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Asymmetric Information Enhanced Mapping
Framework for Multirobot Exploration based on

Deep Reinforcement Learning
Jiyu Cheng, Junhui Fan, Xiaolei Li, Paul L. Rosin, Yibin Li, and Wei Zhang, Senior Member, IEEE

Abstract—Despite significant advancements in multirobot tech-
nologies, efficiently and collaboratively exploring an unknown
environment remains a major challenge. In this paper, we propose
AIM-Mapping, an Asymmetric InforMation enhanced Mapping
framework based on deep reinforcement learning. The frame-
work fully leverages the privileged information to help construct
the environmental representation as well as the supervised signal
in an asymmetric actor-critic training framework. Specifically,
privileged information is used to evaluate exploration perfor-
mance through an asymmetric feature representation module and
a mutual information evaluation module. The decision-making
network employs the trained feature encoder to extract structural
information of the environment and integrates it with a topolog-
ical map constructed based on geometric distance. By leveraging
this topological map representation, we apply topological graph
matching to assign corresponding boundary points to each robot
as long-term goal points. We conduct experiments in both
iGibson simulation environments and real-world scenarios. The
results demonstrate that the proposed method achieves significant
performance improvements compared to existing approaches.

Index Terms—Multirobot system; multirobot exploration;
multi-agent reinforcement learning; graph neural network

I. INTRODUCTION

W ITH the advancement of artificial intelligence technol-
ogy, multirobot systems are being increasingly applied

in various applications. In tasks such as search and rescue or
inspection [1], robots often operate in unknown environments
without prior access to an environment map. During multirobot
exploration, robots need to use onboard sensors to perceive
and reconstruct the environment efficiently while navigating
based on a specific strategy. An early approach, frontier-based
exploration [2], identifies boundaries of the explored area,
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guiding robots to ensure complete coverage. These methods
typically use geometric information of the robots and frontiers
to assign either short-term or long-term goals. As robots move,
they continuously update the map to facilitate future decision-
making. However, achieving optimal decision-making remains
challenging due to factors such as robot mobility, sensor
capabilities, and coordination constraints. Some approaches
model the environment using occupancy grids or distance-
based topological maps, framing the collaborative exploration
task as a combinatorial optimization problem [3, 4, 5]. While
optimization solvers can guarantee optimal solutions, they
typically suffer from high computational complexity due to the
NP-hard property of the problem. To address this challenge,
some researchers employ heuristic methods with relaxed con-
straints to improve target point allocation among robots [6,
7, 8]. These methods, guided by manually designed heuristic
functions, offer significant computational efficiency. However,
since heuristic rules are based on human intuition, they usually
lack generalization ability and often lead to suboptimal and
locally constrained decisions.

In recent years, deep reinforcement learning (DRL) has
achieved significant breakthroughs in solving combinatorial
optimization problems [9] and motion control challenges [10].
Building on this, multi-agent reinforcement learning (MARL)
extends reinforcement learning to the multi-agent domain,
demonstrating strong performance in various multirobot ap-
plications such as formation control [11], autonomous vehicle
fleets [12], and intelligent warehousing [13]. Once trained,
these strategies enable robots to execute complex coordinated
actions. However, challenges remain in exploring unknown
environments in both boundary-based and reinforcement learn-
ing scenarios: (1) Short-sighted decision-making. Due to the
property of the unknown environment tasks, long-term infor-
mation may be unavailable, making it difficult to determine
the information value at the current time step, leading to in-
accurate immediate rewards. (2) While multirobot cooperation
can significantly improve exploration efficiency, the expanded
action space in multirobot scenarios makes finding optimal
solutions more complex.

In this paper, we propose an efficient multirobot active map-
ping method called AIM-Mapping. During training, privileged
information is utilized to mitigate inaccuracies and instability
in state value estimation caused by the unknown environment
in reinforcement learning. AIM-Mapping encodes partial-
map features using a differential structural feature extraction
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network, generating state values by capturing the difference
between privileged information and partial-map. The term
“asymmetric” refers to the information asymmetry during
reinforcement learning, where the critic module has access to
privileged information for unexplored areas that the actor mod-
ule cannot obtain. The mutual information module serves as
an evaluation metric, facilitating policy training. Our method,
trained on only nine indoor scenes, demonstrates remarkable
generalization across different indoor datasets and varying
robot numbers. Experimental results highlight its advantage
over state-of-the-art multirobot active mapping methods and
several adapted reinforcement learning baselines. The main
contributions are summarized as follows:
• We propose a novel multirobot active mapping framework

of which the collaboration efficiency is greatly enhanced
by privileged information based on an asymmetric actor-
critic training design.

• We propose a new perspective on evaluating exploration
performance in unknown environments, introducing priv-
ileged information to assess state value through feature
engineering and mutual information.

• We adopt topological graph matching in the multirobot
decision-making based on the asymmetric feature repre-
sentation framework.

• The whole method is deployed and tested in both iGib-
son simulation environments and real-world scenarios to
demonstrate its effectiveness.

The rest of this article is organized as follows. Section II
introduces some related works as well as their advantages and
disadvantages. Section III presents problem formulation of the
task. Section IV describes the details of our framework. The
experimental implementation and the analysis of the results
are presented in Section V. Finally, Section VI draws the
conclusions and proposes our future work.

II. RELATED WORK

In this section, we discuss several kinds of multirobot ex-
ploration methods, including heuristic methods, optimization-
based methods, information-theoretic methods, and learning-
based methods.

Heuristic methods. Heuristic methods rely on empirical
rules, such as frontier detection or artificial potential fields
to guide robots toward unexplored regions. Yamauchi et al.
[6] proposed the concept of the frontier for active mapping,
aiming to guide the robot to the frontiers until the entire
space is observed. However, these approaches neglect the
effect of coordination, often resulting in redundant exploration.
Colares et al. [14] addressed this problem by introducing a
collaboration factor to enhance target allocation efficiency.
Bourgault et al. [15] utilized Voronoi partitioning to assign
robots to frontier points within their subspace, avoiding redun-
dant exploration. The Artificial Potential Field (APF) method
creates virtual force fields to guide robots. Initially used in
global path planning [16], Lau et al. [8] constructed a potential
function based on distance to guide movement. However,
potential fields based on Euclidean distance usually suffer
from local optimum. Renzaglia et al. [17] applied potential

fields to local navigation, while Liu et al. [18] designed a
nonlinear potential function incorporating coverage factors.
More recently, Yu et al. [19] introduced a wave-front distance
metric and a penalty function for sensor overlap to reduce
redundant exploration and improve efficiency. These methods
are simple, computationally efficient, and easy to implement.
They perform well in small-scale or structured environments
where predefined rules are sufficient. However they often
require manual tuning and struggle with scalability in large-
scale or complex scenarios.

Optimization-based methods. Optimization-based meth-
ods formulate exploration as an optimization problem, such
as target assignment or path planning, aiming to find optimal
or near-optimal solutions[20]. Werger et al. [3] introduced
a cost function based on Voronoi partitioning and used the
Hungarian Method for approximate solutions. Klodt et al. [4]
proposed a Pairwise Optimization strategy for optimal frontier
point allocation. For more complex scenarios, Dong et al. [5]
applied a clustering algorithm for frontier points, modeling the
problem as an Optimal Mass Transport Problem [21] with a
path distance-based cost function. Faigl et al. [22] modeled
target allocation as a multiple Traveling Salesman Problem
[23]. Additionally, Clark et al. [24] modeled the problem
as a queue stability control problem, employing Lyapunov
optimization [25] to guide multirobot decision-making. Wu
et al. [26] proposed an adaptive RRT-based frontier detection
method and a Bayes-guided evolutionary strategy for scalable
multi-robot task allocation, improving efficiency and reducing
redundant exploration. These methods provide theoretically
optimal solutions under ideal conditions and can handle multi-
objective optimization tasks, such as balancing coverage and
energy efficiency. However, the lack of adaptability in prede-
fined objective functions further restricts their performance in
unknown or evolving environments.

Information-theoretic methods. These methods reduce ex-
ploration uncertainty by lowering map entropy and increasing
mutual information between sensor data and the environment.
They are particularly suitable for environments with high
uncertainty or partial observability. Whaite and Ferrie et
al. [27] introduced strategies for minimizing entropy during
exploration of unknown environments, while Elfes et al. [28]
focused on maximizing mutual information (MI) between
sensor data and an occupancy grid map. Information-based
exploration strategies aim to minimize uncertainty in robot
localization and environment mapping [29, 30, 31]. In multi-
agent systems, [32, 33] advanced the idea of using infor-
mation gain to improve collaboration. In three-dimensional
environments, the need for efficient computation of mutual
information is particularly pronounced. Henderson et al. [34]
proposed a faster method for continuous map computation
based on recursive expressions of Shannon mutual informa-
tion. Asgharivaskasi et al. [35] proposed semantic octree
mapping and Shannon mutual information computation for
robot exploration, deriving an efficiently computable closed-
form lower bound for the mutual information between a
multiclass octomap and a set of range-category measurements.
Information-theoretic methods are computationally expensive,
especially in 3D or large-scale environments. They require
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Fig. 1. Multirobot collaborative active mapping task contains three main sub-task modules: perception and map creation, long-term goal selection, and
short-term path planning.

accurate probabilistic models, such as occupancy grids, and
struggle with scalability due to high communication and
computation demands.

Learning-based methods. Learning-based methods learn
exploration policies from environmental feedback, or learn
to construct map representation to facilitate decision-making.
Some researchers employed reinforcement learning frame-
work for policy generation. Geng et al. [36] proposed a
decentralized decision-making method in grid map environ-
ments using multi-agent reinforcement learning, and robots
exchange observation information encoded by convolutional
neural networks through a learnable network structure to
achieve collaborative decision-making. Later, Geng et al.
[37] improved this by introducing attention mechanisms for
more targeted information exchange. However, the limited
action space in grid maps often results in suboptimal long-
term decisions. To address this problem, Tan et al. [38]
introduced hierarchical reinforcement learning, extending the
decision model to a hierarchical framework. Zhu et al. [39]
proposed a Two-Stage Coordination (TSC) strategy, which
consists of a high-level leader module and a low-level action
executor. Researchers have applied reinforcement learning to
more realistic scenarios, accounting for robot dynamics and
environmental perception. Hu et al. [40] combined DRL with
Voronoi segmentation for LiDAR-equipped robots. Chaplot
et al. [41] designed a hierarchical framework for single-
robot indoor exploration using RGB cameras, while Yu et
al. [42] extended this to multirobot vision-based exploration
with a Transformer-based decision network. Ye et al. [43] used
depth cameras to reconstruct 2D maps and built topological
graphs, introducing a multi-path graph neural network to
predict distances between boundary points and robots. Lodel
et al. [44] trained an information-aware policy via deep rein-
forcement learning, that guides a receding-horizon trajectory
optimization planner. Some researchers have also explored the
prediction of unexplored areas to facilitate decision-making
in robotic exploration. Shrestha et al. [45] and Katyal et al.
[46] proposed to predict the 2D occupancy maps to estimate
the total information or uncertainty for exploration. Saroya et
al. [47] proposed to learn the topological features and used
them to inform the exploration policy. Tao et al. [48] detected
frontier clusters, extracted semantic information, and predicted
occupancy and information incrementally during exploration.
In [49], Tao et al. proposed an occupancy prediction module

that utilizes the global occupancy map generated solely from
depth images. Ericson et al. [50] predicted the unseen walls
of a partially observed environment to facilitate the robot
planning. Ramakrishnan et al. [51] used the robot’s egocentric
RGB-D observations to infer the occupancy state beyond
the visible regions. Kim et al. [52] extracted geometric cue
from 3D point cloud data and detected the locations of
potential cues such as doors and rooms to help multirobot
multiroom exploration. Zhao et al. [53] proposed a rein-
forcement learning-based multirobot exploration strategy that
combines dynamic Voronoi partitioning and a multiobjective
cost function, enhanced by DDPG and transfer learning for
improved adaptability. To enhance the scalability and physical
consistency of multi-robot systems, Sebastián et al. [54]
have introduced port-Hamiltonian structures combined with
attention mechanisms to construct policy networks, enabling
sparse and coordinated control within the Soft Actor–Critic
framework. Zhu et al. [55] proposed a hierarchical multi-agent
reinforcement learning framework for multi-robot area search,
where a role selection module decouples task planning from
execution. An intelligent role-switching mechanism enables
dynamic transitions between exploration and coverage.

For multirobot indoor exploration, compared with other
methods, learning-based paradigm can better utilize high-
level feature information, such as the structural information
presented in the 2D map. In our method, we adopt the DRL
framework and further enhance the mapping performance with
asymmetric information. On the one hand, the asymmetric
information is used to generate the state value, which depicts
the disparity between partial-map and privileged information.
On the other hand, asymmetric information helps to formulate
the mutual information, which acts as evaluation metric during
the training process.

III. PROBLEM FORMULATION

A. Multirobot Active Mapping

The multirobot active mapping task can be divided into three
sub-task modules: perception and map creation, long-term goal
selection, and short-term path planning. In the perception and
map creation module, robots transform sensor information
into a 2D grid map. In the long-term goal selection module,
robots allocate and select long-term goal points on the grid
map. In the short-term path planning module, robots plan
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paths to the selected long-term goal points. The whole task
framework is shown in Fig. 1. The policy network and training
algorithm focus on long-term goal selection, with existing
methods handling perception and map creation, and short-term
path planning.

1) Perception and Map Creation: The objective of percep-
tion and map creation module is to construct a global map
based on sensor information from multiple robots. Robots
usually use depth cameras as distance sensors. Multiple robots
transform their observation maps into a common world co-
ordinate system based on their positions and orientations,
creating a global occupancy map. At each time step, the
robot obtains depth image I

(t)
i ∈ Rh×w and the global pose

L
(t)
i ∈ R3 from the environment. The perception and map

creation module aims to construct a top-down 2D map to
describe environmental features. The occupancy grid map of
robot i at time t is denoted as O(t)

i ∈ {0, 1}Xl×Yl×2, where Xl

and Yl represent the predefined map dimensions. In this study,
only obstacles that hinder the robot’s movement are considered
during mapping. At each time step t, multiple robots collabo-
ratively update the global observation O(t) through exchanging
pose estimates L

(t)
i = (x, y, θ) and local maps O

(t)
i , aligning

these maps to the world coordinate system and integrating
them with the prior global observation O(t−1).

2) Long-term Goal Selection: In long-term goal selection, a
straightforward approach for each robot is to move toward the
boundaries of the explored area at each time step. Assuming
that the map is closed and bounded, as long as robots con-
tinuously move toward boundary points, they will eventually
complete exploration of the environment. This method based
on boundary points is also adopted in this paper. Therefore, the
goal is to assign a boundary point as a long-term target point
for each robot when each planning cycle arrives, allowing mul-
tiple robots to explore as much of the unknown environment as
possible in the shortest possible time and ultimately establish
a global grid map containing all environmental information.

3) Short-term Path Planning: Short-term path planning is
a discretized subtask in which robots, after receiving long-
term goals, individually plan the shortest paths to reach their
respective targets based on the global grid map O(t). In this
paper, the Fast Marching Algorithm [56] is adopted to compute
the shortest path from the robot to the target position. Upon
obtaining the short-term path points, robots generate low-level
actions through a simple heuristic method [57]: if a robot is
facing the path point, it executes a forward action; otherwise,
it performs rotation actions until it faces the path point.

B. Modeling of Markov Decision Process

The long-term goal selection problem constitutes a crit-
ical component in multi-robot active mapping tasks. For
indoor exploration scenarios, this cooperative mapping task
can be formally modeled as a centralized Partially Observable
Markov Decision Process (POMDP), defined by the tuple
⟨N ,S,O, O,A,P,R, γ⟩. Where N is the set of N agents. S
represents the global state space. O = ×i∈NOi is the joint ob-
servation space for multiple agents, where O is the observation
function. A = ×i∈NAi, represents the joint action space for

multiple agents. P : S×A → △(S) denotes the state transition
probabilities. R : S × A → R, is the reward function for all
agents. γ ∈ [0, 1) is the reward discount factor. At each time
step, agents receive local observations o(t)i = O(st, i) from the
global state st ∈ S then a controller collects observations from
all agents and generates a joint action at = π(at|o(t)1 , ..., o

(t)
N )

through a centralized policy. Each agent receives and executes
the corresponding action ait ∈ at from the central controller.
Finally, the joint actions at ∈ A of multiple agents tran-
sition the system from state st to state st+1 based on the
state transition probabilities P (st+1|st, at) and receive reward
r(t) = R(st, at). To address this problem, value networks and
policy networks are designed, employing an end-to-end multi-
agent deep reinforcement learning framework. The agent starts
from state s, follows the policy π to make decisions, and the
expected return is used to evaluate the quality of the policy.
This framework aims to maximize the state-value function
Vπ(s) = Es,a[

∑T
t=0 γ

(t)r(t)|s0 = s, at ∼ π(·|o(t)1 , . . . , o
(t)
N )]

to learn an optimal centralized policy π∗(·|o(t)1 , ..., o
(t)
N ), where

T denotes the total number of training rounds. In this task,
each agent’s action space consists of a set of candidate points
for long-term goal selection. The agent selects a candidate
point as its long-term goal and moves toward it.

IV. METHODOLOGY

This paper introduces AIM-Mapping, a novel deep rein-
forcement learning framework for collaborative multirobot
exploration. The core idea is to fully utilize the privileged
information to help enhancing the efficiency of multirobot
exploration. There are mainly three modules: Asymmetric
Feature Representation (AFR), Mutual Information Evaluation
(MIE), and Multi-Agent Decision-making Network (MADN).

During the training process, the AFR module leverages both
partial-map data and privileged information to generate state
values and partial-map feature mappings. The MADN module
then utilizes topological information—derived from geometric
distances—together with structural features extracted from the
partial-map feature mappings to construct a topological graph
representation of the environment. Through graph matching,
each robot is assigned a corresponding boundary point as its
long-term goal. Subsequently, the robot generates short-term
target points for navigation using a path planning algorithm.
MIE module is specially designed to assist the training pro-
cess by using privileged information to quantify information
gain and the reduction of measurement uncertainty during
exploration. During the testing phase, only partial-map data
is fed into the trained feature extractor from the AFR module.
The resulting partial-map feature mapping is then passed to
the MADN module, which derives optimal clusters of long-
term goal points based on the established topological structure.
Finally, robots perform short-term path planning to reach
their assigned goals. The overall AIM-Mapping framework is
illustrated in Fig.2.

A. Asymmetric Feature Representation

This section provides an overview of the Asymmetric Fea-
ture Representation, which is designed to encode the disparity
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Fig. 2. The overall AIM-Mapping framework. Asymmetric Feature Representation is used to generate the state value and the partial-map feature mapping. Multi-
Agent Decision-making Network combines the geometric distance information and structural information to formulate the topological graph representation,
and adopts graph matching to generate the corresponding goal point. Mutual Information Evaluation is utilized to facilitate the training process. Solid black
arrows represent the forward data flow through the network. Brown dashed arrows indicate the gradient backpropagation paths used during training for updating
network parameters.

between partial-map and privileged information. As shown
in Fig. 2, the partial-map and privileged information act
as the input. In order to maintain the structural properties,
both types of information are represented using a grid map.
The grid map consists of 5 channels, including an obstacle
channel, a passable-area channel, a robot channel, a boundary
channel, and a trajectory channel. Each channel is encoded
with a binary map, where the value of a grid cell is 1 if
there is corresponding entity information, otherwise the value
is set as 0. Specifically, the partial-map is represented as
m

(t)
c ∈

{
0, 1

}X×Y×5
, where X and Y are the dimensions

of the global map. And the input privileged information is
represented as m̂

(t)
c ∈

{
0, 1

}X×Y×5
. A feature encoding

network is designed to capture structural-spatial correlations,
implemented as a Structural Convolutional Network (SCNet)
with hierarchical downsampling. The SCNet backbone trans-
forms X × Y × 5 inputs into compact latent representations
Xh × Yh × Ch (Xh = X/8, Yh = Y/8, Ch = 32),
where spatial structures are encoded as channel-wise activation
patterns. At time t, the privileged information and partial-
map, after feature extraction by the SCNet, yield privileged
feature mappings F̂

(t)
c ∈ RXh×Yh×Ch and partial-map feature

mappings F
(t)
c ∈ RXh×Yh×Ch , respectively. The sizes of

privileged feature mappings and partial-map feature mappings
are the same, differing only in whether the channel information
representing explored areas includes privileged information.As
a result, the disparity between partial-map feature mapping and
privileged feature mapping captures the difference between
explored area and the whole area, as well as the structural
information.

Specifically, the differential calculation process described
above can be represented as:

F (t)
c = SCNet

(
O(t)

c

)
, F̂ (t)

c = SCNet
(
Ô(t)

c

)
(1)

∆F (t)
c = Flatten

(
F (t)
c − F̂ (t)

c

)
(2)

state value = FUNet(∆F (t)
c ) (3)

Where ∆F
(t)
c is the vectorized disparity between feature map-

pings. It is worth noting that in the above equation, the SCNet
network shares parameters. By the processing of the network
structure in the terms of differences, the feature encoding
network can be enhanced, thereby encoding key structural
information of the environment into the feature mappings.

In the proposed method, the policy network takes F
(t)
c as

input, while the value network receives ∆F
(t)
c . These features
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are processed by the lower-level actor-critic networks, where
F

(t)
c directly supports decision-making, and ∆F

(t)
c enhances

training performance. During training, both F
(t)
c and ∆F

(t)
c

are utilized to optimize the structural feature extractor. How-
ever, during deployment, only F

(t)
c is required for inference.

The asymmetric feature representation is supervised implicitly.
As a result, ∆F

(t)
c is only used in the training process. Despite

the implicit supervision of feature representation, the more
accurate feature extraction will promote more rational robot
actions, leading to higher episode rewards. These episode
rewards are then used by the value network to perform back-
propagation, supervising the training of the feature extraction
network. When the network is fully trained, the structural
feature extractor will be optimized, which means F (t)

c encodes
well the structural information of the environment. During
deployment, the policy network receives F

(t)
c , and conducts

decision-making based on the encoded information of F (t)
c .

B. Mutual Information Evaluation

To quantify information gain and reduction in measurement
uncertainty during exploration, we design a mutual informa-
tion evaluation network and propose a mutual information
estimation framework based on variational inference. This
framework leverages a neural network to implicitly model
the dependency between the global map M and the joint
local partial-map of multiple robots m(t), thereby providing
efficient exploration reward signals for reinforcement learning.
Here, the global map M and the local partial-map m(t) only
contain information regarding obstacles and passable-area.
Mutual information is defined as

I(M ;m(t)) = H(M)−H(M |m(t)) (4)

where H(M) is the Shannon entropy quantifying prior map
uncertainty, and H(M |m(t)) measures the residual uncertainty
after incorporating partial-map m(t). Direct computation of
this Kullback-Leibler (KL) divergence is intractable in high-
dimensional spaces, motivating our variational approach.

I(M ;m(t)) = −EP (M)[logP (M)]

+EP (M,m(t))[logP (M |m(t))]
(5)

Here, P (M) denotes the prior probability distribution of
the global map, encoding the initial uncertainty about the
environment. The conditional probability P (M |m(t)) captures
how this uncertainty is reduced upon observing m(t). From
probability theory, the mutual information can be equivalently
expressed as the KL-divergence between the joint distribution
P (M,m(t)) and the product of marginals P (M)P (m(t)):

I(M ;m(t)) = DKL(P (M,m(t)) ∥ P (M)P (m(t))) (6)

Using the Donsker-Varadhan duality, we establish a tractable
lower bound:

I(M ;m(t)) ≥ sup
T∈T

EP (M,m(t))

[
T (M,m(t))

]
− log EP (M)P (m(t))

[
eT (M,m(t))

] (7)

where T is a class of functions that satisfy appropriate
integrability conditions. We parameterize the function T using

a neural network Tθ, which enables us to approximate complex
functions without explicit density estimation and to perform
end-to-end training.

To approximate the expectation terms in the variational
lower bound during training, we introduce the mechanism of
positive and negative sample pairs:

• Positive Sample Pairs: Positive sample pairs are directly
drawn from the joint distribution P (M,m(t)), reflecting
the true dependency between the global map and the local
partial-map. In practice, when an agent takes an action
in the environment, it simultaneously obtains the local
partial-map m(t) and the corresponding global map in-
formation M , forming a positive sample pair (M,m(t)).

• Negative Sample Pairs: To approximate the product of
the marginal distributions P (M)P (m(t)), we construct
negative sample pairs by disrupting the correspondence in
the positive pairs. Specifically, for a given positive sample
pair (M,m(t)), we randomly select a global map M̂ from
other positive pairs (ensuring that M̂ is independent of the
current m(t)) to form a negative sample pair (M̂,m(t)).
This shuffling breaks the original dependency between M
and m(t), effectively simulating independent sampling.

In training, we use mini-batches of positive and negative
sample pairs to approximate the two expectation terms in the
variational lower bound. Suppose a mini-batch contains N
samples. The expectation over the positive sample pairs is
approximated as:

EP (M,m(t))

[
T (M,m(t))

]
≈ 1

N

N∑
i=1

Tθ(M,m
(t)
i ) (8)

For the negative sample pairs, we approximate this expec-
tation using all possible combinations (or a subset of non-
corresponding pairs, i.e., i ̸= j) in the mini-batch:

logEp(M)p(m(t))

[
eT (M,m(t))

]
≈ log

 1

N2

N∑
i,j=1

eTθ(M̂j ,m
(t)
i )

 (9)

The loss function is then defined as the negative of the
variational lower bound:

LMI(θ) = − 1

N

N∑
i=1

Tθ(M,m
(t)
i )

+ log

 1

N2

N∑
i,j=1

eTθ(M̂j ,m
(t)
i )

 (10)

By optimizing the neural network Tθ through backpropagation,
we minimize the loss function LMI(θ), which effectively
tightens the variational lower bound of mutual information.
This process provides more accurate and efficient exploration
rewards for reinforcement learning, as the estimated mutual
information directly reflects the reduction in environmental
uncertainty achieved through agent exploration. These prop-
erties make our method particularly suitable for multi-agent
reinforcement learning, where efficient and stable exploration
is critical for coordinating agents in large-scale, uncertain
environments.
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Fig. 3. Multi-agent decision-making network based on topological graph matching. This framework concatenates internal and external information fusion of
the graph, completing graph matching between the representation of robots and boundary points, and assigning corresponding boundary points as long-term
target points for each robot.

C. Multi-Agent Decision-making Network

To maximize the utilization of environmental structural
information and enable multirobot systems to make rational
decisions, a topology-based graph matching decision network
is designed. First, feature vectors corresponding to robot
positions and boundary points in the partial-map feature map
are extracted and combined with geometric distance features
from the environment to construct a representation of the
topological graph. Then, a graph neural network framework
is adopted to perform graph matching, using the design from
[43] as the network backbone. The overall framework process
is illustrated in Fig. 3.

1) Point Feature Extraction: After obtaining feature map-
ping from the Asymmetric Feature Representation module,
which encodes the structural information of the environment,
a point feature extraction method based on nearest neighbor
clustering and bilinear interpolation algorithm is adopted. The
method first clusters the boundary points of the explored area,
using the centroid of each cluster as the representative of
corresponding boundary point cluster, and also records the
number of points in each cluster as one of the inputs for
decision-making. Additionally, the maximum distance between
two boundary points in the same cluster cannot exceed a
threshold distance rclus. After clustering is completed at time
t, the boundary point cluster i can be represented as F

(t)
i =

{f (t)
k }k=1:ni

where f
(t)
k ∈ R2 represents the two-dimension

coordinates of boundary point K, and ni indicates the number
of boundary points in cluster i. And the centroid of boundary
point cluster F

(t)
i can be represented as f c

i = 1
ni

∑ni

k=1 f
(t)
k .

The specific clustering algorithm and computational process
are illustrated in the pseudocode of Algorithm 1.

Extracting the structural features of key locations such as
robots and boundary points is essential for the decision-making
network. In our method, bilinear interpolation is applied to the
feature map to extract the relevant feature vectors correspond-
ing to the original grid coordinates in the partial-map feature

map. Given an input partial-map with the size of X × Y × 5
and a feature map with the size of Xl×Yl×Ch, for a point pi
with coordinates (x, y) in the input partial-map, its projected
coordinates in the feature map space should be p′i = (x′, y′),
where x′ = x · Xl

X , y′ = y · Yl

Y . The value corresponding to
point (x′, y′) in the feature map F

(t)
c ∈ RXl×Yl×Ch can be

obtained using bilinear interpolation along the x-axis and y-
axis directions. Assume that the feature points closest to the
distance feature mapping point (x′, y′) are (x0, y0), (x0, y1),
(x1, y0) and (x1, y1) with feature vector boundary values
F

(t)
c (x0, y0), F

(t)
c (x0, y1), F

(t)
c (x1, y0) and F

(t)
c (x1, y1). The

feature vector Ifi corresponding to the point pi = (x, y) in the
partial-map feature mapping can be expressed as

Ifi = (x1 − x′) · (y1 − y′) · F (t)
c (x0, y0)

+(x1 − x′) · (y′ − y0) · F (t)
c (x0, y1)

+(x′ − x0) · (y1 − y′) · F (t)
c (x1, y0)

+(x′ − x0) · (y′ − y0) · F (t)
c (x1, y1)

(11)

The bilinear interpolation process described above is denoted
as Ifi = Interp(pi, F

(t)
c ) in this paper.

2) Topological Graph Representation: After point feature
extraction, the node features need to be combined with ge-
ometric distance information from the environment to con-
struct self-representation graphs Gr = {Vr, Er} and Gf =
{Vf , Ef}, which only contain information about robots or
boundary points, as well as a cross-representation graph
Gr = {Vr, Vf , Erf}, which contains both robot and boundary
point information. For a node i in the self-representation
or cross-representation graph, its initial node feature vector
vi ∈ R5+Ch is composed of three parts: category information
vclai ∈ {0, 1}2, geometric information vgeoi ∈ R3, and
environmental representation information vrepi ∈ RCh . The
category information vclai is a one-hot encoded label indicating
whether the node is a robot node or a boundary point. The
first two dimensions of geometric information vgeoi represent
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Algorithm 1 Adjacent Neighbor Clustering of Boundary
Points
Input: A set of boundary points F = {fk}k=1:n containing

n boundary point.
Output: The boundary point clusters nc and their centroids

are represented as Fcluster = {Fi, f
c
i }i=1:nc , where Fi =

{fj}j=1:ni .
1: Initializes the clustering of boundary points Fcluster;
2: while not F = ∅ do
3: Initialize a cluster, called Fi;
4: Take a boundary point from the boundary point set F

and add it to the cluster Fi;
5: repeat
6: for f in F do
7: if f is any neighboring boundary point of a cluster,

and the distance to any boundary point within cluster
Fi is less than rclus then

8: Remove f from the set F and add it to the cluster
Fi;

9: end if
10: end for
11: until No new boundary points are added to the cluster

Fi;
12: Compute the average distance between each boundary

point in the cluster Fi and the remaining boundary
points in the cluster. Select the boundary point with the
smallest average distance as the cluster center pointfc

i ;
13: Add the cluster Fi and the cluster center point f c

i to
the set of boundary point clusters Fcluster;

14: end while

position pi = (x, y) of the node, while the last dimension
represents the geometric information of the node. Additionally,
the environmental representation information is obtained by
interpolating the node position information in the partial-map
feature map: vrepi = Interp(pi, F

(t)
c ).

The environment is partially observable, and utilizing his-
torical observation information helps robots avoid redundant
exploration. The self-representation graph Gh

r = {V h
r , Eh

r }
is constructed to represent the historical trajectory infor-
mation of robots, and Gh

g = {V h
g , Eh

g } is constructed to
represent historical boundary point information. To establish
connections between current robot and boundary point infor-
mation and historical information, we construct the cross-
representation graph Gh

r r = {V h
r , Vr, E

h
r r}, as well as

the cross-representation graph Gh
f g = {V h

g , Vf , E
h
f g} be-

tween current boundary points and historical target points. By
constructing these topological graphs, both structural feature
information and geometric distance information in the envi-
ronment can be adequately represented, laying the foundation
for efficient decision-making by subsequent graph matching
decision networks.

3) Graph Matching Decision Network: Graph matching
decision network utilizes a graph attention mechanism to
sequentially aggregate and extract features from the self-
representation graph and the cross-representation graph, up-
dating the features of corresponding edges and nodes in

the topological graph. In the cross-representation graph Grf

after feature updates, the feature value of each edge in the
edge set Erf represents the matching degree of each robot
to the boundary point node. Therefore, by extracting the
feature values from the updated edge Erf set and using the
Sinkhorn algorithm for linear assignment computation, the
graph matching can be completed, assigning long-term target
points to each robot.

We used an encoder based on a multi-layer perceptron
network to encode the category information and geometric
information [vclai , vgeoi ] of each node i in the graph, obtaining a
feature vector of length Ch. This feature vector is concatenated
with the environmental representation information vrepi to
form the node feature v0i ∈ R2Ch for subsequent feature
aggregation. The core idea of the graph attention network is to
utilize an attention mechanism to aggregate features between
neighboring nodes in the topological graph. Therefore, for the
nodes vli in the l − th layer of the graph network, trainable
weight parameters W l

k, W l
q , and W l

v are introduced to generate
the key kli, query qli, and value ul

i in the attention mechanism:

kli = W l
k · vli, qli = W l

q · vli, ul
i = W l

v · vli (12)

The attention coefficient alij between node i and its neigh-
boring node j ∈ Ni can be calculated by the following
equation:

al,selfij =
exp(kl

T

j · qli)∑
m∈Ni

exp(klTm · qli)
(13)

Additionally, the attention coefficient alij will also serve as
the edge feature value between node i and its neighboring
node j in the topological graph. Therefore, for node i, the
aggregation of neighboring node feature values vlNi

can be
expressed as:

vlNi
=

∑
m∈Ni

alim · vlj (14)

The final feature value of node i will be updated as the
aggregation of neighboring node features and the fusion with
its own node feature:

vl+1
i = vli + ρ([vli||vlNi

]) (15)

Where ρ(·) represents the feature fusion function implemented
using a multilayer perceptron, and [·||·] denotes the concate-
nation of two feature values. The feature of each node in the
self-representation graph will be updated to the aggregation of
its own feature and the features of its neighboring nodes. This
operation will be applied to the self-representation graphs Gr,
Gf , Gh

r , and Gh
g in this method. After completing the feature

updates in the self-representation graphs, the node features
will serve as the initial features for the corresponding nodes
in the cross-representation graph, which will then be input
into the subsequent graph attention network. Unlike that in the
self-representation graphs, the feature extraction process in the
cross-representation graph uses a nonlinear mapping method
to generate attention coefficients. Additionally, the distance dij
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calculated by the fast marching algorithm is incorporated as
an input to the non-linear mapping function φ(·):

al,crossij =
exp(φ([klj ||qli||dij ]))∑

m∈Ni
exp(φ([klm||qli||dim]))

(16)

The notation [·|| · ||·] denotes the concatenation of three
vectors. Additionally, the non-linear mapping function φ(·)
is implemented using a multilayer perceptron, which outputs
a one-dimensional real number. In this study, the cross-
representation graphs Gh

r r, Gh
f g , and Grf will undergo

sequential feature extraction using graph attention networks.
The edge features in the cross-representation graph Grf will
be extracted and used as the affinity matrix in graph matching,
denoted as AM ∈ Rnr×nf . Here, nr and nf represent the
numbers of robots and boundary points, respectively. Each el-
ement in the matrix represents the degree of matching between
the corresponding robot and boundary point. Ultimately, we
employ the Sinkhorn algorithm to iteratively normalize the
rows and columns of the affinity matrix alternately, gradually
transforming it into a probability matrix to accomplish graph
matching. Each robot will select the boundary point with the
highest probability value from the probability matrix as its
long-term target point.

D. Asymmetric Actor-Critic Training Framework

We jointly optimize the policy network (Multi-Agent
Decision-making Network) with Asymmetric Feature Repre-
sentation via reinforcement learning to maximize cumulative
rewards over the entire task horizon. In multi-robot envi-
ronments, our global planner’s centralized decision-making
architecture enables the use of the off-policy Proximal Policy
Optimization (PPO) [58] algorithm for policy optimization.

The objective of active mapping is to achieve high time
efficiency and map completeness. To this end, we design a
temporal reward Rtime and a coverage reward Rcoverage. The
temporal reward encourages efficient exploration by penalizing
unnecessary time steps, formally defined as:

Rtime = −0.01 (17)

If the cumulative area explored by the robot team at decision
step t is denoted as A(t), the coverage reward Rcoverage is
defined as the incremental coverage area (in m2):

R(t)
coverage = A(t) −A(t−1) (18)

To ensure training stability, we introduce a dynamically
adjusted weighting parameter dt that decays with the number
of training steps. A typical implementation defines d(t) as:
dt = d0·e−λt with d0 being the initial weight and λ controlling
the decay rate. This parameter balances the exploration rate
(via coverage reward) and the mutual information loss during
training, enabling a gradual transition from coverage-driven
exploration to mutual information optimization.

R(t) = Rtime + dt ·R(t)
coverage (19)

During training, multiple agents interact with the environ-
ment following the policy πθ, collecting trajectories of state-
action-reward tuples into a shared replay buffer. At the end of

each episode, the algorithm samples a batch of Nb transitions
from the buffer for training. The loss function of the PPO
algorithm is formulated as:

LPPO = Lpolicy + c1 · Lvalue − c2 · Lentropy + c3 · LMI (20)

Where Lpolicy denotes the policy gradient loss, Lvalue represents
the value function loss, Lentropy is the entropy regularization
term to encourage exploration, c1, c2 and c3 are weighting
coefficients.

To account for the increasing reliability of mutual infor-
mation estimation during training, the weight c3 follows an
exponential curriculum schedule: c3 = ĉ3 · ekt where ĉ3 is the
initial scaling factor and k controls the growth rate. This design
ensures that the mutual information objective gains influence
progressively as its estimation becomes more accurate.

V. EXPERIMENTS

A. Experimental Setup

1) Experimental Environment: To validate the proposed
framework, experiments were conducted using the iGibson
physics simulation engine. iGibson is a virtual environment
tool for robotics and AI research, providing realistic indoor
scenes for the development and testing of robot perception,
navigation, and task planning. The iGibson simulation engine
supports various map scene datasets and realistic physics-
based interactions between robots and environments. In these
experiments, TurtleBot robots equipped with depth cameras
were used within the iGibson simulation engine to closely
simulate real-world scenarios. The TurtleBot robots can move
using a differential drive method and perceive the environment
through depth cameras, with realistic collision interactions
with the environment. Note that in simulated experiments, we
assume that sensors are noise-free, which means that at each
time step, robots can get accurate localization and generate
accurate partial-maps.

For the experiments, publicly available Gibson and Mat-
terPort3D datasets were used for training and testing, respec-
tively. The Gibson dataset offers large-scale 3D data of real
indoor environments, while the MatterPort3D dataset provides
a larger scale and more diverse set of indoor scenes. Nine
scenes from the Gibson dataset were selected for training,
and the trained model was then tested on the MatterPort3D
dataset. Some scenes with small areas or disconnected regions
that were impassable for the TurtleBot robots were excluded,
resulting in 51 scenes for performance testing. These scenes
were further divided into three subsets based on their area
sizes: large, moderate, and small area scenes. During testing,
each scene was evaluated over 100 trials, and the average
results were recorded. The initial positions and orientations
of the robots were randomly generated within the scene, with
multiple robots initially concentrated in a small area.

2) Parameter Settings and Training Details: In this study,
the grid map size was set to 480× 480, where each grid cell
represents an area of 0.01 square meters in the real world.
The maximum field of view radius for the robot was set to 3
meters, and the maximum robot movement speed was set to
1 meter per second. During training, the maximum time steps
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TABLE I
TRAINING HYPERPARAMETER SETTINGS.

Hyperparameter Name Value

Training rounds 1100
Learning rate 1× 10−5

Incentive discount factor 0.99
Generalized Advantage Estimation discount factor 0.95
Value loss function coefficient c1 3.0
Strategy entropy coefficient c2 1.0
MI evaluation loss initial scaling factor ĉ3 1.0
MI evaluation loss growth rate k 0.1

per episode were set to 1800, and the planning horizon for
long-term goal planning was set to 15 time steps. The structure
feature encoding network consisted of a 5-layer convolutional
neural network, with the output partial-map feature mapping
channel set to 32. The feature utilization network was a 3-
layer multilayer perceptron network. Additionally, the mul-
tilayer perceptron network for encoding node categories and
geometric information also had an output layer size of 32. The
mutual information evaluation network first encoded the input
information using a 4-layer convolutional neural network,
followed by a 3-layer multilayer perceptron for feature output,
where the output layer size of the perceptron was 64.

Furthermore, in the graph matching decision network based
on graph attention network, the vector lengths corresponding
to the keys, values, and queries in the attention mechanism
were set to 32. The code framework used in this study was the
widely used PyTorch framework in academia. The asymmetric
actor-critic training framework was an improvement based
on the Proximal Policy Optimization (PPO) algorithm, with
training hyperparameters set as shown in Table I. The above
training parameters were determined through experimental
comparisons to obtain the optimal values. The code was
deployed and trained on a workstation equipped with an Intel
i9-13900k central processing unit and an NVIDIA GeForce
RTX 4090 graphics card, with the complete training process
taking approximately 48 hours.

3) Evaluation Metrics: For multirobot active mapping tasks
in indoor environments, task completion effectiveness is evalu-
ated based on time efficiency and mapping completeness. Time
efficiency refers to the time required for robots to complete
the exploration task, while mapping completeness reflects the
exploration speed within a given time frame. Therefore, time
steps and exploration rate are used as evaluation metrics. Time
steps indicate the time required for the robots to finish the
exploration, while the exploration rate is the ratio of the area
explored by the robots to the total explorable area of the
environment within the maximum episode length.

B. Experimental Results

1) Baseline Methods: To thoroughly validate the effec-
tiveness of the proposed method, several high-performance
baseline methods were introduced for comparison, including
four traditional planning methods (Utility [7], mTSP [22],

Voronoi [14], CoScan [5]) and two reinforcement learning-
based methods (Ans-Merge [41], NCM [43]). To ensure fair
comparison, for the aforementioned baseline methods, only
their top-level decision modules, which allocate long-term
target points to robots, were utilized. The bottom-level action
execution modules for all methods were uniformly processed
using a fast traversal algorithm, and the planning horizons for
long-term goals were kept the same for all methods. The fol-
lowing provides detailed introductions to the aforementioned
baseline methods:

Utility introduces the concept of information gain, where
each robot selects the boundary point with the maximum in-
formation gain as the long-term target point. The information
gain of a boundary point is defined as the area of unexplored
regions within a circle centered at that boundary point with
the perception distance limit as the radius.
mTSP transforms the multirobot active mapping problem
into a multiple Traveling Salesman Problem, which requires
multiple robots to cooperatively traverse all boundary point
nodes starting from their current node positions. This is
achieved by establishing a boundary point-robot passable
topological graph containing distance information.
Voronoi segments the entire map using the Voronoi parti-
tioning method, with the robot location as seed points. Each
resulting map sub-block ensures that any point within it is
closer to its corresponding seed point than to any other seed
points. Each robot then selects the nearest boundary point
within its map sub-block as the long-term target point.
CoScan first performs K-means clustering on all boundary
points and models the multirobot active mapping task as an
Optimal Mass Transport Problem, allocating boundary point
clusters based on distances between robots and boundary
point clusters.
Ans-Merge extends the ANS [41] method, which is a
reinforcement learning-based algorithm for single-robot ex-
ploration in unknown environments. It overlays the local grid
map centered on itself and the global grid map as decision
inputs and selects long-term target points for robots through
regression.
NCM builds a topological graph between boundary points
and robots based solely on geometric distance information
and introduces a multi-graph neural network to predict the
neural distance between boundary points and robots. It then
matches boundary points with robots based on neural distance
and assigns long-term target points to each robot.

2) Comparison of Exploration Performance: We recorded
the number of time steps required for multiple robots to
completely explore the environment during training as the
training result. From Fig. 4, it can be observed that with the
increase in training epochs, the number of time steps required
for the AIM-Mapping algorithm and the NCM algorithm to
complete the exploration task gradually decreases and eventu-
ally outperforms traditional planning methods. Among them,
the AIM-Mapping algorithm slightly outperforms the NCM
algorithm in terms of convergence speed and performance after
convergence. The Voronoi algorithm and the CoScan algorithm
perform very similarly on the training set. The average step
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TABLE II
PERFORMANCE COMPARISON IN MATTERPORT3D TEST DATASET.

Methods
Small Scene (< 60m2) Medium Scene (60− 100m2) Large Scene (> 100m2)

Time (step) Explo (%) Time (step) Explo (%) Time (step) Explo (%)

Utility[7] 1111.84 97.28 1779.78 95.41 3056.00 83.84
mTSP[22] 893.26 97.85 1120.22 96.76 1764.36 95.93
Voronoi[14] 904.53 97.68 1226.72 96.72 1520.07 96.19
CoScan[5] 716.63 98.09 1070.11 96.72 1601.43 96.07
Ans-Merge[41] 1529.58 96.08 2425.67 85.98 3827.21 81.19
NCM[43] 690.16 97.78 987.44 96.74 1492.07 96.09
AIM-Mapping 542.35 97.67 803.37 96.76 1341.59 96.03

Fig. 4. Training performance comparison. The training results of the proposed
AIM-Mapping and the baseline method NCM, as well as the comparison of the
performance of the planning-based baseline methods (Utility, mTSP, Voronoi,
and CoScan) on the training set.

lengths for completing the exploration task are 486.55 and
488.89, respectively, so the corresponding two dashed lines in
Fig. 5 are very close.

To further validate the effectiveness of the proposed method,
we tested the trained models on the test set and compared them
with baseline methods. The comparative experimental results
are shown in Table II. From the table, it can be observed
that except for the Ans-Merge and Utility methods, all other
methods achieve an exploration rate of over 95% in scenes of
various area scales, indicating successful completion of full
environment exploration. The Ans-Merge method, using the
original grid map as input under the scenes and reward settings
of this study, exhibited instability during training, resulting in
poor model performance. The Utility method only considers
information gain and ignores distance information, leading to
significant path redundancy and difficulty achieving high ex-
ploration rates in large-scale scenes. However, in terms of time
efficiency, the proposed AIM-Mapping outperforms various
baseline methods by achieving relatively optimal efficiency
at the same exploration rate. In moderate-sized and large-
scale scenes, AIM-Mapping reduces the number of time steps

Fig. 5. Illustration of average exploration rate variation during test episodes.

required for mapping compared to the best-performing base-
line method NCM by approximately 10%. The performance
improvement is due to the proposed AIM-Mapping, which not
only extracts distance information and structural information
from the environment to establish a topological representation
but also considers the information value acquired during the
map exploration process using mutual information. This results
in more effective long-term goal planning, thereby improving
the time efficiency of task completion.

C. Visualization of Exploration Process

To visually demonstrate the effectiveness of the algo-
rithm, we visualized the testing process in the simulation
environment. As shown in Fig. 6, the scenario labeled
“gYvKGZ5eRqb” from the test set was used for visualization.
Based on the 3D model diagram, the scenario is identified
as an indoor auditorium. In this scenario, three robots were
deployed using the proposed AIM-Mapping algorithm to re-
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Fig. 6. Visualization and map reconstruction of the scene with the ID
’gYvKGZ5eRqb’

construct the map, with the reconstruction result shown in Fig.
6(c). In Fig. 6(c), the green areas represent obstacles, while the
light blue areas represent the explored and navigable regions.
Since the dataset simulates a real-world scenario, where the
ground may be uneven (e.g., protrusions or depressions), there
is a slight difference between the left side of the map in Fig.
6(c) and Fig. 6(b). For areas that are inaccessible, the robots
mark them as obstacle zones. In Fig. 7, the paper presents
the first-person RGB-D observations of the three robots at
different time steps and the global map reconstructed by the
multiple robots. In the global map, green areas indicate obsta-
cles, light blue areas indicate explored navigable regions, gray
areas represent the true values of navigable areas in the map,
and dark blue points denote boundary points. The elements
related to the robots are distinguished using different colors:
the three robots are represented by red, yellow, and purple,
respectively. The arrows in corresponding colors indicate the
current positions of the robots, and the curves connected
to the arrows show the robots historical trajectories. In the
boundary regions between known and unknown maps, dots
in corresponding colors represent the long-term goal points
assigned to each robot. It can be seen that although the robots
were initialized in a small area, they quickly moved in different
directions after the exploration began. During the exploration
process, their trajectories seldom overlapped, indicating that
the area of repeated exploration was minimal and that the
long-term decision-making of the robots was efficient.

To provide a clear comparison with various baseline meth-
ods, this paper tested each baseline method and recorded
the mapping progress and robot trajectories at different time
steps during the testing process. Taking the scenario “Jm-
bYfDe2QKZ” as an example, the initial positions and orien-
tations of the robots were the same in each test round, and
the visualization results are shown in Fig. 8. The meanings
of the colored elements in Fig. 8 are the same as those in
Fig. 7. During the visualization process, we also recorded the
time taken by each method to complete the exploration. It can
be seen that the AIM-Mapping method achieved better ex-
ploration efficiency, completing the overall exploration of the
environment in a relatively short time. Additionally, except for

Fig. 7. Visualization schematic diagram of robot mapping process.

Ans-Merge, most of the methods successfully completed the
full exploration of the unknown environment and reconstructed
a top-down map. This is because Ans-Merge selects long-
term goal points using a regression-based approach, choosing
a point anywhere on the map as the long-term goal point,
without ensuring that the selected point is a boundary point.
As a result, Ans-Merge cannot guarantee complete exploration
of the environment. Furthermore, under the Utility method,
the trajectories of multiple robots show significant overlap,
and individual robots exhibit repeated movements, which is
consistent with the analysis in Table II. Finally, among the
various methods, the AIM-Mapping method shows less over-
lap in robot trajectories, and the movements of the robots are
relatively smoother. This suggests that the long-term goal point
selection of the AIM-Mapping method is more reasonable and
efficient to some extent.

D. Ablation and Generalization Experiments

1) Generalization Experiment: To verify the generalization
ability of the proposed method with different numbers of
robots, the models trained with 3 robots were extended to
settings with 4 and 5 robots for testing. The average test
results on the entire test set are shown in Table III. From the
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Fig. 8. Visualization comparative schematic diagram of mapping process.

data in the table, it can be observed that despite the change
in the number of robots during testing, the AIM-Mapping
method proposed in this paper still achieves relatively superior
time efficiency compared to the baseline methods. The strong
generalization ability of AIM-Mapping is partly attributed
to its construction of the topological representation graph,
where topological relationships and distance information are
minimally impacted by changes in the number of robots.
This indicates that the AIM-Mapping model trained in only
9 scenes also has certain performance limitations in terms of
generalization to the number of robots.

2) Ablation Experiments: To further validate the effective-
ness of each module proposed in the AIM-Mapping method,
we present the results of ablation experiments on different
modules. Ablated privileged representation: The privileged
information introduced in the asymmetric feature represen-
tation module is removed, and only current and historical
observations are used to evaluate the state value. Ablated
mutual information evaluation: The mutual information evalu-
ation module, which assesses environmental uncertainty using
privileged information, is removed, and the robots are guided
using the explored area for exploration. The comparison test
results of the trained models on the test set are presented in

Table IV.
Experimental results show that removing privileged infor-

mation reduces time efficiency of the algorithm, as reflected
in the tests conducted on three scenarios of different sizes.
This, to some extent, indicates that utilizing privileged global
information in the network evaluation module during training
not only helps the feature encoding module capture accurate
and valuable feature information but also allows for a more
accurate assessment of the robots state and action values,
thereby improving decision-making efficiency. Experimental
results on the test set also indicate that not using privileged
information reduces the robots decision-making efficiency.
Thus, using global information as privileged input, extracting
feature mappings through asymmetric feature representation,
and evaluating map uncertainty during exploration with the
mutual information evaluation method can improve the overall
decision-making performance of the system.

E. Real-world Experiments

To further validate the effectiveness of AIM-Mapping, we
designed the real-world experiments.

As shown in Fig. 9, in our real-world experiments, we use
three TRACER MINI AGVs of AgileX Robotics, and each
of them is mounted an H1 Series LiDAR of Free Optics as
the depth sensor. In addition, each robot is equipped with an
onboard processing unit featuring an Intel Core i5-8265U CPU
@ 1.60 GHz (14 nm process) with 4 cores and 8 threads. For
centralized processing, we use a laptop configured with an
AMD Ryzen 7 7735H processor with Radeon Graphics @
3.20 GHz, along with an NVIDIA GeForce RTX 4060 GPU,
serving as the centralized server. Specifically, the server re-
ceives the partial-maps and localization data from each robot,
integrates them to generate a joint map, and then transmits the
updated joint map back to each robot for decision-making.
Such information transmission is achieved through a local
area network. We directly use the policy model trained in the
simulated environments for robots in real-world experiments.
There are two real-world scenes, and the areas of them are both
larger than 100m2. For each scene, we run AIM-Mapping and
baseline methods three times and use the average exploration
time and rate for evaluation.

Fig. 10 and Fig. 11 show the qualitative comparison of
AIM-Mapping and baseline methods in two real-world scenes.
Compared with other methods, with the same time consump-
tion, AIM-Mapping explored more area, and firstly finished
the exploration task. Aligned with the best exploration per-
formance, there are less overlaps of the trajectories for three
robots, demonstrating that the multirobot system can make
well task assignment and reduce redundant exploration.

Table V shows the quantitative comparison in two real-
world scenes. Consistent with the analysis in Fig. 10 and Fig.
11, AIM-Mapping achieves the best performance in terms of
exploration time. In the two scenes, all of the methods succeed
in exploring the whole area, this is because in the real-world
scenes, there are no regions that robots cannot get into or
perceive from any viewpoint. Note that, AIM-Mapping with
policy network trained in simulation environments achieves
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TABLE III
COMPARATIVE EXPERIMENTAL PERFORMANCE ON GENERALIZATION OF ROBOT QUANTITIES.

Methods
Number of robots=3 Number of robots=4 Number of robots=5

Time (step) Explo (%) Time (step) Explo (%) Time (step) Explo (%)

Utility[7] 1881.27 92.93 1681.73 93.69 1589.45 94.90
mTSP[22] 1212.49 96.84 1038.67 97.13 873.65 96.95
Voronoi[14] 1187.22 96.83 999.14 97.17 869.63 96.95
CoScan[5] 1084.27 97.05 988.78 97.18 835.63 97.00
Ans-Merge[41] 2476.57 88.43 1681.73 93.69 1536.73 95.00
NCM[43] 1015.22 96.87 868.67 97.01 761.78 97.00
AIM-Mapping 763.14 97.02 747.74 97.03 734.66 97.00

TABLE IV
ABLATION EXPERIMENT RESULTS.

Methods
Small Scene (< 60m2) Medium Scene (60− 100m2) Large Scene (> 100m2)

Time (step) Explo (%) Time (step) Explo (%) Time (step) Explo (%)

Ablated privileged 605.08 97.32 950.00 96.62 1495.91 96.16
Ablated MI evaluation 686.70 97.55 977.90 96.82 1481.36 96.20
AIM-Mapping 542.35 97.67 803.37 96.76 1341.59 96.03

Fig. 9. An illustration of multirobot exploration in a real-world scene. The
exploration process is recorded using two cameras from different view points.

TABLE V
QUANTITATIVE COMPARISON IN TWO REAL-WORLD SCENES.

Methods
Scene 1 Scene 2

Time (step) Explo (%) Time (step) Explo (%)

Utility[7] 2613.67 100.00 1255.33 100.00
mTSP[22] 1322.00 100.00 1095.00 100.00
CoScan[5] 3148.67 100.00 1522.33 100.00
NCM[43] 1462.33 100.00 1053.33 100.00
AIM-Mapping 1111.67 100.00 851.67 100.00

superior performance to other methods in both simulation and
real-world scenarios, which demonstrate the effectiveness and
generalization.

F. Discussion

Despite achieving superior performance compared to exist-
ing methods, AIM-Mapping has several limitations. Firstly,

Fig. 10. A qualitative comparison of AIM-Mapping and baseline methods
in Scene 1. The trajectories of three robots are denoted as three lines with
different colors.

the decision-making process primarily relies on 2D map
information converted from RGB images and depth data,
which can result in information loss, particularly in terms
of semantic information. Secondly, in AIM-Mapping, robots
share a common joint map, which is updated based on
the observations from each robot. This process assumes no
communication delays or failures, which may not hold true
in more complex environments. Thirdly, the sensors used in
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Fig. 11. A qualitative comparison of AIM-Mapping and baseline methods
in Scene 2. The trajectories of three robots are denoted as three lines with
different colors.

our experiments are either noise-free or experience minimal
noise. In contrast, real-world scenarios, especially in dynamic
environments, may involve significant disturbances that could
degrade the exploration performance of AIM-Mapping. What’s
more, there are three sub-task modules in multirobot explo-
ration, and AIM-Mapping primarily focuses on the long-term
goal selection. For perception and short-term path planning,
more research effort is needed to investigate the effect of them
on the task especially in challenging scenarios like dynamic
environments. In the future work, we will further address
the above-mentioned issues, and improve the efficiency and
robustness of the whole system.

In addition, AIM-Mapping benefits significantly from the
introduction of asymmetric information. Incorporating more
intrinsic or auxiliary information may further enhance ex-
ploration efficiency. With additional information, such as se-
mantic data, robots will gain a better understanding of the
environment, offering new insights. As some existing works
have demonstrated, map prediction offers explicit information
gain that can guide exploration more effectively. In future
work, we plan to investigate the impact of map prediction on
multirobot exploration and explore its integration with AIM-
Mapping to achieve improved performance. Also, further work
should be carried out in more complex scenarios, such as
multi-storied indoor environments and outdoor field settings.
In these challenging conditions, robots often face issues such
as perception robustness, communication delays, and increased
coordination demands, all of which require more advanced
collaboration strategies.

VI. CONCLUSION

This paper studies the multirobot active mapping problem
and proposes AIM-Mapping, which is an effective mapping
framework based on deep reinforcement learning. The frame-
work uses an asymmetric feature representation module to

encode the disparity between partial-map and privileged in-
formation, and use the disparity feature as the state value of
the actor-critic training framework. The mutual information
between partial-map and privileged information will be used
as the supervised information of the above framework. For
decision-making, a topological representation is first con-
structed incorporating both structural information and geo-
metric distance information. A graph matching mechanism is
then applied to assign the goal point to each robot. Qualitative
and quantitative experiments are conducted on both the public
iGibson environment and real-world scenarios, and the results
validate the effectiveness of the proposed method. In our
future work, we plan to further explore the potential of the
asymmetric information.
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