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Abstract

We studied InSb quantum well devices using Landau level tunneling spectroscopy through a

three-terminal differential conductance technique. This method is similar to filled state scanning

tunneling microscopy but uses a stationary contact instead of a mobile tip to analyze the two-

dimensional electron system. Applying magnetic fields up to 15 T, we identified clear peaks

in the differential current-voltage profiles, indicative of Landau level formation. By examining

deviations from the expected Landau fan diagram, we extract an absolute value for the exchange-

induced energy shift. Through an empirical analysis, we derive a formula describing the exchange

shift as a function of both magnetic field strength and electron filling. Our findings indicate that

the emptying of the ν = 2 and ν = 3 Landau levels causes an exchange interaction energy shift in

the ν = 1 level. Unlike prior studies that infer level energies relative to one another and report

oscillatory g-factor behavior, our method references the energy of the Landau levels above the

filled states of the contact under a bias voltage, revealing that only the ground state Landau level

experiences a measurable exchange shift.

I. INTRODUCTION

The exploration of quantum behavior in two-dimensional semiconductors subjected

to strong magnetic fields has been a prominent research focus since the identification

of the quantum Hall effect[1]. Among these studies, the spectroscopic analysis of Lan-

dau levels has generated significant interest, particularly the exchange enhancement

phenomenon[2–4]. In such systems, the electron energy is characterized by a combi-

nation of kinetic energy and exchange energy, the latter originating from the exchange

interactions between electrons across different Landau levels.

The enhancement of the effective g-factor as a function of the external magnetic field

has been widely reported and is commonly attributed to the exchange interaction be-

tween electrons [2, 3, 5–17]. This phenomenon was first investigated by Fang and Stiles

in 1968 [18], who observed a variation in the g-factor with surface electron concentra-

tion in Si inversion layers under tilted magnetic fields. This tilted field enhances Zeeman

splitting while preserving Landau quantization, which depends only on the perpendicu-

lar field component. The enhancement of the g factor is quantified by identifying the



field orientation in which adjacent Landau levels align. This method has since been

widely adopted in the study of low-dimensional systems and for the understanding of

many-body effects in quantum wells.

This enhancement in the exchange interaction is commonly linked to the polariza-

tion of electron spin of the spin-split Landau levels. Based on the findings of Fang and

Stiles[18], Ando and Uemura[4] predicted an oscillation in the g-factor originating from

the electron spin polarization when the Landau levels intersect the Fermi energy. The

nature of g-factor measurements is that they are relative measurements of energy split-

ting between two Landau levels, either using the tilted-field co-incidence[7, 16, 18–23]

or optical spectroscopic measurements[24, 25]. Reports of oscillating g-factors in III-V

semiconductors[13, 26, 27] stem partly from flawed Shubnikov-de Haas (SdH) analysis

methods[28, 29] that misattribute periodicity shifts to g∗ variations.

In this study, we report on three-terminal differential conductance measurements,

which enables a direct measurement of Landau levels and the exchange enhancement

effect. This method is similar to an earlier report of Landau-level spectroscopy of a

GaAs surface two-dimensional system, using tunnnelling through an InAs/AlAs quan-

tum dot[3]. However, this study has been carried out in a δ-doped quantum well system

where tunnelling is through a delta-doped layer rather than a single zero-dimensional

ground state in a quantum dot. Another distinction lies in the study of an InSb/AlInSb

quantum well (QW), where the InSb 2D system exhibits the largest bulk g∗ and the small-

est effective mass (m∗) among the III-V binary compounds. These material properties

leads to a rapid separation of the Landau levels into clearly identifiable Zeeman split

spin states at comparatively low magnetic fields. Thereby allowing a clear and absolute

measurement of the exchange interaction in this system.

II. EXPERIMENTALMETHODS

Experiments were performed on material grown by solid source MBE on semi-insulating,

lattice-mismatched GaAs substrates. In growth order, the epitaxy comprises an alu-

minium antimonide (AlSb) accommodation layer, a 3 µm Al0.1In0.9Sb strain-relieving

barrier layer (to allow for lattice mismatch relaxation), a 30 nm InSb quantum well layer

and a 50 nm Al0.15In0.85Sb top barrier layer. Tellurium (Te) δ doping is introduced only



into the top barrier, 25 nm above the InSb quantum well. Deliberate doping of the

lower barrier is avoided in order to prevent any impurity donor atoms from being car-

ried forward on the growth plane which could significantly compromise the transport

lifetime of carriers in the quantum well. The quantum wells have been modelled using

the Schrödinger-Poisson software Nextnano[30], shown in fig. 1, to determine subband

states confined within the QW. The Γ -point of the first subband E1 is located 43 meV

below the Fermi energy EF = 0, and indicates occupation of the second subband and

states within the δ-doped region. The energy of the conduction band at the surface is set

to be 1/3 (≈ 0.17 eV) of the Al0.15In0.85Sb bandgap (≈ 0.51 eV) above EF. Note that this

Schrodı̈nger-Poisson model excludes the effects from the diffusion of Zn under the metal

contact.

Devices were fabricated using standard photolithography techniques into six contact

hall bars with a nominal distance of 200 µm between longitudinal contacts and 40 µm

between transverse contacts. To form ohmic contacts, a Zn keying layer (around 10 nm)

is initially deposited to improve adhesion to the surface followed by a thick Au layer

(300 nm). These are evaporated while the substrate is heated to 100◦C to promote dif-

fusion of the metal ions on the surface and minimise Schottky contact formation. SdH

measurements were performed to determine the low-temperature carrier concentration

n = 3.14× 1015 m−2, and to estimate the broadening of the Landau levels and the |g∗|, see

supplementary materials. In this investigation, a three-terminal differential conductance

measurement was carried out on an InSb/InAlSb heterostructure, see fig. 2a. The three-

terminal geometry isolates tunneling between the 2DEG and the contact by localizing the

voltage drop at the common contact. A further explanation of this geometry is provided

in the Supplementary Materials. Using a force bias voltage with a 3 mV modulation, a

software lock-in method was used to simultaneously record both the three-terminal dif-

ferential conductance and I-V measurements of the InSb/InAlSb QW devices in a liquid

helium bath at 4 K in fields up to 15 T.

III. RESULTS

A typical I-V and differential conductance plots are shown in fig. 2 for forward bias

in a magnetic field of 3.5 T. The I-V characteristics exhibit a stepwise increase in current



0 50 100 150
z (nm)

-0.1

-0.05

0

0.05

0.1

0.15

0.2
E

ne
rg

y 
(e

V
)

su
rf

ac
e

E
1

E
/

E
2

E
F

Al
0.15

In
0.85

Sb Al
0.10

In
0.90

SbInSb

E
c

?
2
E

1

?
2
E

2

?
2
/

FIG. 1. The zero bias band-structure and wavefunction solutions of the InSb/InAlSb QW, calcu-

lated using nextnano’s Schrodinger-Poisson solver. The Fermi energy EF = 0.

with increasing bias voltage, which saturates at approximately 0.3 V with a current of

28 µA. These steps are manifested as peaks in the differential conductance. This is analo-

gous to filled-state scanning tunneling microscopy (STM), where filled states tunnel into

empty states in the tip[31]. A study using this STM technique has reported Landaus level

spectroscopy of a Cs-induced inversion layer on the surface of InSb[32], in which a small

oscillation was observed in the exchange interaction for high filling factors. In this study,

the filled states in the QW tunnel into empty states above the Fermi energy (EF) in the

metal contact. In the example shown in fig. 2 at 3.5 Tesla, there are four filled Landau

levels below EF. As the bias voltage is increased the upper filled Landau level is raised

above the Fermi level of the metal contact (region 1), allowing electrons to tunnel into

the empty states giving rise to a step increase in the current and the first peak in the dif-



ferential conductance. Increasing the bias further brings more Landau levels above the

Fermi level of the metal contact, where peaks in the differential conductance correspond

to the condition where the Landau level passing through the Fermi level of the metal

contact (region 2), allowing the electrons to tunnel into empty states. Eventually, all of

the Landau levels, i.e. all the filled states in the QW, are raised above the Fermi level of

the metal contact such that the current saturates (region 3).

A differential conductance intensity plot as a function of applied magnetic field and

bias voltage is shown in fig. 3 which exhibits a Landau level fan with the first four spin-

split levels labeled with filling factor ν. The additional texture in the Landau fan plot

is due to density of states of the contact, since the tunneling current is a product of the

density of states of the quantum well and the contact. At higher magnetic fields above

5 T, oscillations in differential conductance which have the opposite field dependence

to the Landau levels are observed. These features can be explained by the formation of

Landau levels in the delta layer. Above 4 T, the ν = 1 Landau level shows a noticeable

downward shift due to exchange, labeled Eex, which we quantify by fitting the Landau

fan. To model the Landau fan plot, which includes the spin-orbit interaction, we adopt

the formalism of Bychkov and Rashba[33, 34], such that

E = El,λ = ℏωc

[
l − λ

2

√
(1−Z)2 + lS2

]
, (1)

where l = 0,1,2, . . . is a positive integer, λ = ±1 (λ = +1 only for l = 0) and ωc =

eB/m∗(E) is the cyclotron frequency, B is the perpendicular applied magnetic field and

m∗(E) is the effective mass which includes the effects of non-parabolocity as the band

energy dispersion of InSb is highly non-parabolic due to its small bandgap. The Rashba

spin-orbit and Zeeman terms are given by

S =
α
√

2
ℏωclB

, Z =
g∗(E)m∗(E)

2m0
, (2)

where α is the Rashba parameter, lB =
√
ℏ/eB is the magnetic length, m0 is the free

electron mass, and g∗(E) is the g-factor which also includes the effects of non-parabolicity.

We obtain the theoretical estimates of both the effective mass m∗(Γ ) = 0.013m0 and g-

factor g∗(Γ ) = −47 at the Γ -point from k·p theory[35, 36], see supplementary materials. To

incorporate the non-parabolicity into the Landau fan plot calculation, an approximation



0 0.1 0.2 0.3 0.4 0.5
Bias (V)

0

5

10

15

20

25

30
C

ur
re

nt
 (

µA
)

20µ

40µ

60µ

80µ

100µ

120µ

140µ

160µ

180µ

200µ

dI
/d

V

1

2

3

Magnetic Field = 3.5 T

(a)

(b)

I
dI/dV

FIG. 2. A typical three-terminal conductance measurement at 3.5 T, with peak-to-peak a.c. volt-

age Vac = 2 mV at 33 Hz. The solid line shows the I-V measurement which aligns with the peaks

seen in the dI/dV dotted line. (1) minima in dI/dV, corresponding filled upper states of δ-layer

aligned between Landau levels, (2) peak in dI/dV, corresponding to an increase in tunnelling as a

Landau Level passes through the filled upper states of δ-layer and can tunnel into empty states,

(3) saturation, corresponding to the state where all Landau Levels can tunnel into empty states.

(a) Inset shows circuit diagram of three-terminal measurement. (b) Schematic of tunneling from

Landau levels in quantum well through δ-layer sub-band into metal contact under bias. The

condition shown corresponds to the minima (1) in dI/dV at which the upper filled states in the

δ-layer lies between the ν = 3 and 4 Landau levels, such that tunnelling from the ν = 3 level is

blocked.



in the limit where m∗(Γ )≪ 1 and g∗(Γ )≫ 2 is used, such that

m∗(E) ≈m∗(Γ )(1 +ΛE), (3)

g∗(E) ≈
g∗(Γ )

1 +ΛE
. (4)

where Λ ≈ 1/(E0 +Ec) = 4.0 eV−1.

We see that the Zeeman term Z is unaffected by non-parabolicity due to the product

m∗g∗ being independent of Λ. The Rashba term S is also is unaffected by non-parabolicity

as both ωc and the Rashba parameter α scale inversely with m∗[38]. The Landau energies

including non-parabolicity is therefore

ΛE2 +E − ℏeB
m∗(Γ )

[
l − λ

2

√
(1−Z)2 + lS2

]
= 0. (5)

The Landau level energies can be extracted by taking the positive solutions to this

quadratic equation. To fit a Landau fan to the data, there are now four material-specific

fitting parameters which include m∗(Γ ), |g∗(Γ )|, Λ and α. To reduce the number of free

fitting parameters the values of Λ = 4.0 eV−1 and α = 0.1 eVÅ[39] were fixed. The latter

has minimal effect on the Landau fan plot at the fields used in this study.

Robust fitting was found with |g∗(Γ )| = 50, m∗(Γ ) = 0.0145m0, E1 = −47 meV using a

leverage factor f = 7.0 V/eV which is defined as the bias voltage required to produce a

relative energy shift of E1 with respect to the upper filled state in the δ-layer, see fig. 2

inset (b). See Supplementary Materials for more details of the fitting process. The value

of m∗(Γ ) is higher than predicted from k ·p theory, although it is within the experimen-

tally measured range. The agreement of the fitting parameters with those predicted from

theory, see table I for summary, provides confidence in the value of the obtained leverage

factor, which ultimately determines the magnitude of the observed shift in energy of the

first Landau level above 4 T. We discount the possibility of a field dependence on the

leverage factor as the fit to the Landau fan plot for ν = 2 maintains good accuracy well

beyond 4 T, past the stage at which the shift in the ν = 1 level becomes evident.

The measured shift in energy Eex of the ν = 1 level is shown in fig. 4 as a function

of the magnetic field. This was calculated by taking the difference between the sampled

peak values in the measured data from the expected Landau level energy using the best-

fit parameters in table I. In a magnetic field of 11 T the observed shift is approximately
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FIG. 3. Differential conductance as a function of bias and magnetic field. The calculated energies

of Landau level fan plot overlaid on the differential conductance data, as determined through

fitting to the extracted peaks in the differential conductance for the first four Landau levels ν =

1(l = 0,λ = +1),ν = 2(l = 1,λ = −1),ν = 3(l = 1,λ = +1), ν = 4(l = 2,λ = −1), ν = 5(l = 2,λ = +1),

and ν = 6(l = 3,λ = −1). The bias is converted to Landau level energy using fitting parameters E1

and f . The calculated electrochemical potential µ is also shown, see supplementary materials.

11 meV, at a field where the majority of electrons occupy the ground state Landau level.

The relationship between this exchange energy shift and the electron occupation of Lan-

dau levels will be discussed in the next section.



Parameter Theoretical/modeled Experimental fit

m∗(Γ ) 0.0131m0 0.0145m0

|g∗(Γ )| 47 50

E1 -43 meV -46 meV

leverage factor f - 7.0 V/eV

TABLE I. Comparison of parameters obtained from theoretical values or through modeling with

those obtained from the experimental fits to the Landau fan accounting for non-parabolicity Λ =

4.0 eV−1.
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calculated Landau level energy for ν = 1, circles: measured ν = 1, squares measured Eex, dotted

line: fit to Eex using eq. (6). Also shown are the calculated fractional electron occupation of the

first four Landau Levels plotted as a function of the magnetic field at 4 K.



IV. DISCUSSION

Previously, the shift in energy due to the exchange enhancement is assumed to be

proportional to the polarization of the ground-state Landau level[2]. We adopt a more

nuanced approach taking into account the exchange interaction between electrons in the

ground state Landau level (ν = 1) and Landau levels with higher filling factors (ν > 1). In

order to investigate this, the following equation was used to define the strength of Eex

Eex =
∑
ν=2

Eν
ex(1−Fν), (6)

where Eν
ex are coefficients representing the product of the Coulomb interaction and

the exchange integral between the ground state Landau level and the Landau level with

filling factor ν, and Fν is the fractional electron occupation of the higher Landau level.

The fractional occupations were determined by numerically solving the broadened

Landau level density of states at finite temperature (details in Supplementary Material).

Plotting these electron occupations shows that the ν = 4 level starts to deplete at approx-

imately 3 T before any detectable shift in the ν = 1 level occurs, see fig. 4. Notably, this

shift aligns with the onset of the depletion for the ν = 3 level at around 4 T.

The expression in eq. (6) is fitted using a linear regression to obtain the coefficients

of E2
ex = 6.6 meV and E3

ex = 4.6 meV, with negligible values for E4
ex and above, with the

fit obtained shown in fig. 4. This empirical, phenomenological method of investigating

the behavior of electrons in a 2DEG quantum well provides evidence that the ν = 2 and

ν = 3 levels have similar interaction strengths with the ν = 1 level. The slight deviation

between the measured exchange shift and the fit of Eex could be attributed to a further

reduction in the coulomb interaction between electrons in ν = 1 level as they become

more localized due to the reduction of the magnetic length which is proportional to 1/
√
B.

V. CONCLUSIONS

We have presented an absolute measurement of the Landau fan in InSb quantum wells

using a three-terminal differential conductance technique. This method enables direct

investigation of the electronic behavior in the presence of large external magnetic fields.

Unlike conventional approaches that determine Landau level energies relative to other



field-dependent levels, our technique leverages a relative linear shift in the states in the

Landau levels with the upper filled states in the δ-layer barrier. This allows for the mea-

surement of the level energies independently of other levels. Our results reveal a distinct

deviation of the ground state ν = 1 Landau level from the expected fan diagram, a devi-

ation attributed to the exchange interaction. Interestingly, this spectroscopic technique

does not indicate similar deviations for higher Landau levels (ν > 1), contradicting pre-

vious reports of oscillatory behavior in the effective g-factor. A potential explanation for

this observation is rooted in the spatial distribution and spin configuration of the Landau

level wavefunctions. At high fields, the reduced cyclotron radius promotes spin polar-

ization and spatial separation, suppressing Coulomb repulsion in the ν = 1 level. This

limits the self-exchange energy in the ground state. As the magnetic field decreases and

higher Landau levels become occupied, strong exchange interactions arise between the

ν = 1 level and partially filled levels of the same spin. In particular, the ν = 3 level,

which shares the same spin orientation as ν = 1, couples strongly via exchange. As ν = 3

depopulates, this strong coupling enables electrons in both levels to reconfigure, thereby

reducing their mutual Coulomb interaction and leading to a measurable shift in the en-

ergy of the ground state. The ν = 2 level, although of opposite spin, also contributes

to the exchange shift via Coulomb interaction, and its depletion similarly reduces the

interaction strength. In contrast, levels such as ν = 4 are either spin-paired or more

weakly interacting due to reduced overlap or screening, and thus have negligible influ-

ence. These effects explain why only the ν = 2 and ν = 3 levels significantly affect the

exchange shift of the ν = 1 Landau level.

In summary, these findings highlight that the exchange interaction selectively affects the

ground-state spin-split Landau level and does not manifest as a global modification of

the g-factor. Thus, describing the exchange shift as a renormalized g-factor is misleading;

the interaction is independent of spin magnetic moment and better treated as a distinct

exchange effect.
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SUPPLEMENTARYMATERIALS

Shubnikov-de Haas Measurements

The charge carrier concentration of the δ-doped InSb/AlInSb was determined through

the Shubnikov-de Haas (SdH) transport measurement at T = 4 K shown in fig. S1. Key

fields are highlighted: B1 represents the threshold field for observing SdH oscillations

which is determined by the onset of oscillations in the derivative dRxx/dB, as seen in

upper left inset in fig. S1; B2 marks the field where spin-splitting becomes discernible,

as seen in the lower right inset in in fig. S1 which presents the SdH peak index plotted

against 1/B. The lower right inset enables the extraction of the sheet carrier density from

the gradient, applying the formula

∆(1/B) =
2e
hns

, (S1)

for the region B1 < B < B2 and

∆(1/B) =
e

hns
, (S2)

where B > B2 in the region where the spin-splitting is resolved. Using the gradient for

B > 1 T, a carrier concentration ns = 3.14× 1015 m−2 is obtained.

The Landau level broadening can be estimated from the condition Γ = ℏωc at the onset

of the observation of Shubnikov-de Hass oscillations. This is expressed using the formula

Γ =
ℏeB1

m∗
, (S3)

where B1 = 0.35 T and m∗ ≈ 0.0145me, giving Γ ≈ 2.8 meV. Similarly, at the critical field

B2, the spin-splitting is comparable to the Landau level broadening

g ∗µBB2 ≈ Γ ≈ ℏeB1

m∗
, (S4)

so that

g∗ ≈ ℏe
µBm∗

B1

B2
. (S5)
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FIG. S1. Shubnikov-de Haas measurement of the δ-doped InSb/AlInSb. Upper left inset: dRxx/dB

showing onset of oscillations at B1 = 0.35 T. Lower right inset: Peak position (1/B) versus peak

index. The change in gradient at B2 = 1 T indicates the point at which the Landau levels are spin

resolved.

With B2 = 1 T, we obtain g∗ ≈ 48. These estimates obtained from the SdH data are con-

sistent with the parameters obtained through the fitting of the experimentally obtained

Landau fan plot.

Three-terminal Measurements

The three-terminal electrical measurement configuration may be less well-known

compared to the conventional two- and four-terminal setups. Since this three-terminal

setup is crucial for the measurements in our study, we describe it here in relation to

the two- and four-terminal geometries. The two-terminal configuration is depicted in



fig. S2(a), where a driving voltage VF is applied across a pair of contacts, and the result-

ing electrical current I is observed. The total resistance

R =
VF

I
= Rc +Rs +Rc (S6)

measured includes Rc, the resistance of both contacts, and Rs, the resistance of the sub-

strate between contacts 1 and 2. The four-terminal geometry is often employed to elimi-

nate contact resistance effects from measurements, as demonstrated with the Shubnikov-

de Haas measurement previously. In fig. S2(b), the driving voltage VF is applied between

the outer terminals, 1 and 4, while the voltage is recorded across the inner terminals, 2

and 3. Importantly, there is no current passing through the inner contacts, resulting in

no potential drop across them. Consequently, the recorded voltage is exclusively due to

the potential drop across the substrate between contacts 2 and 3. So that the resistance

measured is

R =
V
I

= Rs. (S7)

In the three-terminal configuration, a drive voltage is applied between outer contact 1

and the central contact 2. The voltage is subsequently measured between the central

contact and the outer contact 3. This setup ensures that no current passes through contact

3 or the substrate between contacts 2 and 3, making the voltage measurement solely

sensitive to the potential difference across contact 2. So that

R =
V
I

= Rc, (S8)

where Rc is the resistance of contact 2. This configuration enables the investigation of

the V characteristic of the resistance of a single contact, attributed in this study to the

vertical tunneling of the electrons from the quantum well, through the δ layer, to the

metal contact.

Theoretical k ·p calculations

As a guide to the fitting procedure, we can obtain theoretical estimates of both the

effective mass m∗(Γ ) and g-factor g∗(Γ ) at the Γ -point, which can be extracted from k · p

theory[35, 36] given by



FIG. S2. Geometry of (a) two-terminal, (b) four-terminal and (c) three-terminal measurements. In

these geometries, a force voltage VF is applied and current and voltage potential differences are

measured. The dotted line indicates the current path through the circuit.

m0

m∗(Γ )
= 1 +

2meP
2

3ℏ2

(
2

E0 +Ec
+

1
E0 +∆0 +Ec

)
− 2meP

′2

3ℏ2

(
2

E′0 −E0 +∆′0
+

1
E′0 −E0

)
(S9)

g∗(Γ ) = 2− 4meP
2

3ℏ2

(
1

E0 +Ec
− 1
E0 +Ec +∆0

)
+

4meP
′2

3ℏ2

(
1

E′0 −E0
− 1
E′0 −E0 +∆′0

)
, (S10)

which accounts for the quantum well confinement energy[22] which has been cal-

culated from the Nextnano simulation using Ec =
∫
φ2
E1

(z)Ec(z)dz = 14 meV. We have



adopted band structure parameters used by ref[37] of E0 = 0.237 eV, E′0 = 3.160 eV,

∆0 = 0.810 eV, ∆′0 = 0.330 eV, P = 9.641 eVÅ, and P ′ = 6.324i eVÅ. This gives the theoret-

ical values of m∗(Γ ) = 0.013m0 and g∗(Γ ) = −47.

Fitting to Landau Fan Plot

The fitting process for the Landau fan plot involved identifying the peak positions of

the first four Landau levels. For ν = 1 and ν = 2, this was automated, while ν = 3 and ν =

4 were manually determined from the raw I-V curves. Optimal fitting was achieved by

manually tweaking the parameters, guided by the predicted values from the k ·p model.

Note that data points for ν = 1 above 4 T were excluded from the fitting process, as the

shift in ν = 1 is observed beyond this threshold. The fit for ν = 5 additionally serves as a

visual reference, confirming that the energy gap between ν = 4 aligns with the fit.

To demonstrate the robustness of the fit, the best fits with slightly adjusted values of

m∗ and |g∗| are shown in fig. S3. For the case where m∗ = 0.0135 is fixed, the best-fit is

shown in the middle panel in fig. S3, where the model fits well to ν = 1 and ν = 2 but is

worse for ν = 3 and ν = 5. It is also noted that the calculated electrochemical potential

does not align with point at which the differential conductance drops in intensity. The

lower panel in fig. S3 shows the best fist in the case where |g∗| = 45 is fixed. Here we

obtain a good fit to all but the ν = 2 Landau level. Further deviations from the optimized

parameters lead to a worsening in the resulting fit. The potential for the ν = 2 Landau

level to undergo an exchange shift that leads to a reduction in energy beyond 4 T was

thoroughly investigated. However, aligning this model with the data proved challenging,

and a satisfactory fit was not achieved.

CALCULATION OF FRACTIONAL OCCUPATION OF LANDAU LEVELS

To determine the fractional electron occupation of the Landau levels, the broadened

Landau level density of states at finite temperature is used to numerically calculate the

electrochemical potential. This in turn allows the populations of each of the Landau

levels to be calculated. The first step is to calculate the total density of states in an

applied field due to the contribution of all Landau levels, which is described by
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FIG. S3. Comparison of fitting results. (Upper panel) best fit with parameters used in study,

(middle panel) best fit with m∗ = 0.0135, and (lower panel) best fit with |g∗| = 0.45.



g (E,B) =
eB
h

∑
l,λ

∆E

2π
(
E −El,λ

)2 +
(
∆E
2

)2 , (S11)

where ∆E ≈ 2.8 meV is the Lorentzian broadening of the Landau levels, which has

been estimated from the observed onset of the Shubnikov de Haas oscillations. This

broadening is in good agreement with Lorentzian peak widths of Landau levels in I-V

curves, which are ∼ 35 mV corresponding to ∼ 5 meV using the leverage factor 7.0 V/eV.

It is now possible to determine the electrochemical potential in a particular field by nu-

merically satisfying the condition.

∫ µ

0
f (E,µ,T )g (E,B)dE = n, (S12)

where µ is the electrochemical potential, f (E,µ,T ) is the Fermi function and n is the

sheet electron density which has been determined from SdH measurements. The calcu-

lated µ as a function of the magnetic field is seen to oscillate as Landau levels are emptied,

as shown in fig. S3a . Following this numerical solution to obtain µ, eq. (S12) can then be

applied to individual Landau levels to obtain the populations nν of each Landau level at

a given B. The electron occupation for each filling factor can be extracted by taking the

population, nν and dividing this by the Landau Level density of states, Fν = nν/(eB/h).

This describes the relationship for the fraction of occupied states in each Landau Level

as a function of the magnetic field.
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