Pc
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Ra Rb

=

Ra Rb Ra Rb Rc

=

Ra Rb Rc

(4) The remaining allowed triple moves:

Pa Pb Qc

=

Pa Pb Qc Pa Qb Qc

=

Pa Qb Qc

Qa Rb Rc

=

Qa Rb Rc Qa Qb Rc

=

Qa Qb Rc

Proof. These are proved similarly to Lemmas 3.6, 3.7, 3.8 and 3.11. One
notes that the more complicated proof of Lemma 3.10 is not needed, as we do not
require the left and right mates of the downward crossing to coincide. �

5.4. The category HV : the perfect hull and homotopy relations

We construct the Heisenberg category HV out of category H′V in two steps.
First, we apply Definition 4.22 to form the perfect hull Hperf(H′V). This is no
longer a strict 2-category, but a bicategory. It has the objects of H′V , but the
1-morphism categories are replaced by their perfect hulls. In particular, they are
strongly pre-triangulated and homotopy Karoubi-complete.

The pre-triangulated structure we obtain on 1-morphism categories of
Hperf(H′V) allows us to formulate the final relations we need to impose. Roughly,
these postulate that certain 2-morphisms are isomorphisms in the homotopy cate-
gory.

Let a, b ∈ V. Since V is proper, HomV(a, b) has finite dimensional cohomology
and thus is a perfect DG k-module. Hence for any 1-morphism E ∈ H′V the tensor
product HomV(a, b)⊗k E lies in Hperf(H′V). Indeed, since any complex of vector
spaces is homotopy equivalent to the direct sum of its cohomologies HomV(a, b)⊗kE
is homotopy equivalent to

⊕
iH

i(HomV(a, b))⊗kE which is a direct sum of a finite
number of copies of E.

Similar to (3.11), we have the natural 2-morphism

ψ2 : HomV(a, b)⊗k 1→ QaPb

in Hperf(H′V) obtained by adjunction from the map of complexes of vector spaces

ψadj
2 : HomV(a, b)→ HomHperf(H′V)(1, QaPb)

β 7→ β .
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We no longer have its counterpart ψ1 as we do not have a map

HomV(a, b)∨ → HomV(b, Sa).

The map ψadj
2 is closed of degree 0 since for any β ∈ HomV(a, b) we have

dψadj
2 (β) = dHomHperf(H′V )(1, QaPb)

(
ψadj

2 (β)
)
− ψadj

2

(
dHomV(a,b)β

)
= d

(
β
)
− dβ = 0.

Therefore the map ψ2 is also closed of degree 0.
Together with a crossing, ψ2 induces a natural degree zero closed 2-morphism

(5.15) PbQa ⊕
(
Hom(a, b)⊗k 1

) [ , ψ2

]
−−−−−−−→ QaPb,

and on the homotopy level, where ψ1 does exist, we would like (5.15) to be an
isomophism.

Secondly, in the homotopy category of V, the functor S becomes an actual Serre
functor. In terms of the graphical calculus, this means that on the homotopy level
we would like

(5.16) PSa −→ Ra

to be isomorphisms for all a ∈ V.
We therefore take the monoidal Drinfeld quotient (see Definition 4.35) of

Hperf(H′V) by the cones of (5.15) and (5.16). This produces a Ho(dgCat)-
enriched bicategory where (5.15) and (5.16) are homotopy equivalences:

Definition 5.6. The Heisenberg category HV of V is the Drinfeld quotient of
the h-perfect hull of H′V by the two-sided ideal generated by the 1-morphisms

Cone

(
PSa −→ Ra

)

Cone

(
PbQa ⊕

(
Hom(a, b)⊗k 1

) [ , ψ2

]
−−−−−−−→ QaPb

)
for all a, b ∈ V.

The graded homotopy categoryH∗(A) of a DG categoryA is defined to have the
same objects as A and morphism spaces HomH∗(A)(a, b) =

⊕
i∈Z H

i(HomA(a, b)).
The graded homotopy category H∗(HV) of HV is similarly defined by replacing
the 1-morphism categories with their graded homotopy categories. In particular,
each HomH∗(HV)(N,N

′) is a Karoubian category. In H∗(HV) one no longer has to
distinguish between the 1-morphisms P and R and thus one recovers the formalism
of Chapter 3, including the labels on cups and caps.

Lemma 5.7. Relations (3.10) hold in H∗(HV).

Proof. The left-hand relation is just (5.12) after identifying Ra with PSa and
relabeling.
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Relations 5.11 and (5.12) together with the curl relations of Lemma 5.5 show
that[

ψ1

]
◦
[

, ψ2

]
: PbQa ⊕

(
Hom(a, b)⊗k 1

)
→ PbQa ⊕

(
Hom(a, b)⊗k 1

)
is the identity. Since in H∗(HV) the 2-morphism (5.15) is an isomorphism, the
other composition[

, ψ2

]
◦

[
ψ1

]
= + Ψ(id) : QaPb → QaPb

is also the identity, as required. �

Corollary 5.8. There exists a canonical 2-functor

Hadd
H∗(V) → H∗(HV).

Proof. As all relations in Hadd′
H∗(V) are satisfied in H∗(HV), there exists a

canonical functorHadd′
H∗(V) → H∗(HV). Taking Karoubi completion gives the desired

functor. �

Example 5.9. Let V = k, the field k considered as a single-object DG category
concentrated in degree 0. The Serre functor S on V is the identity. We have
V = H∗(V), the additive construction Hadd

V is Khovanov’s categorification of the
infinite Heisenberg algebra [31], and the 2-functor from Corollary 5.8 is a fully
faithful embedding of graded 2-categories. In the DG construction we take the
perfect hulls of the categories of 1-morphisms, so the 1-morphisms in H∗(HV)
are not only words in P and Q and their idempotents, but also finite complexes
thereof. The category HV is hence a DG enhanced triangulated hull of Khovanov’s
categorification. The isomorphism (5.15) in H0(HV) recovers the defining relation
with central charge k = −1 from [10, (1.5)], which was shown to be an alternative
of Khovanov’s presentation. We expect that our construction has analogues for
central charges k 6= −1.

Example 5.10. Consider a finite subgroup Γ of SL(2,C) with corresponding
simple surface singularity Y = A2/Γ and minimal resolution X. Let I(X) be the
DG enhanced bounded derived category of coherent sheaves on X. For V the full
subcategory of I(X) consisting of sheaves supported on the exceptional divisor E,
the category HV is a DG enhancement of the category HΓ introduced by Cautis–
Licata [13, Section 6].

Indeed, the exceptional divisor E decomposes into (−2)-curves Ei labeled by
the non-trivial irreducible representations of Γ. Let IΓ be the vertices of the McKay
quiver of Γ. Denote by 0 the vertex corresponding to the trivial representation. For
i ∈ IΓ define

Ei =

{
OE [−1] if i = 0

OEi(−1) otherwise.

The generators Pi and Qi of HΓ for i ∈ IΓ correspond in H∗(HV) to 1-morphisms
PEi and QEi [1], respectively. As X is Calabi–Yau, its Serre functor is [2]. Thus the
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shifts chosen above reproduce the grading on turns defined in [13, Section 6.1]:

Pi

id[1]

Qi
,

Pi

id[−1]

Qi
,

Qi

id[−1]

Pi ,
Qi

id[1]

Pi ,

One has

(5.17) Hom∗(Ei, Ej) =


C⊕ C[−2], i = j

C[−1], |i− j| = 1

0, otherwise.

Thus a dot on a 2-morphism in HΓ corresponds to a basis vector of either C[−2] or
C[−1]. Picking such a basis, one obtains a 2-functor

HΓ → H∗(HV)

factoring through the 2-functor Hadd
H∗(V) → H∗(HV) of Corollary 5.8.

Equivalently by [29, Theorem 2.3], instead of the sheaves Ei, one could use the
irreducible representations Vi of Γ considered as skyscraper sheaves at the origin
on the quotient stack [A2/Γ]. In this setting one works in the ambient category
I([A2/Γ]), see also Example 7.16.



CHAPTER 6

Structure of the Heisenberg Category

In this section we deduce a number of properties of the Heisenberg category
and we investigate its relationship with the classical Heisenberg algebra.

6.1. The Heisenberg commutation relations: DG level

As observed in Remark 3.9, the symmetric group relations (5.10) give us a
canonical morphism k[Sn] → End(Qna). Similarly, by Lemma 5.5 there are mor-
phisms to End(Pna) and End(Rna). Endomorphisms in the image of these maps are
made up of unlabelled strands, thus they are closed and of degree 0.

Remark 6.1. The homomorphisms k[Sn] → End(Pna) vary in a family over
V⊗n. That is, there exist natural functors

Ξ′PN,N+n : SnV → HomHV (N, N + n),

where SnV := V⊗n o Sn is the semi-direct product of Definition 4.40. On objects
Ξ′PN,N+n is given by

Ξ′PN,N+n(a1 ⊗ · · · ⊗ an) = Pa1 · · ·Pan
and on morphisms by sending

(α1 ⊗ · · · ⊗ αn, σ) for αi ∈ HomV(aσ−1(i), bi), σ ∈ Sn
to the braid corresponding to σ followed by parallel vertical strands dotted with
α1, . . . , αn:

Pa1

αn−1

Pbn−1

Pa2

αn

Pbn

Pan

α1

Pb1

· · ·

· · ·

Similarly, we have canonical functors Ξ′RN,N+n sending a1 ⊗ · · · ⊗ an to Ra1 · · ·Ran
and contravariant functors Ξ′QN,N+n sending a1 ⊗ · · · ⊗ an to Qa1 · · ·Qan .

We can further let N and n vary by defining a 2-category SymV with objects
N ∈ Z, 1-morphism categories HomSymV (N, N + n) = SnV and 1-composition
given by the functors Sn1V ⊗ Sn2V → Sn1+n2V induced by Sn1

× Sn2
↪→ Sn1+n2

.
We then have a natural functor ΞP : Hperf(SymV)→ HV and similarly for Q and
R.

Let
e := etriv :=

1

n!

∑
σ∈Sn

σ ∈ k[Sn]

75
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be, as in Section 3.4, the symmetriser idempotent in k[Sn]. Where we work with
no other idempotents of k[Sn] and no confusion is possible, we use the shorter
notation e for etriv. Denote its image under any of the above maps again by e. The
maps e are (strict) idempotent endomorphisms of Pna , Qna and Rna respectively, and
hence split in H∗(HV). A standard construction gives natural representatives of
the corresponding homotopy direct summands.

Definition 6.2. Let P
(n)
a , Q(n)

a and R
(n)
a be the convolutions of the twisted

complexes

P(n)
a :=

{
. . .

e−→ Pna
1−e−−→ Pna

e−→ Pna
1−e−−→ Pna

deg. 0

}
,

Q(n)
a :=

{
. . .

e−→ Qna
1−e−−→ Qna

e−→ Qna
1−e−−→ Qna

deg. 0

}
,

R(n)
a :=

{
. . .

e−→ Rna
1−e−−→ Rna

e−→ Rna
1−e−−→ Rna

deg. 0

}
.

These are h-projective and perfect modules over the 1-morphism categories of H′V .
They are h-projective since bounded above complexes of representable modules are
semifree. They are perfect since in the homotopy categories they are the direct sum-
mands of Pna , Qna , and Rna defined by the idempotents e. Thus, being h-projective
and perfect, these modules define 1-morphisms of HV which we also denote by P

(n)
a ,

Q
(n)
a and R

(n)
a .

We can now state the main result of this section:

Theorem 6.3.
(1) For any a, b ∈ V and n,m ∈ N the following holds in HV :

P(m)
a P

(n)
b
∼= P

(n)
b P(m)

a , Q(m)
a Q

(n)
b
∼= Q

(n)
b Q(m)

a .

(2) For any a, b ∈ V and n,m ∈ N there exists a homotopy equivalence in HV

(6.1)
min(m,n)⊕
i=0

Symi HomV(a, b)⊗k P
(n−i)
b Q(m−i)

a → Q(m)
a P

(n)
b ,

and thus the following holds in H∗(HV):

Q(m)
a P

(n)
b
∼=

min(m,n)⊕
i=0

Symi HomH∗(V)(a, b)⊗k P
(n−i)
b Q(m−i)

a .

Remark 6.4. Dually, one can formulate a version of Theorem 6.3, using the
1-morphisms R instead of P. That is, one has isomorphisms

R(m)
a R

(n)
b
∼= R

(n)
b R(m)

a

and a homotopy equivalence 2-morphism

(6.2) Q(m)
a R

(n)
b →

min(m,n)⊕
i=0

Symi HomV(b, a)∗ ⊗k R
(n−i)
b Q(m−i)

a .

In the graded homotopy category, identifying HomH∗(V)(b, a)∗ with
HomH∗(V)(a, Sb) and Rb with PSa identifies (6.2) with (6.1).
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Remark 6.5. The appearance of the symmetric powers of HomV(a, b) is related
to the following observation. Since σe = e = eσ for any σ ∈ Sn, one sees that any
crossings of parallel strands can be absorbed into the symmetrisers. In particular,
for α, β ∈ Hom(a, b) one has

P
(2)
b

P
(2)
a

α

β
=

P
(2)
b

P
(2)
a

α
β

=

P
(2)
b

P
(2)
a

α
β

=

P
(2)
b

P
(2)
a

α
β

= (−1)|α|·|β|

P
(2)
b

P
(2)
a

α

β

.

Thus i parallel strands are naturally labeled by elements of Symi HomV(a, b) (using
the Koszul sign convention as always).

In the remainder of this subsection we set up the maps occurring in Theorem 6.3
and prove the relations in Theorem 6.3(1) which hold on the DG level. In the next
subsection we prove the relation in Theorem 6.3(2) which holds on the homotopy
level.

We begin with several remarks detailing some DG 2-morphisms between P(n)s,
Q(n)s and R(n)s which can be induced from those between Pns, Qns and Rns:

Remark 6.6. We have the canonical 2-morphisms defined by e on degree 0
terms:

Pna
e−→ P(n)

a
e−→ Pna ,

Any 2-morphism in or out of Pna induces via pre- or postcomposition a 2-morphism
in or out of P(n)

a .
In the homotopy category, where as in any triangulated category all idempo-

tents are split, P(n)
a is a direct summand of Pna . The canonical 2-morphisms above

become the morphisms of inclusion of and projection onto this direct summand.
Thus, pre- or postcompositions with them are DG equivalents of taking the com-
ponent corresponding to this direct summand.

The same holds for Qs, Rs, and any 1-composition of these.

Remark 6.7. Let α : Pna → Pna in H′V . Recall that when illustrating maps
of twisted complexes we only draw their non-zero components. In the homotopy
category Pna splits as P

(n)
a ⊕ P

(n)
a , where P

(n)
a is the complement summand. By

Remark 6.6, the 2-morphism

eαe :=

. . . Pna Pna Pna Pna

. . . Pna Pna Pna Pna .

e 1−e e 1−e

eαe

e 1−e e 1−e

gives in the homotopy category the P
(n)
a → P

(n)
a component of α. Note, that so

does

αe :=

. . . Pna Pna Pna Pna

. . . Pna Pna Pna Pna .

e 1−e e 1−e

αe

e 1−e e 1−e
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However on the DG level αe contains extra information. Indeed, both mor-
phisms are defined by a map of twisted complexes with a single component
Pna → Pna . These two maps Pna → Pna , αeα and αe, are different even in the
homotopy category: eαe has a single component P(n)

a → P
(n)
a , while αe also has a

P
(n)
a → P

(n)
a component.

If α supercommutes with e we have another 2-morphism P
(n)
a → P

(n)
a given by

α̃ :=

. . . Pna Pna Pna Pna

. . . Pna Pna Pna Pna .

e 1−e

α

e

α

1−e

α α

e 1−e e 1−e

It is homotopic to αe and thus to eαe: consider the degree −1 twisted complex
map comprising degree i → (i − 1) components given by α. As operations on α,
both preserve the degree and commute with the differential. In particular, if α is
closed of degree 0, so are αe and α̃.

When α is an image of some σ ∈ Sn under ΞP, it commutes with e because in
k[Sn]

σe = e = eσ.

Hence σ̃ is well defined and homotopic to eσe = e. Thus, all σ̃ are homotopic to
id = ĩd.

Similar considerations apply to a 1-composition of several powers of Ps. Let
σ ∈ Sm and let α be a 2-morphism

α : Pn1
a1P

n2
a2 . . .P

nm
am → P

nσ(1)
aσ(1)P

nσ(2)
aσ(2) . . .P

nσ(m)
aσ(m)

.

If α supercommutes with the symmetriser e of each Pniai , then we have a map

α̃ : P(n1)
a1 P(n2)

a2 . . .P(nm)
am → P

(nσ(1))
aσ(1) P

(nσ(2))
aσ(2) . . .P

(nσ(m))
aσ(m)

defined by the twisted complex map comprising degree i → i components
∑
α.

Note that P(n1)
a1 P

(n2)
a2 . . .P

(nm)
am is the product of the twisted complexes defining each

individual P(nj)
aj and thus a twisted complex whose degree i element is the direct sum⊕

i1+···+in=i P
n1
a1P

n2
a2 . . .P

nm
am where the multi-index (i1, . . . , in) gives the degrees in

each twisted complex of the product where each P
(nj)
aj comes from. By

∑
α above

we mean the map sending each (i1, . . . , in)-indexed summand of the source to the
(i1, . . . , in)-indexed summand of the target via α. In the simple case when σ = id
and α = α1α2 . . . αn with αi : Pniai → Pniai we get α̃ = α̃1 . . . α̃n.

Now, let n =
∑m
i=0 ni, let φ : Sm ↪→ Sn be the embedding of Sm as the

permutation group of ni-tuples of elements, and let Sn1
× · · · × Snm ≤ Sn be the

subgroup of permutations which respect the partition (n1, . . . , nm). If ρ ∈ Sn is
such that ΞP(ρ) is a morphism

Pn1
a1P

n2
a2 . . .P

nm
am → P

nσ(1)
aσ(1)P

nσ(2)
aσ(2) . . .P

nσ(m)
aσ(m)

,

then ρ = φ(σ)τ for some

τ = (τ1, . . . , τm) ∈ Sn1
× · · · × Snm .

Indeed, by its definition the 2-morphism ΞP(ρ) has only unmarked strings which can
only go from Pai to Pai and not some other Paj . Thus ρ must send each ni-tuple in
the partition (n1, . . . , nm) of n, in some order, to the corresponding ni = nσ(σ−1(i))-
tuple in the permuted partition (nσ(1), . . . , nσ(m)). Thus doing ρ is the same as
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individually permuting the elements of each ni-tuple by some τ ∈ Sn1
× · · · × Snm

and then doing φ(σ) to permute the ni-tuples.
Now, τ commutes with the symmetrisers eni ∈ k[Sni ] ⊆ k[Sn] since

τeni = (τ1, . . . , τi−1, eni , τi+1, . . . , τm) = eniτ.

The corresponding map

τ̃ : P(n1)
a1 P(n2)

a2 . . .P(nm)
am → P(n1)

a1 P(n2)
a2 . . .P(nm)

am ,

is the 1-composition of the maps τ̃i : Pniai → Pniai described above, each of which is
homotopic to id. Thus τ̃ itself is homotopic to id.

On the other hand, φ(σ) commutes with the symmetrisers eni since their action
is contained within each ni-tuple. The corresponding map

(6.3) φ̃(σ) : P(n1)
a1 P(n2)

a2 . . .P(nm)
am → P

(nσ(1))
aσ(1) P

(nσ(2))
aσ(2) . . .P

(nσ(m))
aσ(m)

,

is then a 2-isomorphism, whose inverse is φ̃(σ−1). In particular, in the simplest
possible case m = 2 and σ = (12), we get a 2-isomorphism

(6.4) φ̃(12) : P(n1)
a1 P(n2)

a2

∼−→ P(n2)
a2 P(n1)

a1 .

Similar considerations apply to 1-compositions of powers of Qs and Rs.

Remark 6.8. Let α : Pna → Pnb . Arguing as in Remark 6.7 we see that if α
commutes with the symmetrisers of Pna and Pnb , it defines a 2-morphism

α̃ : P(n)
a → P

(n)
b .

Suppose such α lies in the image of the functor ΞP. Then, as per Remark 6.1,
we have

α = ΞP(β) ΞP(σ), for β ∈ HomV⊗n(an, bn), σ ∈ Sn.
We saw in Remark 6.7 that ΞP(σ) : Pna → Pna commutes with e and the correspond-
ing map σ̃ : P

(n)
a → P

(n)
a is homotopic to the identity.

For any τ ∈ Sn we have in SnV

τ ◦ β = τ(β) ◦ τ,

and hence β commutes with e if and only if e(β) = β. In other words, if and only
if β lies in the image of the canonical embedding

ψ : Symn HomV(a, b)→ HomV⊗n(an, bn).

In particular, for any γ ∈ Symn HomV(a, b), ψ(γ) commutes with e and hence its
image under ΞP gives a well-defined map

ψ̃(γ) : P(n)
a → P

(n)
b , γ ∈ Symn HomV(a, b).

By the above, up to homotopy, all the maps P(n)
a → P

(n)
b induced from those in the

image of ΞP are of this form.

Throughout this section, we draw diagrams to define morphisms between 1-
compositions of P(n)s and Q(n)s.

Any diagram defining a morphism α between the corresponding 1-compositions
of Pns and Qns defines a morphism eαe between those of P(n)s and Q(n)s as detailed
in Remark 6.6.
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If α commutes with the symmetriser differentials of source and target 1-
compositions of Pns and Qns, it furthermore defines a morphism α̃ between 1-
compositions of P(n)s and Q(n)s as detailed in Remark 6.7.

The two morphisms eαe and α̃ thus produced are homotopic. In this subsec-
tion, working on DG level, we only want to work with the (−̃) construction of Re-
mark 6.7, as it can produce termwise DG isomorphisms of twisted complexes. Thus
we only consider the diagrams which commute with the symmetriser differentials.
In Section 6.2, working in the homotopy category, we employ arbitrary diagrams
and use the symmetrising e(−)e construction of Remark 6.6. It produces twisted
complex maps concentrated in degree 0, which can only be homotopy equivalences.
We stress again, that in the homotopy category there is no difference between the
two constructions.

It is crucial for our proofs that the construction of a morphism between 1-
compositions of P(n)s and Q(n)s from a diagram defining the morphism between the
corresponding 1-compositions of P(n)s and Q(n)s is compatible with 2-composition,
that is –– with vertical concatenation of diagrams. For the (−̃) construction this is
automatic. For the e(−)e construction this means that any two diagrams α and β
we compose must satisfy

eαeβe = eαβe(6.5)

In this subsection, we use diagrams which commute with the symmetrisers
and use the (−̃) construction, so this is not an issue. In §6.2 we use arbitrary
diagrams and use the e(−)e construction, so we check the condition (6.5) by hand.
In Section 6.2.1, this is a simple idempotent absorption argument: the symmetriser
idempotent of a subgroup can be absorbed into the symmetriser idempotent of the
group. In Section 6.2.2 a more elaborate argument is necessary and we show that
(6.5) only holds up to a desired numerical coefficient.

We use the following conventions to simplify the diagrams in the context of this
section:

(1) A box containing an at the top or the bottom of the diagram denotes both
1-morphisms P(n)

a and Q
(n)
a :

an

We never use type R 1-morphisms, so the orientation of the attached
strands makes clear what is meant.

When such box occurs inside the diagram, it is the symmetriser idem-
potent eSn . Note that in the context of e(−̃)e construction, the boxes at
the top and the bottom can also be viewed as occurences of symmetriser
idempotents. We mainly use this notation to differentiate between the
LHS and the RHS of the condition (6.5). For example, if we start with
diagrams

α =

Qma Pna

Pn−ia Qm−ia

m− in− i
β =

Pn−ia Qm−ia

Qma Pna

m− i n− i
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then the induced morphisms between Q
(m)
a P

(n)
a and P

(n−i)
a Q

(m−i)
a are

eαe =

am an

an−i am−i

m− in− i
eβe =

an−i am−i

am an

m− i n− i

and the LHS and the RHS of (6.5) are

eαeβe =

am an

an−i am−i

am an

eαβe =

am an

am an

i

i

m− in− i .

(2) Upwards strands are coloured blue, downwards strands red and counter-
clockwise turns green (clockwise turns will not appear in the argument):

a

a

a

a

a a

This colouring is solely for the convenience of the reader and does not
have any additional meaning.

(3) We denote multiple unadorned parallel strands all starting at one box and
ending at another box by a single thick strand labelled with the strand
multiplicity.

Thus, an upward braid of thick strands of multiplicities n1, . . . , nm
permuting m boxes an1

1 , . . . , anmm defines a 2-isomorphism between the
corresponding 1-compositions of Pniai . It depends only on the permutation
type σ ∈ Sm of the braid. Moreover, as seen in Remark 6.7, it commutes
with the symmetrisers and thus defines the 2-isomorphism φ̃(σ) of (6.3)
between the corresponding 1-compositions of P(ni)

ai .
For example, the 2-isomorphism P

(m)
a P

(n)
b → P

(n)
b P

(m)
a of (6.4) is

bn am

am bn

n m

(4) A thick strand from box an to box bn labelled with an element

α ∈ Symn HomV(a, b)
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denotes the 2-morphism

ΞP(ψ(α))

of Remark 6.8. As it commutes with the symmetrisers, it defines a 2-
morphism ψ̃(α) between the corresponding symmetric powers of Ps or
Qs.

For example, suppose that α is an elementary symmetric tensor

α = α1 ∨ · · · ∨ αn :=
1

n!

∑
σ∈Sn

ασ(1) · · ·ασ(n).

A thick strand labelled α is the sum of all permutations of n parallel
strands adorned with the αis. In particular, for even degree α and β we
have

a2

a2

α ∨ β =
1

2


P2
b

P2
a

α
β

+

P2
b

P2
a

β

α


With the above notation in mind, we have immediately:

Proof of Theorem 6.3(1). We claim that the 2-morphisms

bn am

am bn

n m
and

am bn

bn am

mn
.

are inverse to each other. Indeed, as (̃−) is compatible with the compositions, we
can vertically concatenate the diagrams and then apply Lemma 5.5 (3) multiple
times to get the claim. Thus we have the relation P

(m)
a P

(n)
b
∼= P

(n)
b P

(m)
a . The

second relation Q
(m)
a Q

(n)
b
∼= Q

(n)
b Q

(m)
a is implied by a similar pair of diagrams but

involving downward strands. �

6.2. The Heisenberg commutation relations: homotopy level

Next, let us construct the 2-morphism giving (6.1). Defining a map

gi : Symi HomV(a, b)⊗k P
(n−i)
b Q(m−i)

a → Q(m)
a P

(n)
b .

is equivalent to defining a map

g̃i : Symi HomV(a, b)→ HomHV

(
P

(n−i)
b Q(m−i)

a , Q(m)
a P

(n)
b

)
.
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For any α ∈ Symi Hom(a, b), define

g̃i(α) =

am bn

bn−i am−i

m− i

α

n− i

Now, define g :=
∑
i gi. The map g does in general not have an inverse on the DG

level. However, we can define an inverse map f in H∗(HV). To define a map

fi : Q
(m)
a P

(n)
b → Symi HomH∗(V)(a, b)⊗k P

(n−i)
b Q(m−i)

a ,

we define a map

f̃i :
(

Symi HomH∗(V)(a, b)
)∗→ HomHV

(
Q(m)
a P

(n)
b , P

(n−i)
b Q(m−i)

a

)
,

or equivalently a map

f̃ ′i : Symi HomH∗(V)(b, Sa)→ HomH∗(HV)

(
Q(m)
a P

(n)
b , P

(n−i)
b Q(m−i)

a

)
,

where we use the identification Hom(a, b)∗ = Hom(b, Sa) in H∗(V). Set

f̃ ′i(α) =

bn−i am−i

am bn

m− i n− i

α

Finally, set

f =
∑
i

i!

(
m

i

)(
n

i

)
fi.

We now show that f and g are inverse isomorphisms in H∗(HV). The proof
is entirely combinatorial: one composition follows from repeated application of the
second relation in (3.10), which holds in H∗(HV) by Lemma 5.7. The other follows
from relations (5.11). The reader uninterested in combinatorics may want to skip
ahead to Section 6.3.

6.2.1. The composition g ◦f is the identity. For simplicity, in this section
we denote the image of any closed degree zero 2-morphism of HV in H∗(HV) by
the same symbol as the original 2-morphism.

Remark 6.9. Choose a basis {β`} for H∗(HomV(a, b)) with dual basis {β∨` }
of H∗(HomV(b, Sa)). Let I = (`1, . . . , `i) be a multi-index. Then the dual to
β`1∨· · ·∨β`i ∈ SymiH∗(HomV(a, b)) is 1

m(I)β
∨
`1
∨· · ·∨β∨`i ∈ SymiH∗(HomV(b, Sa)),

where m(I) =
∏
mj(I)! with mj(I) the number of times the index j appears in I.
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Let φ0,0
m−i,n−i,i denote the 2-morphism gi ◦ fi. We have

φ0,0
m−i,n−i,i =

∑
`1,...,`i

am bn

bn−i am−i

am bn

m− i n− i

β∨`1 ∨ · · · ∨ β
∨
`i

m− i

β`1 ∨ · · · ∨ β`i

n− i

We first verify that the composition condition (6.5) holds:

am bn

bn−i am−i

am bn

=

am bn

am bn

i

i

m− in− i .

It does because we can absorb the middle idempotents into the top or bottom
ones. We can move elements of (or their sums) of Sn−i (resp. Sm−i) in the middle
idempotents all the way up or down their strands where they can be viewed as
elements of the corresponding subgroup Sni < Sn (resp. Sm−i < Sm). Pre- or
postcomposing with these does not change the symmetriser idempotent of Sn (resp.
Sm).

Adding s downward strands on the left and t upward strands on the right, we
denote the resulting 2-endomorphism of Q(m+s)

a P
(n+t)
b by φs,tm−i,n−i,i. Relabeling

slightly, with a choice of basis as in Remark 6.9 this gives

φs,tm,n,i =
∑

`1,...,`i

as+m+i bt+n+i

as+m+i bt+n+i

i

i

s mn t ,

where the arcs are labeled by β`1 ∨ · · · ∨ β`i and β∨`1 ∨ · · · ∨ β
∨
`i

respectively. One
notes that

φs,tm,0,i = φs+m,t0,0,i and φs,t0,n,i = φs,t+n0,0,i .

To simplify notation, write ψsm,i := φs,sm,m,i for the symmetric situation.
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Lemma 6.10.

ψ0
n,0 = −nψ0

n−1,1 +

n−1∑
i=0

(−1)i
(n− 1)!

(n− 1− i)!
ψ1
n−1−i,i.

Proof. First move the left-most downwards strand of ψ0
n,0 all the way to the

left. To do so, one has to untwist n down-up double crossings, introducing n terms
of the from −ψ0

n−1,1 via relation (3.10):

ψ0
n,0 = φ1,0

n−1,n,0 − nψ0
n−1,1,

or graphically,

an bn

an bn

nn =

an bn

an bn

n− 1n − n
∑
`

an bn

an bn

β`

β∨`

n− 1n− 1 .

Now move the rightmost upward strand of φ1,0
n−1,n,0 all the way to the right. To do

so, one has to untwist with n − 1 downwards strands, introducing n − 1 terms of
the form −φ1,0

n−2,n−1,1:

φ1,0
n−1,n,0 = ψ1

n−1,0 − (n− 1)φ1,0
n−2,n−1,1.

an bn

an bn

n− 1n =

an bn

an bn

n− 1n− 1 − (n− 1)
∑
`

an bn

an bn

β`

β∨`

n− 2n− 1

Repeat the last step for −(n − 1)φ1,0
n−2,n−1,1, obtaining −(n − 1)ψ1

n−2,1 and (n −
1)(n− 2) terms of the form φ1,0

n−3,n−2,2:

an bn

an bn

β`

β∨`

n− 2n− 1 =

an bn

an bn

β`

β∨`

n− 2n− 2 − (n− 2)
∑
`′

an bn

an bn

n− 3n− 2 ,

where the dots are marked with β` ∨ β`′ and β∨` ∨ β∨`′ respectively. Recursive
application of this procedure yields the desired formula. �
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Rearranging and changing indices by 1, we obtain

(6.6) ψ1
n,0 = ψ0

n+1,0 + (n+ 1)ψ0
n,1 +

n∑
i=1

(−1)i+1 n!

(n− i)!
ψ1
n−i,i.

The remainder of the argument is now just repeated application of this formula.

Lemma 6.11.

ψ1
n,0 = ψ0

n+1,0 + (2n+ 1)ψ0
n,1 + n2ψ0

n−1,2.

Proof. For n = 0, this is just equation (6.6). Using induction and (6.6) we
get

ψ1
n+1,0 = ψ0

n+1,0 + (n+ 2)ψ0
n+1,1 +

n+1∑
i=1

(−1)i+1 (n+ 1)!

(n+ 1− i)!
ψ1
n+1−i,i

= ψ0
n+1,0 + (n+ 2)ψ0

n+1,1 +

n+1∑
i=1

(−1)i+1 (n+ 1)!

(n+ 1− i)!

(
ψ0
n+2−i,i+

+ (2(n+ 1− i) + 1)ψ0
n+1−i,i+1 + (n+ 1− i)2ψ0

n−i,i+2

)
.

Carefully rearranging terms, one obtains

ψ0
n+1,0 + (n+ 2)ψ0

n+1,1 +
(n+ 1)!

n!
ψ0
n+1,1

+

(
− (n+ 1)!

(n− 1)!
+ (2n+ 1)

(n+ 1)!

n!

)
ψ0
n,2+

+

n+2∑
`=3

(
(−1)`+1 (n+ 1)!

(n+ 1− `)!
+ (−1)`

(n+ 1)!

(n+ 2− `)!
(2(n+ 2− `) + 1)+

(−1)`−1 (n+ 1)!

(n+ 3− `)!
(n+ 3− `)2

)
ψ0
n+2−`,`

+

(
(n+ 1)!

0!
(−1)n+2 +

(n+ 1)!

1!
(−1)n+112

)
ψ0

0,n+2,

which one easily checks to be equal to

ψ0
n+2,0 + (2n+ 3)ψ0

n+1,1 + (n+ 1)2ψ0
n,2. �

Lemma 6.12.

ψk0,0 =

k∑
i=0

i!

(
k

i

)2

ψ0
k−i,i.

Proof. For k = 1 this is immediate from (6.6). Assume that the identity holds
for some integer k. Then

ψk+1
0,0 =

k∑
i=0

i!

(
k

i

)2

ψ1
k−i,i.

We can now substitute in the identity of Lemma 6.11.

ψk+1
0,0 =

k∑
i=0

i!

(
k

i

)2(
ψ0
k−i+1,i + (2(k − i) + 1)ψ0

k−i,i+1 + (k − i)2ψ0
k−i−1,i+2

)
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Rearranging gives

ψ0
k+1,0 +

(
k2 + (2k + 1)

)
ψ0
k,1

+

k∑
`=2

(
`!

(
k

`

)2

+ (`− 1)!

(
k

`− 1

)2

(2(k − `+ 1) + 1)+

(`− 2)!

(
k

`− 2

)2

(k − `+ 2)2

)
ψ0
k+1−`,`

+

(
k!

(
k

k

)2

+ (k − 1)!

(
k

k − 1

)2

12

)
ψ0

0,k+1.

Again, one easily checks this to be equal to

k+1∑
i=0

i!

(
k + 1

i

)2

ψ0
k+1−i,i. �

Corollary 6.13.

φm,n0,0,0 =

min(m,n)∑
i=0

i!

(
m

i

)(
n

i

)
φ0,0
m−i,n−i,i.

In other words g ◦ f = 1.

Proof. Without loss of generality we can assume that m ≥ n, say m = n+ j.
We will induct on j. We already considered the case that j = 0.

We ignore the left-most string and use the induction hypothesis to obtain

φn+j+1,n
0,0,0 =

n∑
i=0

i!

(
n+ j

i

)(
n

i

)
φ1,0
n+j−i,n−i,i.

As in the first step of the proof of Lemma 6.11, we have

φ1,0
n+j−i,n−i,i = φ0,0

n+j−i+1,n−i,i + (n− i)φ0,0
n+j−i,n−i−1,i+1.

Thus,

φn+j+1,n
0,0,0 =

n∑
i=0

i!

(
n+ j

i

)(
n

i

)
(φ0,0
n+j−i+1,n−i,i + (n− i)φ0,0

n+j−i,n−i−1,i+1).

Grouping terms, this is

0!

(
n+ j

0

)(
n

0

)
φ0,0
n+j+1,n,0+

n∑
`=1

(
`!

(
n+ j

`

)(
n

`

)
+ (`− 1)!

(
n+ j

`− 1

)(
n

`− 1

)
(n− `+ 1)

)
φ0,0
n+j+1−`,n−`,`.

This is easily shown to be equal to the desired expression
n∑
`=0

`!

(
n+ j + 1

`

)(
n

`

)
φ0,0
n+j+1−`,n−`,`. �
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6.2.2. The composition f ◦ g is the identity. We have

fj ◦ gi =

bn−j am−j

am bn

bn−i am−i

i

j

.

When i 6= j, every combination of summands of the middle symmetriser idem-
potents produces a diagram which contains a left curl and hence vanishes. Thus
fj ◦ gi = 0 if i 6= j.

When i = j, we claim that the composition condition (6.5) holds up to a
coefficient:

(6.7)

bn−i am−i

am bn

bn−i am−i

i

j

=
1

i!
(
m
i

)(
n
i

) ·

bn−i am−i

bn−i am−i

n− in− i .

Indeed, the pair of the middle idempotents in the LHS of (6.7) are a 2-morphism

(6.8)
1

m!

1

n!

∑
σ∈Sm,τ∈Sn

σ ◦1 τ

where ◦1 denotes 1-composition. We first observe that if σ /∈ Sm−i × Si < Sm or
τ /∈ Si × Sn−i the resulting diagram contains a left curl and hence vanishes. Let

σ = (σm−i, σi) ∈ Sm−i × Si,

τ = (τi, τn−i) ∈ Si × Sn−i.
On the diagram coresponding to this summand, we can slide σi along the central
bubble and compose it with τi. We obtain a counterclockwise bubble of i parallel
strands with a single element τiσi ∈ Si inserted into it. Unless this element is idSi ,
the resulting diagram contains a left curl. When it is idSi , we get an unmarked
i-stranded counterclockwise bubble which is the identity endomorphism of 1 and
hence can be erased. On the remaining diagram, we can absorb σm−i and τn−i into
the top or bottom idempotents and thus obtain the diagram on the RHS of (6.7).

Thus when expanding the middle idempotents in the LHS of (6.7) the non-
vanishing diagrams are given by the summands

σm−i ◦1 υi ◦1 υ−1
i ◦1, τn−i σm−i ∈ Sm−i, υi ∈ Si, τn−i ∈ Sn−i
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of (6.8). There are (m− i)!i!(n− i)! of them and each produces the diagram on the
RHS of (6.7), whence the equality in (6.7) holds.

By the left relation in (3.10) the RHS of (6.7) is

1

i!
(
m
i

)(
n
i

) id
P
(n−i)
b Q

(m−i)
a

.

Since g =
∑
gi and f =

∑
i i!
(
m
i

)(
n
i

)
fi, it follows that f ◦ g = id. This finishes the

proof of Theorem 6.3.

6.3. The transposed generators

Given any partition λ of n write eλ ∈ k[Sn] for the corresponding Young sym-
metriser. It is a minimal idempotent of k[Sn]. Thus, similar to the definition of the
1-morphisms P(n)

a and Q
(n)
a , it induces 1-morphisms Pλa and Qλa in HV .

Recall the transposed generators p(1n)
a and q(1n)

a , n ∈ Z>0 from Section 2.2.2.
We have the antisymmetriser idempotent corresponding to the partition (1n)

esign =
1

n!

∑
σ∈Sn

sgn(σ)σ ∈ k[Sn]

on which Sn acts by the sign character. Let P(1n)
a and Q

(1n)
a be the corresponding

1-morphisms defined analogously to Definition 6.2.
Arguing as in Remark 6.8, we see that elements of Symn Hom(a, b) define mor-

phisms from P
(1n)
a to P

(1n)
b , while those of

∧n
Hom(a, b) define morphisms from

P
(n)
a to P

(1n)
b .

The category H′V has a covariant autoequivalence F which
• is identity on objects and 1-morphisms,
• on 2-morphisms it multiplies the crossings by −1, while preserving all

other generating diagrams.
The induced autoequivalence F of HV swaps the 1-morphisms above with those of
Section 6.1:

F (P(n)
a ) = P(1n)

a , F (P(1n)
a ) = P(n)

a , F (Q(n)
a ) = Q(1n)

a , F (Q(1n)
a ) = Q(n)

a .

Thus the relations of Theorem 6.3 also hold for the transposed 1-morphisms.

Lemma 6.14. If V is pretriangulated, then for any a ∈ V we have in HV
isomorphisms

Pa[1]
∼= Pa[1] and Qa[1]

∼= Qa[−1],

and isomorphisms

P
(n)
a[1]
∼= P(1n)

a [n] and Q
(n)
a[1]
∼= Q(1n)

a [−n].

Proof. We prove the statements about Ps. Those about Qs are proved simi-
larly with a twist in the sign; see the end of the proof below.

Let i : a[1]→ a be the degree −1 morphism in V defined by ida. Let ι′ : Pa[1] →
Pa be the corresponding morphism i in H′V . Finally, let ι : Pa[1] → Pa[1] be the
degree zero morphism in H′V defined by ι′. It is an isomorphism as it has an inverse
ι−1 : Pa[1]→ Pa[1] which is similarly defined by ida.
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By definition, P(n)
a[1] is the convolution of the twisted complex

. . . Pna[1] Pna[1] Pna[1] Pna[1]
deg. 0

,
etriv 1−etriv etriv 1−etriv

while is P(1n)
a [n] the convolution of

. . . Pna [n] Pna [n] Pna [n] Pna [n]
deg. 0

.
esign 1−esign esign 1−esign

Consider the following map of twisted complexes

ι̃n :=

. . . Pna[1] Pna[1] Pna[1] Pna[1]

. . . Pna [n] Pna [n] Pna [n] Pna [n].

etriv 1−etriv

ιn

etriv

ιn

1−etriv

ιn ιn

esign 1−esign esign 1−esign

We claim that ιn : Pna[1] → Pna [n] intertwines the idempotents etriv and esign:

ιnetriv = esignι
n.

It follows that ι̃n is closed of degree 0. We conclude that it is an isomorphism, as
ιn is one.

To prove the claim, it suffices to show that degree −n map ιn : Pna[1] → Pna
intertwines etriv and esign. This is a straightforward verification in H′V . We give
the details for n = 2; the general case follows in the same manner.

When n = 2, we have

etriv =
1

2

(
+

)
,

esign =
1

2

(
−

)
.

The 2-morphism is the identity map, and clearly ι2 intertwines the identity

maps. It remains to show that it intertwines and − , that is:

ii

= −
i i

.

To see this, recall that according to our convention explained in Remark 3.1, the
diagram i i should be read as i i . Since i has degree −1, the graded
interchange law states

i i = (−1)(−1)(−1) i i = − i i .
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Consequently:

ii

=
i

i

=

i
i

= −
i i

.

For Q, let i : a → a[1] be the degree 1 morphism in V defined by ida.
Let ι′ : Qa[1] → Qa be the corresponding morphism i in H′V . Moreover, let
ι : Qa[1] → Qa[−1] be the degree zero morphism in H′V defined by ι′. Again, it is an
isomorphism with inverse ι−1 : Qa[−1] → Qa[1] defined similarly by ida. The rest
of the proof is similar. �

This result affords us the following further relations:

Proposition 6.15.

(1) For any a, b ∈ V and n,m ∈ N the following holds in HV :

P(1m)
a P

(n)
b
∼= P

(n)
b P(1m)

a , Q(1m)
a Q

(n)
b
∼= Q

(n)
b Q(1m)

a ,

(2) For any a, b ∈ V and n,m ∈ N we have a homotopy equivalence in HV :

min(m,n)⊕
i=0

i∧
HomV(a, b)⊗k P

(n−i)
b Q(1m−i)

a → Q(1m)
a P

(n)
b .

and thus the following holds in H∗(HV)

Q(1m)
a P

(n)
b
∼=

min(m,n)⊕
i=0

i∧
HomH∗(V)(a, b)⊗k P

(n−i)
b Q(1m−i)

a

The above also holds with the roles of (1m) and (n) interchanged.

Proof. Replace a with b[−1], resp. with b[1] in Lemma 6.14 to get (up to
a shift) claim (1) from Theorem 6.3 (1). Claim (2) follows similarly from Theo-
rem 6.3 (2) using the identification

SymiHom(a[1], b) ∼= Symi(Hom(a, b)[−1]) ∼=
i∧

(Hom(a, b))[−1]

of graded symmetric powers. For the final statement, apply the automorphism
F . �

Example 6.16. Let Γ ⊂ SL(2,C) be a finite subgroup. In Example 5.10 we
defined the 1-morphisms Pi = PEi and Qi = QEi [1] for each i ∈ IΓ. Thus the 1-
morphism Q

(n)
i of HΓ in [13] corresponds to the 1-morphism Q

(1n)
Ei[−1]. From (5.17)

one obtains

Hom∗(Ei[−1], Ej) =


C[1]⊕ C[−1], i = j

C, 〈i, j〉 = −1

0, otherwise.
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The k-th exterior power of C[1] ⊕ C[−1] is
⊕k

j=0 C[k − 2j]. Identifying it with
H∗(Pk)[k], we see that Proposition 6.15 agrees with [13, Proposition 2]:

P
(m)
i P

(n)
j
∼= P

(n)
j P

(m)
i , Q

(m)
i Q

(n)
j
∼= Q

(n)
j Q

(m)
i ,

Q
(m)
i P

(n)
j
∼=


⊕min(m,n)

k=0 H∗(Pk)[k]⊗k P
(n−k)
j Q

(m−k)
i if i = j ∈ IΓ,

P
(n)
j Q

(m)
i ⊕ P (n−1)

j Q
(m−1)
i if 〈i, j〉 = −1,

P
(n)
j Q

(m)
i if 〈i, j〉 = 0.

6.4. Grothendieck groups

Recall the definition of the numerical Grothendieck group Knum
0 of a DG cat-

egory given in Section 4.9. It is the quotient of the usual Grothendieck group by
the kernel of the Euler pairing. Recall from Section 2.2.1 that we write HV for
the idempotent modified Heisenberg algebra of the lattice (Knum

0 (V), χ). We note
again that we use the numerical Grothendieck group to ensure that this algebra
has trivial centre.

In this section we compare HV to the Grothendieck group of the Heisenberg
category HV . Let K0(HV , k) be the k-linear category with the same objects as HV
and morphism spaces

HomK0(HV , k)(N,N
′) = K0

(
HomHV (N,N ′), k

)
,

where for any DG category A we set K0(A, k) = K0(A) ⊗Z k. As forming
Grothendieck groups is functorial, the 1-composition of HV induces the compo-
sition on K0(HV , k).

A closed string diagram defines an endomorphism of 1. Some of these endo-
morphisms are non-trivial and are not subject to any relations. For example, those
defined by clockwise bubbles, the compositions of clockwise cups followed by clock-
wise caps. Thus the categories HomHV (N,N ′) are not Hom-finite. Thus we cannot
use the Euler pairing to obtain the corresponding numerical Grothendieck groups.

Remark 6.17. For V = dg-Vectf
k the Hom-spaces of HV , while infinite-

dimensional, are controlled by End(1) and the degenerate affine Hecke algebra [31,
Proposition 4]. Some version of this observation is expected to hold more generally,
see for example [13, Conjecture 2]. It is not however clear how to define the degen-
erate affine Hecke algebra in our generality. We intend to return to this question
in future work. Instead, we use an ad-hoc definition of the numerical Grothendieck
group given in Definition 6.18 below.

To kill the centre, we need to at least quotient each K0

(
HomHV (N,N ′), k

)
by

the classes [Pa] and [Qa] for [a] in the kernel of the Euler pairing on K0(V), as well
as by any direct summands of these coming from the symmetric group action on
parallel strands.

To formulate this, recall the functors of Remark 6.1:

Ξ′PN,N+n : SnV → HomHV (N, N + n).

Taking h-perfect hulls we obtain functors

ΞP
N,N+n : Hperf (SnV)→ HomHV (N, N + n),
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and similarly contravariant functors ΞQ
N,N+n. These further package up into 2-

functors
ΞP,ΞQ : Hperf(SymV)→ HV .

As these are integral parts of the structure of HV , we expect them to descend to
the numerical Grothendieck groups. We thus make the following definition:

Definition 6.18. Let I be the two-sided ideal of K0(HV , k) generated
by the images under ΞP and ΞQ of the kernels of the Euler pairings on
K0(Hperf(SymV), k). The 1-category Knum

0 (HV , k) is the quotient of K0(HV , k)
by I.

Remark 6.19. Recall the 1-morphisms Pλa and Qλa defined in Section 6.3. The
ideal I contains the classes [Pλa ] and [Qλa ] for all a ∈ V with [a] in the kernel of the
Euler pairing and all Young diagrams λ.

If I is generated by these classes, then using the Giambelli identity, I is in this
case equivalently generated by classes of the form [P

(n)
a ] and [Q

(n)
a ], see for example

[13, Remark 6]. This is exactly the minimal ideal one needs to quotient out in
order for the Heisenberg algebra to have no centre.

In general, however, there may exist images of additional homotopy idempo-
tents in the kernel of the Euler pairing on K0(SnV, k). In order to catch these and
to obtain the expected natural morphisms Knum

0 (SymV , k) → Knum
0 (HV , k) one

needs to use the less intuitive definition of I given above.

At the outset, we completed V to Hperf V, see the introduction to Chapter 5.
We can therefore choose a basis of Knum

0 (V) consisting of the classes of objects of
V. The elements p(n)

a and q(n)
a indexed by the objects a in this basis generate the

Heisenberg algebra HV . Theorem 6.3 implies that there is a canonical morphism of
k-algebras

π : HV → Knum
0 (HV , k)

sending the generators p(n)
a to the class of P(n)

a and q(n)
a to the class of Q(n)

a .

Theorem 6.20. The map π : HV → Knum
0 (HV , k) is an injective map of k-

algebras.

Proof. In Chapter 7 we construct a categorical analogue of the Fock space
together with a 2-representation ofHV on it. By Corollary 8.5, this 2-representation
induces on the level of K-groups a homomorphism of algebras

(6.9) HV
π−→ Knum

0 (HV , k)→ End

⊕
N≥0

Knum
0 (SNV, k)

 .

As 1 ∈ Knum
0 (S0V, k) ∼= k is annihilated by H−V \{10} and is fixed by 10, Lemma 2.9

produces an embedding

(6.10) FV →
⊕
N≥0

Knum
0 (SNV, k)

of the classical Fock space. Hence the representation (6.9) of HV on⊕
N≥0

Knum
0 (SNV, k)

is faithful. Therefore π is necessarily injective. �
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Surjectivity of π is a considerably subtler question, due to the possible appear-
ance of additional homotopy idempotents when taking the perfect hull H′V . This
is closely related to the question of whether Knum

0 (SNV, k) and

FNV =
⊕

k1+2k2+···=N

⊗
i

Symki(Knum
0 (V, k)),

the degree N part of the Fock space are isomorphic. To the authors’ knowledge,
there exists no general criterion for this, cf. the remarks in Section 8.2.

Conjecture 6.21. If the canonical morphism FNV → Knum
0 (SNV) is an iso-

morphism, then so is π.

The main content of the conjecture is that on the level of Grothendieck groups
the operation of taking perfect hulls only adds the classes [P

(n)
a ] and [Q

(n)
a ] as addi-

tional generators. On the homotopy categories, taking the perfect hull corresponds
to taking the triangulated hull and Karoubi completion. Thus, alternatively, the
statement is that the only relevant idempotents in the homotopy category are those
arising from the action of the symmetric groups on upward or downward strands.
We prove a converse to Conjecture 6.21 in Section 8.3.

We want to stress that a 2-representation of HV is completely determined by
the images of Pa, Qa, Ra, and the generating 2-morphisms. Thus the possible
appearance of additional idempotents in HV (i.e., π being possibly non-surjective)
does not complicate the construction of categorical Heisenberg actions.

Example 6.22. Taking V = k, the 1-morphisms in HV are homotopy di-
rect summands of one-sided twisted complexes of direct sums of Pk and Qk. As
HomV(k, k) = k, such one-sided complexes are actual complexes and their mor-
phisms are morphisms of complexes. Idempotents of such complexes must be idem-
potent in each degree. It follows that K0(HV , k) = Knum

0 (HV , k) coincides with
the Grothendieck group of Khovanov’s category [31]. By the main result of [10]
this further coincides with the infinite Heisenberg algebra.

In general, 1-morphisms in HV may be one-sided twisted complexes with non-
trivial higher differentials. One cannot then simply take idempotents in each degree.
The conjecture says that the situation is however no worse than in SnV.

6.5. Quantum enhancement

Several previous works on Heisenberg categorification, like [13], use a quantum
deformation of the Heisenberg algebra. This quantum Heisenberg algebra Ht

V has
coefficients taken from k[t, t−1], where t is a formal variable.

For a graded vector space V define

[V ] :=
∑
n∈Z

dim Vnt
n.

Using this, the unital algebra Ht
V is defined by the same generators and relations

as HV except that relation (2.5) is replaced by

q(n)
a p

(m)
b =

min(m,n)∑
k=0

[SymkH∗Hom(a, b)] p
(m−k)
b q(n−k)

a .

Its idempotent modification Hq
V is then obtained exactly as in Section 2.2.1.
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Example 6.23. For n ∈ N, let [n] denote the quantum integer

[n] :=
t−n − tn

t−1 − t
= t−n+1 + t−n+3 + · · ·+ tn−3 + tn−1.

Note that when setting t = 1 in the last expression, one gets [n] = n. Define
moreover [n] := [−n] for n ∈ Z<0. Suppose that there is a set of generating objects
of V such that Hom-spaces between these objects satisfy

[H∗Hom(a, b)] = [〈a, b〉χ].

If moreover the form χ is symmetric, then our definition coincides with [45, Def-
inition 5.1] (see also [13, Equation (6)]). These conditions hold e.g. in Example
6.16.

Since HV is graded, Knum
0 (HV , k) is an algebra over k[t, t−1], where t acts

via the shift. Similarly, Knum
0 (SNV, k) is naturally a k[t, t−1]-module, such that

Knum
0 (HV , k) acts k[t, t−1]-linearly on it. Hence, there is a k[t, t−1]-algebra homo-

morphism

Knum
0 (HV , k)→ Endk[t,t−1]

⊕
N≥0

Knum
0 (SNV, k)

 .

Proposition 6.24. The morphism π extends to an injective map of k[t, t−1]-
algebras

π : Ht
V → Knum

0 (HV , k).

Proof. We need only show that π is a map of k[t, t−1]-algebras, that is, π is
compatible with the t-action on the source and the target. This is straigthforward
from the definitions. �

Letting Ht−
V ⊂ Ht

V denote again the subalgebra generated by the set{
q(n)
a 1k : a ∈M, k ≤ 0, n ≥ 0

}
,

the quantum Fock space is obtained as the induced representation

F tV = Ind
HtV
Ht−V

(triv0) ∼= Ht
V ⊗Ht−V k[t, t−1].

The embedding (6.10) is also compatible with the shift, so it can be enhanced to

F tV →
⊕
N≥0

Knum
0 (SNV, k).





CHAPTER 7

The Categorical Fock Space

As in the additive case, we construct a category called the categorical Fock
space from the symmetric powers of the DG category V. We show that the Heisen-
berg category HV acts on this categorical Fock space. The relation between this
representation and the classical Fock space representation is explored in the next
section.

7.1. Symmetric powers of DG categories

Recall from Definition 4.42 that the Nth symmetric power of V is defined as
SNV = V⊗N o SN .

Example 7.1. IfX is a scheme, then SNI(X) ∼= I(XN )SN is Morita equivalent
to the standard DG enhancement I([XN/SN ]) of the N -th symmetric quotient
stack of X. We thus have Dc(SNI(X)) ∼= Db

coh([XN/SN ]), the derived category of
SN -equivariant perfect complexes on XN [21, Example 2.2.8(a)].

Definition 7.2. For any 1 ≤ k ≤ N define the group monomorphism

ιk : SN−1 ↪→ SN ,

by identifying SN−1 with the subgroup of SN consisting of permutations which keep
k fixed.

Lemma 7.3. The group SN admits the following decomposition into SN−1-
cosets:

SN =

N∑
i=1

(1i)ι1(SN−1) =

N∑
i=1

ι1(SN−1)(1i)

This observation can be used to rearrange the complete decomposition (4.8) of
the diagonal bimodule of SNV as follows.

Corollary 7.4. There is the following direct sum decompositions of the diag-
onal bimodule:

SNV ∼=
N⊕
i=1

iV1 ⊗ 1̂◦(1i)

(
SN−1V

)
1̂
∼=

N⊕
i=1

1Vi ⊗ 1̂

(
SN−1V

)
1̂◦(1i)

where the left and right indices denote taking the left and right arguments of the
bimodule SNV and applying the following:

• for i in {1, . . . , n}, the map i : Ob(SNV) → Ob(V) projects to the i-th
factor,

• for i in {1, . . . , n}, the map î : Ob(SNV) → Ob(V⊗(N−1)) projects to all
factors but i-th,

97
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• for i, j in {1, . . . , n}, the map (ij) : Ob(SNV) → Ob(SNV) transposes
i-th and j-th factors.

We illustrate this notation. Let a = a1 ⊗ · · · ⊗ aN , b = b1 ⊗ · · · ⊗ bN ∈ SNV.
Then

b

(
SNV

)
a

= HomSNV (a1 ⊗ · · · ⊗ aN , b1 ⊗ · · · ⊗ bN ) .

Our notation gives

b (iV1)a = HomV(a1, bi),

and

b

(
1̂◦(1i)

(
SN−1V

)
1̂

)
a

=

HomSN−1V (a2 ⊗ · · · ⊗ aN , b2 ⊗ · · · ⊗ bi−1 ⊗ b1 ⊗ bi+1 ⊗ · · · ⊗ bN ) .

It is clear that there is natural inclusion of DG k-modules

HomV(a1, bi)⊗HomSN−1V (a2 ⊗ · · · ⊗ aN , b2 ⊗ · · · ⊗ bi−1 ⊗ b1 ⊗ bi+1 ⊗ · · · ⊗ bN )

HomSNV (a1 ⊗ · · · ⊗ aN , b1 ⊗ · · · ⊗ bN ) ,

and the proof below demonstrates that summing this over all i ∈ {1, . . . , N} gives
a complete decomposition of the diagonal bimodule.

Let us stress that the index maps i, î and (ij) are maps of sets and are not
functorial. Thus the expressions like 1V1 in Corollary 7.4 are not SNV-bimodules
by themselves: while

b(iV1)a = HomV(a1, bi)

is perfectly well-defined, one cannot uniquely pick out the first factor in some

α ∈ HomSNV(b, b′)

to act with it on HomV(a1, bi). Nonetheless, if we use Lemma 7.3 to decompose α
with respect to the permutation type into

∑
αi, then each αi does act naturally

on the summand iV1 ⊗ 1̂◦(1i)

(
SN−1V

)
1̂
. Thus we can view Corollary 7.4 as an

isomorphism of SNV-bimodules, with the index maps indicating the left and right
actions of SNV on the decompositions.

Proof of Corollary 7.4. First, by the decomposition (4.8) we have:

SNV ∼=
⊕
σ∈SN

(
V⊗N

)
σ
.

We then use the decomposition SN =
∑N
i=1(1i)ι1(SN−1) from Lemma 7.3 to obtain⊕

σ∈SN

(
V⊗N

)
σ
∼=

N⊕
i=1

⊕
σ∈SN−1

(
V⊗N

)
(1i)ι1(σ)

.

The V⊗N -bimodule isomorphism (V⊗N )(1i)ι1(σ)
∼=

(1i)

(
V⊗N

)
ι1(σ)

given by α 7→
(1i) · α implies that

N⊕
i=1

⊕
σ∈SN−1

(
V⊗N

)
(1i)ι1(σ)

∼=
N⊕
i=1

⊕
σ∈SN−1

(1i)

(
V⊗N

)
ι1(σ)

.
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Now we can decompose V⊗N into 1V1 ⊗ 1̂

(
V⊗(N−1)

)
1̂
, which further gives us

N⊕
i=1

⊕
σ∈SN−1

(1i)

(
V⊗N

)
ι1(σ)

=

N⊕
i=1

⊕
σ∈SN−1

iV1 ⊗
1̂◦(1i)

(
V⊗(N−1)

)
σ◦1̂

.

Finally, by (4.8) we have SN−1V =
⊕

σ∈SN−1

(
V⊗(N−1)

)
σ
and therefore

N⊕
i=1

⊕
σ∈SN−1

iV1 ⊗
1̂◦(1i)

(
V⊗(N−1)

)
σ◦1̂
∼=

N⊕
i=1

iV1 ⊗ 1̂◦(1i)

(
SN−1V

)
1̂
.

This establishes the first decomposition. The second decomposition is proved sim-
ilarly. �

Recall from Section 4.8 that SNV and V⊗N have the same objects, while the
morphisms of SNV are generated under composition by those of V⊗N plus the
formal isomorphisms corresponding to the elements of SN . Thus the data of a DG
functor from SNV to some DG category B is the data of a functor V⊗N → B plus
the data of where the formal isomorphisms go.

Definition 7.5. Let a ∈ V. Define the functor

φa : SN−1V → SNV

to be the extension of the functor

V⊗(N−1) a⊗id−−−→ V⊗N

which sends the formal isomorphisms of SN−1 to those of SN via

ι1 : SN−1 ↪→ SN ,

the embedding as the subgroup of permutations which are trivial on the first ele-
ment.

As explained in Section 4.2.3, we have three induced functors

φ∗a : Mod -SN−1V →Mod -SNV,
φa∗ : Mod -SNV →Mod -SN−1V,

φ!
a : Mod -SN−1V →Mod -SNV,

which form two adjoint pairs (φ∗a, φa∗) and (φa∗, φ
!
a). The action of the first two

functors on representable objects can be described as follows.

Lemma 7.6. Let hr denote right representable modules, as per Section 4.2.1.
Then:

(1) For any a1 ⊗ · · · ⊗ aN−1 ∈ SN−1V we have

φ∗a
(
hr(a1 ⊗ · · · ⊗ aN−1)

) ∼= hr(a⊗ a1 ⊗ · · · ⊗ aN−1).

(2) For any a1 ⊗ · · · ⊗ aN ∈ SNV we have

φa∗
(
hr(a1 ⊗ · · · ⊗ aN )

) ∼= N⊕
i=1

HomV(a, ai)⊗ hr(a1 ⊗ · · · âi · · · ⊗ aN )
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Proof. For Part (1), we have:

φ∗a
(
hr(a1 ⊗ · · · ⊗ aN−1)

)
:= hr(a1 ⊗ · · · ⊗ aN−1)⊗SN−1V φaSNV

∼= hr(a⊗ a1 ⊗ · · · ⊗ aN−1).

For Part (2), we have

φa∗
(
hr(a1 ⊗ · · · ⊗ aN )

)
:= hr(a1 ⊗ · · · ⊗ aN )⊗SNV SNVφa

By Corollary 7.4 we have

SNVφa ∼=
N⊕
i=1

iVa ⊗ 1̂◦(1i)S
N−1V

and hence
hr(a1 ⊗ · · · ⊗ aN )⊗SNV SNVφa

∼=
N⊕
i=1

aiVa ⊗ a2⊗···⊗ai−1⊗a1⊗ai+1⊗···⊗aN (V⊗(N−1) o SN−1).

Since in SN−1V we have

a2 ⊗ · · · ⊗ ai−1 ⊗ a1 ⊗ ai+1 ⊗ . . . aN ∼= a1 ⊗ · · · âi · · · ⊗ aN ,

we have

φa∗
(
hr(a1 ⊗ · · · ⊗ aN )

) ∼= N⊕
i=1

HomV(a, ai)⊗ hr(a1 ⊗ · · · âi · · · ⊗ aN ). �

Lemma 7.6 (1) shows that the bimodule φaSNV defining φ∗a is always right-
representable. Thus it is always right-perfect and right-h-projective. On the other
hand, by Lemma 7.6 (2) the bimodule SNVφa defining φa∗ is always right-h-flat, but
is right-perfect and right h-projective if and only if V is proper. Similarly, SNVφa
is always left representable, while φaSNV is always left-h-flat, but is left-perfect
and left-h-projective if and only if V is proper. We conclude that when V is proper
both φaSNV and SNVφa are left- and right-perfect and left- and right-h-projective.
In particular, they define 1-morphisms in EnhCatdg

kc and, by abuse of notation, we
denote these again by φ∗a and φa∗, respectively.

The twisted inverse image functor φ!
a is not a priori a functor of tensoring with a

bimodule. However, in presence of a homotopy Serre functor, it is quasi-isomorphic
to one:

Proposition 7.7. Let V be proper and assume that V admits a homotopy Serre
functor S. Then there is a quasi-isomorphism of DG functors

?a : φ∗Sa → φ!
a.

Proof. Let E ∈Mod -SN−1V. By Corollary 7.4 we have

φ∗SaE = E ⊗SN−1V φSaSNV ∼= E ⊗SN−1V

(
N⊕
i=1

SaVi ⊗k SN−1V 1̂◦(1i)

)
.

The homotopy Serre functor S on V comes with a quasi-isomorphism

η : V → (SV)
∗
.
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Since V is proper, η∗ : SV → V∗ is also a quasi-isomorphism. Hence so is

(7.1)

E ⊗SN−1V

(
N⊕
i=1

SaVi ⊗k SN−1V 1̂◦(1i)

)

→ E ⊗SN−1V

(
N⊕
i=1

(iVa)∗ ⊗k SN−1V 1̂◦(1i)

)
.

Since 1̂◦(1i)SN−1V are representables, we have

HomSN−1V(1̂◦(1i)S
N−1V, E) ∼= E1̂◦(1i)

∼= E ⊗SN−1V SN−1V 1̂◦(1i)

and therefore

E ⊗SN−1V

(
N⊕
i=1

(iVa)∗ ⊗ SN−1V 1̂◦(1i)

)

∼=
N⊕
i=1

(iVa)∗ ⊗HomSN−1V

(
1̂◦(1i)S

N−1V, E
)
.

Since V is proper, iVa are perfect as k-modules. Thus the natural map

N⊕
i=1

(iVa)
∗ ⊗HomSN−1V

(
1̂◦(1i)S

N−1V, E
)

−→
N⊕
i=1

HomSN−1V

(
iVa ⊗ 1̂◦(1i)S

N−1V, E
)
,

is a quasi-isomorphism. Finally, by Corollary 7.4 again, we have

N⊕
i=1

HomSN−1V

(
iVa ⊗ 1̂◦(1i)S

N−1V, E
)
∼= HomSN−1V

(
SNVφa , E

)
= φ!

aE.

�

Corollary 7.8. Let V be proper and assume it admits a homotopy Serre func-
tor S. The bimodule approximation Apx(φ!

a) is a right- and left-perfect and left-h-
projective SN−1V-SNV-bimodule.

Proof. By the definition of the bimodule approximation functor in Section 4.3,
for any b ∈ SN−1V, the fibre

b
Apx(φ!

a) is the SNV-module φ!
a(hr(b)). By Proposi-

tion 7.7, φ!
a(hr(b)) is quasi-isomorphic to φ∗Sa(hr(b)). Since the latter is the repre-

sentable object hr(φa(b)), we conclude that the former is perfect.
Now let c ∈ SNV. We have

Apx(φ!
a)
c

= φ!
a(SN−1V)c

∼= HomSN−1V
(
c(S

NV)φa , SN−1V
)

= HomSN−1V
(
φa∗(c), SN−1V

)
.

It is well known that the dualisation functor sends h-projective and perfect mod-
ules to h-projective and perfect modules [1, Section 2.2]. By Lemma 7.6 (2) and
properness of V, the SN−1V-module φa∗(c) is h-projective and perfect, hence so is
its dual HomSN−1V

(
φa∗(c), SN−1V

)
. �
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7.2. The categorical Fock space FV

In Chapter 5 we fixed a smooth and proper enhanced triangulated category
V ∈ EnhCatdg

kc . That is, V is a smooth and proper DG category considered as a
Morita enhancement of the triangulated category Dc(V) = H0(Hperf V). As V is
smooth and proper, it admits an enhanced Serre functor S given by the bimodule
V∗ [43], and in Section 4.7 we proved that it lifts to a homotopy Serre functor S on
Hperf V. Replacing V by Hperf V if necessary, we can assume that V itself admits
a homotopy Serre functor S.

We then defined the Heisenberg 2-category HV of V. It was constructed in two
steps:

(1) First, we defined in Sections 5.1 and 5.2 a strict DG 2-category H′V . Its
object set is Z, its 1-morphisms are freely generated by formal symbols
Pa,Ra : N → N + 1 and Qa : N → N − 1 for a ∈ V, and its 2-morphisms
are certain string diagrams connecting up the endpoints which correspond
to Ps, Qs, and Rs of the source and target 1-morphisms.

(2) Next, in Section 5.4 we took the perfect hull (see Section 4.5) of H′V
and then a monoidal Drinfeld quotient (see Section 4.6)of Hperf(H′V)
by a certain 2-sided ideal IV of 1-morphisms. This was to make each Ra
homotopy equivalent to PSa and impose a certain homotopy relation on Ps
and Qs. The resulting Ho(dgCat)-enriched bicategory is the Heisenberg
2-category HV .

Our next aim is to construct a 2-representation FV of HV analogous to the
Fock space representation of a Heisenberg algebra.

Lemma 7.9. The Yoneda embedding of EnhCatdg
kc into Hperf(EnhCatdg

kc ) is
a quasi-equivalence. In particular, both of these are DG enhancements of the strict
2-category EnhCatkc of enhanced triangulated categories.

Proof. The procedure of taking the perfect hull does not change the Morita
equivalence class of a DG category and, if the DG category is pre-triangulated
and its homotopy category is Karoubi-complete, it does not change the homotopy
category either. The 1-morphism categories HomEnhCatdgkc

(A,B) of EnhCatdg
kc are

defined so that their homotopy categories are DB-Perf (A-B) In particular, they are
triangulated and Karoubi-complete. We conclude that taking the perfect hull of
EnhCatdg

kc does not change its homotopy 2-category. �

We therefore make the following definition.

Definition 7.10.

(1) The strict DG 2-category F′V is the 1-full subcategory of dgModCat (see
Section 4.3) whose objects are symmetric powers SNV with N ∈ Z. By
convention, SNV is the zero category if N < 0 and is the unit object k of
dgModCat if N = 0.

(2) The categorical Fock space FV of V is the Ho(dgCat)-enriched bicategory
which is the perfect hull of the 1-full subcategory of EnhCatdg

kc whose
objects are the symmetric powers SNV with N ∈ Z.
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7.3. The representation Φ′V : the generators

In this and the next section we carry out the first step of the construction
outlined in Section 7.2 and define a strict DG 2-functor

Φ′V : H′V → F′V .

Objects: For any object N ∈ Z of H′V we define

Φ′V(N) = SNV.

1-morphisms: The 1-morphisms of H′V are freely generated by Pa,Ra : N →
N + 1 and Qa : N → N − 1 for all a ∈ V and N ∈ Z. We define Φ′V on morphisms
by setting

Φ′V(Pa) = φ∗a,

Φ′V(Qa) = φa∗,

Φ′V(Ra) = φ!
a

where φ∗a, φa∗, and φ!
a are the DG functors we constructed in Section 7.1 for any

a ∈ V and N ∈ Z.
For clarity, we write Pa (respectively, Qa, Ra) for φ∗a, (respectively, φa∗ , φ!

a),
when considered as the image of Pa (respectively, Qa, Ra) under Φ′V .

Example 7.11. Let X be a smooth projective variety and V = I(X) be the
standard enhancement of Db

coh(X). As per Example 7.1, the symmetric powers
SNV of V are Morita enhancements of the derived categories I([XN/SN ]) of the
symmetric quotient stacks of X. Functors Pa and Qa are the DG enhancements of
functors P (1)

a and Q(1)
a defined by Krug in [33, Section 2.4], while QS−1a correspond

to the left adjoints considered in [33, Section 3.2]. The higher powers P (n)
a and Q(n)

a

will arise automatically from our calculus, cf. Example 8.3.

Example 7.12. Let a, b ∈ V and let a1⊗· · ·⊗aN ∈ SNV. Let hr(a1⊗· · ·⊗aN )
be the corresponding representable module in Hperf (SNV).

(1) We have

QbPah
r(a1 ⊗ · · · ⊗ aN ) ∼= φb∗φ

∗
ah

r(a1 ⊗ · · · ⊗ aN )

∼= φb∗h
r(a⊗ a1 ⊗ · · · ⊗ aN )

∼= HomV(b, a)⊗ hr(a1 ⊗ · · · ⊗ aN )⊕

⊕

(
N⊕
i=1

HomV(b, ai)⊗ hr(a⊗ a1 ⊗ · · · âi · · · ⊗ aN )

)
.
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(2) On the other hand,

PaQbh
r(a1 ⊗ · · · ⊗ aN ) ∼= φ∗aφb∗h

r(a1 ⊗ · · · ⊗ aN )

∼= φ∗a

(
N⊕
i=1

HomV(b, ai)⊗ hr(a1 ⊗ · · · âi · · · ⊗ aN )

)

∼=
N⊕
i=1

HomV(b, ai)⊗ φ∗ahr(a1 ⊗ · · · âi · · · ⊗ aN )

∼=
N⊕
i=1

HomV(b, ai)⊗ hr(a⊗ a1 ⊗ · · · âi · · · ⊗ aN ).

2-morphisms: The 2-morphisms of H′V are generated, subject to relations, by
four sets of generating 2-morphisms, cf. Section 5.1:

(1) The marked arrows
Pa

α

Pb

,
Qb

α

Qa

and
Ra

α

Rb

.

(2) The Serre relation
PSa

Ra

.

(3) The cups and caps
Pa Qa

,
RaQa

,
Qa Pa

and
QaRa

.

(4) The crossing
Qa

Qa

Qb

Qb

.

We define Φ′V on these generating 2-morphisms as follows:
(1) Given α ∈ HomV(a, b), we have a natural transformation of functors
SN−1V → SNV:

α⊗ id : φa = a⊗ id −→ φb = b⊗ id .

We set

Φ′V


Pa

α

Pb
 = (α⊗ id)∗, Φ′V


Qa

α

Qb

 = (α⊗ id)∗

and

Φ′V


Ra

α

Rb
 = (α⊗ id)!.

We denote these natural transformations by Pα, Qα and Rα respectively.
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(2) With ?a : φ∗Sa → φ!
a as in Proposition 7.7, we set

Φ′V


PSa

Ra
 = ?a,

(3) As seen in Section 4.2.3, we have adjunctions (φ∗a a φa∗) and (φa∗ a φ!
a).

We set:

Φ′V


Pa

1

Qa

 =
[
φ∗aφa∗

counit−−−−→ id
]
, Φ′V


Ra

1

Qa

 =
[
φa∗φ

!
a

counit−−−−→ id
]
,

Φ′V

 Qa

1

Ra
 =

[
id

unit−−→ φ!
aφa∗

]
, Φ′V

 Qa

1

Pa
 =

[
id

unit−−→ φa∗φ
∗
a

]
.

(4) We have an isomorphism of functors SN−2V → SNV

(12) : φa ◦ φb ∼= φb ◦ φa
given objectwise by the transposition (12) ∈ Sn. We set

Φ′V


Qa

Qa

Qb

Qb
 = (12)∗.

Remark 7.13. The differentials on natural transformations in F′V match those
in H′V . For the dots this follows from d(α ⊗ id) = d(α) ⊗ id, while all the other
defining transformations (the Serre map η, adjunctions and the transposition) are
closed.

Example 7.14. In the notation of Example 7.12, the adjunction unit id →
QaPa is given on representables by embedding hr(a1 ⊗ · · · ⊗ aN ) as ida⊗hr(a1 ⊗
· · · ⊗ aN ) into the first summand. The adjunction counit PaQa → id is induced by
the evaluation maps HomV(a, ai)⊗ a → ai, followed by the transposition (1i) and
the universal morphism out of the direct sum.

Example 7.15. Using the decomposition of Corollary 7.4, we have for any
SNV-module E

QbRa(E) = φb∗φ
!
a(E) ∼= HomSNV

(
φb(SN+1V)φa , E

)
∼= HomSNV(bVa ⊗ SNV, E)⊕

N⊕
i=1

HomSNV(iVa ⊗ 1̂◦(1i)S
NV, E).

The adjunction counit QaRa → id is given by projecting onto

HomSNV(aVa ⊗ SNV, E)

followed by the morphism induced by the map k→ aVa sending 1 7→ ida:

HomSNV(aVa ⊗ SNV, E)→ HomSNV(SNV, E) ∼= E.
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To see this, note that by the description of adjunction units and counits for Tensor-
Hom adjunction [2, Section 2.1] our adjunction counit comes from the natural
evaluation map

HomSNV(SN+1Vφa , E)⊗SN+1V SN+1Vφa → E,
∑

f ⊗ g 7→
∑

f(g)

via the identification of the left-hand side with HomSNV(φaSN+1Vφa , E) via the
isomorphism f 7→ f ⊗ 1. Thus our counit is the map

HomSNV(φaSN+1Vφa , E)→ E

given by f 7→ f(1). Since 1 ∈ φaSN+1Vφa lies in the component

Hom(a, a)⊗ SNV,
we can project to that. Then evaluating at 1a ⊗ 1SNV is first mapping
HomSNV(Hom(a, a)⊗SNV, E) to HomSNV(SNV, E) and then identifying this with
E. This gives the claim.

Example 7.16. Let Γ ≤ SL(2,C) be finite and V as in Examples 5.10 and
6.16. Let AΓ

1 denote C[x, y] o Γ, the skew group algebra. Its abelian category of
modules Mod-AΓ

1 is equivalent to Coh([C2/Γ]), the abelian category of coherent
sheaves on the quotient stack. We can therefore view the algebra AΓ

1 as a Morita
DG enhancement of Db

coh([C2/Γ]) and view SNAΓ
1 as a Morita DG enhancement of

Db
coh(SymN [C2/Γ]). In Hperf SNAΓ

1 take the full subcategory corresponding to the
sheaves supported at the origin (0, . . . , 0) ∈ SymN [C2/Γ] where 0 is the origin of
C2. Its homotopy category is the target of the 2-representation considered in [13,
Section 4]. The functors Pi and Qi representing Pi and Qi from Example 5.10 as
well as the natural transformations defined above are the same as those constructed
in [13, Section 4.3]. Again, the higher powers P (n)

i and Q
(n)
i arise automatically

from our calculus (see Example 6.16 and Section 8.1).

7.4. The representation Φ′V : the Heisenberg 2-relations

We now prove the following:

Theorem 7.17. The images assigned in Section 7.3 to the generating 2-
morphisms of H′V satisfy the Heisenberg 2-relations of Section 5.2. We thus have a
strict DG 2-functor

Φ′V : H′V → F′V .

We verify the Heisenberg 2-relations of Section 5.2 in a series of lemmas.

Lemma 7.18. Let α be a 2-morphism in H′V between 1-morphisms N → N ′

which only involve Ps and Qs. The natural transformation Φ′V(α) of DG functors
Mod -SNV → Mod -SN ′V is completely determined by its action on representable
modules hr(a1 ⊗ · · · ⊗ aN ).

This Lemma means that any relation in H′V whose source and target only
involve Ps and Qs can be verified in F′V by checking it on the representable modules.

Proof. By definition, Φ′V maps Ps and Qs to the functors of extension and
restriction of scalars. These are tensor functors – they are given by tensoring with
a bimodule. In other words, they lie in the image of the fully faithful functor

⊗ : A-Mod -B → DGFun(Mod -A,Mod -B),
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described in the section Section 4.3. Its right adjoint is the bimodule approximation
functor Apx and the fully faithfullness of ⊗ implies that a natural transformations
of tensor functors is completely determined by its image under Apx. The claim
now follows, since Apx is the restriction to the diagonal bimodule, i.e. to the rep-
resentables. �

Lemma 7.19. The straightening relation (5.9) is satisfied in F′V :

Φ′V

( )
= Φ′V

( )
= Φ′V

( )
for any allowed orientation and labeling of the strands.

Proof. Caps and cups are sent to the unit and counit morphisms of adjoint
pairs of functors. The claim now follows from the standard relations(

F
Fη−−→ FGF

εF−−→ F
)

= idF and
(
G

εG−−→ GFG
Gη−−→ G

)
= idG

satisfied by any adjunction (F a G) with unit η and counit ε. �

Lemma 7.20. Relation (5.7) is satisfied is F′V : dots may slide through cups and
caps.

Proof. We need to show that the following pairs of maps are equal for any
α ∈ HomV(a, b):

(1) PaQb
PαQidb−−−−−→ PbQb

counit−−−−→ id and PaQb
PidaQα−−−−−→ PaQa

counit−−−−→ id;

(2) id
unit−−→ QaPa

QidaPα−−−−−→ QaPb and id
unit−−→ QbPb

QαPidb−−−−−→ QaPb.

(3) QbRa
Qidb

Rα−−−−−→ QbRb
counit−−−−→ id and QbRa

QαRida−−−−−→ QaRa
counit−−−−→ id;

(4) id
unit−−→ RaQa

RαQida−−−−−→ RbQa and id
unit−−→ RbQb

Ridb
Qα−−−−−→ RbQa;

By adjunction, (1) and (2) are equivalent, as are (3) and (4). We will show (1).
The proof of (3) is similar, using the description of Example 7.15.

From Example 7.12 (2) it follows that

(7.2) PaQbh
r(a1 ⊗ · · · ⊗ aN ) =

N⊕
i=1

HomV(b, ai)⊗ hr(a⊗ a1 ⊗ · · · âi · · · ⊗ aN ).

The map PαQidb is given on each summand by applying α to the second factor. It
lands in

N⊕
i=1

HomV(b, ai)⊗ hr(b⊗ a1 ⊗ · · · âi · · · ⊗ aN ).

The counit map takes each summand and evaluates the first factor on the second
factor:

N⊕
i=1

HomV(b, ai)⊗ hr(b⊗ a1 ⊗ · · · âi · · · ⊗ aN )→ hr(a1 ⊗ · · · ⊗ aN ).

Computing the second composition in a similar way, we see that the equality
of these compositions is equivalent to the commutativity of the following diagram:

Hom(b, ai)⊗ hr(a⊗ a1 ⊗ · · · âi · · · ⊗ aN ) Hom(b, ai)⊗ hr(b⊗ a1 ⊗ · · · âi · · · ⊗ aN )

Hom(a, ai)⊗ hr(a⊗ a1 ⊗ · · · âi · · · ⊗ aN ) hr(a1 ⊗ · · · ⊗ aN )

id⊗α

α⊗id .
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This diagram commutes by the functoriality of tensor product. �

The next observation is immediate from the construction.

Lemma 7.21. Relation (5.8) is satisfied in F′V . That is, dots move freely through
crossings:

Φ′V

(
α

)
= Φ′V

(
α
)
.

Lemma 7.22. The symmetric group relations (5.10) hold in F′V .

Proof. For the double crossing, the identity ((12)∗)
2 = id follows from the

fact that (12)2 = id in SNV. The triple move similarly follows by splitting the steps
as

(12) ◦ (23) ◦ (12) = (23) ◦ (12) ◦ (23). �

Lemma 7.23.

(1) The composition relation (5.5) holds in F′V . Namely, (Qb
Qα
==⇒ Qa) ◦

(Qc
Qβ
==⇒ Qb) is equal to (−1)|α||β| ·Qc

Qβ◦α
===⇒ Qa.

(2) Relation (5.6) holds in F′V . Namely, (PSb
?b=⇒ Rb)◦(PSa

PSα==⇒ PSb) is equal
to (Ra

Rα==⇒ Rb) ◦ (PSa
?A=⇒ Ra).

Proof. Part (1) is clear from (β ⊗ id) ◦ (α ⊗ id) = (β ◦ α) ⊗ id, taking the
sign rules for contravariant DG functors into account. Part (2) is a consequence of
naturality of the Serre morphism η∗. �

Lemma 7.24. For every a, b ∈ Ob(V) and a1 ⊗ · · · ⊗ aN ∈ SNV there exists a
natural isomorphism on representable objects

QbPa(hr(a1⊗· · ·⊗aN )) ∼=
(
HomV(b, a)⊗hr(a1⊗· · ·⊗aN )

)
⊕PaQb(hr(a1⊗· · ·⊗aN )).

The image of

Pa

Pa

Qb

Qb

under Φ′V embeds PaQb(hr(a1 ⊗ · · · ⊗ aN )) as the second summand.

Proof. The first assertion follows from Example 7.12. The image of the cross-
ing under Φ′V is:

φ∗aφb∗
unit−−→ φ∗aφb∗φa∗φ

∗
a
∼= φ∗aφa∗φb∗φ

∗
a

counit−−−−→ φb∗φ
∗
a.

Here we used that the commutativity of the the tensor product implies that

φb∗φa∗
∼= φb⊗a∗ ∼= φa⊗b∗ ∼= φa∗φb∗.

The second assertion follows from the description of unit and counit maps in Ex-
ample 7.14. �

The following gives a description of the image of the “starred cup.”
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Lemma 7.25. The natural transformation

ζ = Φ′V


PSaQa


is given by the bimodule map

ζ : φSaSNV ⊗SNV SNVφa → SN−1V
f ⊗ h 7→ Tr (Sa(f ◦ h)a)

Ŝa
(f ◦ h)â,

where the notation indicates that we take the first summand in terms of the de-
composition of φSaSNVφa provided by Corollary 7.4. In terms of Example 7.12, ζ
maps

QaPSa(hr(a1 ⊗ · · · ⊗ aN−1)) ∼= HomV(a, Sa)⊗ hr(a1 ⊗ · · · ⊗ aN−1)⊕

⊕

(
N−1⊕
i=1

HomV(a, ai)⊗ hr(a⊗ a1 ⊗ · · · âi · · · ⊗ aN−1)

)
onto the first summand, followed by applying the Serre trace map Tr.

Proof. Proposition 7.7 gives the star quasi-isomorphism on a. Then, simi-
larly as in Example 3.19, the counit is a projection onto the first summand from
Corollary 7.4 followed by the Serre trace applied to Hom(a, Sa). �

Lemma 7.26. The Serre trace relation on the right hand side of (5.11) holds
in F′V :

Φ′V

 α

 = Tr(α),

Proof. Assume first that N = 0. Then we need to compute the image of
hr(1) for 1 ∈ S0V = k. By Example 7.14, the unit corresponding to the cup at the
bottom sends this to

ida ∈ QaPa(hr(1)) ∼= φa∗φ
∗
ah

r(1) ∼= HomV(a, a).

Composing with QidaPα sends this to α ∈ Hom(a, Sa). Finally, the starred cup

ζ = counit ◦(φA,∗?A)

sends α to Tr(α) by Lemma 7.25. For general N , we need to compute the image of
hr(a1⊗ · · · ⊗ aN ) for a1⊗ · · · ⊗ aN ∈ SNV. We get the same computation as above
but tensored over k with the identity morphism of a1 ⊗ · · · ⊗ aN . �

Lemma 7.27. The left curl on the left side of (5.11) vanishes in F′V :

Φ′V


Qa

QSa


= 0.
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Proof. This diagram decomposes as

Qa
Qidaunit
−−−−−→ QaQSaPSa

(12)∗−−−→ QSaQaRa
QidSa

ζ
−−−−→ QSa,

where ζ is as in Lemma 7.25. Using the notation of Example 7.12, the first step
embeds

Qa(hr(a1 ⊗ . . . aN )) ∼=
N⊕
i=1

Hom(a, ai)⊗ hr(a1 ⊗ · · · âi · · · ⊗ aN )

into the first factor of

QaQSaPSa(hr(a1 ⊗ . . . aN ))

∼=

(
N⊕
i=1

Hom(a, ai)⊗Hom(Sa, Sa)⊗ hr(a1 ⊗ · · · âi · · · ⊗ aN )

)
⊕

⊕
N⊕
j=1

(
Hom(a, Sa)⊗Hom(Sa, aj)⊗ hr(a1 ⊗ · · · âj · · · ⊗ aN )

⊕
N⊕
i=1
i 6=j

Hom(a, ai)⊗Hom(Sa, aj)⊗ hr(Sa⊗ a1 ⊗ · · · âi · · · âj · · · ⊗ aN )

)

by tensoring with idSa ∈ Hom(Sa, Sa). The crossing changes the order of the
summands, and the starred cap ζ projects onto the summand

N⊕
i=1

Hom(a, Sa)⊗Hom(Sa, ai)⊗ hr(a1 ⊗ · · · âi · · · ⊗ aN )

followed by the Serre trace applied to Hom(a, Sa). As the component corresponding
to this summand is zero after the first step, the whole composition vanishes. �

Remark 7.28. The proof of Lemma 7.27 also explains why the right curls in
HV are not required to vanish. Therein the unit at the first step and the counit at
the last step are both given by diagonal maps, and hence they do not automatically
compose to zero.

Lemma 7.29. The relation in (5.12) holds in F′V , i.e.

Φ′V


PSa

Ra Qb

Qb

 = Φ′V


PSa

Ra

Qb

Qb
 .

Proof. To use Lemma 7.18, we prove the statement which is equivalent by
adjunction:

Φ′V


PSaQa

Qb

Qb

=

PSaQa

Qb

Qb

 = Φ′V


PSaQa Qb

Qb
 .
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In other words, Φ′V preserves the commutativity of the diagram

QaPSaQb QbQaPSa

Qb

By Lemma 7.24 the first crossing in Φ′V
( )

embeds QaPSaQb(hr(a1⊗ · · · ⊗ aN )),
that is

(7.3)
N⊕
i=1

(
Hom(a, Sa)⊗Hom(b, ai)⊗ hr(a1 ⊗ · · · âi · · · ⊗ aN )⊕

⊕
N⊕
j=1
j 6=i

Hom(a, aj)⊗Hom(b, ai)⊗ hr(Sa⊗ a1 ⊗ · · · âi · · · âj · · · ⊗ aN )

)
,

into QaQbPSa(hr(a1 ⊗ · · · ⊗ aN )), that is

Qa
(
Hom(b, Sa)⊗ hr(a1 ⊗ · · · ⊗ aN )

)
⊕QaPSaQb

(
hr(a1 ⊗ · · · ⊗ aN )

)
=

N⊕
j=1

Hom(a, ai)⊗Hom(b, Sa)⊗hr(a1⊗· · · âi · · ·⊗aN )⊕QaPSaQb
(
hr(a1⊗· · ·⊗aN )

)
.

The second crossing changes the summand order. By Lemma 7.25 Ψ′V
( )

projects onto

(7.4)
N⊕
i=1

Hom(a, Sa)⊗Hom(b, ai)⊗ hr(a1 ⊗ · · · âi · · · ⊗ aN ),

followed by Tr: Hom(a, Sa) → k. On the other hand, Ψ′V
( )

projects (7.3)
directly onto (7.4), followed by the Serre trace. Thus the two sides are the same
natural transformation. �

7.5. From Φ′V to ΦV

In the previous two sections, we constructed a strict 2-functor

Φ′V : H′V → F′V

of strict DG 2-categories. Recall that F′V is a 1-full subcategory of dgModCat,
the strict DG 2-category whose objects are small DG categories, and whose 1-
morphisms are DG functors between their module categories. We next apply the
lax 2-functor of bimodule approximation defined in Section 4.3:

Apx: dgModCat→ dgMor.

Its target is the DG bicategory dgMor whose objects are small DG categories
and whose 1-morphisms are their DG bimodule categories. On objects, Apx is the
identity map. On 1-morphisms, for any small DG categories A and B it is the DG
functor

Apx: DGFun(Mod -A,Mod -B)→ A-Mod -B,
defined by F 7→ F (A).
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The 1-morphisms of H′V are generated by Pa, Qa, and Ra for a ∈ V. 2-functor
Φ′V sends these to DG functors φ∗a, φa∗, and φ!

a. In Section 7.1 we proved that the
images of these under Apx are left h-projective and right-perfect bimodules. We
thus obtain a composition

H′V
Φ′V−−→ F′V

Apx
−−→ dgMor,

whose image is contained in the 2-full subcategory dgMorlfrp of dgMor consisting
of the left-h-flat and right-perfect bimodules.

We remark that the 2-functor Apx does not send all 1-morphisms of F′V to
dgMorlfrp. Indeed, by definition HomF′V

(0, 1) consists of all DG functorsMod -k→
Mod -V. For any E ∈Mod -V we have the functor (−)⊗E which Apx sends to E
considered as k-V-bimodule. Thus for any non-perfect E the corresponding tensor
functor (−)⊗E is a 1-morphism of F′V whose image under Apx isn’t right-perfect.

Recall the Ho(dgCat)-enriched bicategory EnhCatdg
kc of enhanced triangu-

lated categories defined in Section 4.4. We next apply a strict 2-functor

L : dgMorlfrp → EnhCatdg
kc .

On objects, L is the identity map. On 1-morphisms, depending on which of the
two definitions of EnhCatdg

kc one uses, L is either the natural embedding

A-Mod -Blfrp ↪→ A-Mod -Blfrp,

into the bar category of bimodules, or the natural embedding

A-Mod -Blfrp ↪→ A-Mod -Blfrp/Ac,

into the Drinfeld quotient by acyclics. On the level of homotopy categories, both
are just the standard localisation of DG bimodules by quasi-isomorphisms.

We thus obtain a composition

(7.5) H′V
Φ′V−−→ F′V

Apx
−−→ dgMorlfrp

L−→ EnhCatdg
kc .

The 2-functors Φ′V and L are strict. In general, the 2-functor Apx is lax, but it
follows from Proposition 4.13 that on the DG functors φ∗a, φa∗, and φ!

a its coherence
morphisms are quasi-isomorphisms. Since L sends quasi-isomorphisms to homotopy
equivalences, it follows that the composition (7.5) is a homotopy strong 2-functor.

Next, we take perfect hulls as per Section 4.22. By definition, FV is the per-
fect hull of the 1-full subcategory of EnhCatdg

kc comprising the symmetric powers
SNV. Thus it contains the perfect hull of the image of (7.5). We thereby obtain a
homotopy strong 2-functor

(7.6) Hperf(H′V)
Hperf (L◦Apx ◦Φ′V)
−−−−−−−−−−−−→ FV .

The Heisenberg 2-categoryHV is the monoidal Drinfeld quotient ofHperf(H′V)
by the two-sided 1-morphism ideal IV generated by the following two classes of 1-
morphisms:

(1) For each a ∈ V, the cone of the Serre relation 2-morphism

(7.7) PSa −→ Ra,
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(2) For each a, b ∈ V, the cone of the 2-morphism

(7.8) PbQa ⊕ (1⊗Hom(a, b))

[
, ψ2

]
−−−−−−−→ QaPb.

We claim that (7.6) sends these to null-homotopic 1-morphisms in FV . It suffices to
check that (7.6) sends the 2-morphisms (7.7) and (7.8) to homotopy equivalences.
Recall that in both definitions of EnhCatdg

kc in Section 4.4 its 1-morphisms are DG
bimodules and its 2-morphisms are defined in terms of morphisms of DG bimodules.
In first definition we take bar morphisms and in the second we take the Drinfeld
quotient of the usual bimodule category by acyclics. In both cases, all usual mor-
phisms of DG bimodules are valid 2-morphisms. We say that a 2-morphism is a
quasi-isomorphism if it is an usual morphism of DG bimodules which is a quasi-
isomorphism. All such 2-morphisms are homotopy equivalences: for bar morphisms
this is shown in [2, Cor. 3.8], while in the Drinfeld quotient by acyclics the cone
of a quasi-isomorphism is null-homotopic because it is acyclic. It thus suffices to
check that (7.6) sends (7.7) and (7.8) to quasi-isomorphisms. For the former this
follows by Lemma 7.7, and for the latter by Example 7.12.

We conclude that (7.6) sends all the 1-morphisms in IV to null-homotopic ones.
By the universal property of the Drinfeld quotient, (7.6) lifts to a homotopy-lax
2-functor

ΦV : HV = Hperf(H′V)/IV → FV .

This homotopy strong 2-functor gives our categorical Fock space FV the structure
of a representation of the Heisenberg 2-category HV :

Theorem 7.30. The constructions above give a homotopy strong 2-functor

ΦV : HV → FV ,

that is, a 2-categorical representation of HV on FV .

Corollary 7.31. There exists a 2-categorical representation of HH∗(V) on the
categories H∗(Hperf SNV).

Proof. This follows immediately by combining Theorem 7.30 with Corol-
lary 5.8. �

If one is only interested in the action of homotopy categories, the functor L◦Apx
above can safely be ignored. More precisely, on homotopy categories one has a
canonical isomorphism φSa ∼= φ!

a and hence one only needs to understand the
functors φ∗a and φa,∗. As these functors are already given by bimodules, the functor
L ◦Apx simply restricts them to Hperf SNV.





CHAPTER 8

Structure of the Categorical Fock Space

8.1. The symmetrised operators

As described in Section 6.1, the 1-morphisms Pa, Qa and Ra induce 1-
morphisms P

(n)
a , Q

(n)
a and R

(n)
a of HV for n ≥ 0 via symmetrisers. These are

represented by operators P (n)
a , Q(n)

a and R(n)
a on FV . In order to explicitly describe

the effect of these operators on FV , we consider the functor

φan : SNV → SN+nV, a1 ⊗ · · · ⊗ aN 7→ a⊗ · · · ⊗ a⊗ a1 ⊗ . . . aN .
The 1-morphisms Pna , Qna and Rna are the images of the functors

φ∗an : Mod -SNV →Mod -SN+nV,
φan,∗ : Mod -SN+nV →Mod -SNV,

and

φ!
an : Mod -SNV →Mod -SNnV,

under the functor L ◦ Apx of Section 7.5, with P
(0)
a = Q

(0)
a = R

(0)
a = id. Recall

that in Definition 7.10 we defined the Fock space FV as a 1-full subcategory of the
2-category Hperf(EnhCatdg

kc ) which by Lemma 7.9 is a DG enhancement of the
strict 2-categoryEnhCatkc of enhanced triangulated categories. Thus 1-morphisms
in the Fock space are enhanced functors between enhanced triangulated categories.
The underlying exact functors have the following explicit description:

Lemma 8.1. Let a be an object of V. Then:
(1) The exact functor

pna : Dc(SNV)→ Dc(SN+nV)

underlying the enhanced functor Pna is isomorphic to the composition

Dc(SNV)
hr(an)⊗(−)−−−−−−−−→ Dc(SnV ⊗ SNV)

Ind
SN+n
Sn×SN−−−−−−−→ Dc(SN+nV),

where hr(an)⊗ (−) is the evaluation of (4.5) at hr(an). This DG functor
sends any E ∈ Mod -SNV to the module over SNV ⊗ SnV whose fibers
are given by the tensor product over k of the fibers of hr(an) and the fibers
of E. As it sends acyclics to acyclics, it descends to the derived categories
as-is.

(2) The exact functor

qna : Dc(SNV)→ Dc(SN+nV)

underlying the enhanced functor Qna is isomorphic to the composition

Dc(SN+nV)
Res

Sn×SN
SN+n−−−−−−−→ Dc(SNV ⊗ SnV)

HomSnV(hr(an),−)−−−−−−−−−−−−−→ Dc(SNV),

115
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where HomSnV(hr(an),−) is the right adjoint of hr(an) ⊗ (−). It is the
DG functor of taking Hom-spaces as SNV modules. With hr(an) in the
first argument, it is isomorphic to the functor (−)an of taking fibers over
an ∈ SnV. As it sends acyclics to acyclics, it descends to the derived
categories as-is.

Proof. Since Qna is the 2-categorical right adjoint of Pna and ΦV is homotopy
monoidal, Qna is a homotopy right adjoint of Pna . Therefore qna is the right adjoint
of pna . We thus only prove (1), as (2) follows by adjunction.

By definition, Pna is the image of φ∗an under the functor L ◦ Apx of taking
bimodule approximation, and then projecting to the derived category of bimodules.
Since φ∗an is already a tensor functor, it restricts to

φ∗an : Hperf (SNV)→ Hperf (SN+nV),

and the corresponding exact functor pna is the H0-truncation of this restriction.
We can view φan as the image of an ∈ SnV under the DG functor

φ : SnV unit−−→ DGFun(SNV, SnV ⊗ SNV)
in+N
n,N ◦(−)
−−−−−−→

→DGFun(SNV, SN+nV)
(−)∗−−−→ DGFun

(
Hperf (SNV), Hperf (SN+nV)

)
,

where in+N
n,N : SnV ⊗SNV → SN+nV is the natural inclusion. It can now be readily

verified that φ is isomorphic to the composition of the Yoneda embedding SnV ↪→
Hperf (SnV) with

Hperf (SnV)

DGFun
(
Hperf (SNV), Hperf (SnV)⊗Hperf (SNV)

)
DGFun

(
Hperf (SNV), Hperf (SnV ⊗ SNV)

)
DGFun

(
Hperf (SNV), Hperf (SN+nV)

)
.

unit

(4.5)◦(−)

(in+N
n,N

)∗◦(−)

(8.1)

Since the DG category isomorphism

SnV ⊗ SNV ∼= (Sn × SN ) o VN+n,

and the equivalence (4.9) identify

(in+N
n,N )∗ : Hperf (SnV ⊗ SNV)→ Hperf (SN+nV)

with the induction functor

Ind
SN+n

Sn×SN : Hperf Sn×SN (VN+n)→ Hperf SN+n(VN+n),

the desired claim follows. �

Let φ∗etriv , φetriv,∗, and φ
!
etriv be the images of the idempotent φetriv : φan → φan

under the functors (−)∗, (−)∗, and (−)!, respectively. While the idempotents etriv

and φetriv are not apriori split, the idempotents φ∗etriv , φetriv,∗, and φ
!
etriv always are.

The splitting is obtained by taking all elements invariant under the action of Sn on
an. For example, given any module E ∈ Mod -SNV we consider the elements of
φ∗an(E) which are invariant under the endomorphisms induced by σ : an → an for
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all σ ∈ Sn. These form a submodule which splits the idempotent φ∗etriv on E. In
fact, φ∗an is the functor of tensoring with the bimodule

φanS
NV := HomSNV(−, an ⊗−),

and φ∗etriv is split by its submodule of elements invariant under the action of Sn on
an.

By construction, the 1-morphisms P (n)
a , Q(n)

a and R
(n)
a are the images under

projection L◦Apx to FV of the homotopical splittings of idempotents φ∗etriv , φetriv,∗,
and φ!

etriv given by the construction in Section 6.1. Thus P (n)
a , Q(n)

a and R(n)
a are

homotopy equivalent to the images under L ◦Apx of the genuine splittings of these
idempotents. We thus have:

Corollary 8.2. Let a be an object of V. Let hr(an)Sn ∈ Hperf SnV be the
submodule of hr(an) consisting of Sn-invariant elements. Then:

(1) The exact functor

p(n)
a : Dc(SNV)→ Dc(SN+nV)

underlying the enhanced functor P (n)
a is isomorphic to the composition

Dc(SNV)
hr(an)Sn⊗(−)−−−−−−−−−→ Dc(SnV ⊗ SNV)

Ind
SN+n
Sn×SN−−−−−−−→ Dc(SN+nV).

(2) The exact functor

q(n)
a : Dc(SNV)→ Dc(SN+nV)

underlying enhanced functor Q(n)
a is isomorphic to the composition

Dc(SN+nV)
Res

Sn×SN
SN+n−−−−−−−→ Dc(SNV ⊗ SnV)

HomSnV(hr(an)Sn ,−)−−−−−−−−−−−−−−→ Dc(SNV).

Proof. As before, (2) follows by adjunction from (1).
To prove the latter, recall that in the proof of Lemma 8.1 we have established

that pna is isomorphic to the H0-truncation of φ(an) where φ is isomorphic to the
composition of the Yoneda embedding and (8.1). The idempotent etriv : an → an

becomes split once we apply the Yoneda embedding hr(−) and hr(an)Sn is the
corresponding direct summand. Therefore the idempotent φ(etriv) is split and the
corresponding direct summand of φ(an) is given by the image of hr(an)Sn under
(8.1). Since p(n)

a is isomorphic to this direct summand of pna , the claim folllows. �

The 1-morphisms P(n)
a , Q(n)

a and R
(n)
a satisfy a number of relations arising from

the relations between in HV . For example:
(1) There are adjunctions P (n)

a a Q(n)
a and Q(n)

a a R(n)
a .

(2) By Remark 6.5, for every α ∈ Symn(Hom(a, b)) there are natural trans-
formations P (n)

a
α
=⇒ P

(n)
b and Q(n)

b
α
=⇒ Q

(n)
a .

(3) By Theorem 6.3, for any a, b ∈ V and n, m ∈ N we have natural isomor-
phisms

(8.2) P (m)
a P

(n)
b
∼= P

(n)
b P (m)

a , Q(m)
a Q

(n)
b
∼= Q

(n)
b Q(m)

a ,

and a homotopy isomorphism

(8.3)
min(m,n)⊕
i=0

Symi(HomV(a, b))⊗k P
(n−i)
b Q(m−i)

a → Q(m)
a P

(n)
b .
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Example 8.3. Let X be a smooth and projective variety. Continuing Exam-
ple 7.11, we obtain the symmetrised operators P (n)

a and Q
(n)
a . These reproduce

the remaining functors from [33, Section 2.4] for the DG derived categories. Thus
Corollary 7.31 enhances the representation defined by Krug to a 2-categorical action
of H∗(HI(X)). On the homotopy categories, (8.2) and (8.3) become

P (m)
a P

(n)
b
∼= P

(n)
b P (m)

a , Q(m)
a Q

(n)
b
∼= Q

(n)
b Q(m)

a ,

Q(m)
a P

(n)
b
∼=
min(m,n)⊕
i=0

Symi Hom∗(a, b)⊗k P
(n−i)
b Q(m−i)

a .

This provides a new proof of [33, Theorem 1.4].

8.2. Grothendieck groups and the classical Fock space

8.2.1. Constructing a representation of the Heisenberg algebra. In
Section 4.9 we defined the numerical Grothendieck group Knum

0 (V, k) of a smooth
and proper DG category V. As finite tensor products of DG categories preserve
both of these properties, V⊗N is smooth and proper. It is then evident from the
decomposition (4.8) of the diagonal bimodule, that SNV is smooth and proper as
well. Thus its numerical Grothendieck group is well-defined.

With this in mind, define the k-linear 1-category

End

(⊕
N

Knum
0 (SNV, k)

)
to have as objects Knum

0 (SNV, k) := k ⊗Z Knum
0 (SNV), and as morphisms the

k-linear maps between these vector spaces. Thus a k-linear functor into this cat-
egory is an idempotent-modified version of a representation on the vector space⊕

N Knum
0 (SNV, k).

We next use the 2-functor ΦV : HV → FV to define a 1-functor from
Knum

0 (HV , k) to
⊕

N Knum
0 (SNV, k). Recall our definition of Knum

0 (HV , k): it is
the quotient of K0(HV , k) by the two-sided ideal generated by the images under
ΞP , ΞQ : Hperf(SymV)→ HV of the kernel of the Euler pairing, see Section 6.4.
To show that this two-sided ideal gets sent by ΦV to the kernel of the Euler pairing
on
⊕

N K0(SNV, k), we need the following lemma:

Lemma 8.4. The composition

ΦV ◦ ΞP : Hperf(SymV)→ FV ,

is the following 2-functor. On the object sets, it is id : Z→ Z. On the 1-morphism
categories N → N +n, it is homotopy equivalent to the composition of L◦Apx with
the DG functor

Hperf (SnV)
(8.1)−−−→ DGFun

(
Hperf (SNV), Hperf

(
SN+nV

))
.

Proof. By definition, ΦV ◦ ΞP is the perfect hull of the 2-functor

SymV
L◦Apx◦Φ′V◦Ξ

P ′
V−−−−−−−−−−→ EnhCatdg

kc .

On the 1-morphism categories N → N +n, the composition Φ′V ◦ΞP
′

V is the functor

φ : SnV → DGFun
(
Hperf (SNV), Hperf (SN+nV)

)
,
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defined in the proof of Lemma 8.1. Therefore, on the 1-morphism categories N →
N + n, the composition ΦV ◦ ΞP is the functor (L ◦Apx ◦ φ)∗.

Since φ is isomorphic to

SnV Yoneda−−−−→ Hperf (SnV)
(8.1)−−−→ DGFun

(
Hperf (SNV), Hperf

(
SN+nV

))
the desired assertion now follows from the following fundamental fact. Let A and
B be any DG categories and F : A → B any DG functor. If F decomposes as

A Yoneda−−−−→ Hperf (A)
G−→ B,

for some DG functor G, then F ∗ is homotopy equivalent to

Hperf (A)
G−→ B Yoneda−−−−→ Hperf (B).

To see this, consider the commutative square

Hperf (A) B

Hperf (Hperf (A)) Hperf (B),

G

Yoneda Yoneda

G∗

and observe that the DG functor

Yoneda : Hperf (A)→ Hperf (Hperf (A))

is homotopy equivalent to the DG functor

Yoneda∗ : Hperf (A)→ Hperf (Hperf (A)). �

We can now construct the desired 1-functor:

Corollary 8.5. The 2-functor ΦV : HV → FV from Theorem 7.30 induces a
1-functor

Knum
0 (HV , k)→ End

(⊕
N

Knum
0 (SNV, k)

)
.

In other words one obtains a representation of Knum
0 (HV , k) on

⊕
Knum

0 (SNV, k).

Proof. Functoriality of Grothendieck groups gives a 1-functor

ΦV : K0(HV , k)→ End

(⊕
N

K0(SNV, k)

)
.

We claim that any morphism K0(SNV, k) → K0(SMV, k) in its image takes the
kernel of the Euler pairing χ on K0(SNV, k) to its kernel on K0(SMV, k). As per
Section 7.1, the 1-morphisms to which ΦV maps generating 1-morphisms Ps, Qs,
and Rs of H′V are left- and right-perfect bimodules. Hence the same is true of all 1-
morphisms in ΦV(H′V). By construction, ΦV(HV) lies in the Hperf -hull of ΦV(H′V),
and thus the 1-morphisms in ΦV(HV) are also left- and right-perfect bimodules. By
[2, Theorem 4.1] the corresponding exact functors Dc(SNV)→ Dc(SMV) have left
adjoints. Arguing as in Lemma 4.49, we see that the induced maps K0(SNV, k)→
K0(SMV, k) take kerχ to kerχ.

We thus have a 1-functor

ΦV : K0(HV , k)→ End

(⊕
N

Knum
0 (SNV, k)

)
.
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It remains to show that this functor descends to Knum
0 (HV , k). For the definition

of the latter, see Section 6.4.
Let E ∈ Hperf (SnV) be in the kernel of the Euler pairing. Let us view E as

a 1-morphism N → N + n in Hperf(SymV). By Lemma 8.4, ΦV ◦ ΞP (E) is an
enhanced functor whose underlying exact functor is

Dc(SNV)
E⊗(−)−−−−→ Dc(SnV ⊗ SNV)

Ind
SN+n
Sn×SN−−−−−−−→ Dc(SN+nV).

We have to show that its image lies in kerχ, and thus the induced map of Knum
0 is

zero. Let F ∈ Hperf (SNV) and observe that

ΦV ◦ ΞP (E)(F ) ∼= Ind
SN+n

Sn×SN (E ⊗ F ) ∼= Ind
SN+n

SN×Sn(F ⊗ E) ∼= ΦV ◦ ΞP (F )(E).

Above we already established that the underlying exact functor of any 1-morphism
in the image of ΦV takes kerχ to kerχ. Thus ΦV ◦ ΞP (F )(E) lies in kerχ, and
hence so does ΦV ◦ ΞP (E)(F ). By adjunction, ΦV ◦ ΞQ(E)(F ) lies in kerχ as well.

We have now established that on the level of Grothendieck groups ΦV kills the
image under ΞP and ΞQ of the kernel of the Euler pairing on K0(Hperf(SymV), k).
Since Knum

0 (HV , k) is the quotient of K0(HV , k) by the two-sided ideal gener-
ated by this image, we conclude that ΦV descends to a functor Knum

0 (HV , k) →
End

(⊕
N Knum

0 (SNV, k)
)
, as desired. �

8.2.2. Genuine categorification. Consider ΦV as homomorphism of alge-
bras and compose it with the algebra homomorphism π : HV → Knum

0 (HV , k) of
Section 6.4 to obtain a homomorphism

HV → End

(⊕
N

Knum
0 (SNV, k)

)
.

The vector 1 ∈ Knum
0 (S0V, k) ∼= k is annihilated by all elements of H−V \ {10} and

is kept invariant by 10. Lemma 2.9 then implies that there is a graded HV -module
embedding

(8.4) φ : FV =
⊕
N

FNV ↪→
⊕
N

Knum
0 (SNV, k)

of the appropriate classical Fock space.
The following is a generalisation of [33, Section 3.1]. For a partition λ, write

r(λ)i for the number of parts of λ of size i.

Corollary 8.6. Suppose that the following dimension formula holds:

dim Knum
0 (SNV, k) =

∑
λaN

∏
i

dim Symr(λ)i Knum
0 (V, k)

where the sum runs over all partitions λ of N and the product over all sizes i of
parts of λ. Then (8.4) is an HV -module isomorphism. That is, FV categorifies FV .

Proof. The assumption and (2.8) implies that the dimensions of the graded
vector spaces FV and

⊕
N Knum

0 (SNV, k) agree in each degree. Hence, these graded
spaces must be isomorphic. �

Example 8.7. The assumption of Corollary 8.6 is satisfied in the following
cases:
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(1) Let X be a smooth projective variety and V = I(X) as in Examples 7.11
and 8.3. Assume moreover that the numerical Grothendieck group satisfies
a Künneth formula:

Knum
0 (V⊗N ) ∼= (Knum

0 (V))⊗N .

This is the case, by Example 4.46, if the Chow groups of X tensored with
Q satisfy the Künneth formula. A sufficient condition for this is that the
Chow motive of X is a summand of a direct sum of Tate motives [54].
Note that this is a very strong assumption which is closely related to
Db

coh(X) having a full exceptional collection. It is already false for elliptic
curves as we see in the counterexample in §8.2.3.

As the Chern character is additive on disjoint varieties, by
Hirzebruch—Riemann-–Roch we can replace K0 with Knum

0 in [55, Theo-
rem 1] to get a direct sum decomposition:

Knum
0 (SNV, k) ∼=

⊕
λaN

⊗
i

Symr(λ)i Knum
0 (V, k)

where the sum runs over all partitions λ of N and the product over all
sizes i of parts of λ.

Hence, V satisfies the assumption of Corollary 8.6.
(2) Let Γ ⊂ SL(2,C) be a finite subgroup and V as in Examples 5.10, 6.16 and

7.16. Then the dimension assumption for the usual K-groups follows from
the combination of [56, Proposition 5], Göttsche’s formula for the Betti
numbers of Hilbert schemes and the fact the topological and algebraic
K-theories agree on the minimal resolution of the quotient variety C2/Γ
(as both are described by the representation theory of G [38, Chapter
4]). The Euler form equals the intersection form on the resolution, which
is given by the appropriate finite type Cartan matrix. This is known to
be non-degenerate. Hence, the kernel of χ is trivial in each case, and the
dimension assumption descends to the numerical K-groups.

Remark 8.8. An alternative way to obtain Example 8.7 (1) in many cases is
to combine the main result of [10] proving that the map

π : HV → Knum
0 (HV , k)

is an isomorphism when X = Spec(k) is a point (and hence also when Db
coh(X) has

a full exceptional collection) with our Theorem 8.13 below.

8.2.3. A counterexample. We now give an example of π not being an iso-
morphism. Let X be a smooth projective curve and n ∈ Z>0. Denote by

X(N) = XN/SN

the N -th symmetric power of X. This is a smooth projective variety of dimension
N .

Let λ be any partition of N . Write ri for the number of parts of size i in λ.
Define the closed subvariety

X[λ] ⊂ XN

to be the fixed point locus of some σ ∈ SN of cycle type λ. Different choices of
σ produce canonically isomorphic X[λ]. Explicitly, X[λ] consists of (x1, . . . , xN )
where xi = xσ(i) for all i ∈ 1, . . . , N . Thus X[λ] ∼= Xk where k is the total number
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of parts in λ. The action of the centraliser C(σ) ⊂ SN on XN restricts to X[λ] as
the action of Sλ =

∏
i Sri which permutes the factors of Xk which correspond to

the parts of the same size in λ. The quotient variety is

X[λ]/Sλ =
∏
i

X(ri).

For any ordering λ1, . . . , λp of partitions of N refining the dominance order, there
is a semiorthogonal decomposition

Db
coh([XN/SN ]) =

〈
Db

coh(X[λ1]/Sλ1), . . . ,Db
coh(X[λp]/Sλp)

〉
=

〈
Db

coh

(∏
i

X(r(λ1)i)

)
, . . . ,Db

coh

(∏
i

X(r(λp)i)

)〉

by [40]. As N = 2 has two partitions (λ1 = (2) and λ2 = (1, 1)), we have for the
second symmetric quotient stack the semiorthogonal decomposition

(8.5) Db
coh([X2/S2]) =

〈
Db

coh(X),Db
coh(X(2))

〉
.

Let now X be an elliptic curve. It is known that for each N > 1 the Abel-Jacobi
map realizes X(N) as a PN−1-bundle over X, see [12, Section 1.1]. Hence, by [39]
there is a semiorthogonal decomposition

Db
coh(X(N)) = 〈Db

coh(X), . . . ,Db
coh(X)︸ ︷︷ ︸

N times

〉.

Combining this for N = 2 with (8.5), we obtain a semiorthogonal decomposition

(8.6) Db
coh([X2/S2]) =

〈
Db

coh(X),Db
coh(X),Db

coh(X)
〉
.

Recall that
K0(X)

∼−→ Z⊕ Pic(X)

[F ] 7→ (rkF,detF )

is an isomorphism [28, Exercise II.6.11]. From this we get that

Knum
0 (X)

∼−→ Z⊕ Pic(X)/Pic0(X) ∼= Z⊕ Z

[F ] 7→ (rkF,deg detF )

is also an isomorphism. Here Pic(X)/Pic0(X) = NS(X) is the Neron-Severi group
of X. Hence, by (8.6)

dim Knum
0 ([X2/S2], k) = 6.

On the other hand, the dimension of the degree 2 part of the classical Fock space
of X by (2.8) is

dim Sym1 Knum
0 (X, k) + dim Sym2 Knum

0 (X, k) =

(
2 + 1− 1

1

)
+

(
2 + 2− 1

2

)
= 5.

Therefore, φ cannot be an isomorphism when X is an elliptic curve. By Theo-
rem 8.13 below the same holds for π.
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8.3. The Fock space as a quotient

The following constructions are easier to express in a monoidal setting, rather
than in the 2-categorical setting we worked in so far. Thus, let HV be the
Ho(dgCat1)-monoidal DG 1-category obtained from HV by identifying all objects
and all 1-morphism categories Hom(N, N + n) for fixed n ∈ Z. Concretely, set

HV =
⊕
n∈Z

HomHV (0, n)

with the monoidal structure given by the horizontal composition in HV via the
identification

HomHV (0, n1)⊗HomHV (0, n2) ∼= HomHV (0, n1)⊗HomHV (n1, n1 + n2)

→ HomHV (0, n1 + n2).

Applying the same flattening procedure to FV , we obtain a DG category

(8.7) FV =
⊕
n≥0

Hperf Perf (SnV).

In FV we do not have a Hom-category isomorphism

HomFV (0, n2) ∼= HomFV (n1, n1 + n2).

However, there is a natural functor between the two:

HomFV (0, n2) = Hperf Perf (Sn2V)
(Sn1V⊗k(−))∗−−−−−−−−−−→ Hperf

(
Sn1V-Mod-(Sn1V ⊗k Sn2V)

)
lfrp

Ind
Sn1+n2
Sn1

,Sn2−−−−−−−−→ Hperf
(
Sn1V-Mod-Sn1+n2V

)
lfrp

= HomFV (n1, n1 + n2).

Using it, we obtain from the 1-composition of FV a monoidal structure on FV
given by

Hperf Perf (Sn1V)⊗Hperf Perf (Sn2V)→ Hperf Perf (Sn1+n2V),

induced by the natural inclusion Sn1V ⊗ Sn2V ↪→ Sn1+n2V.
Applying the flattening to the 2-functor ΦV : HV → FV constructed in Chap-

ter 7 we obtain a DG functor ΦV : HV → FV . One can readily check that it is
homotopy monoidal with respect to the monoidal structures on HV and FV de-
scribed above.

Next, take the functor L : dgMorlfrp → EnhCatdg
kc defined in Section 7.5,

restrict it to the categories SnV and apply the flattening. We obtain a DG functor⊕
n

Perf SnV L−→
⊕
n

Perf SnV.

Precomposing it with the inclusions Hperf SnV ↪→ Perf SnV we obtain the quasi-
equivalence ⊕

n

Hperf SnV L−→
⊕
n

Perf SnV.

Since for any DG category A the Yoneda embedding PerfA → Hperf PerfA is a
quasi-equivalence, we further obtain a quasi-equivalence

(8.8)
⊕
n

Hperf SnV L−→
⊕
n

Perf SnV Yoneda−−−−→
⊕
n

Hperf Perf SnV = FV .
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Corollary 8.9. The DG functor⊕
n

Hperf SnV ΞP−−→ HV
ΦV−−→ FV ,

filters through the quasi-quivalence (8.8) as a functor homotopic to

id⊕
nHperf SnV .

Proof. This follows from the proof of Lemma 8.4 and the fact that the com-
position

Hperf (SnV)
(8.1)−−−→ DGFun (Hperf (k), Hperf (SnV))

Apx
−−→ Hperf (SnV)

is the identity functor. �

Remark 8.10. Corollary 8.9 implies, in particular, that the DG-category⊕
Hperf SnV is a homotopy retract of HV , that is — a retract in the category

Ho(dgCat1).
In particular, Hperf V itself is a homotopy retract of HV . Thus, on the level of

underlying triangulated categories, we have a faithful embedding Dc(V) ↪→ Dc(HV).

As explained in Section 2.2, the classical Fock space FV is isomorphic to HV/I
where I is the left ideal generated by the q(n)

[a] for [a] ∈ Knum
0 (V, k) and n > 0. More-

over, as seen in Section 8.2, we have an embedding φ : FV ↪→
⊕

N Knum
0 (SNV, k).

Motivated by this, we define

F̃V := HV/I,
where I is the left ideal generated by objects Qa for a ∈ V.

Lemma 8.11. The DG category
⊕
Hperf SnV is a homotopy retract of F̃V .

Specifically, the following composition is a homotopy retraction:

(8.9)
⊕
Hperf SnV ΞP−−→ HV

Drinfeld−−−−−→ F̃V .

Moreover, this composition is quasi-essentially surjective on objects.

Proof. In view of Corollary 8.9 it suffices to prove that the homotopy retrac-
tion

ΦV : HV → FV
filters in Ho(dgCat1) through the Drinfeld quotient functor

HV → HV/I = F̃V .

By the universal property of Drinfeld quotient (Theorem 4.27), it suffices to prove
that ΦV sends all objects of I to null-homotopic ones. By the definition of the
monoidal structure on HV , it suffices to check this on objects Qa for a ∈ V which
generate I as a left ideal.

In fact, ΦV sends all of these to zero. Indeed, we compute ΦV(Qa) by evaluating
the corresponding 2-functor on 1-morphisms Qa ∈ HomHV (0,−1). By construction,
the 2-functor ΦV sends all objects n ∈ Z<0 to zero, and hence for any n < 0 it
sends the whole 1-morphism category HomHV (0, n) to zero.

For the final claim, recall that 1-morphism categories of HV are Drinfeld quo-
tients of the perfect hulls of those of H′V . We then take a further Drinfeld quotient
to obtain F̃V . As taking Drinfeld quotient doesn’t change the objects of a category,
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the objects of F̃V are perfect modules over the 1-morphism categories HomH′V
(0, n).

We can therefore view them as homotopy idempotents of twisted complexes over
HomH′V

(0, n).
The objects of HomH′V

(0, n) are words on P, Q, and Rs. In HV , P and R
become homotopy equivalent. Furthermore, the homotopy equivalence (6.1) in HV
allows us to turn any subword QP into a direct sum of PQs and 1s. Since any word
ending in Q is null-homotopic in F̃V , we conclude that all objects of HomH′V

(0, n)

are homotopy equivalent in F̃V to direct sums of words on just Ps.
It remains to show that any morphism between words on Ps in HomH′V

(0, n)

becomes homotopic in F̃V to something that lies in the image of ΞP . In other
words, homotopic to a diagram containing just the crossings. Since there are no Qs
involved, we only need to show that we can get rid of curls and of bubbles. The
relations (5.11) imply that counterlclockwise curls are homotopic to zero, while
counterclockwise bubbles are homotopic to scalar multiples of identity maps.

Suppose we have a clockwise bubble. If there is no vertical string to the right of
it, the diagram can be written as a 2-composition filtering through a word ending
in Q and hence vanishes. If there is a vertical string to the right of the bubble,
we use the homotopy relations in Lemma 5.7 to replace a downward string in the
bubble and the (upward) vertical string by a cup and a cap plus a double crossing.
The replacement by a cup and a cap absorbs the bubble into the vertical string
and gets rid of it. The replacement by a crossing makes the vertical string cross
the bubble. We then use the symmetric group relations on upward strands to move
the bubble completely to right of the vertical string. If there are any more vertical
strings to the right of the bubble, we repeat this procedure.

A similar argument works for clockwise curls. If there are no vertical strings to
the right of it, the diagram passes through a word ending in Q and hence vanishes.
If there are, we can similarly move the curl to the right of string: the replacement
by a cup and a cap turns the curl into a crossing and gets rid of it, while the
replacement by a double crossing makes the vertical string cross the curl, and we
can then use a triple move to finish moving the curl completely to the right of the
vertical string. �

We have shown above that ΦV filters through the Drinfeld quotient HV → F̃V .
Let

Φ̃V : F̃V → FV
be the corresponding quasi-functor. On the other hand, let the quasi-functor

Ξ̃P : FV → F̃V

be the composition of (8.9) with the formal inverse of the quasi-equivalence (8.8).
By Corollary 8.9, Φ̃V is a homotopy left inverse of Ξ̃P .

Define the numerical Grothendieck groups Knum
0 (HV , k) and Knum

0 (F̃V , k) sim-
ilarly to the definition of Knum

0 (HV , k) in Section 6.4. Namely, they are the quo-
tients of K0(HV , k) and K0(F̃V , k) under the images of the kernel of the Euler
form on

⊕
n K0(SnV, k) under ΞP and (8.9), respectively. Then Knum

0 (HV , k) is
the idempotent modification of Knum

0 (HV , k).
By Lemma 8.11, the map of K-groups induced by Ξ̃P is injective. By our

definitions, it descends to an injective map of numerical K-groups, and so does any
left inverse of it. We thus obtain:
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Corollary 8.12. The following composition is the identity map:

Knum
0 (FV , k)

Ξ̃P−−→ Knum
0 (F̃V , k)

Φ̃V−−→ Knum
0 (FV , k).

Corollary 8.12 together with the morphism φ of (8.4) gives an embedding of
the classical Fock space into the numerical Grothendieck group of the category F̃V :

FV =
⊕
n

FnV
φ−→
⊕
n

Knum
0 (SnV, k) ∼= Knum

0 (FV , k)
Ξ̃P−−→ Knum

0 (F̃V , k)

where ⊕
n

FnV
∼=
⊕
n≥0

⊕
λan

⊗
i

Symr(λ)i Knum
0 (V, k)

and r(λ)i is the number of parts of size i in λ.
We now prove a converse to Conjecture 6.21.

Theorem 8.13. If π : HV → Knum
0 (HV , k) is an isomorphism, then so are φ

and Ξ̃P :⊕
n≥0

⊕
λan

⊗
i

Symr(λ)i Knum
0 (V, k) ∼=

⊕
n≥0

Knum
0 (SnV, k) ∼= Knum

0 (F̃V , k).

Proof. Let I be the left ideal of HV generated by q(n)
[a] with n > 0 and a ∈ V.

We have

(8.10)

HV FV

Knum
0 (HV , k) Knum

0 (FV , k)

Knum
0 (F̃V , k).

quotient by I

π φ

ΦV

Drinfeld
Φ̃V

The Drinfeld quotient induces a surjective map of the K-groups by [25, Propo-
sition VIII.3.1]. By our definitions, this descends to the surjective map of the
numerical K-groups in (8.10).

By assumption of the Theorem, the map π is an isomorphism. By (8.10), the
injective map φ is then surjective, and thus an isomorphism. Now observe that the
Drinfeld quotient map kills π(I). The surjective map Φ̃ is therefore injective and
thus an isomorphism. Its right inverse Ξ̃P is then also an isomorphism. �

8.4. Reconstruction of the base category

It is natural to ask to what extent we can recover the base category V from
its Heisenberg category HV . Given the nature of our construction, the best we can
hope for is to recover V up to Morita equivalence. This recovers Hperf V, that is –
the compact derived category Dc(V).

We are not allowed to use our categorical Fock space FV in this reconstruction
as it is not built from HV , but directly from V. In particular, FV contains Hperf V
as the 1-morphism category HomFV (0, 1). However, this gives us our strategy: we



8.4. RECONSTRUCTION OF THE BASE CATEGORY 127

obtain our categorical Fock space quotient F̃V intrinsically from HV together with
Z-grading which remembers the flattening

HV =
⊕
n∈Z

HomHV (0, n).

If we could show that the natural functor of Lemma 8.11⊕
Hperf SnV (8.9)−−−→ F̃V .

is a quasi-equivalence, we could recover Hperf V as 1-graded part F̃1
V of F̃V . In

Lemma 8.11 we come tantalisingly close: we show (8.9) to be quasi-faithful and
quasi-essentially surjective on objects. In fact, in the proof of Lemma 8.11 we show
that it is also quasi-full on those morphisms in F̃V which come from the perfect
hull of H′V . The only morphisms we can’t get so far are those added by taking the
two Drinfeld quotients – the first one to get HV and the second one to get F̃V .

We conjecture that one can get even these and thus (8.9) is a quasi-equivalence.
This would allow one to recover Hperf V as F̃1

V . For the moment, however, we only
have:

Lemma 8.14. Let V and W be smooth and proper DG categories and assume
that there is a quasi-equivalence of Ho(dgCat)-enriched bicategories which is the
identity on objects:

HV ∼= HW .

Then:
(1) There is a Z-graded quasi-equivalence

F̃V ∼= F̃W .

(2) There are quasi-faithful quasi-essentially surjective functors

Hperf V → F̃1
V
∼= F̃1

W ← Hperf W.

Proof. For the first claim, recall that we construct the categorical Fock space
quotient F̃V as the Drinfeld quotient of HV by the left ideal I generated by objects
Qa for a ∈ V. We can equivalently take I to be the left ideal generated by all
1-morphisms in HomHV (n, n−k) for k > 0. Since the quasi-equivalence HV ∼= HW
is identity on the objects n ∈ Z it preserves this ideal and hence descends to a
quasi-equivalence F̃V ∼= F̃W .

The second claim follows directly from Lemma 8.11. �

This is enough to show that the Heisenberg categories of I(P1) and I(pt t pt)
are distinct:

Example 8.15. For the categories I(P1) and I(pt t pt) of Example 4.48 our
Lemma 8.14 is still enough to see that

HI(P1) 6∼= HI(pttpt).

The decomposition I(pt t pt) = I(pt)⊕ I(pt) induces a decomposition

HomH′I(pttpt)
(0, 1) = HomH′I(pt)

(0, 1)⊕HomH′I(pt)
(0, 1)

as follows. The objects of the Hom-space on the LHS consists of words with one
more P than Q. There is no morphism between two such words if the difference
of P’s and Q’s indexed by one of the two generating objects is positive in one of
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the words but nonpositive in the other word. This decomposition then induces an
orthogonal decomposition

F̃1
I(pt) ⊕ F̃1

I(pt).

By Lemma 8.14 (2), there exists a faithful and essentially surjective functor

Db
coh(P1) = H0(I(P1))→ H0(F̃I(P1)).

Therefore, if H0(F̃I(P1)) had an orthogonal decomposition, so would have Db
coh(P1).

But this would imply that P1 is disconnected.
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