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Abstract

Industrial Internet of Things (IIoT) systems are increasingly exposed to sophisticated and
rapidly evolving cyber threats. In response, this work proposes a proactive threat detection
framework that leverages pretrained transformer-based language models to identify emerg-
ing attack patterns within IIoT ecosystems. This work introduces a transformer-based
framework that fine-tunes domain-specific pretrained models (SecBERT, SecRoBERTa, Cy-
BERT), derives potential attack-path patterns from vulnerability–tactic mappings, and
incorporates a retrieval-based fallback mechanism. The fallback not only improves robust-
ness under uncertainty, but also provides a practical solution to the absence of labeled
datasets linking ICS-specific MITRE ATT&CK tactics with vulnerabilities, thereby filling a
key research gap. Experiments show that the fine-tuned models substantially outperform
traditional machine learning baselines; SecBERT achieves the best balance while maintain-
ing high inference efficiency. Overall, the framework advances vulnerability-driven threat
modeling in IIoT and offers a foundation for the proactive identification of attack patterns.

Keywords: detection of cyber attack patterns; IIoT; language model; secure digital service
ecosystems

1. Introduction
The Industrial Internet of Things (IIoT) has undergone significant advancement in

recent years [1]. IIoT deployments typically consist of a large number of low-power sensors,
controllers, and wireless communication modules that continuously monitor and interact
with physical processes. The progress in low-power and low-complexity communication
technologies has greatly facilitated scalable and energy-efficient connectivity, ensuring
reliable operations in resource-constrained environments [2,3]. Enabled by these develop-
ments, IIoT has become a critical driver for the digitalization, automation, and intelligence
of industrial control systems (ICS). However, the interconnection of heterogeneous devices
also introduces new vulnerabilities, which make IIoT systems increasingly exposed to
cybersecurity threats [4].

Cyber attacks have become increasingly sophisticated in recent years [5]. With the
rapid development of industrial IoT, security threats at the network, software, and system
layers have become increasingly prominent in ICS. Kaspersky indicated that 21.9% ICS
computers were attacked in the first quarter of 2025 [6]. According to the report of ENISA
(European Union Agency for Cybersecurity), exploits will increase significantly after the
publication of the vulnerability [7]. According to Claroty, about 12% of operational technol-
ogy (OT) devices were found to have known exploited vulnerabilities. Such weaknesses
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represent a significant risk, as they may directly lead to the disruption of critical industrial
processes [8].

Inferring attack patterns from known vulnerabilities is a common practice in threat
analysis [9,10]. Mitre Att&CK provides a framework for potential attack technologies and
corresponding tactics of malicious activity. Therefore, based on known vulnerabilities and
the corresponding attack methods, potential attacks in the system could be predicted. Then,
attack paths could be inferred. In addition, the Common Vulnerability Scoring System
(CVSS) score and the Exploit Prediction Scoring System (EPSS) score from CVE can be used
to evaluate the probability of an attack, allowing more targeted defensive measures or more
efficient response and investigation of attack incidents [11,12].

As each CVE may involve multiple attack tactics, it is therefore a multi-label classi-
fication problem that identifies the tactics according to the description of the CVE [13].
Building on this idea, this paper creates a multilabel text classification model that accurately
determines how a CVE might be exploited based on its description. The dataset was col-
lected from the BRON database, which contains recent CVEs and records related to MITRE
ATT&CK Tactics. The collected data was tokenized and processed using SecBERT [14],
SecRoBERTa, and CyBERT [15], and then used to train the classifier. MITRE ATT&CK
Tactics were used as a reference to predict potential attack paths or strategies.

Moreover, since ICS-related samples in existing datasets are sparse and highly imbal-
anced, the classifier may fail to provide accurate predictions for rare classes or tactics absent
from the training set. To mitigate this limitation, prediction confidence is estimated using
probability distribution and entropy. Samples with insufficient confidence are handled by
a retrieval-based fallback module, which measures semantic similarity between the CVE
description and tactic descriptions in the knowledge base.

The main contributions of this paper are summarized as follows:

(1) A CVE-to-MITRE ATT&CK tactic mapping method was proposed that jointly con-
siders both ICS and Enterprise contexts, enabling more comprehensive coverage of
vulnerabilities and attack tactics.

(2) A retrieval-based similarity search mechanism was incorporated to address the lack of
labelled ICS-specific samples, providing a fallback solution that improves robustness
under data scarcity.

(3) By leveraging vulnerability—MITRE ATT&CK mappings, a lightweight approach for
detecting potential attack patterns was developed, supporting efficient identification
of threats in industrial IoT environments.

By analyzing existing vulnerabilities using pretrained models, this work aims to
identify and characterize attack tactics and patterns within industrial IoT (IIoT) scenarios.
This proactive approach can facilitate the timely detection, response, and prevention of
potential cyber attacks targeting critical infrastructure and operations.

2. Related Works
The integration of vulnerability management and threat management is critical for

risk assessment. Feng et al. provided a systematic and comprehensive survey of vul-
nerabilities in IoT device firmware and their detection methods [16], which could be a
feasible foundation for vulnerability-driven threat analysis. Understanding how adver-
saries exploit vulnerabilities can greatly assist defenders in establishing robust defensive
measures. A key contribution in this topic is the methodology developed by the MITRE
Center for mapping CVEs to the ATT&CK framework. This approach provides a structured
way to contextualize the technical details of a vulnerability with the adversary behaviours
outlined in ATT&CK. The methodology breaks down the exploitation process into three
key categories, exploitation technique, primary impact, and secondary impact. By using
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this template, security analysts can translate a CVE description into a narrative that aligns
with known adversary tactics and techniques [17]. Tatam et al. discussed using the MITRE
ATT&CK matrix combined with graph-based methods for modelling threats like Advanced
Persistent Threats. They highlighted that in current research, the process of identifying
threats based on vulnerabilities is still a manual process [18].

While this manual methodology provides a strong foundation for vulnerability and
MITRE ATT&CK mapping, other related works have focused on different aspects of this
field. Hemberg et al. proposed the BRON framework to trace relationships among records
drawn from various vulnerability and attack information sources. An example illustrates
relationships among CVE, CWE, CAPEC (Common Attack Pattern Enumeration and Classi-
fication), MITRE techniques, and MITRE tactics. This framework can serve as a foundation
for constructing datasets to train language models that identify the corresponding MITRE
tactics and techniques for each CVE. However, as this project relies on publicly available
data, it may suffer from issues such as data measurement bias and update latency [19].
Some studies, on the other hand, emphasize the analysis of attack paths. Hankin et al.
proposed a framework to assess potential risks based on system vulnerabilities. Their ap-
proach also relies on manually and incrementally establishing mappings among CVE, CWE,
and CAPEC to infer potential attacks [5]. However, manual analysis requires specialized
knowledge and usually comes with a high cost in time.

With the rapid advancement of AI technologies, machine learning (ML)-based meth-
ods have been introduced. Lakhdhar evaluated a set of algorithms (BinaryRelevance,
LabelPowerset, ClassifierChains, MLKNN, BRKNN, RAkELd, NLSP, and Neural Net-
works), and acheived 99% accuracy in CVE classification task [20]. However, the ML
methods highly depend on manual feature engineering, which is time consuming. Com-
pared with traditional machine learning, the rise of NLP techniques has enabled end-to-end
approaches. Grigorescu et al. presented a dataset comprising 1813 CVEs along with their
corresponding attack techniques. They also introduced models mapping CVEs to tech-
niques and employed LIME to enhance interpretability [21]. This work demonstrated the
capabilities of language models in addressing the CVE classification. However, the limited
dataset size and severe class imbalance significantly constrained model performance.

Language models begin to show improved performance when trained on sufficiently
large datasets. Building upon previous work, Branescu et al. published a new dataset
that extended the study by Grigorescu et al. [21]. They conducted experiments using
transformer-based models, including CyBERT, SecBERT, SecRoBERTa, and TARS. Se-
cRoBERTa achieved the best performance, with an F1 score of 78.88%, 82.09% of precision,
and 77.02% in recall. Moreover, GPT-4 was employed in this task but demonstrated rela-
tively weaker performance [22]. However, due to the technical characteristics of certain
attack tactics, the issue of sample imbalance persists. Existing ML-based methods still have
room for improvement in terms of accuracy.

3. Proposed Methodology
As shown in Figure 1, the proposed method consists of two main components, CVE-

Tactic mapping and potential attack pattern construction.
In the CVE-Tactic mapping module, the vulnerability descriptions were tokenized and

processed using cybersecurity-oriented pretrained language models (CyBERT, SecBERT,
and SecRoBERTa). The fine-tuned classifiers output probabilities for multiple MITRE
ATT&CK tactics in a multi-label setting. To address the limitation that the training data
only contains Enterprise tactics, an uncertainty estimation mechanism was introduced.
When predictions are unreliable (low maximum probability or high entropy), the system
triggers a retrieval-based fallback module, which compares CVE embeddings against both
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Enterprise and ICS tactic representations to extend the prediction space and improve
robustness in IIoT environments.

The predicted tactics are integrated with the combined MITRE ATT&CK Enterprise
and ICS matrices, together with the network topology, to infer potential attack paths and
patterns relevant to industrial IoT systems.

Figure 1. Attack pattern detection workflow.

3.1. Data Collection

The CVE-Tactic data is collected from the BRON database. It includes the CVE from
1999 to 2024. It does not provide a direct mapping between CVEs and tactics; instead,
such mappings must be inferred through a chain of indirect dependencies. It links CVEs
and tactics via a series of key-value identifiers, including mappings from CVEs to CWEs,
CWEs to CAPECs, CAPECs to techniques, and techniques to tactics. Through this structure,
an indirect mapping between CVEs and tactics can be constructed.

The processed dataset consists of three columns: CVE-ID, CVE-Description, and Tac-
tics. For instance, CVE-2023-3519 is described as “Unauthenticated remote code execution”
and involves four tactics: initial access, execution, privilege escalation, and lateral move-
ment. After removing duplicates and invalid entries, the dataset contains 43,491 samples.
However, the tactic exfiltration is entirely absent, while command and control and execution
appear in only 9 and 95 samples, respectively, indicating a severe class imbalance.

To supplement missing labels and mitigate imbalance, a public dataset by
Branescu et al. [22] was integrated with BRON data. This combined dataset incorpo-
rates records from ENISA, MITRE Engenuity, and manually labelled samples by Grig-
orescu et al. [21], followed by data cleaning to remove duplicates and invalid entries.

In the IIoT context, many IT techniques are adopted in ICS, with Enterprise technolo-
gies often forming their foundation [23]. Due to limited mapping data for the ICS matrix,
available data primarily reflects the Enterprise matrix. Table 1 summarizes the distribution
of tactics in the dataset.

Figure 2 presents the distribution of CVEs mapped to different MITRE ATT&CK tactics.
The tactics with the highest number of CVEs are credential access, privilege escalation,
and defense evasion, each with around 30,000 to 40,000 samples. discovery and lateral
movement also show significant numbers of samples, whereas tactics such as exfiltration,
command and control, and resource development have relatively few associated CVEs.
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Table 1. Involved MITRE ATT&CK Tactics.

Attack Tactic Number of Samples

Reconnaissance 5607
Resource Development 689
Initial Access 3306
Execution 2527
Persistence 30,666
Privilege Escalation 30,696
Defense Evasion 40,527
Credential Access 24,753
Discovery 13,315
Lateral Movement 13,869
Collection 7029
Command and Control 430
Exfiltration 170
Impact 3647

Figure 2. Tactic number distribution.

Meanwhile, Figure 3 shows the average token number of the samples and the word
count of the CVE descriptions. Because of the hardware limitations of the experiment,
the length of the description text was capped at 256 words. It can be observed that most
descriptions contain fewer than 100 words, and descriptions around 50 words are the most
common in CVE. The higher frequency of descriptions containing approximately 250 words
is primarily due to the manual truncation of texts which exceeded the 256-word limit in the
original document.

The average length of CVE descriptions associated with different attack tactics is
similar, ranging between 60 and 80 words, as shown in Figure 4. However, the descriptions
of CVEs related to the tactics’ impact, execution, and exfiltration are noticeably longer
compared to other categories. In particular, the number of tokens of CVE description related
to execution and exfiltration is nearly one-third higher than those of other categories.
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Figure 3. Token number distribution.

Figure 4. Average token numbers of labels.

3.2. CVE-Tactic Mapping
3.2.1. BERT Models

The BERT-based models could be regarded as a set of BERT layers which have the
structure of a transformer. In this paper, there are six BERT layers in the model, as is shown
in Figure 5. Each BERT layer contains 12 attention heads. These attention heads allow the
model to focus on different parts of the input sequence simultaneously, capturing complex
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relationships between tokens across the text. The multi-head architecture enables the model
to effectively calculate the context and semantics information of a given text.

Figure 5. CVE Classification model structure.

The tokenization process was enabled by WordPiece tokenization. It will split sen-
tence into smaller subword units. The tokenizer will attempt to match each word in the
volcabulary; if a word is not found, it will split the unknown word into subword units,
as shown in Figure 5.

To perform multi-label classification on our dataset, three pretrained transformer mod-
els, SecBERT, SecRoBERTa, and CyBERT were selected as base models. These models have
been pretrained on large-scale cybersecurity corpora, including vulnerability descriptions
and threat intelligence reports, enabling them to capture domain-specific terminology and
semantics that are highly relevant to the task of mapping CVEs to the MITRE ATT&CK ma-
trix. Moreover, they have been widely adopted in existing studies and have demonstrated
strong potential in various cybersecurity-related applications.

The fine-tuning framework is constructed by extending pretrained transformer en-
coders with an additional classification layer. The pretrained models function as feature
extractors that capture contextual embeddings from the input text. On top of these embed-
dings, a fully connected classification layer is applied to map the learned representations to
the target classes. This architecture leverages domain-specific knowledge acquired during
pretraining while adapting the model to the multi-label classification task.

Full fine-tuning updates all the parameters of the pretrained BERT model during
training. This process involves adding a classifier layer on top of the pretrained architecture
and then training the entire model end-to-end on the new dataset. This allows the model to
adapt its internal representations to the specific nuances of the downstream task, leading to
a higher level of performance and more accurate results [24].

3.2.2. Multi-Label Classifier

It can be seen from Figure 5 that two additional layers, a dropout layer and a linear
layer, were employed after transformer layers, with the output layer consisting of 14 units.
The dropout layer is used to mitigate the over fitting by ignoring some hidden nodes,
though some information will be lost, which could potentially compromise the model’s
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performance. The dropout rate was set as 0.5; it will randomly drop out half of the input
from the transformer during the training process. The linear layer is used to process
the output of transformer layers, and generate scores for each label, namely, 14 different
tactics. To predict each class independently, the final output goes through a sigmoid
function, allowing each probability to range independency between 0 and 1. The prediction
threshold of the sigmoid function was 0.5 to decide if a class is present or absent. During the
training and evaluation, the code compares the threshold predictions with the true multiple
label vectors to calculate the number of correct predictions for each class per sample.

3.3. Retrieval-Based Fallback

Since the training dataset only contains MITRE ATT&CK Enterprise tactics, the classi-
fier is limited to predicting 14 categories. Although there is partial overlap with the ICS
matrix, three ICS-specific tactics cannot be captured by the model. To address this limitation
and enable the analysis of unlabeled data in the industrial IoT context, a retrieval-based
similarity mechanism was incorporated. This approach complements the classifier by
comparing CVE descriptions with both Enterprise and ICS tactic representations, thereby
extending the prediction space and improving adaptability in IIoT environments.

Uncertainty estimation. For each input CVE description x, the classifier produces
probability outputs for the 14 Enterprise tactics:

P(x) =
(

p1, p2, . . . , p14
)
, pi ∈ [0, 1]. (1)

Two indicators are used to assess prediction reliability:

pmax(x) = max
i

pi (2)

H(x) =
1
14

14

∑
i=1

(
− pi log pi − (1 − pi) log(1 − pi)

)
(3)

Equation (2) refers to the max probability of the model prediction output vector. This
criterion detects cases where the classifier is not confident about any single tactic, i.e., all
predicted probabilities are relatively low. A small pmax(x) indicates that the model does
not strongly support any class.

Equation (3) refers to the mean entropy of prediction. It reflects the uncertainty of a
Bernoulli distribution for each label. Averaging across all labels provides a global indicator
of prediction dispersion. A high H(x) suggests that the model assigns near-random
probabilities (e.g., close to 0.5) to many classes simultaneously, meaning it is indecisive.

A sample is regarded as uncertain when

pmax(x) < θp or H(x) > θH (4)

In this case, the classifier output is discarded and a retrieval-based fallback triggered.
Similarity-based retrieval. For fallback, the CVE description is encoded into an em-

bedding vector e(x) using a sentence transformer. Each tactic tj (including the 17 tactics
of Enterprise and ICS) is represented by an embedding e(tj). The cosine similarity is
computed as

s(x, tj) =
e(x) · e(tj)

∥e(x)∥ ∥e(tj)∥
(5)

In addition, each technique k under tactic tj is represented as e(k). Its similarity to the
input is increased in the parent tactic by a factor λ (it was set to 0.1):
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s̃(x, tj) = max
(

s(x, tj), max
k∈K(tj)

(
s(x, k) + λ

))
(6)

where K(tj) is the set of techniques associated with tactic tj.
Decision rule. The final prediction set under retrieval fallback is determined

by thresholding:
Ŷ(x) = { tj | s̃(x, tj) ≥ τ } (7)

where τ is a similarity threshold. For evaluation, only the 14 Enterprise tactics are re-
tained, while the complete 17-dimensional retrieval scores are preserved for the analysis of
ICS-specific behaviours.

3.4. Identify Attack Paths

The reconstruction attack path focuses on combining detected attacks with attack
path prediction according to available vulnerability exploitation existing in the system. It
has been indicated that exploits tend to increase after vulnerability publication. Hackers
usually invade a system by exploiting known vulnerabilities. Moreover, the release of
patch solutions corresponding to CVEs typically requires a certain amount of time. This
interval allows attackers to exploit the vulnerability to inflict damage on the target system.

Figure 6 represents the process of the dependence inference framework. Firstly, the vul-
nerability scanning schemes could be employed to identify existing CVEs in each device
of the system by analyzing the system information such as version, configuration, and in-
stalled software. Then mapping the recognized CVEs into correlated tactics can be con-
ducted, therefore revealing the tactics available for each device. By converting the network
topology of the system and the available tactics on each device into a matrix format, and us-
ing the MITRE ATT&CK Matrix as a reference, it is possible to calculate potential attack
paths that could be executed within the system. This approach can generate an attack
dependency inference model for target system.

Based on the known CVEs or vulnerabilities in the system, the potential attack path
could be constructed by the following steps.

Figure 6. Attack path reconstruction in a smart home scenario.

In an IoT system containing D = {d1, d2, . . . , dn} devices, dn represents the device,
and n refers to the number of devices. The connection statement of devices can be de-
noted as

C = {(di, dj)∥ di is connected to dj} (8)

Let V = {v1, v2, . . . , vm} denote the CVE set, which includes m CVEs. For a device
di, it may have multiple vulnerabilities vi

j; a relationship set to describe the relationship
between CVEs and devices could be represented as

RDV = {(di, vj)| di has vj} (9)



Electronics 2025, 14, 4094 10 of 15

We use T = {t1, t2, . . . , tk} to present a tactic set, and then the relationship between
vulnerability and tactic can be represented as

RVT = {(vj, tl)| vj is associated with tl} (10)

As a result, the possible tactics for device di can be derived based on the vulnerabilities
associated with that device, and we have

RDT = {(di, tl)| ∃ vj, (di, vj) ∈ RDV&(vj, tl) ∈ RVT} (11)

The potential attack path between dstart and dend could be defined as

Pstart_end = {(di, tl) ∪ Pstart_end|i = 1 . . . n, l = 1 . . . m} (12)

in which n is the number of devices involved, and m is the number of tactics that may be
exploited for tactic tl over device di. (di, tl) ∈ RDT indicate device di may be exploited for
tactic tl . If there exists (di, dj) ∈ C and (di, vi

j) ∈ RDV such that (vi
j) ∈ RVT , then a potential

attack path exists from di to dj.
Figure 6 shows an example. Assume that an IIoT system includes an edge gateway,

Windows server, VPN gateway, device management server, and workstations, and for
each device there exists a CVE. The edge gateway involves CVE-2021-45046, which can
be exploited for initial access, allowing attackers to execute malicious code on the device
using designed HTTP requests to gain access. The Windows server has CVE-2020-1472,
which allows attackers to bypass authentication and log in with administrative privileges.
This CVE is related to the Privilidge Escalation tactic in the MITRE ATT&CK Tactics.

The VPN gateway has CVE-2021-20038, a remote code execution vulnerability that lets
attackers gain control of the device, enabling lateral movement across different networks.
The device management server has CVE-2022-26809, which allows attackers to run mali-
cious code when they gain sufficient privileges. It can be exploited to implant backdoor
programmes and achieve persistence. The workstation has CVE-2021-34527, a vulnerability
of Windows Print Spooler service, which can be utilized to execute code on the target
system and access sensitive information. Attackers may use this CVE to steal or tamper
with important data.

4. Experimental Results
The experiment is evaluated on an Ubuntu 22.04 server, with i7-12700k, 32 GB RAM,

RTX3080 10 GB, CUDA 12.1.
In experiments, the improved models (SecBERT, SecRoBERTa, and CyBERT) with an

additional dropout layer and linear classification layer achieved better performance in terms
of precision, recall, and F1-score compared with their original counterparts. A comparative
analysis was conducted between BERT-based models and traditional ML approaches.
As summarized in Table 2, BERT-based models substantially outperformed traditional
classifiers in vulnerability-to-tactic mapping, with SecBERT providing the most balanced
and robust results across all metrics. As shown in Figure 7, the improved SecBERT model
converged around 15 epochs, with training loss steadily decreasing, while validation loss
initially dropped slightly but later increased and plateaued, suggesting potential overfitting.

Figure 8 summarizes the inference latency and throughput of BERT-based models
and traditional ML classifiers on the same hardware. The results show that SecBERT and
CyBERT achieve the fastest inference, with an average latency of less than 1 ms per sample
and throughput exceeding 1000 samples/s. SecRoBERTa is significantly slower, requiring
on average 5 ms per sample (199 samples/s). Among the traditional classifiers, XGBoost
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demonstrates competitive efficiency with 4.46 ms latency and 224 samples/s throughput,
while Random Forest is slower (30.62 ms, 32.66 samples/s) and LightGBM shows the poor-
est efficiency (310 ms latency, only 3.23 samples/s). Overall, BERT-based models not only
achieve higher classification accuracy, but also deliver superior or comparable inference effi-
ciency, with SecBERT offering the best balance between accuracy and deployment efficiency.
Moreover, the SecBERT-based fine-tuned SecBERT model requires around 5 GB memory
during training and around 1.2 GB during inference, with an on-disc model size of 457 MB.
Compared with large language models, this footprint is substantially smaller, resulting in
lower compute and memory pressure when deployed on IIoT servers or workstations.

Figure 7. Accuracy and loss in the training process.

Figure 7 illustrates the training and validation accuracy of the improved models. Over-
all, the fine-tuned SecBERT achieved the best performance on this dataset, reaching 81.70%
in micro precision, 84.91% in micro recall, and 83.27% in micro F1-score. Table 3 presents
the detailed performance per tactic. The model demonstrates strong precision across most
tactics, particularly for persistence, privilege escalation, defense evasion, and credential
access, where performance exceeded 90%. However, recall varied considerably among
different tactics. The recall of command and control was only 25%, which is notably
low. Many of these samples were misclassified into semantically related tactics such as
credential access, persistence, defense evasion, and privilege escalation. This is likely due
to class imbalance: the relatively small number of command and control samples limited
the model’s ability to capture distinctive contextual patterns, causing it to confuse them
with tactics of higher textual similarity.

Table 2. Model performance comparison.

Model Micro Precision Micro Recall Micro F1

SecBERT 81.70% 84.91% 83.27%

SecRoBERTa 81.29% 84.50% 82.86%

CyBERT 81.31% 80.85% 81.08%

Random Forest 76.20% 71.52% 73.79%

XGBoost 78.38% 75.55% 76.94%

LightGBM 77.96% 75.36% 76.64%
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(a) Model inference time comparison

(b) Model throughput comparison

Figure 8. Deployment performance comparison.
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Table 3. Performance on each tactic prediction.

Tactic Precision Recall F1

reconnaissance 92.11% 90.28% 91.18%

resource-development 85.45% 63.51% 72.87%

initial-access 80.95% 74.16% 77.41%

execution 89.69% 72.80% 80.37%

persistence 94.43% 94.77% 94.60%

privilege-escalation 94.57% 94.30% 94.43%

defense-evasion 96.70% 97.90% 97.30%

credential-access 92.60% 93.46% 93.03%

discovery 91.95% 89.86% 90.89%

lateral-movement 91.94% 87.52% 89.67%

collection 90.05% 85.30% 87.61%

command-and-control 88.89% 25.00% 39.02%

exfiltration 92.31% 63.16% 75.00%

impact 91.21% 75.96% 82.89%

5. Conclusions
This work demonstrates the effectiveness of leveraging pretrained language models

for mapping CVE descriptions to MITRE ATT&CK tactics, thereby enabling systematic
analysis of potential attack vectors in industrial IoT environments. By constructing a cross-
domain dataset that links CVEs with adversarial tactics and TTPs, we provided a solution
for predictive analytics in IIoT threat modelling and proactive defense.

Through comprehensive experiments, the fine-tuned domain-specific models—SecBERT,
SecRoBERTa, and CyBERT—significantly outperformed traditional ML baselines in
vulnerability-to-tactic classification. Among them, SecBERT consistently delivered the
best balance between accuracy and inference efficiency, achieving superior micro precision,
recall, and F1-score, while also maintaining sub-millisecond latency and high throughput
during deployment. This work provided a potential solution for unlabeled vulnerability to
MITRE ATT&CK tactic mapping, mitigating the requirement of manual analysis.

Nevertheless, the present study has certain limitations. The dataset suffers from
class imbalance, which negatively impacts recall for tactics with fewer samples such as
Command and Control. Moreover, some ICS-specific tactics remain underrepresented,
limiting generalizability to broader IIoT contexts. In particular, there is still a notable
gap in publicly available, large-scale datasets that explicitly map vulnerabilities (e.g.,
CVE/CWE) to ICS tactics/techniques. And terse or sparsely informative vulnerability
descriptions provide limited context, which makes reliable tactic classification difficult.
Due to operational safety, confidentiality, and under-reporting of incidents, it is difficult to
obtain large volumes of real, high-fidelity ICS data.

Future work will address these limitations by constructing a knowledge base through
the integration of large language models and threat intelligence reports to better classify
unlabeled data, employing synthetic text generation and data augmentation techniques
to alleviate class imbalance, and extending the framework to incorporate retrieval-based
fallback mechanisms within real-time monitoring pipelines. These directions are expected
to enhance both the robustness and adaptability of the proposed system in practical
IIoT environments.
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