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ABSTRACT

234 Min Xu

45 Boda Lius,

Oceanic crusts at slow-spreading ridges are created either by symmetric spreading dominated by magmatic

accretion or asymmetric spreading controlled by tectonic extension. Consecutive change in the spreading

mode at the same ridge has been commonly attributed to variation in magma supply, but the mechanism

controlling magma supply remains unclear. Here, we present geochemical analyses of peridotites and basalts
from the Mid-Atlantic Ridge at 23°N, a region that has shifted from asymmetric spreading to symmetric
spreading over the past 3.3 million years. Our results indicate that the asymmetric phase was characterized

by a low magma flux, resulting from inherited ancient melt depletion in the asthenosphere. The subsequent

increase in magma supply and shift to symmetric spreading corresponded with the arrival of more fertile

mantle material. This work provides evidence of shifts between spreading modes driven by changing mantle
compositions, highlighting the crucial role of asthenospheric heterogeneity in controlling the spreading

modes at slow-spreading ridges.
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INTRODUCTION

The global mid-ocean ridge (MOR) system, with
a total length >65000 km, is the first-order struc-
ture on Earth, along which oceanic crusts covering
70% of the Earth’s surface are created. The spread-
ing modes of the MOR play a key role in con-
trolling the mechanisms of crustal accretion and
thus influencing the style and extent of mass and
chemical exchange between Earth’s interior and sur-
face [1,2]. Sufficient magma supply at fast-spreading
ridges, such as the East Pacific Rise, results in sym-
metric spreading [3]. Nevertheless, two types of
spreading modes, i.e. symmetric and asymmetric, co-
exist at the slow-spreading ridges [3,4], such as the
Mid-Atlantic Ridge (MAR). Symmetric spreading
is dominated by magmatic accretion under a high
magma supply, which is typically associated with
normal crustal thickness (5-6 km) and symmetric
high-angle normal faulting [5,6]. In contrast, asym-
metric spreading is accommodated by tectonic ex-
tension under a reduced magma supply [3,7], re-
sulting in the development of detachment faults that
exhume plutonic rocks as oceanic core complexes

(OCCs). It has been estimated that each spreading
mode occupies half of the MAR and exerts different
influences on seafloor morphology as well as litho-
spheric alteration (e.g. hydration and carbonatiza-
tion) [4,8].

In particular, a temporal shift of spreading modes
has been observed for some ocean ridges [9,10].
Although such a shift has been consensually ascribed
to the variation in magma supply [10], the mecha-
nism for the secular variation in magma supply at
the same ridge remains unclear. Different factors,
including mantle composition [11-14], upwelling
dynamics [15-17], and temperatures [18], have
been proposed to explain the change in magma sup-
ply, among which the mantle composition has been
underestimated. This is because the asthenosphere
underlying the ocean ridges has been commonly
regarded as homogeneous in composition, based
on studies of mid-ocean ridge basalts (MORBs)
[19,20]. However, studies on abyssal peridotites
reveal the existence of refractory mantle within the
asthenosphere that were previously melt-depleted
[14,21,22]. Entrainment of refractory mantle
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Figure 1. Regional geology and temporal variations in magma supply of MAR 23°N. (a) Bathymetric map of the Mid-Atlantic
Ridge. (b) Bathymetric map of MAR 23°N from GeoMapApp (www.geomapapp.org), with distribution of basement lithologies
[24,28]. (c) The reconstructed and expected original crustal thickness and magma production rate (¢). The moving-average
peridotite melting degrees at different locations were utilized to compute the expected crustal thickness assuming melting
a fertile DMM source under a Tp of 1350°C in the Melt-PX model [45] as shown in panel c.

domains reduces the fertility of the asthenosphere,
which would doubtlessly lower magma productivity
[13,14,23] and facilitate the nucleation of detach-
ment faulting [$,7,15,24,25]. Conversely, melting of
the asthenosphere with more fertile lithologies can
enhance magmatism [26], possibly terminating ear-
lier detachments. Such an inference is supported by
the occurrence of refractory mantle in some OCCs
[11,27]. However, a systematic study on the causal
relationship between refractory mantle domains and
the shift in spreading mode is still scarce.

The MAR south of the Kane Transform Fault
(Kane TF) at 23°N provides an ideal location to
test the role that asthenosphere heterogeneity played
in shifting the spreading mode, as it has undergone
a switch from asymmetric to symmetric spreading
over the past 3.3 million years (Myr) [5,28]. Dur-
ing this period, three geological units have been pro-
duced (Fig. 1a, b): the Kane OCC (3.3-2.1 Ma), the
Ridge-Transform Intersection (RTI) Massif (2.0-
0.4 Ma), and the axial valley (0.4 Ma to present)
[5,28]. Both the Kane OCC and RTT Massif were
generated by detachment faulting under low magma
supply. In contrast, the current axial valley at MAR
23°N exhibits a symmetric spreading under a high
magma flux, as exemplified by a thick crust [ 5,24,28],
an active melt lens [S], and a basalt-hosted hy-
drothermal field [29]. Such a contrast, i.e. long-lived
asymmetric spreading from >3.3 Ma to 0.4 Ma fol-
lowed by a switch to symmetric spreading with ro-
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bust magmatism, is also supported by seismic to-
mography [5,24], which reveals a thick crust below
the axial valley but thin crusts for both the Kane
OCC and RTI Massif (Fig. Sla, b).

Plentiful oceanic rocks occur in these three units,
in particular mantle peridotites exhumed in both the
Kane OCC and RTI Massif, providing opportuni-
ties to reveal the temporal variations in composi-
tions of the asthenosphere. Here, we present a mul-
tidisciplinary investigation of asthenosphere hetero-
geneity and crustal production at MAR 23°N, with
an aim to highlight the crucial role of mantle het-
erogeneity in modulating seafloor spreading mode
and crustal accretion at slow-spreading ridges. De-
tailed regional geology and analytical methods are
provided in Notes S1 and S2, respectively.

RESULTS

Elevated magma flux during the transition
in spreading modes

To constrain the secular variation in magma sup-
ply at MAR 23°N, we reconstruct the original crust
thickness (H., the effective initial thickness of mag-
mas accreted on the ocean ridge) for both the asym-
metric terranes and the axial valley by leveraging
previous seismic results [5,24]. For asymmetric ter-
ranes, namely, the Kane OCC and RTI Massif, we
integrated magma volumes distributed in both the
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footwall as gabbros and the hanging wall as extrusive
rocks to calculate the total magma flux (¢), defined
as the magma volume accreted per ridge length and
per time, following the methodology of ref. [30]. We
then converted ¢ into H,, assuming a full spreading
rate of 25 mmyr~'. This approach enables a direct
comparison of magma flux and H, through time at
23°N. Details for the reconstructions of ¢ and H, are
provided in Materials and Methods. High-resolution
seismic tomography suggests that the western part
of the Kane OCC (WKO) contains fewer gabbros
than the eastern part (EKO; Fig. S1c). Therefore, the
magma flux for WKO and EKO were reconstructed
separately.

Our reconstruction results reveal low magma
fluxes for both WKO (¢ = 26-29 km?> Myr~},
H.=1.0-1.2km) and EKO (¢ = 31-38 km> Myr!,
H.= 1.2-1.5 km). Moreover, the RTI Massif is re-
constructed to have a low ¢ of 38-63 km* Myr '
and low H. of 1.5-2.5 km. In contrast, a thick crust
with H. of 4.0-5.5 km is estimated to occur at the
current axial valley, corresponding to a high magma
flux of 100-138 km> Myr '. These results sup-
port an increase in magma supply during the tran-
sition in spreading modes at MAR 23°N, i.e. from
26-63 km* Myr ™! during asymmetric spreading to
100-138 km?* Myr ™! at the axial valley (Fig. 1c).

Mantle peridotites from the Kane 0CC
record ancient melt depletion

Thirty residual peridotites from the Kane OCC have
been analyzed, including whole-rock and mineral
geochemistry, highly siderophile elements (HSEs)
and Re-Os isotopes. The Kane peridotites have
been pervasively altered as indicated by their high
loss on ignition (LOI) values (>10 wt%), which
have negligible effects on their bulk Al,O; con-
tents, HSE abundances, and Os isotopes (Fig.
S2; Note S3). The Kane peridotites contain 40—
44 wt.% MgO and 0.7-2.1 wt.% Al,O;, typical
of residual abyssal peridotites (Fig. S3a). Their
spinel contains <0.1 wt.% TiO, and have a Cr#
[= 100 x Cr/(Cr + Al)] of 27-42 (Fig. S3b),
yielding melting extents of 10%-16% from depleted
MORB mantle (DMM) based on the empirical re-
lationship from ref. [31]. Cpx (clinopyroxene) and
Opx (orthopyroxene) in the Kane peridotites show
light rare earth element depletion relative to heavy
rare earth elements (Fig. S3c, d). Light rare earth ele-
ment (LREE) compositions in abyssal peridotite py-
roxenes are influenced by incomplete melt extraction
and refertilization [32,33]. We therefore employed
heavy rare earth elements in pyroxenes, based on a
DMM fractional melting model [34], to infer melt
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depletion extents of 10%-16%, comparable to spinel
Cr# estimates (Fig. S3¢, d).

The Kane peridotites exhibit flat patterns for Os,
Ir, Ru, and Pt but variable and depleted Pd and
Re compositions (Fig. $4). They have unradiogenic
18705 /'8 Os of 0.117-0.131 and correspondingly Re-
depletion ages [ Trp, relative to primitive upper man-
tle (PUM)] [35] as old as 1800 Ma (with a peak at
500 Ma; Fig. 2), which are much older than the age
of the oceanic crust (<3 Ma).

Variations in MORB compositions during
the transition in spreading modes

Geochemical data of basalts erupted during asym-
metric and symmetric spreading in the studied area
(45.5-44.8°W, 23.2-23.6°N) were compiled from
the PetDB database to assess temporal variations in
their source compositions. These data are grouped
by location (Fig. 1b): the Kane OCC (n = 20), the
Kane TF (n = 38), and the axial valley (n = 152).
In addition, we have supplemented new geochemi-
cal data of 7 gabbros and 12 basalts from the Kane
OCC.

The Kane OCC basalts erupted off-axis in re-
sponse to high-angle normal faulting during the ces-
sation stage of detachment at 2 Ma [36], which
have a median (La/Sm)y of 0.58 (CI-chondrite-
normalized value, ref. [37]). Melts in equilibrium
with the Kane OCC gabbros that formed on-axis
have a median (La/Sm)y of 0.56, which are compa-
rable to the Kane OCC basalts but lower than the
axial valley MORB (0.65, Fig. S5a). Considering the
similarity in Nd isotopes between the Kane OCC
gabbros and basalts, we suggest that they originated
from similar mantle sources. Thus, the geochemistry
of the Kane OCC basalts reflects the source charac-
teristics during asymmetric spreading.

The Kane OCC basalts have initial "®*Nd/“*Nd
ratios of 0.51319 & 0.00001, indistinguishable from
the RTI Massif gabbros (0.51320 = 0.00001, Fig. 3a,
Fig. SSb). Compared to the axial valley basalts,
the Kane OCC basalts display lower Nag (Na,O
contents corrected to a MgO value of 8 wt.%,
refs [38,39]; Nag= 2.7 £ 0.1), lower (La/Sm)y,
higher Zr/Nb, and more depleted Nd isotopes
(Fig. 3, Fig. SSa, b). Of note, Nag and (La/Sm)y
in MORB are not simple proxies for the degree
of melting but instead record the combined in-
fluences of source composition and melting ex-
tent [40,41]. A positive correlation between Zr/Nb
and "¥Nd/"Nd (R*= 0.3) exists for all MAR
23°N basalts. In trace element diagrams, the Kane
OCC basalts show a negative Nb anomaly, whereas
the axial valley basalts display no Nb anomaly
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(Fig. SS¢, d). In sum, the MORB erupted dur-
ing asymmetric spreading are geochemically more
depleted than those formed during the symmetric
phase (Fig. 3, Fig. S5).

DISCUSSION

A link between low magma flux and
ancient mantle during asymmetric
spreading

Crustal thickness (H,) during asymmetric spreading
at MAR 23°N has been reconstructed as 1.5-2.5 km,
which is substantially lower than the 5—7 km ex-
pected for symmetric slow-spreading ridges at a full
spreading rate of 25 mm yr~' [16]. This suggests
a low magma supply at MAR 23°N during this pe-
riod, which might be attributed to various factors,
including spreading rate, mantle potential temper-
ature (Tp), and mantle compositions. First of all,
the spreading rate effect can be ruled out, as the
full spreading rate at MAR 23°N has remained un-
changed over the past 3 Myr [S]. Second, the low
magma supply is unlikely to be ascribed to a low
T,, as the seismically inferred T, beneath MAR
23°N is comparable to that in plume-unaffected seg-
ments, with no evidence for an underlying cold man-
tle (Fig. S6). We have conducted the experimentally-
parameterized algorithm Melt-PX simulations (see
Methods for details), showing that, at a final melting
pressure of 0.9 GPa [12], reducing T}, from 1350°C
to 1300°C decreases H. from 4.0-4.5 km to 1.5-
2.0 km (Fig. 4a, b). However, at T, of 1300°C, the
computed peridotite melting degree (F = 8%) is far
too low to match the melting extents of 10%-16%
estimated for the Kane OCC peridotites (Fig. S3b).
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Moreover, a 50°C thermal anomaly for a 30-km man-
tle blob would equilibrate within 0.1 Myr [11], mak-
ing sustained low Tp from 3.3 Ma to 0.4 Ma un-
tenable at MAR 23°N. It has been suggested that
transform faults may raise the final melting pressure,
thereby reducing magmatism in adjacent oceanic
ridges [42]. However, to reproduce the low H,
(1.5-2.0 km) at the Kane OCC, the final melting
pressure must reach 1.6 GPa, yielding a peridotite
melting extent of <6%—far lower than the 10%-
16% estimated for Kane peridotites (Fig. S3a). More-
over, it has been suggested that the ‘transform effect’
extends only 10 km from the Kane TF [43]. There-
fore, the ‘transform effect’ cannot account for the
low magma supply during asymmetric spreading at
MAR 23°N [42].

Here we propose that the low magma flux during
asymmetric spreading at MAR 23°N was due to en-
trainment of refractory mantle lithologies within the
asthenosphere, which have inherited ancient melt
depletion and thus have refractory compositions
[11,14,23]. Entry of such refractory mantle into the
melting zone beneath an ocean ridge can suppress
adiabatic melting, thereby reducing magma pro-
ductivity [14]. Such an interpretation is supported
by the Re-Os isotopes of residual peridotites from
both the Kane OCC and RTI Massif (Fig. 2). These
peridotites exhibit unradiogenic '¥”0s/*®0s and
ancient Re-depletion ages of 0.4-1.8 Ga, with a
median age of 500 Ma (Fig. 2). A similar explana-
tion has been applied to the thin oceanic crusts at
other ultraslow-spreading ridges (e.g. Gakkel Ridge
and Lena Trough) [40,44], at which occurrence of
ancient refractory mantle domains in the astheno-
sphere is inferred by unradiogenic Os isotopes of
abyssal peridotites (Fig. 2).
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To further test the role of refractory mantle
in suppressing magmatism, we explored the re-
lationship between crustal thickness and melting
degree (Fig. 4), using the Melt-PX [20,45]. At slow-
spreading ridges such as MAR, a time gap of 2.2 Myr
has been documented between basaltic crust accre-
tion and the exhumation of the residual mantle [46],
corresponding to a 55-km distance along the spread-
ing direction at MAR 23°N (Fig. 1c). These obser-
vations indicate that the peridotites from the Kane
OCC and RTI Massif are associated with basaltic
crust formed between 5.5 and 2.6 Ma—a period
marked by magma-starved, asymmetric spreading
[36]. Spinel Cr# was employed as a proxy for melt-
ing extent, revealing melting degrees of 10%-16%
for peridotites from both the Kane OCC and RTI
Massif (Fig. S7a). We have modeled melting of a
fertile DMM source containing 0%-10% pyroxenite,
using the average melting degrees inferred from the
peridotites (Fig. S7b). Under such conditions, the
expected crustal thickness at MAR 23°N between
45.7°W and 45.3°W would be 3.5-5.0 km, which are
much thicker than the reconstructed thickness of
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the Kane OCC (1.0-1.5 km; Figs. 1c and 4a). To
reconcile this discrepancy, we re-ran our Melt-PX
simulations using a source that had already experi-
enced 0%-17% melting from a fertile DMM [20];
these simulations reconcile the thin crust with a re-
fractory mantle source that underwent ~8% prior
melting (Fig. 4c). Notably, Earth’s asthenosphere has
been progressively melt-extracted and insufficiently
homogenized by convection over geological time
[44,47,48], implying that the ancient melt extraction
recorded in the Kane peridotites requires a source
less depleted than present-day DMM [19]. We in-
terpret the ~8% prior melt extraction for the Kane
OCC mantle source as a conservative minimum
estimate.

On the other hand, the geochemistry of the Kane
OCC basalts is consistent with partial melting of
such a source containing refractory mantle. The geo-
chemical model shows that the aggregated partial
melts from DMM [19] exhibit low Zr/Nb ratios
of <40 (Fig. Sa—c; Note S4), which are exempli-
fied by values of both N-MORB (19 + 11) and
D-MORB (39 =+ 20, Fig. 3c). However, the Kane
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OCC basalts have higher Zr/Nb ratios of 52 to 79
(Fig. 3c), which cannot be explained by melting a
tertile DMM source but imply the involvement of
refractory mantle [49]. Furthermore, the primary
melts of the Kane OCC are too Nb-depleted to be
explained by DMM melting [see Notes S4 and SS
for details on mantle melting modeling (Fig. S8a)
and reconstructing primary melts (Fig. S9), respec-
tively]. Employing the method outlined in ref. [50],
we reconstructed the bulk compositions of refrac-
tory mantle formed by 1%-24% melting within a
triangular melting region (Fig. S8a). The Nb, Zr,
and REE systematics of the primary melts of the
Kane OCC basalts can be reproduced by low-degree
melting (<4%) of a mixed source of 90% refractory
mantle and 10% DMM (Fig. S). This mixture yields
bulk compositions (AL, O3 of 2.2 wt.% and Yb of
0.2 £gg ") comparable to a 7%-8% melting residue
of DMM (Fig. S8b), consistent with our Melt-PX
simulations (Fig. S7d). These results indicate that
ancient refractory mantle domains as old as 1.8 Ga
were involved in the asthenosphere, causing low
magma supply during the asymmetric spreading of
MAR 23°N.

Elevated source fertility during the
transition in spreading modes

Substantial increase in magma flux has been inferred
during the transition in spreading modes at 23°N
on the MAR (Fig. 1c), consistent with patterns of
magma flux variation observed during spreading-
mode transitions at other slow-spreading ridges [ 10].
Here, various mechanisms related to the rapid in-
crease in magma supply at MAR 23°N are evalu-
ated, including (i) elevated T}, [18], (ii) enhanced
buoyant mantle flow [S1], (iii) enhanced magma
focusing [51,52], and (iv) increase in source fertil-
ity [11-14]. First, as discussed above, rapid fluctu-
ation in mantle temperature over the past 3.3 Myr
at MAR 23°N is not supported by thermal calcu-
lations [11] nor the seismically-inferred T, along
the MAR [53] (Fig. S6). Enhanced buoyant mantle
flow rarely induces remarkable crustal thickness vari-
ations at slow-spreading ridges [16,52]. Enhanced
magma focusing redistributes melt within a segment
at slow-spreading ridges, possibly thickening the lo-
cal oceanic crust near the segment center [52]. How-
ever, magma focusing does not alter the segment-
averaged melt volume. The average magma flux for
the ridge segment between 21°N and 24°N on the
MAR increased, with the magmatically active zone
propagating northward over the past S Myr [10].
Therefore, the enhanced magmatism at MAR 23°N
likely corresponded to the elevated magma flux in
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the 21°N-24°N segment [10]. Furthermore, it is
challenging to explain enhanced melt focusing over
a short period (<0.4 Myr) without considering
changes in source characteristics. The upwelling of
fertile lithologies can induce more melts from deep
melting, enhancing magma focusing [10,26]. Hence,
the shifts between spreading modes at MAR 23°N
are not linked to fluctuation in mantle temperature,
enhanced mantle upwelling, or enhanced magma
focusing.

The final possibility for the substantial increase
in magma flux during the shifts between spreading
modes at MAR 23°N is a change in source composi-
tion and lithology [11-14]. Following the transition
to symmetric spreading at MAR 23°N, the basalts
became more geochemically enriched, exhibiting an
increase in Nag, and enrichments in highly incom-
patible elements such as lower Zr/Nb ratios re-
flecting relative Nb enrichment (Fig. 3) and ele-
vated (La/Sm)y (Fig. SSa). This geochemical tran-
sition can result from either a decreasing extent
of melting from a common source or the involve-
ment of fertile mantle lithologies. The first hypoth-
esis suggests that the more enriched basalt compo-
sitions in the axial valley reflect lower mantle melt-
ing extent compared to those of the Kane OCC,
which contradicts the higher magma flux in the ax-
ial valley (Fig. 1c). Our mantle melting modeling
suggests that the primary melts of the axial valley
MORSB are consistent with 9%-13% melting of the
DMM-like source (Fig. Sc), corresponding to the
observed thick axial crusts (Fig. 1c). In contrast, the
low magma flux and depleted primary melt com-
positions for the Kane OCC are consistent with
low-degree melting of a refractory mantle lithol-
ogy (ALO;= 2.3 wt.%) that was less fertile than
DMM (ALO; = 4.3 wt.%; Fig. 5d). Hence, rather
than reflecting declining melting degrees, the basalt
geochemical transition at MAR 23°N indicates that
the source had become more fertile and enriched
during the transition in spreading mode. Elevated
source fertility below the axial valley likely results
from a reduction in ancient depleted mantle pro-
portion and/or the incorporation of more fertile
lithologies [S4]. The latter hypothesis is supported
by the increased isotopic and geochemical variabil-
ity during the spreading-mode transition (Fig. 3)
and by local enriched MORB occurrences on axis
at MAR 23°N [54]. An overall fertile but heteroge-
nous mantle source comprising both depleted and
enriched lithologies is thus likely present underneath
the axial valley at MAR 23°N. Given uncertainties
in the exact lithological heterogeneity of the ax-
ial valley mantle, we focus on mean source fertility
when comparing crustal generation across spreading
phases.

GZ0Z 19qWBA0N G0 U0 1sanB AQ | 691 5Z8/S8EIBMU/L |/Z | /a101B/ISU/WO02 dNo"dIWapeoe//:sdy Wol) papEojuMO(]


https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf385#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf385#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf385#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf385#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf385#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf385#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf385#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf385#supplementary-data

Natl Sci Rev, 2025, Vol. 12, nwaf385

V]

Asymmetrical spreading (3.3 to 0.4 Ma)

Modeled mean source depletion
| during asymmetric stage

F__ (model 1)

max

F__ (model 2)

max

Source depletion (F,;, %)
S
1

4 ! —Maximum :
: Mean value- —75 percentiles !
i Median ;

—25 percentiles ¢
—Minimum

Model 1 Model 2

o

Symmetrical spreading (<0.4 Ma)

Modeled mean source depletion
_| during symmetric stage

o B Fras )
1 F__ (model 1)

Source depletion (F,,, %)

Model 1 Model 2

Melting of a refractory source suppressed
the magma flux

Qcean core complex Detachment

Melting column

Refractory mantle
Fertile mantle
& Enriched mantle

Arrival of a fertile mantle enchanced
the magma flux

Ocean core

complex \

el L

Melting column

Figure 6. Shift in spreading modes below MAR 23°N over the past 3.3 Myr linked to changing source depletion (Fap). Source
depletion (Fap) is defined as the prior melt depletion relative to fertile DMM [19]. Violins show the density of Fap values and
box and whisker symbols show interquartile range and median Fap. Both the modeled Fap and F. are plotted. Modeled
Fap for the mantle source of the asymmetric spreading phase (a) and symmetric spreading phase (b) of MAR 23°N at 3.3
to 0.4 Ma, with cartoons showing the possible source characteristics for each period. The forward mantle melting model
considers either constant H: [Model 1, H = 19.5 km, corresponding to a maximum melting degree (Frsx) 0f 13.5%] or varying
H: [Model 2, H: = 15-24 km, Fax = 12%—15%]. White dashed arrays denote the inferred trajectory of mantle flow.

To assess the feasibility of reproducing the crustal
thickness variations at MAR 23°N by altering source
compositions, we performed forward modeling of
partial melting of the asthenosphere with variable
prior melt depletion relative to fertile DMM [defined
as source depletion (Fup ), Note S6]. Two scenar-
ios were modeled to evaluate the potential variations
in the final melting depth (Hy); Model 1 assumes a
constant Hy (= 19.5 km), while Model 2 allows H
to vary from 24 km to 15 km. Both modeled sce-
narios demonstrate that the low magma supply but
relatively refractory peridotite compositions for the
Kane OCC can be reproduced by upwelling of de-
pleted asthenosphere with Fap of 7%-9% (Fig. 6a).
In contrast, the thick crusts during the symmet-
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ric spreading stage are consistent with upwelling
of more fertile asthenosphere with Fap of 2%-3%

(Fig. 6b).

Implications for crustal production and
spreading modes

Spreading modes at MOR reflect the interplay
among spreading rate, axial lithosphere thickness,
and magma supply, which together regulate the
balance between magmatic accommodation and
faulting during plate separation [3,55-57]. Magma
flux exerts a primary control on spreading modes
[3,56]: low magma flux yields insufficient dike
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intrusion to accommodate plate separation, lead-
ing to the formation of large-offset detachment
faults. When magma flux is high, the full magmatic
accommodation suppresses axial faulting [3,56,58].
Spreading rate governs magma flux and thereby dic-
tates spreading modes: fast-spreading ridges sustain
sufficient magma flux to form symmetric spread-
ing and axial high [3]; slow-spreading ridges dis-
play variable magma flux, resulting in secular and
spatial variations in spreading modes [59,60]. Given
that axial lithosphere thickness is primarily de-
termined by magma supply, recent models build
relationships among spreading modes, crustal thick-
ness, and spreading rate (Fig. $10), successfully ac-
counting for the diversity of global MOR with mi-
nor exceptions [56,57]. These models suggest that
asymmetric spreading occurs when crustal thickness
is <3.5 km at a full spreading rate of 25 mm yr™"
(Fig. S10). Our forward modeling shows that up-
welling of the asthenosphere with Fop of > 5% yields
sufficiently low magma flux to promote detachment
faulting (Fig. S11).

In support of this framework, ancient melt deple-
tion has been reported for the Kane OCC (Fig. 2)
as well as several other OCCs along the MAR, e.g.
14°-17°N [14,23], Atlantis Massif [27]. These OCCs
maintain low magma flux and refractory peridotite
compositions [ 14,23], inconsistent with melting of a
fertile DMM source (Fig. $12). Our results and pre-
vious studies [23] reveal that peridotites from these
OCCs record Re-depletion ages considerably older
than the overlying oceanic crust (Fig. 2b), implying
a link between asymmetric spreading and upwelling
ofancient refractory mantle. If this connection holds,
the degree of ancient melt depletion in the astheno-
sphere may be more extensive than previously antic-
ipated [19,20], providing the ubiquitous occurrence
of asymmetric spreading along slow-spreading ridges
[4].

Moreover, our study at MAR 23°N documents
that the magma-starved asymmetric spreading phase
can be terminated by the arrival of more fertile man-
tle, triggering a transition to symmetric spreading
(Fig. 6). Thus, mantle heterogeneity can play a cru-
cial role in modulating spreading modes along slow-
spreading ridges, underscoring the complex inter-
play between deep mantle compositions and shallow
lithospheric dynamics [7,10,11].

MATERIALS AND METHODS

Kane OCC peridotites, cumulates, and
basalts

In this study, 30 residual mantle peridotites, 7 gab-
bros, and 11 basalts were analyzed for geochemical
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and isotopic measurements. These samples were col-
lected from Knorr Cruise 180, Leg 2 (November
to December, 2004) at the Kane OCC (23°30'N,
45°20'W), which is ~30 km west of the MAR axis
and just south of the Kane TF [36]. The peridotites
were collected mostly from the Cain and Adam
domes. The basalts were collected from eight difter-
ent sites on the footwall of the Kane OCC. The gab-
bros were all sampled at site JAS 117 from the Adam
Dome. Regional geology and detailed sample infor-
mation are provided in Note S1.

Reconstruction of magma flux at MAR
23°N over the past 3.3 million years

The size and thickness of gabbro bodies in the
Kane OCC are constrained by tomographic struc-
tural models (Note S7) [24], which are utilized to
calculate the average thickness of the lower oceanic
crust (Hyc), yielding values of 0.1-0.3 km and 0.3
0.6 km for WKO and EKO, respectively. The average
thickness of the conjugate upper crust (Hyc) is cal-
culated based on the seismic image of ref. [S], i.e. the
upper crust [P-wave velocity (Vp) <6.4 km/s, ref.
[61]] with magnetic anomalies 2 to 24, yielding val-
ues of 2.1 £ 0.4 km. For the asymmetric segment,
the magma flux (¢) can be estimated following the
model of ref. [30]:

¢ = Hconj X Uconj + HLC X Uf’ (1)

where Heopj and Ueopj are the thickness and spread-
ing rate of the conjugate crust [Uconj =11.3mmyr},
ref. [62]], Uy is the spreading rate of the footwall
[Uy= 14.1 mm yr ', ref. [62]]. As the model as-
sumes gabbro accretion equally between the OCC
sides [30], H_onj is expressed as follows:

Hconj = Hyc + Hic. (2)

The initial igneous crustal thickness (H.) can be
computed from magma flux (¢):

4

He= ——.
Uconj + Uf

3)

These calculations yield similarly low magma flux
and igneous crustal thickness for the WKO (¢ = 26—
29km? Myr—!, H, = 1.0-1.2km) and EKO (¢ = 31-
38 km? Myr~!, H. = 1.2-1.5 km, Table S6).

The H. value of the RTI Massif cannot be well
constrained due to a lack of high-resolution seis-
mic data and only a qualitative estimate can be
obtained based on numerical simulation [30] and
seismic results [5]. Previous numerical simulation
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suggests a positive correlation between the propor-
tion of gabbros exposed on the footwall of a de-
tachment fault and magma supply [30]. Compared
to the Kane OCC (Fig. 1b), the RTI Massif has a
higher proportion of gabbros exhumed on its foot-
wall [63], implying a higher magma flux during its
formation [30]. Therefore, the RTI Massif is in-
ferred to have H. of >1.5 km. Moreover, previous
seismic investigations show the seismic Moho has
a depth of 2.5 km for the volcanic seafloor on the
top of the RTI Massif [S]. Nonetheless, the possi-
bility of a serpentinized layer, seismically indistin-
guishable from gabbros [64], suggests that the origi-
nal igneous crust should not be thicker than 2.5 km.
Thus, the RTT Massif is suggested to have H, of 1.5-
2.5 km, yielding a low magma flux (¢) of 38-63 km*
Myr L.

Seismic results suggest a thick oceanic crust be-
low the axial valley (~S.5 km, Fig. S1a). However,
the velocity structure 4.0-5.5 km below the axial val-
ley was poorly constrained due to low seismic-ray
coverage, i.e. the normalized derivative weight sum
(DWS) <0.3 (Fig. S1b). Applying the Vp structure
for the regions with DWS >0.3, the oceanic crustal
thickness of the axial valley is >4.0 km (Fig. S1a, b).
For the symmetric segment, the magma flux (¢) is
described as

9= Hc X UO’ (4)

where Uy is the full spreading rate [30]. The thick
crust below the axial valley (4.0-5.5 km, Fig. 1c) sug-
gests a high magma flux of 100-138 km” Myr .

Melt-PX modeling

Melt-PX modeling was conducted to examine
whether melting a fertile DMM:-like source can
account for the low original crustal thickness (H.)
and high melting degrees based on peridotites (Fye,)
for the Kane OCC and RTI Massif. The Melt-PX
simulation links Fp, pyroxenite proportion, and
final melting pressure [12,45,65]. Following the
approach described in ref. [12], a fertile lherzo-
lite composition (15% modal Cpx; ref. [20]) was
blended with variable proportions (0 to 0.4) of
pyroxenite (M7-16), and decompression melting
was simulated across a final melting pressure of 1.3
to 0.5 GPa and T}, of 1350°C and 1300°C. The
model predicts crustal thickness as a function of
Fper, pyroxenite fraction, and final melting pressure
[12,45] (Fig. 4). At fixed Fy,,, increasing either the
final melting pressure or the pyroxenite fraction
elevates predicted crustal thickness, while absent
pyroxenite yields a minimum oceanic crustal thick-
ness scenario (Fig. 4a, b). Our simulations reveal
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that the observed H. for the Kane OCC and RTI
Massif both fall below the theoretical minimum
for melting of a fertile DMM-like source, irrespec-
tive of the assigned T, or final melting pressure
(Fig. 4, b).

To reconcile this mismatch, we now consider a
mantle source with variable degrees of prior melt de-
pletion. We modeled Melt-PX simulation by assum-
ing no pyroxenite in the source for simplicity, fix-
ing T, of 1350°C, and changing the initial peridotite
compositions from the fertile mantle (FM) [20] to
a refractory mantle after up to 17% melting. Other
input parameters are similar to the modeling of fer-
tile peridotite plus pyroxenite. The modeling results
show that ~8% prior melt depletion relative to FM
source is required to reproduce the observed H.—Fpe:
pairs for the Kane OCC and RTI Massif (Fig. 4¢).
Such depletion likely corresponds to a mantle source
less depleted than the present-day DMM [19], given
Earth’s progressive asthenospheric melt extraction
over geological time [44,47,48]. We interpret this
~8% depletion as a conservative minimum for the
Kane OCC mantle source.
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