IMI—Myopia Genetics Report

Mats Voogelaar, ¹⁻⁴ Milly S. Tedja, ^{1,4} Jeremy A. Guggenheim, ⁵ Seang-Mei Saw, ^{6,7} Martha Tjon-Fo-Sang,² David A. Mackey,⁸ Christopher J. Hammond,^{9,10} Caroline C. W. Klaver, 1,4,11,12 and Virginie J. M. Verhoeven 1,13

Correspondence: Virginie J. M. Verhoeven, Department of Clinical Genetics, Erasmus MC University Medical Center, Dr. Molewaterplein 40, Rotterdam, Zuid-Holland 3015GD, the Netherlands; v.verhoeven@erasmusmc.nl.

Received: July 4 2025 Accepted: September 7, 2025 Published: October 10, 2025

Citation: Voogelaar M, Tedja MS, Guggenheim JA, et al. IMI-Myopia genetics report. Invest Ophthalmol Vis Sci. 2025;66(13):22.

https://doi.org/10.1167/iovs.66.13.22

Purpose. The genetic landscape of myopia has advanced considerably since the previous International Myopia Institute genetics reports. This white paper provides an updated overview of current findings on myopia genetics and identifies priorities for future research.

Methods. We performed a comprehensive literature review covering genome-wide association studies (GWASs), rare variant analyses, functional genomics, and multiomics approaches. Specific focus areas included common and high myopia, monogenic syndromes, and gene-environment interactions.

RESULTS. Over 1000 common variants have now been associated with refractive error and myopia, implicating pathways in retinal signaling, extracellular matrix remodeling, and neurodevelopment. Whole-exome and whole-genome sequencing studies have uncovered rare variants in new candidate genes for high and syndromic myopia. Polygenic risk scores show improved predictive power when combined with environmental and demographic factors. A growing number of studies have explored gene-environment interactions, genetic pleiotropy, and causal inference using Mendelian randomization. These analyses support a role for educational attainment, screen time, physical activity, and metabolic or inflammatory biomarkers in refractive error development.

Conclusions. While a substantial portion of myopia heritability remains unexplained. future efforts should prioritize integrative approaches combining genetic, functional, and multiomics data across diverse populations. This will be essential for advancing personalized risk prediction, our understanding of gene-environment interplay, and identifying individuals most likely to benefit from targeted prevention or treatment strategies.

Keywords: myopia, refractive error, genetics, GxE, omics

c ince the publication of the first International Myopia Institute (IMI) Genetics Report in 2019¹ and Genetics Update in the 2021 IMI Yearly Digest,² our knowledge in the genetic architecture of myopia has progressed substantially. The 2019 Genetics Report described the high heritability of refractive error, the discovery of common risk loci for myopia through large-scale genome-wide association studies (GWASs), and how studies of rare monogenic syndromes offered valuable insights into the biological path-

ways underlying myopization. The 2021 Yearly Digest highlighted early advances in functional interpretation, including initial uses of polygenic risk scores and emerging insights from epigenetic studies. In this Genetics update, a comprehensive overview of developments across the spectrum of genetic research is presented. Key topics, including large-scale GWASs of myopia, comprehensive rare variant analyses using whole-exome and whole-genome sequencing in patients and families with extreme phenotypes, in-

¹Department of Ophthalmology, Erasmus MC University Medical Center, Rotterdam, the Netherlands

²The Rotterdam Eve Hospital, Rotterdam, the Netherlands

³The Rotterdam Ophthalmic Institute, Rotterdam, the Netherlands

⁴Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands

⁵School of Optometry & Vision Sciences, Cardiff University, Cardiff, United Kingdom

⁶Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore ⁷Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore

⁸Lions Eye Institute, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia

⁹Section of Academic Ophthalmology, School of Life Course Sciences, FoLSM, King's College London, London, United Kingdom

¹⁰Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, FoLSM, King's College London, London, United Kingdom

¹¹Institute of Molecular and Clinical Ophthalmology, University of Basel, Basel, Switzerland

¹²Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands

¹³Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands

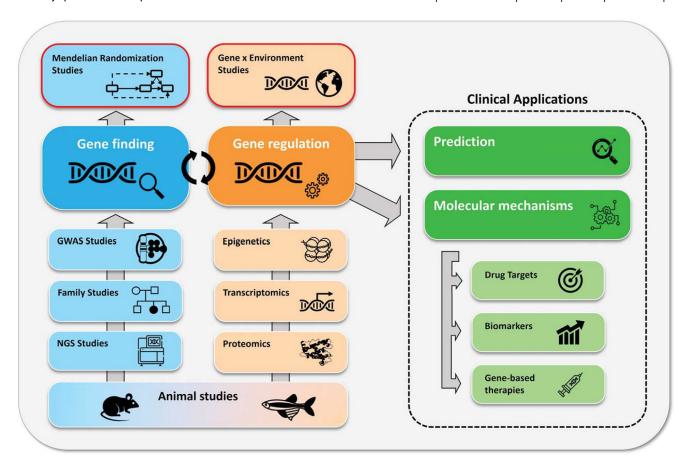


FIGURE. Overview of the current and ongoing myopia related human genetic research.

depth Mendelian randomization studies to establish causal links with lifestyle and systemic traits, and advanced multiomics approaches encompassing DNA and RNA methylation, regulatory RNAs, and proteomic profiling, are covered. Although polygenic risk scores have not yet reached clinical applicability, they have drawn substantial attention as research tools. Similarly, the number of Mendelian randomization studies has grown significantly. A shift toward geneenvironment interaction and omics approaches, such as transcriptomics, has also become evident. The Figure depicts an overview of the current and ongoing myopia-related human genetic research. We identified relevant papers published between February 2020 and May 2025, from a comprehensive PubMed search using MeSH terms: for example, "Myopia/genetics," "Myopia" AND "Genome Wide Association Study" or ("Myopia" OR "Spherical Equivalent" OR "Refraction") AND "Mendelian Randomization Analysis" or "Myopia" AND "epigenetics" or "Myopia" AND "transcriptomics" or "Myopia" AND "proteomics." The most significant findings and a detailed evaluation of their implications for the field are discussed.

GENE FINDING

Genome-Wide Association Studies

GWASs are a powerful tool for analyzing genetic variations across the genome, typically focusing on common variants to identify those associated with specific traits or

diseases. Since the 2010s, a substantial number of GWASs focusing primarily on myopia, refractive error, and eye biometry as a quantitative trait have been published.² It should be noted that despite the large number of associated loci identified to date, most of these loci currently lack functional validation. In recent years, two large-scale GWASs have further advanced the field.^{3,4} Jiang et al.³ conducted a large multiethnic GWAS of axial length in 19,420 individuals from the Genetic Epidemiology Research on Adult Health and Aging cohort, including participants of European, Latino, Asian, and African ancestry. Their study identified 16 genetic loci associated with axial length at genome-wide significance, including 5 novel loci, revealing potential candidate genes SLC25A12, BMP3, RGR, RBFOX1, and MYO5B. Two loci were available for replication in the Consortium for Refractive Error and Myopia (CREAM) data set, of which one (rs1353386 near BMP3) was successfully replicated. All axial length loci were also significantly associated with refractive error in the same cohort, and genetic correlation analyses revealed substantial shared heritability between axial length and myopia (rg = 0.80). Gene and pathway analyses further implicated mechanisms related to extracellular matrix remodeling, the visual cycle, and neuronal development, highlighting axial length as a robust endophenotype for myopia gene discovery.

Patasova et al.⁴ conducted a GWAS on age of first spectacle wear (AFSW) in the UK Biobank (derivation cohort N=340 K, replication cohort N=43 K). This study

reinforced AFSW as a robust proxy for myopic refractive error—a concept introduced earlier by 23 and Me,⁵ a direct-to-consumer company that also served as a replication for this study—further strengthening the link between specific genetic variants and age of myopia onset. Through a time-to-event analysis, the study identified 44 independent genomic loci associated with AFSW, including 6 novel loci. Among these, four loci, including the genes *NEGR1*, *TRIB2*, *TBC1D5*, and *ADAM11*, were replicated. These genes are predominantly expressed in the central nervous system and are implicated in neuronal development, cellular adhesion, signaling, and tissue remodeling.⁴

Among GWASs on refractive error, the meta-analysis by Hysi et al.⁶ remains the largest up to now, with over half a million European participants. These authors found that a total of 890 genetic variants explained 12.1% of the variance of spherical equivalence and 18.4% of its heritability. Beyond single-nucleotide polymorphism (SNP) heritability, other factors such as rare variants, nonadditive genetic effects, and gene–environment interactions are likely to contribute to the overall heritability. However, it is unrealistic to expect GWASs to fully account for the 60% to 90% heritability estimated by twin studies, as these rely on different methodologies and assumptions.⁷

Regarding GWASs on eye biometry, two large studies were carried out on corneal curvature in the UK Biobank⁸ and CREAM.9 The authors evaluated the interplay between corneal curvature, axial length, and refractive error and identified a group of "eye-size" genes that appear to regulate corneal curvature as well as axial length in order to maintain emmetropia, along with another group of genes that affect refractive error primarily through corneal curvature and not axial length. Interestingly, SNPs associated with normal eye enlargement differed from those linked to myopization driven by axial length growth.8 Furthermore, Fuse et al.¹⁰ conducted a large GWAS of axial length in more than 33,000 Japanese individuals from the Tohoku Medical Megabank, identifying 31 loci, of which 7 were novel, while confirming known loci such as GJD2, WNT7B, and PRSS56. These findings emphasize both shared and ancestry-specific genetic contributions to eye growth.

In recent years, there has been a shift toward GWAS using an extreme phenotype design. There has been recognition that some children have very early-onset myopia or early childhood high myopia that may be primarily genetic rather than environmental in origin. Several GWASs on relatively large case-control studies on (very) high myopia have been conducted in Asian populations. Most of these studies identified a number of novel loci. Among the striking findings was the much higher frequency of risk alleles in East Asians versus Europeans; in addition, evidence supports the functionality of the newly associated PDE4B gene on scleral COL1A1 expression and the identification of LILRB2 as a novel susceptibility gene for pathological myopia, linking it mechanistically to lipid accumulation and choroidal dysfunction through the ERK-P38-JNK pathway.11-16

Several studies have focused on individual genes or loci identified in previous GWASs, often uncovering more detailed evidence supporting their associations with myopia. The Among these, many have replicated the association with the gap junction gene *GJD2*, one of the earliest genes linked to common myopia. Functional follow-up studies in mice and zebrafish models provided

evidence for a role of *GJD2* in myopia development. Transcriptome data revealed that *GJD2* was most strongly expressed in cone photoreceptors, and electrophysiology studies in humans demonstrated altered electrical responses in cone-driven OFF pathways in persons with the risk allele.^{27–30}

Rare Variants and Monogenic Myopia

Studies using exome array, whole-exome sequencing (WES), and whole-genome sequencing (WGS) have provided further insights into rare variants associated with myopia. Exome arrays target known variants in the exome for cost-effective genotyping, WES sequences the entire exome to capture all coding variants, and WGS sequences the full genome for the most comprehensive analysis, including both coding and noncoding regions. An exome array study from the CREAM consortium (N = 27K) revealed 129 unique genes associated with refractive error, including novel candidates such as the retina-expressed gene PDCD6IP, the circadian rhythm gene PER3, and the eye morphology gene P4HTM.31 Patasova et al.³² analyzed whole-exome sequencing data from nearly 51,000 UK Biobank participants and identified rare variants in SIX6 and CRX significantly associated with refractive error, highlighting genes crucial for retinal and optic disc development. Simpson et al.³³ combined exome array and linkage analysis in African American families with mild myopia (average spherical equivalent -2.78 D) and were the first to identify a myopia-associated locus in this ethnicity. The candidate gene PDE1C within the significant linkage peak on chromosome 7 showed higher expression in retina than in blood and has been associated with retinal development in animal studies. A study by Lu et al.³⁴ was the first to utilize WGS data to perform a genomewide SNP analysis in 350 individuals with an average axial length of 29.24 mm. The study identified four SNPs significantly associated with axial length. Among these, an intronic SNP was located in ADAMTS16, and an intergenic SNP was found near the PIGZ gene. Notably, both genes were significantly upregulated in the neural retina of form-deprived myopic mice, with PIGZ showing predominant expression in the ganglion cell layer. Interestingly, ADAMTS proteins are known to play a role in extracellular matrix remodeling, and other ADAMTS genes have been implicated in myopic complications.

Over the past years, many rare variants have been identified in genes associated with monogenic (e.g., ocular or syndromic) disorders presenting with childhood high myopia. Using WES, these have been found in genes for retinal disorders, specifically for congenital stationary night blindness (TRPM1, CACNA1F, NYX35), Bornholm eye disease (OPN1LW/OPN1MW^{35,36}), and cone phototransduction (ARR337-41); connective tissue diseases such as Marfan (FBN1), Stickler (COL2A1), and Knobloch syndromes (COL18A135); and eye development (PAX639). The diagnostic yield of genetic testing for high myopia through WES, particularly when using gene panels for known ocular disorders, typically ranges from 12% to 23%. 32,35,42-44 This variability is influenced by factors such as the composition of the gene panels and the criteria for selecting patients. The relatively high frequency of variants identified in genes associated with retinal disorders or syndromes underscores the value of comprehensive genetic testing in high myopia, even when it presents as the only symptom. Such testing is crucial for uncovering possible related conditions, which will guide management strategies and genetic counseling.⁴⁵

Identification of Novel Risk Genes for High Myopia

A recent large-scale WES on adult patients with myopia < 10 D (N = 449) identified three deleterious variants in KDELR3, a gene involved in intracellular protein trafficking and protein folding within the endoplasmic reticulum. The authors found that KDELR3 was particularly expressed in ocular fibroblasts, and functional studies in cell lines and zebrafish provided evidence that this gene affects the regulation of various collagen genes. This links the gene to scleral extracellular matrix organization.⁴⁴ The largest exome-wide study in high myopia to date (<-6 D; N=9613 cases) revealed rare variants in the promoter region of FKBP5 in East Asians, while a rare missense variant in FOLH1 was found only in Europeans. 46 FKBP5 has multifunctional roles, including modulation of the glucocorticoid receptor and interaction with NF- κ B and TGF- β pathways; FOLH1 is known to regulate glutamate. In the first WGS study on extreme high myopia (\leq -10 D; N =159)—more challenging due to the vast number of variants—participants were selected based on low polygenic risk scores that did not explain the phenotype.⁴⁷ Besides risk variants in known ocular genes, cases carried a higher frequency of rare variants in the novel genes HS6ST1, RBM20, and MAP7D1, genes involved in Wnt signaling, melatonin degradation, and ocular development, respectively. Additionally, several WES family studies have identified the AGRN43, FLRT3, and SLC35E2B45 genes as potentially new candidate genes for myopia.48-53 These genes warrant further validation and functional evaluation to fully establish their significance for high myopia. More recently, Liu et al.54 conducted a large-scale, sex-stratified whole-exome sequencing study in over 8000 Han Chinese individuals with high myopia. Their findings revealed significant genetic heterogeneity between males and females, with CHRNB1 emerging as a malespecific gene associated with high myopia. Functional studies showed that CHRNB1 deficiency disrupted mitochondrial organization specifically in male-derived cells, suggesting sex-specific pathogenic mechanisms. This study underscores the value of incorporating sex-aware analysis and rare variant testing to uncover hidden genetic architecture in high myopia.

Polygenic Risk Scores

Polygenic risk scores (PRSs) estimate an individual's genetic predisposition to a trait or disease by summing the effects of multiple genetic variants across the genome, weighted by their effect sizes. Studies have used different numbers of SNPs for calculating PRSs. One study included only a small subset,⁵⁵ while others incorporated large numbers of SNPs identified through GWAS meta-analyses.⁵⁶⁻⁶⁰ Although the PRS for myopia reached an area under the curve (AUC) of 0.75 to 0.80, cycloplegic autorefraction remains a stronger predictor of myopia risk (AUC 0.87).⁵⁷ However, when the PRS was combined with ancestry, environmental factors such as educational attainment, and interaction terms, the AUC increased to 0.84.⁵⁸

Two studies explored the use of the PRS for predicting myopic macular degeneration (MMD) but had discrepant

results.^{58,59} Further replication is needed to determine whether the PRS for refractive error can reliably predict MMD in clinical practice. Tideman et al.⁶¹ investigated the shared genetic susceptibility between high and low myopia, emmetropia, and hyperopia in Europeans and Asians and compared a European GWAS-based PRS between these refractive error categories. Results provided evidence that highly myopic individuals inherit a higher number of variants from the same set of myopia-predisposing alleles compared to individuals with less or nonmyopic refractive errors. Cross-ancestry similarities provide further support that genetic differences are unlikely to explain the higher prevalence of myopia in East Asia compared with Europe.

Gene-Environment Interactions, Mendelian Randomization, and Genetic Pleiotropy

Many studies have sought to elucidate the complex interplay between genetic and environmental factors contributing to the development of myopia. In addition to the well-established protective association of time spent outdoors with myopia, a large study in the UK Biobank analyzed genetic and environmental interactions and found evidence for a genotype-by-education interaction for variants located near *GJD2*, *RBFOX1*, *LAMA2*, *KCNQ5*, and *LRRC4C*.⁶²

Environmental influences may be determined by parental risk alleles associated with the environmental exposure—a phenomenon called genetic nurture. In this light, Guggenheim et al.⁶³ investigated the genetic contribution to educational attainment and refractive error using SNP heritability estimates from GWAS-based polygenic risk scores. The authors found no evidence for genetic nurture and concluded that the genetic contribution to refractive error occurs mainly through direct parent-to-child transmission of refractive error risk alleles, not by genetic variants associated with education.

Mendelian randomization has offered researchers a powerful technique to assess causal relationships between exposures and outcomes using genetic variants as instrumental variables. In myopia research, Mendelian randomization has helped establish causal relationships between education and lifestyle factors. These insights can be used for public health interventions targeting the exposure, for personalized approaches to myopia prevention, and for patient risk stratification. A substantial number of studies have been published on Mendelian randomization (MR) in relation to myopia. Below, we highlight the most relevant findings published in recent years. ^{64–85}

Using MR, Zhang et al.⁸⁴ provided evidence for a causal link between computer use and increased myopia risk, whereas moderate-to-vigorous physical activity and television viewing were causally associated with a lower risk of developing myopia.

Clark et al.⁶⁷ and Hartmann et al.⁶⁹ confirmed the well-known association between education and myopic refractive error. They also reported that this association is partially mediated by time spent outdoors. Wei et al.⁸⁰ found alcohol to be causally related to myopia, which may be harder to interpret, as children, particularly at young ages, will have no or low exposure to this factor. It should be noted that MR studies of behavioral exposures such as computer use and alcohol intake may not fully satisfy the underlying assumptions of MR, since the genetic instruments may

reflect broader determinants such as socioeconomic status or personality traits. Findings from these studies should therefore be interpreted with greater caution than MR analyses of biologically defined exposures. Li et al.⁷³ investigated causality for glycemia and found higher HbA1c levels to be significantly associated with a greater risk of myopia. Xue et al.⁸³ suggested a protective effect of omega-3 and docosahexaenoic acid on myopia, potentially through the modulation of choroidal blood perfusion. Another metabolomics-based study by Jiang et al.⁷¹ linked higher levels of specific plasma metabolites—such as 4-vinylphenol sulfate and N6-methyllysine—with increased myopia risk.

Inflammatory biomarkers have also been reported to play a role in the complex and multifactorial processes of ocular growth and refractive development. Elevated levels of VEGF-A, CD6, MCP-2, IL-2, and IL-2ra have been causally related to a higher myopic refractive error, whereas increased levels of TNF-like weak inducer of apoptosis have been related to a lower myopic refractive error. 72,74 Yet, Xu et al.85 demonstrated in a bidirectional MR study that higher circulating IL-1RA and IL-2 levels were causally associated with a decreased risk of myopic refractive error. Lv et al.⁷⁷ extended these findings regarding inflammatory biomarkers by also linking gut microbiota, blood metabolites, and immune cells to myopia. The authors identified specific gut microbial genera (e.g., Eubacterium fissicatena) and immune-related biomarkers such as IL-12p70, which are causally implicated in myopia pathogenesis, whereas Hui et al.⁷⁰ reported that several bacterial taxa affect myopia risk through mediation by circulating lipid metabolites. Notably, metabolites such as albumin, omega-6 fatty acids, and cholesterol esters were shown to partly mediate the effects of gut microbiota on both common and pathological myopia, suggesting possible novel targets for intervention. Qin et al.79 further reported six putative genetically causal targets for myopia treatment (CD34, CD55, Wnt3, LCAT, BTN3A1, and TSSK6). Their analysis not only clarified underlying biological pathways, such as Wnt signaling and lipid metabolism, but also predicted candidate compounds through molecular docking.

Using myopia as an exposure, several studies have identified a causal association and shared genetic basis between myopic refractive error and primary open-angle glaucoma, ^{65,66} as well as vitreous disorders. ⁸¹ Additionally, a lower birth weight within the normal range has been associated with a modest increased risk of developing myopia, ⁷⁸ with the risk of myopia increasing by approximately 30% for each standard deviation increase in preterm birth. ⁷⁵

Xue et al.⁸⁶ used GWASs in the UK Biobank to investigate the genetic etiology underlying five common ocular conditions: age-related macular degeneration, diabetic retinopathy, glaucoma, retinal detachment, and myopia. The authors identified three pleiotropic loci significantly associated with all five conditions and confirmed the presence of shared genetic variants between myopia and retinal detachment.

EPIGENETICS

Epigenetics refers to changes in gene expression and function that do not alter the DNA sequence variation itself but that impact the production of proteins that control biological processes. Key epigenetic mechanisms include DNA and RNA methylation, histone modification, and noncoding RNA regulation.^{87–91} Epigenetic modifications can be influenced by development and environmental exposures, making them relevant to study in myopia.

DNA and RNA Methylation

While methylation at both the DNA and the RNA level influences gene expression, there are some differences. DNA methylation typically represses gene transcription, and RNA methylation is more complex as it alters regulation by affecting RNA stability and mRNA translation. With respect to the study of DNA methylation in myopia, Swierkowska et al.92 analyzed genome-wide methylation patterns in highly myopic Polish children and controls and identified altered DNA methylation levels at 55 CG dinucleotides, 14 of which were located in 5'UTRs or transcription start sites. The largest difference in the decrease of DNA methylation was found in the PCDHA gene cluster at the 5q31 myopia-associated locus. In a subsequent study, the authors evaluated methylation of genes encoding microRNAs (miRNAs) in the same study population.⁹³ Increased methylation levels were identified in promoter regions of MIR3621, MIR34C, and MIR423; decreased levels were noted in promoter regions of MIR1178, MIRLET7A2, MIR885, MIR548I3, MIR6854, MIR675, MIRLET7C, and MIR99A. The target genes of these miRNAs were found to be enriched in several key pathways, such as axon guidance, focal adhesion, TGF- β signaling pathway, insulin, and MAPK and EGF pathways.

Regarding RNA methylation, a case-control study was performed on m⁶A methylation, the most common form of RNA methylation in mRNA in eukaryotic cells, in the anterior capsule of the lens collected after cataract extraction in high myopia patients and controls.⁹⁴ More than 2000 hypermethylated and >900 hypomethylated peaks were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the genes relating to the altered methylation revealed biological processes, such as anatomical morphogenesis, extracellular matrix formation, regulation of ion transport, plasma membranes, and ion channel activity. Based on conjoint analysis of differentially expressed genes and differentially methylated genes, the higher the transcription expression, the higher the methylation ratio. The authors speculate that m⁶A methylation may regulate the composition of the extracellular matrix by influencing protein synthesis, thereby contributing to the altered eye anatomy observed in myopia.

Regulatory Elements and Noncoding RNAs

Regulatory elements are specific sequences of DNA that control the expression of genes, determining when, where, and how much a gene is transcribed, and include promoters, enhancers, silencers, and insulators. Noncoding RNAs are RNA molecules that are transcribed from DNA but are not translated into proteins. Among others, regulatory noncoding RNAs include miRNA and long noncoding RNA (lncRNA). Several studies have investigated genetic associations with these regulators in myopia and refractive error. Tedja et al. ⁹⁵ performed a comprehensive genome-wide scan into the association between enhancers, miRNAs, miRNA binding sites, and lncRNAs and refractive error and myopia; results of this study will be discussed per regulator.

Enhancer Regions

A study performed in a large high-myopia case-control study of Han Chinese participants investigated common variants in the known refractive error gene *KCNQ5*.⁹⁶ A protective

association was found with two intronic genetic variants (rs7744813 and rs9342979) located within a region enriched for enhancer-specific histone modifications (H3K4me1 and H3K27ac). Using VISTA Enhancer Browser and FANTOM5, the large-scale study mentioned above found 18 to 25 significantly associated genetic variants in enhancer regions, and most genes flanking these regions were expressed in peripheral retinal cell types. Seven of these genes showed cell-type specificity, for instance, for fibroblasts, melanocytes, or amacrine cells. A genetic risk score (GRS) based on variants in enhancers tested in an independent children cohort showed a significant association with axial length–related parameters and refractive error.

MicroRNAs

One of the most researched miRNAs in association with myopia is hsa-miR-328. Kunceviciene et al.⁹⁷ investigated the expression of miRNA hsa-miR-328 in peripheral blood and its predicted target gene *PAX6* in a myopia case-control study. Although both were significantly associated with myopia, they were not significantly associated with each other. In a subsequent study, these authors found that increased expression of hsa-miR-328-3p resulted in a significant decrease of retinal pigment epithelium optical density in myopic individuals.⁹⁸

Tedja et al.⁹⁵ identified two genetic variants in miRNA genes and 54 highly confident miRNA-binding sites in the aforementioned GWAS. The GRS of these miRNA-related variants and binding sites did not associate with axial length or axial length/corneal radius. To guide future research, the authors prioritized findings for functional validation using an extensive biological plausibility scoring system. Pathways of target and host genes of highly ranked variants included eye development (*BMP4*, *MPPED2*), neurogenesis (*DDIT4*, *NTM*), extracellular matrix (*ANTXR2*, *BMP3*), photoreceptor metabolism (*DNAJB12*), photoreceptor morphogenesis (*CHDR1*), neural signaling (*VIPR2*), and TGF-β signaling (*ANAPC16*).

Long NonCoding RNAs

As miRNAs, lncRNAs play a significant role in gene regulation. However, lncRNAs can act at multiple layers and can bind to proteins and DNA as well as RNA. LncRNAs can act as a skeleton frame unit to recruit transcription factors and participate in complex regulatory mechanisms. Wang et al. 99 investigated the coregulation of 13 myopia-related transcription factors and lncRNA transcripts (EGR1, FOS, FOXO1, HOXA9, NR3C1, PAX6, PBX1, SRF, STAT2, STAT3, TFAP2A, TGIF1, and ZIC2) selected from the literature. They found that transcription factor binding site regions of myopia-related lncRNA transcripts were disturbed, altering structural accessibility and affecting molecular binding force.

Tedja et al.⁹⁵ found 417 significant genetic variants from the GWAS residing in 245 lncRNA regions, of which 7 were top SNPs of their associated loci in the GWAS. Contrary to GRS of miRNA-related variants, the GRS of these lncRNA SNPs showed a significant association with axial length in the independent children cohort.

Extrachromosomal Circular DNA

Extrachromosomal DNA (ecDNA) is DNA that exists outside chromosomes in a cell, either the nucleus or the cytoplasm.

The DNA is often circular in form, and the normal function is related to mitochondrial activity or viral replication. ecDNA can contain multiple copies of chromosomal genes but lacks their chromosomal gene regulation, making it susceptible to uncontrolled expression. Initial steps have been taken to unravel the role of extrachromosomal circular DNA (eccDNA) in myopia. Wen et al.¹⁰⁰ investigated eccDNA expression in the anterior lens capsule of six patients with high myopia and six patients with simple nuclear cataract undergoing cataract extraction and found increased levels of eccDNA of the myopia-related genes *CTNND2*, *UHRF1BP1L*, *LAMA3*, and *ZNF776* in the high myopes.

TRANSCRIPTOMICS

Transcriptomics involves the investigation of RNA transcripts to provide insight into gene expression and regulatory mechanisms. A genome-wide approach had been performed only in mice, ¹⁰¹ but publications on human transcriptomics in myopia have emerged.

A single-cell RNA sequencing study on eight postmortem retinas from four individuals without eye diseases investigated chromatin accessibility in retinal cells to decipher the role of noncoding risk variants associated with various ocular diseases, including myopia. 102 All genetic variants were derived from previously published GWASs up to 2020. A notable finding was that rs2730260 was found in a chromatin-accessible region in Müller glia, and variation at this SNP significantly correlated with the expression of VIPR2. This gene has many different functions, but one related to Müller cells may be regulating the release of glutamate and GABA, neurotransmitters that have been associated with myopia. Another noteworthy myopia-related noncoding SNP was rs1532278, which resides in an intron of the *CLU* gene encoding clusterin, a protein involved in stress responses, cell survival, and extracellular matrix regulation. Expression quantitative trait locus (eQTL) data confirmed that this SNP regulates CLU, and models predicted that variation at this SNP alters chromatin accessibility in, again, Müller cells. Ni et al. 103 investigated RNA sequencing data of the cornea epithelium from myopia and control subjects. Remarkably, among the differentially expressed genes in myopia, those significantly enriched in immune-related pathways stood out. Contact lens wear was not considered in this study.

Zhu et al. ¹⁰⁴ compared lens biometry between high myopes and emmetropes on magnetic resonance imaging and verified that the former had larger equatorial lens diameter but not increased lens thickness. Analyses of RNA transcripts revealed that increased lens size was associated with upregulation of β/γ -crystallin expression. Using mouse models, the authors subsequently found evidence that the transcription factor MAF plays an essential role in upregulating β/γ -crystallins in the lens of high myopes by direct activation of the crystallin gene promoters and by indirect activation of TGF- β 1-Smad signaling.

Exosomal RNAs are small regulatory RNA molecules encapsulated in exosomes and released into the extracellular space to mediate intercellular communication. You et al. 105 investigated differential expression of exosomal miRNA in vitreous humor, comparing highly myopic patients to controls, and found that miR-143-3p and miR-145-5p, miRNAs related to the insulin resistance pathway, were downregulated in participants with signs of myopic macular degeneration.

Circular RNAs are stable, closed-loop RNAs that can act as miRNA sponges, transcriptional regulators, and scaffolds for protein complexes. Zhang et al. 106 compared the expression of circular RNA in vitreous humor from highly myopic patients undergoing surgery for epiretinal membrane or macular hole with that of emmetropic patients undergoing the same surgery for the same indication. The authors found hundreds of mRNAs and circular RNAs differentially expressed. KEGG pathway analysis showed that target genes of circular RNAs were enriched in the mTOR, insulin, cAMP, and VEGF signaling pathways, and GO analysis indicated that they mainly target transcription, cytoplasm, and protein binding.

PROTEOMICS

The easily accessible anterior segment of the eye has been utilized to study proteomics in myopia. Yu et al.¹⁰⁷ sampled corneal stromal lenticules of high and low myopes after refractive surgery and conducted proteomics analysis using label-free quantitative mass spectrometry. With machine learning models, the authors found 17 proteins associated with high myopia, of which complement C5, COL1A1, and CDH11 were most prominent. Expression analyses using Western blot and quantitative real-time PCR provided evidence for decreased expression of COL1A1, the most abundant collagen in cornea, and increased expression of cadherin-11 (CDH11), a calcium-dependent cell adhesion protein that is related to fibrosis, stromal remodeling, and immune activation. Whether these altered protein expression levels also play a remodeling role in the sclera at the back of the eye remains to be elucidated.

CONCLUSIONS

Since the last update on myopia genetics in IMI Digest 2021, numerous studies have advanced our understanding of genetic factors influencing the development of refractive error and myopia. While identification of novel genes through GWASs appears to have reached a plateau, GWAS meta-analyses in diverse populations remain valuable for exploring ancestry-specific genetic risk variants. As the field moves forward, the focus of myopia genetics will be shifting from gene discovery to functional implications and clinical applications. Key areas of interest include genetic contributions to treatment responses and gene-environment interaction analyses. Achieving these goals will require large, diverse data sets, for which international collaborations and consortia will be instrumental. The versatility and application of Mendelian randomization studies continue to expand, which helps to establish causality in risk profiles for myopia. This will guide the development of targeted interventions and personalized prevention strategies. Future research should determine the levels of genetic load or specific genetic predispositions at which individuals are most likely to benefit from targeted therapies. Epigenetic features are characterized by spatiotemporal and tissue-specific effects, which have posed significant challenges for research. Nevertheless, the number of epigenetic studies on myopia is steadily increasing, indicating that mechanisms such as DNA methylation, histone modifications, and noncoding RNA regulation play a large role in the pathophysiology of myopia. How epigenetic features relate to environmental stimuli and mediate their effect at the molecular level is a next research step to be taken. Finally, a systems biology approach integrating data from multiple levels, including genomic, transcriptomic, proteomic, epidemiologic, and animal studies, will be needed to tackle the complexity of myopia more effectively, ultimately improving prevention, prognosis, and treatment strategies.

Acknowledgments

Supported by the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (grant 101098324, CCWK), CORR (2023-8.2.0), and the following foundations: Landelijke Stichting Blindenbelangen, Oogfonds, and Algemene Nederlandse Vereniging ter voorkoming van Blindheid, which contributed through UitZicht (grant 2024-30). Supported by the International Myopia Institute. The publication and dissemination costs of the International Myopia Institute reports were supported by donations from Alcon, the Brien Holden Vision Institute, Carl Zeiss Vision, CooperVision, EssilorLuxottica, Hoya, Oculus, and Thea.

Disclosure: M. Voogelaar, None; M.S. Tedja, None; J.A. Guggenheim, None; S.-M. Saw, None; M. Tjon-Fo-Sang, None; D.A. Mackey, None; C.J. Hammond, None; C.C.W. Klaver, Bayer (C), Novartis (C), Optos (C), Topcon (F), Thea Pharma (C); V.J.M. Verhoeven, None

References

- Tedja MS, Haarman AEG, Meester-Smoor MA, et al. IMI—Myopia Genetics Report. *Invest Ophthalmol Vis Sci.* 2019;60(3):M89–M105.
- Jong M, Jonas JB, Wolffsohn JS, et al. IMI 2021 Yearly Digest. *Invest Ophthalmol Vis Sci.* 2021;62(5):7.
- 3. Jiang C, Melles RB, Yin J, et al. A multiethnic genomewide analysis of 19,420 individuals identifies novel loci associated with axial length and shared genetic influences with refractive error and myopia. *Front Genet*. 2023;14: 1113058.
- 4. Patasova K, Khawaja AP, Wojciechowski R, et al. A genome-wide analysis of 340 318 participants identifies four novel loci associated with the age of first spectacle wear. *Hum Mol Genet*. 2022;31(17):3012–3019.
- Kiefer AK, Tung JY, Do CB, et al. Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia. *PLoS Genet*. 2013;9(2):e1003299.
- 6. Hysi PG, Choquet H, Khawaja AP, et al. Meta-analysis of 542,934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia. *Nat Genet*. 2020;52(4):401–407.
- 7. Sanfilippo PG, Hewitt AW, Hammond CJ, Mackey DA. The heritability of ocular traits. *Surv Ophthalmol*. 2010;55(6):561–583.
- 8. Plotnikov D, Cui J, Clark R, et al. Genetic variants associated with human eye size are distinct from those conferring susceptibility to myopia. *Invest Ophthalmol Vis Sci.* 2021;62(13):24.
- 9. Fan Q, Pozarickij A, Tan NYQ, et al. Genome-wide association meta-analysis of corneal curvature identifies novel loci and shared genetic influences across axial length and refractive error. *Commun Biol.* 2020;3(1):133.
- 10. Fuse N, Sakurai M, Motoike IN, et al. Genome-wide association study of axial length in population-based cohorts in Japan: the Tohoku Medical Megabank Organization Eye Study. *Ophthalmol Sci.* 2022;2(1):100113.
- 11. Han X, Liu T, Ding X, et al. Identification of novel loci influencing refractive error in East Asian populations

- using an extreme phenotype design. *J Genet Genomics*. 2022;49(1):54–62.
- 12. Han X, Pan S, Liu J, et al. Novel loci for ocular axial length identified through extreme-phenotype genome-wide association study in Chinese populations. *Br J Ophthalmol*. 2024;108(6):865–872.
- 13. Jiang L, Huang L, Dai C, Genome-wide association analysis identifies LILRB2 gene for pathological myopia. *Adv Sci* (*Weinh*). 2024;11(40):e2308968.
- 14. Meguro A, Yamane T, Takeuchi M, et al. Genomewide association study in Asians identifies novel loci for high myopia and highlights a nervous system role in its pathogenesis. *Ophthalmology*. 2020;127(12):1612– 1624.
- Zhao F, Chen W, Zhou H, et al. Proposed as a high myopia susceptibility gene in Chinese population. *Front Genet*. 2021;12:775797.
- Wang Y, Zhang Y, Chen H, et al. Genome-wide association study identified novel loci and gene-environment interaction for refractive error in children. NPJ Genom Med. 2025;10(1):44.
- 17. Cheong KX, Yong RYY, Tan MMH, Tey FLK, Ang BCH. Association of VIPR2 and ZMAT4 with high myopia. *Ophthalmic Genet*. 2020;41(1):41–48.
- Li FF, Lu SY, Tang SM, et al. Genetic associations of myopia severities and endophenotypes in children. Br J Ophthalmol. 2021;105(8):1178–1183.
- Lin Y, Ding Y, Jiang D, et al. Genome-wide association of genetic variants with refraction, axial length, and corneal curvature: a longitudinal study of Chinese schoolchildren. Front Genet. 2020;11:276.
- 20. Liu J, Zhang R, Sun L, et al. Genotype-phenotype correlation and interaction of 4q25, 15q14 and variants with myopia in southern Chinese population. *Br J Ophthalmol*. 2021;105(6):869–877.
- 21. Liu Z, An G, Huo Y, et al. Evaluation of myopia-associated genes in a Han Chinese population with high myopia. *Ophthalmic Genet*. 2023;44(4):341–345.
- 22. Lu SY, Tang SM, Li FF, et al. Association of WNT7B and RSPO1 with axial length in school children. *Invest Ophthalmol Vis Sci.* 2020;61(10):11.
- Tang SM, Li FF, Lu SY, et al. Association of the ZC3H11B, ZFHX1B and SNTB1 genes with myopia of different severities. Br J Ophthalmol. 2020;104(10):1472–1476.
- Tian Q, Tong P, Chen G, et al. gene mutations cause high myopia in humans and mice. *J Med Genet*. 2023;60(2):193– 203
- 25. Yang L, Xu Y, Zhou P, Wan G. The SNTB1 and ZFHX1B gene have susceptibility in northern Han Chinese populations with high myopia. *Exp Eye Res.* 2023;237:109694.
- Yuan X-L, Zhang R, Zheng Y, et al. Corneal curvatureassociated variant differentiates mild myopia from high myopia in Han Chinese population. *Ophthalmic Genet*. 2021;42(4):446–457.
- 27. Jiang X, Xu Z, Soorma T, et al. Electrical responses from human retinal cone pathways associate with a common genetic polymorphism implicated in myopia. *Proc Natl Acad Sci USA*. 2022;119(21):e2119675119.
- 28. Quint WH, Tadema KCD, de Vrieze E, et al. Loss of gap junction delta-2 (GJD2) gene orthologs leads to refractive error in zebrafish. *Commun Biol.* 2021;4(1):676.
- 29. van der Sande E, Haarman AEG, Quint WH, et al. The role of GJD2(Cx36) in refractive error development. *Invest Ophthalmol Vis Sci.* 2022;63(3):5.
- 30. Xu Z, Tan JK, Vetrivel K, et al. The electroretinogram I-wave, a component originating in the retinal OFF-pathway, associates with a myopia genetic risk polymorphism. *Invest Ophthalmol Vis Sci.* 2024;65(13):21.

- 31. Musolf AM, Haarman AEG, Luben RN, et al. Rare variant analyses across multiethnic cohorts identify novel genes for refractive error. *Commun Biol.* 2023;6(1):6.
- 32. Patasova K, Haarman AEG, Musolf AM, et al. Association analyses of rare variants identify two genes associated with refractive error. *PLoS One*. 2022;17(9):e0272379.
- 33. Simpson CL, Musolf AM, Cordero RY, et al. Myopia in African Americans is significantly linked to chromosome 7p15.2-14.2. *Invest Ophthalmol Vis Sci.* 2021;62(9):16.
- 34. Lu Q, Du Y, Zhang Y, et al. A genome-wide association study for susceptibility to axial length in highly myopic eyes. *Phenomics*. 2023;3(3):255–267.
- 35. Haarman AEG, Thiadens AAHJ, van Tienhoven M, et al. Whole exome sequencing of known eye genes reveals genetic causes for high myopia. *Hum Mol Genet*. 2022;31(19):3290–3298.
- 36. Haer-Wigman L, den Ouden A, van Genderen MM, et al. Diagnostic analysis of the highly complex OPN1LW/OPN1MW gene cluster using long-read sequencing and MLPA. *NPJ Genom Med.* 2022;7(1):65.
- 37. van Mazijk R, Haarman AEG, Hoefsloot LH, et al. Early onset X-linked female limited high myopia in three multigenerational families caused by novel mutations in the ARR3 gene. *Hum Mutat*. 2022;43(3):380–388.
- Feher T, Szell N, Nagy I, et al. Cone dysfunction in ARR3mutation-associated early-onset high myopia: an electrophysiological study. *Orphanet J Rare Dis.* 2024;19(1):385.
- 39. Szell N, Feher T, Maroti Z, et al. Myopia-26, the femalelimited form of early-onset high myopia, occurring in a European family. *Orphanet J Rare Dis.* 2021;16(1):45.
- Xiao X, Li S, Jia X, Guo X, Zhang Q. X-linked heterozygous mutations in ARR3 cause female-limited early onset high myopia. *Mol Vis.* 2016;22:1257–1266.
- 41. Ye L, Guo Y-M, Cai Y-X, et al. Trio-based whole-exome sequencing reveals mutations in early-onset high myopia. BMJ Open Ophthalmol. 2024;9(1):e001720.
- 42. Chen C, An G, Yu X, et al. Screening mutations of the monogenic syndromic high myopia by whole exome sequencing from MAGIC Project. *Invest Ophthalmol Vis Sci.* 2024;65(2):9.
- 43. Yu X, Yuan J, Chen ZJ, et al. Whole-exome sequencing among school-aged children with high myopia. *JAMA Netw Open.* 2023;6(12):e2345821.
- Yuan J, Zhuang Y-Y, Liu X, et al. Exome-wide association study identifies KDELR3 mutations in extreme myopia. *Nat Commun*. 2024;15(1):6703.
- 45. Flitcroft I, Ainsworth J, Chia A, et al. IMI-management and investigation of high myopia in infants and young children. *Invest Ophthalmol Vis Sci.* 2023;64(6):3.
- 46. Su J, Yuan J, Xu L, et al. Sequencing of 19,219 exomes identifies a low-frequency variant in FKBP5 promoter predisposing to high myopia in a Han Chinese population. *Cell Rep.* 2023;42(5):112510.
- 47. Haarman AEG, Klaver CCW, Tedja MS, et al. Identification of rare variants involved in high myopia unraveled by whole genome sequencing. *Ophthalmol Sci.* 2023;3(4):100303.
- 48. Chen J, Lian P, Zhao X, et al. Gene mutations cause pathological myopia. *J Med Genet*. 2023;60(9):918–924.
- 49. Liu Y, Zhang J-J, Piao S-Y, et al. Whole-exome sequencing in a cohort of high myopia patients in Northwest China. *Front Cell Dev Biol.* 2021;9:645501.
- Sánchez-Cazorla E, González-Atienza C, López-Vázquez A, et al. Whole-exome sequencing of 21 families: candidate genes for early-onset high myopia. *Int J Mol Sci.* 2023;24(21):15676.
- 51. Swierkowska J, Karolak JA, Gambin T, et al. Variants in FLRT3 and SLC35E2B identified using exome sequencing

- in seven high myopia families from Central Europe. *Adv Med Sci.* 2021;66(1):192–198.
- 52. Yang E, Yu J, Liu X, Chu H, Li L. Familial whole exome sequencing study of 30 families with early-onset high myopia. *Invest Ophthalmol Vis Sci.* 2023;64(5):10.
- 53. Zheng Y-H, Cai X-B, Xia L-Q, et al. Mutational screening of *AGRN*, *SLC39A5*, *SCO2*, *P4HA2*, *BSG*, *ZNF644*, and *CPSF1* in a Chinese cohort of 103 patients with nonsyndromic high myopia. *Mol Vis.* 2021;27:706–717.
- 54. Liu X, Liang J, Li S, et al. Whole-exome sequencing reveals sex difference in the genetic architecture of high myopia. *J Med Genet*. 2025;62(5):358–368.
- 55. Chen LJ, Li FF, Lu SY, et al. Association of polymorphisms in *ZFHX1B*, *KCNQ5* and *GJD2* with myopia progression and polygenic risk prediction in children. *Br J Ophthalmol*. 2021;105(12):1751–1757.
- 56. Clark R, Lee SS-Y, Du R, et al. A new polygenic score for refractive error improves detection of children at risk of high myopia but not the prediction of those at risk of myopic macular degeneration. *EBioMedicine*. 2023;91:104551.
- 57. Ghorbani Mojarrad N, Plotnikov D, Williams C, Guggenheim JA; UK Biobank Eye and Vision Consortium. Association between polygenic risk score and risk of myopia. *JAMA Ophthalmol.* 2020;138(1):7–13.
- 58. Kassam I, Foo L-L, Lanca C, et al. The potential of current polygenic risk scores to predict high myopia and myopic macular degeneration in multiethnic Singapore adults. *Ophthalmology*. 2022;129(8):890–902.
- Lanca C, Kassam I, Patasova K, et al. New polygenic risk score to predict high myopia in Singapore Chinese children. *Transl Vis Sci Technol.* 2021;10(8):26.
- 60. Lin H-J, Huang Y-T, Liao W-L, et al. Developing a polygenic risk score with age and sex to identify high-risk myopia in Taiwan. *Biomedicines*. 2024;12(7):1619.
- 61. Tideman JWL, Pärssinen O, Haarman AEG, et al. Evaluation of shared genetic susceptibility to high and low myopia and hyperopia. *JAMA Ophthalmol*. 2021;139(6):601–609.
- 62. Clark R, Pozarickij A, Hysi PG, et al. Education interacts with genetic variants near GJD2, RBFOX1, LAMA2, KCNQ5 and LRRC4C to confer susceptibility to myopia. *PLoS Genet*. 2022;18(11):e1010478.
- 63. Guggenheim JA, Clark R, Zayats T, Williams C; UK Biobank Eye and Vision Consortium. Assessing the contribution of genetic nurture to refractive error. *Eur J Hum Genet*. 2022;30(11):1226–1232.
- 64. Bai WY, Zhang HW, Ye XF, Xu JF, Guo XJ, He J. Association between body mass index and myopia: results from NHANES and Mendelian randomization. *Ophthalmic Epidemiol*. 2025:1–10.
- 65. Chong RS, Li H, Cheong AJY, et al. Mendelian randomization implicates bidirectional association between myopia and primary open-angle glaucoma or intraocular pressure. *Ophtbalmol.* 2023;130(4):394–403.
- 66. Choquet H, Khawaja AP, Jiang C, et al. Association between myopic refractive error and primary open-angle glaucoma: a 2-sample Mendelian randomization study. *JAMA Ophthal-mol.* 2022;140(9):864–871.
- Clark R, Kneepkens SCM, Plotnikov D, et al. Time spent outdoors partly accounts for the effect of education on myopia. *Invest Ophthalmol Vis Sci.* 2023;64(14):38.
- 68. Deng B, Zhou M, Kong X, et al. The lack of causal link between myopia and intraocular pressure: insights from cross-sectional analysis and Mendelian randomization study. *Photodiagnosis Photodyn Ther*. 2024;49: 104334.
- 69. Hartmann A, Grabitz SD, Wagner FM, et al. Bi-Gaussian analysis reveals distinct education-related alterations in spherical equivalent and axial length-results from the

- Gutenberg Health Study. Graefes Arch Clin Exp Ophthalmol. 2024;262(6):1819–1828.
- 70. Hui J, Tang K, Zhou Y, Cui X, Han Q. The causal impact of gut microbiota and metabolites on myopia and pathological myopia: a mediation Mendelian randomization study. *Sci Rep.* 2025;15(1):12928.
- 71. Jiang X, Xu B, Li Q, Zhao YE. Association between plasma metabolite levels and myopia: a 2-sample mendelian randomization study. *Ophthalmol Sci.* 2025;5(3):100699.
- 72. Kang Y-T, Zhuang Z-H, He X, et al. Mendelian randomization supports causal effects of inflammatory biomarkers on myopic refractive errors. *Eur J Ophtbalmol*. 2025;35(2):400–408.
- 73. Li F-F, Zhu M-C, Shao Y-L, Lu F, Yi Q-Y, Huang X-F. Causal relationships between glycemic traits and myopia. *Invest Ophthalmol Vis Sci.* 2023;64(3):7.
- 74. Liang R, Li T, Gao H, et al. Causal relationships between inflammatory cytokines and myopia: an analysis of genetic and observational studies. *Ann Med Surg (Lond)*. 2024;86(9):5179–5190.
- 75. Lin B, Chen L-L, Li D-K. Mendelian randomization analysis reveals a causal relationship between preterm birth and myopia risk. *Front Pediatr*. 2024;12:1404184.
- Luo X, Ruan Z, Liu L. Causal effect of the 25hydroxyvitamin D concentration on ocular diseases: a Mendelian randomization study. Sci Rep. 2025;15(1): 8701.
- 77. Lv H, Wang Z, Huang C, Yu X, Li X, Song X. Causal links between gut microbiota, blood metabolites, immune cells, inflammatory proteins, and myopia: a Mendelian randomization study. *Ophthalmol Sci.* 2025;5(4):100684.
- 78. Plotnikov D, Williams C, Guggenheim JA. Association between birth weight and refractive error in adulthood: a Mendelian randomisation study. *Br J Ophthalmol*. 2020;104(2):214–219.
- 79. Qin Y, Lei C, Lin T, Han X, Wang D. Identification of potential drug targets for myopia through Mendelian randomization. *Invest Ophthalmol Vis Sci.* 2024;65(10):13.
- 80. Wei D, Wang H, Huang L, et al. A Mendelian randomization study on the causal relationship between smoking, alcohol consumption, and the development of myopia and astigmatism. *Sci Rep.* 2024;14(1):1868.
- 81. Xu J, Mo Y. Mendelian randomization study confirms causal relationship between myopia and vitreous disorders. *BMC Med Genomics*. 2023;16(1):238.
- 82. Xu S, Wang X, Xu J, et al. Causal relationships between depression, anxiety, and myopia: a two-sample Mendelian randomization study. *Eye (Lond)*. 2025;39(11):2204–2210.
- 83. Xue CC, Li H, Dong X-X, et al. Omega-3 polyunsaturated fatty acids as a protective factor for myopia. *Am J Ophthal-mol.* 2024;268:368–377.
- 84. Zhang X-B, Jiang H-H, Zhang L-L, et al. Potential causal associations between leisure sedentary behaviors, physical activity, sleep traits, and myopia: a Mendelian randomization study. *BMC Ophthalmol*. 2024;24(1):104.
- 85. Xu Y, Dong XX, Wang Y, et al. Association between inflammatory cytokines and refractive errors: a bidirectional Mendelian randomization study. *Transl Vis Sci Technol*. 2025;14(5):1.
- 86. Xue Z, Yuan J, Chen F, et al. Genome-wide association meta-analysis of 88,250 individuals highlights pleiotropic mechanisms of five ocular diseases in UK Biobank. *EBioMedicine*. 2022;82:104161.
- 87. Zhou Y, Kong Y, Fan W, et al. Principles of RNA methylation and their implications for biology and medicine. *Biomed Pharmacother*. 2020;131:110731.
- 88. Chen Y, Jiang Z, Yang Y, Zhang C, Liu H, Wan J. The functions and mechanisms of post-translational modification in protein regulators of RNA methylation: current status

- and future perspectives. *Int J Biol Macromol.* 2023;253(pt 2):126773.
- 89. Derrien T, Guigó R, Johnson R. The long non-coding RNAs: a new (p)layer in the "dark matter." *Front Genet*. 2012;2:107.
- 90. Kanwal R, Gupta S. Epigenetic modifications in cancer. *Clin Genet*. 2012;81(4):303–311.
- 91. Deans C, Maggert KA. What do you mean, "epigenetic"? *Genetics*. 2015;199(4):887–896.
- 92. Swierkowska J, Karolak JA, Vishweswaraiah S, Mrugacz M, Radhakrishna U, Gajecka M. Decreased levels of DNA methylation in the PCDHA gene cluster as a risk factor for early-onset high myopia in young children. *Invest Ophthalmol Vis Sci.* 2022;63(9):31.
- 93. Swierkowska J, Vishweswaraiah S, Mrugacz M, Radhakrishna U, Gajecka M. Differential methylation of microRNA encoding genes may contribute to high myopia. *Front Genet*. 2022;13:1089784.
- 94. Wen K, Zhang Y, Li Y, Wang Q, Sun J. Comprehensive analysis of transcriptome-wide m(6)A methylome in the anterior capsule of the lens of high myopia patients. *Epigenetics*. 2021;16(9):955–968.
- 95. Tedja MS, Swierkowska-Janc J, Enthoven CA, et al. A genome-wide scan of non-coding RNAs and enhancers for refractive error and myopia. *Hum Genet*. 2025;144(1):67–91.
- 96. Liao X, Yap MKH, Leung KH, Kao PYP, Liu LQ, Yip SP. Genetic association study of polymorphisms with high myopia. *Biomed Res Int.* 2017;2017:3024156.
- 97. Kunceviciene E, Liutkeviciene R, Budiene B, Sriubiene M, Smalinskiene A. Independent association of whole blood miR-328 expression and polymorphism at 3'UTR of the PAX6 gene with myopia. *Gene*. 2019;687:151–155.

- 98. Kunceviciene E, Budiene B, Smalinskiene A, Vilkeviciute A, Liutkeviciene R. Association of expression in whole blood with optical density of retinal pigment epithelial cells. *In Vivo*. 2021;35(2):827–831.
- 99. Wang H, Li J, Wang S, et al. Contribution of structural accessibility to the cooperative relationship of TF-lncRNA in myopia. *Brief Bioinform*. 2021;22(5):bbab082.
- 100. Wen K, Zhang L, Cai Y, et al. Identification and characterization of extrachromosomal circular DNA in patients with high myopia and cataract. *Epigenetics*. 2023;18(1):2192324.
- 101. Tkatchenko TV, Tkatchenko AV. Genome-wide analysis of retinal transcriptome reveals common genetic network underlying perception of contrast and optical defocus detection. *BMC Med Genomics*. 2021;14(1):153.
- 102. Wang SK, Nair S, Li R, et al. Single-cell multiome of the human retina and deep learning nominate causal variants in complex eye diseases. *Cell Genom.* 2022;2(8):100164.
- 103. Ni Y, Wang L, Liu C, Li Z, Yang J, Zeng J. Gene expression profile analyses to identify potential biomarkers for myopia. *Eye (Lond)*. 2023;37(6):1264–1270.
- 104. Zhu X, Du Y, Li D, et al. Aberrant TGF-β1 signaling activation by MAF underlies pathological lens growth in high myopia. *Nat Commun*. 2021;12(1):2102.
- 105. You J, Wu Q, Xu G, et al. Exosomal microRNA profiling in vitreous humor derived from pathological myopia patients. *Invest Ophthalmol Vis Sci.* 2023;64(1):9.
- 106. Zhang L, Yu X, Hong N, et al. CircRNA expression profiles and regulatory networks in the vitreous humor of people with high myopia. Exp Eye Res. 2024;241:109827.
- 107. Yu Y, Zhang Z, Xia F, et al. Exploration of the pathophysiology of high myopia via proteomic profiling of human corneal stromal lenticules. *Exp Eye Res.* 2024;238: 109726.