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Abstract: Systematic effects can hinder the sought-after detection of primordial gravitational
waves, impacting the reconstruction of the B-mode polarization signal which they generate in
the cosmic microwave background (CMB). In this work, we study the impact of an imperfect
knowledge of the instrument bandpasses on the estimate of the tensor-to-scalar ratio r in the
context of the next-generation LiteBIRD satellite. We develop a pipeline to integrate over the
bandpass transmission in both the time-ordered data (TOD) and the map-making processing
steps. We introduce the systematic effect by having a mismatch between the “real”, high
resolution bandpass τ , entering the TOD, and the estimated one τs, used in the map-making.
We focus on two aspects: the effect of degrading the τs resolution, and the addition of a
Gaussian error σ to τs. To reduce the computational load of the analysis, the two effects are
explored separately, for three representative LiteBIRD channels (40 GHz, 140 GHz and 402
GHz) and for three bandpass shapes. Computing the amount of bias on r, ∆r, caused by
these effects on a single channel, we find that a resolution ≲ 1.5 GHz and σ ≲ 0.0089 do not
exceed the LiteBIRD budget allocation per systematic effect, ∆r < 6.5×10−6. We then check
that propagating separately the uncertainties due to a resolution of 1 GHz and a measurement
error with σ = 0.0089 in all LiteBIRD frequency channels, for the most pessimistic bandpass
shape of the three considered, still produces a ∆r < 6.5 × 10−6. This is done both with
the simple deprojection approach and with a blind component separation technique, the
Needlet Internal Linear Combination (NILC). Due to the effectiveness of NILC in cleaning the
systematic residuals, we have tested that the requirement on σ can be relaxed to σ ≲ 0.05.
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1 Introduction

Measurements of the cosmic microwave background (CMB) have shaped our picture of
the standard cosmological model, from the quantum mechanical origin of the Universe to
its current energy composition. Several experiments have provided stringent constraints
on cosmological parameters [e.g., 1–6] from the observation of the CMB anisotropies in
temperature and E-mode polarization. The observed B-mode polarization is still dominated
by measurements of the gravitational lensing term, converting E modes into B modes, and
Galactic foreground emission [7, 8]. Next generation CMB experiments, such as sets of
telescopes part of the ground-based Simons Observatory (SO) [9] and CMB-S4 [10], and the
LiteBIRD satellite mission [11], have been designed to deliver high-precision measurements of
the large-scale B modes which could lead to a high-significance first detection of the primordial
signal. This would constrain the amplitude of primordial gravitational waves, parameterized
in terms of the tensor-to-scalar ratio r. The detection of r is considered the smoking-gun of
the inflation paradigm and would revolutionize our understanding of extremely-high-energy
physics at play at the beginning of the Universe. So far, we only have upper limits on r;
the most stringent bound is r < 0.032 at 95% CL, based on a re-analysis of BICEP/Keck
and Planck data [12]. Improving this upper bound by an order of magnitude would rule
out most of the simplest and most compelling early Universe models. These next-generation
experiments have set ambitious sensitivity goals for r: σ(r) ≃ 0.002 from SO, r < 0.001
at 95% CL from CMB-S4, and σ(r) ≃ 0.001 from LiteBIRD, thus requiring extraordinary
control over systematic effects and noise contamination [9, 13]. Residual systematic effects
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can propagate across the data reduction pipeline and perturb the reconstructed statistics of
the CMB by mimicking genuine physical effects of cosmological origin. If not accounted for,
such instrumental systematic effects can be a source of bias in cosmological analyses.

In this work, we consider the effect of bandpass uncertainties, i.e. uncertainties in the
transmission response of the instrument, on the estimate of r. We perform this analysis in
the context of the LiteBIRD satellite. Specifically, we derive the bandpass resolution (i.e. the
resolution used to sample the transmission response) needed to achieve LiteBIRD’s scientific
goal on r. After that, we obtain requirements for LiteBIRD on the bandpass measurement
errors, modeled as a Gaussian distributed deviation with respect to the underlying bandpass
function. We propagate the effects of the measured bandpass resolution and measurement
error to a bias in our estimate of r, ∆r. We finally compare our ∆r with the LiteBIRD
budget allocated for each systematic effect of 1% of the targeted statistical uncertainty
(6.5 × 10−4), i.e. ∆r < 6.5 × 10−6 [13, 14].

To reduce the computational cost of the analysis, we divide it in two parts.

1. We first consider just three LiteBIRD reference channels: the 140 GHz channel of the
Middle Frequency Telescope (MFT) relevant for the CMB extraction, and the two
frequency extremes which are relevant for the astrophysical foreground removal, the
40 GHz channel of the Low Frequency Telescope (LFT) and the 402 GHz channel of the
High Frequency Telescope (HFT). For each of them, we compute the residual maps and
corresponding ∆r induced by assuming different bandpass resolutions and measurement
errors σ. We perform this analysis for three different bandpass shapes: a top-hat with
shoulders, and two bandpass profiles, described by Chebyshev filters of order 3 and
5, respectively [15]. The goal of this first part is to derive the most stringent values
of sampling resolution and uncertainty σ for the three channels and bandpass shapes
considered.

2. In the second part of the analysis, we fix the Chebyshev profile of order 3 to be the
reference bandpass shape (as motivated below). We then propagate separately the
systematic effects due to bandpass sampling resolution and measurement uncertainties

— with the values derived in the first step — across all LiteBIRD frequency channels.
Finally, we estimate the ∆r induced by the residual systematic perturbation in the final
CMB solution.

We use both a simple deprojection technique (adopted in the first part of the analysis)
and a realistic component separation pipeline. This allows us to check that the requirements
obtained in the first simplified analysis hold even considering a more realistic framework
and the whole instrument.

The paper is structured as follows: section 2 describes our formalism, the bandpass
assumptions are introduced in section 2.1, sections 3 and 4 present the derivation of require-
ments for bandpass sampling resolution and measurement uncertainty, while in section 5 we
assess the robustness of the requirements derived in the previous sections when systematic
effects are present in all LiteBIRD frequency channels.
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2 TOD and map-making formalism

To evaluate the effect of different bandpass designs on the r estimate from LiteBIRD, we
performe a Time Ordered Data (TOD) analysis. We follow the procedure presented in [16],
which has been ported in the LiteBIRD simulation framework litebird_sim1 [17]. The
TOD for a detector at the time i is computed as:

dobs(ti) =
∑

X=T,Q,U

∫
dν Kν τ(ν) MT X

i (ν)
(
mX

CMB + mX
FG(ν

)
)∫

dνKν τ(ν) , (2.1)

where Kν = ∂Bν(T )
∂T

∣∣∣
TCMB

is the conversion factor from CMB thermodynamic units to
brightness2, τ(ν) is the bandpass, MT X

i (ν) the Mueller matrix of a realistic rotating HWP,
encoding also the instrument scanning strategy (for details on its derivation, see [16]) and
mX

CMB/FG is the CMB/foreground map for the X = T, Q, U field. These input maps are
already smoothed by the Gaussian beam3 of the corresponding channel, see table 13 of
ref. [13] for their FWHM. Similarly to what has been done in [16], we simulate the TOD of
just two orthogonal detectors4 for each channel and for one year of observation, in order to
reduce the computational load of the analysis. To simulate the Galactic foreground signal,
we consider the d0s0 PySM [19–21] models, i.e. Galactic dust and synchrotron with isotropic
spectral indexes. For the scope of this analysis, we do not care about the spatial variability of
foreground emissions and we restrict ourselves to a simpler model. The bandpass uncertainty
can still couple in a non-negligible way with the foreground spatial variability [22, 23], but
the study of this effect is deferred to a future work. Anyway, blind component separation
methods have been shown to be robust against non-linear effects such as those arising from
the coupling of variations of foreground parameters with complex bandpasses, as proved in
the case of foreground-only driven SEDs mixing in [23].

The denominator in eq. (2.1) brings the TOD back to CMB temperature units and
the assumed bandpass profile is the same as the one at the numerator, assuming perfect
dipole calibration. To compute MT X we use the Mueller matrix for realistic LiteBIRD
HWPs, simulated for the MFT and HFT [16] and for the LFT [24]. The corresponding
components of the HWP Mueller matrices in their rest frame are shown in figure 1. We
assume a metal-mesh HWP for the Middle and High Frequency Telescopes (MHFT) and
a sapphire multilayer HWP for the LFT.

So far, we neglect the contribution of noise in eq. (2.1) and the TOD are computed as
noiseless, to focus only on the systematic effect. The noise contribution (thus the instrument
sensitivity) is properly taken into account in the cosmological likelihood as detailed in section 3.
Throughout all the analysis, the noise in the different frequency channels is assumed to be

1https://github.com/litebird/litebird_sim/blob/master/litebird_sim/hwp_sys/hwp_sys.py, version
0.12.0

2Kν = ∂Bν (T )
∂T

∣∣
TCMB

=
( 2kB

c2

)
ν2 x2ex

(ex−1)2 , where Bν(T ) is Planck’s law and x ≡ hν/(kBTCMB).
3We assume an achromatic Gaussian beam, therefore circular and frequency independent, which ensures

that the HWP and beam effects are fully decoupled. We refer to ref. [18] for an analysis of the coupling
between non-ideal HWP and beams.

4We select detectors at the boresight or as closest as possible to the boresight for each LiteBIRD channel,
given the fact that the formalism developed in [16] assumes orthogonal incidence of light.
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Figure 1. Mueller matrix elements of the LFT, MFT and HFT HWPs as functions of the frequency.
These are the components of HWP Mueller matrix in its rest frame. MT X

i (ν) in eq. (2.1) can be
obtained from a combination of these rest-frame components as shown in ref. [16]. The noisy pattern
in the LFT HWP elements is caused by its configuration (five-layers sapphire HWP): due to the high
refractive index of sapphire, the thickness of the HWP results in fast oscillations of the transmission
spectrum. We refer to [16, 24] for further details.

white, i.e. non-correlated: ⟨nnT ⟩ = σ2
nI, where σn is the uniform noise standard deviation

for each channel. The adopted σn values correspond to those reported in [13].

To derive a map from the TOD of eq. (2.1), we perform the following map-making
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procedure:

mout =
(∑

i

P T
i Pi

)−1(∑
i

P T
i dobs(ti)

)

=
(∑

i

P T
i Pi

)−1(∑
i

P T
i ACMB,imCMB

)
+
(∑

i

P T
i Pi

)−1(∑
i

P T
i

∫
AFG,i(ν)mFG(ν)dν

)
(2.2)

where i represents again the time sample and:

AX
CMB,i =

(∫
dν Kν τ (ν) MT X

i (ν)∫
dνKν τ (ν)

)
, (2.3)

AX
FG,i =

(
Kν τ (ν) MT X

i (ν)∫
dνKν τ (ν)

)
, (2.4)

and Pi is the pointing matrix built to recover the CMB component:

P X
i =

(∫
dν Kν τs (ν) MT X

i (ν)∫
dνKν τs (ν)

)
. (2.5)

We have dropped the X for A and P in eq. (2.2) and have expressed them in matricial form.
In the map-making we adopt the bandpass profile τs(ν) (also called “solver” bandpass),

which represents our estimate of τ(ν).5 Given a bandpass shape, the TOD is computed using
a bandpass τ(ν) with high resolution (0.1 GHz), emulating the real data which is acquired at
infinite resolution. Higher resolutions for τ(ν) would make the computational cost of eq. (2.1)
too expensive. Instead, the bandpass profile τs(ν) used in the map-making is computed at a
lower resolution by resampling τ(ν), with the possibility of introducing Gaussian distributed
perturbations, to mimic measurement errors. The results obtained when assuming different
sampling resolutions and measurement precisions are presented in sections 3 and 4.

The HWP Mueller matrix MT X
i assumed in the map-making operation of eq. (2.2) is

the same used in the TOD, to avoid any mismatch in the estimate of the HWP parameters
and to take into account only systematic effects induced by bandpass mismodeling. We refer
to refs. [16, 24] for discussions on the effects of HWP non-idealities.

All the sky maps are pixelized in the HEALPix [27] format and generated at resolution
NSIDE=64, which makes the TOD and map-making computation manageable. Having maps
at such a low resolution does not affect the outcome of our analysis, as we aim at assessing the
impact of bandpass uncertainties on r, which is probed by the very low multipoles (ℓ ≲ 120)
of the CMB BB power spectrum.

To derive the residual power due to our imperfect estimate of τs(ν), we build a template
map mtempl using τs(ν) in both the TOD generation and map-making operation. The residual

5Bandpasses are measured with a Fourier Transform Spectrometer (FTS) [25]. Typically the FTS is an
interferometer with a movable mirror. An example of application to a CMB instrument can be found in
ref. [26], where a resolution of 0.5-1 GHz (depending on the exact setting of the instrument) has been achieved
with a FTS with dimensions ∼1.3 m × 1 m.

– 5 –



J
C
A
P
1
0
(
2
0
2
5
)
0
3
8

map mres is computed as:

mres =mout − mtempl

=
(∑

i

P T
i Pi

)−1(∑
i

P T
i ACMB,i mCMB

)
− mCMB

+
(∑

i

P T
i Pi

)−1(∑
i

P T
i

∫
AFG,i(ν) mFG(ν)dν

)

−
(∑

i

P T
i Pi

)−1(∑
i

P T
i

∫
PFG,i(ν) mFG(ν)dν

)
,

(2.6)

where PFG is calculated as in eq. (2.4) with τ(ν) = τs(ν). This residual map is by construction
null if τs(ν) = τ(ν) in mout, i.e. if we perfectly recover the true bandpass profile. We are
also assuming to perfectly recover the true foreground model (i.e., there is no difference in
the foreground input maps used to compute mout and mtempl), since we want to just focus
on the effect of bandpass uncertainties and not on the combination with biases arising from
foreground component separation.

More details on the formalism can be found in ref. [16].

2.1 Bandpass shapes

In the first part of the analysis, we compare systematic residuals in three cases with different
bandpass shapes: a simple top-hat with shoulders (despite being not realistic, it still represents
an interesting case), a Chebyshev profile with ripple 0.2 dB and order 3 (which is the current
design for the on-chip filters of LFT [11]) and the same profile but with order 5 (which is the
current design for MHFT). The “ripple” parameter in the Chebyshev profile represents the
amount of loss in transmission. The “order” indicates how many oscillations are within the
band and it is correlated with the tightness of the bandpass “wings”. A representation of the
aforementioned bandpass shapes for the 140 GHz channel can be found in figure 2.

We simulate top-hat bandpasses6 by adding ±10 GHz to the bandpass edges and assign
a level of 0.01 transmission to these out-of-band points. There is a transition point with
transmission 0.5 between the in-band and out-of-band points. For Chebyshev bandpasses,
we cut them when they reach a level of transmission of 0.01. For an analysis on the effects
of out-of-band contamination, we refer to [14].

In the second part of the analysis, once we have derived the acceptable sampling resolution
and level of measurement error (σ) for the reference channels (i.e. LFT 40, MFT 140 and
HFT 402), we fix the bandpass shape. We choose the Chebyshev profile of order 3, since it
generally provides the most stringent requirements (see sections 3 and 4), therefore providing
an ideal benchmark for assessing the robustness of the derived requirements when bandpass
miscalibration is introduced in all frequency channels.7

6See table 7 of ref. [13] for their relative bandwidths.
7For a list of the LiteBIRD channels, see table 3 of ref. [13].
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Figure 2. Left: bandpass transmissions with a Chebyshev filter of different order parameters for the
MFT channel centered at 140 GHz (MFT 140). Right: bandpass transmissions for the same channel,
using different bandpass shapes. The transmission is plotted in log scale to highlight the bandpass
tails and the level of the shoulders in the top-hat profile. In both figures the ripple is 0.2 dB.

3 Requirement on the bandpass sampling resolution

In this section, we compare the residuals corresponding to different resolutions of the τs

bandpass used in the map-making. We perform this comparison for the three bandpass shapes
discussed in section 2.1 and, to reduce the computational load, only for three representative
LiteBIRD channels: the MFT channel centered at 140 GHz (MFT 140), the LFT channel
centered at 40 GHz (LFT 40) and the HFT channel centered at 402 GHz (HFT 402). In this
way, we can assess the impact of bandpass mismodeling on reconstructed frequency maps
which retain great constraining power either in the CMB reconstruction (MFT 140) or in
constraining synchrotron (LFT 40) and dust (HFT 402) emission. We then compute the ∆r

associated with the residuals in each case and derive a requirement on the sampling resolution
which allows to meet LiteBIRD’s systematic error budget. This is then used in section 5 for
the second part of the analysis, where we verify whether the resolution requirement is still
valid even when propagating the mismodeling to all LiteBIRD channels.

3.1 Derivation of residual power spectra and ∆r for each channel

Once a residual map mj
res for channel j is derived as detailed in eq. (2.6), we compute

the corresponding BB power spectrum through the anafast routine in the healpy Python
package:

CBB,res,j
ℓ = CBB

ℓ ((mj
res · mmask) · wj)

fsky(Bj
ℓ pℓ)2

, (3.1)

where mmask is a customary Galactic mask,8 obtained from HFI data processing, with sky
fraction fsky = 70% (enough for the sky complexity we assume), Bj

ℓ is the beam window
function for channel j, pℓ is the pixel window function and wj is the weight for channel

8https://irsa.ipac.caltech.edu/data/Planck/release_2/ancillary-data/previews/HFI_Mask_GalPlane-a
po0_2048_R2.00/index.html
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j, coming from the parametric component separation method FGBuster [28, 29] applied
to LiteBIRD simulated maps which assume the d0s0 foreground model and no systematic
effect.9 The Galactic plane is masked to mimic a realistic data-analysis pipeline of future
CMB satellite experiments. Moreover, it allows us to avoid the sky regions where systematic
residuals are brighter, being dominated by Galactic foreground emission and color effects as
in eq. (2.6). Applying the component separation weight wj allows us to take into account
the relative constraining power of channel j in reconstructing the CMB signal. In this way,
despite not performing a full component separation procedure, we do not overestimate the
residual power coming from extremal channels that are dominated by foreground emissions
and would be weighted less in the CMB solution. The B-mode angular power spectrum in
eq. (3.1), being computed from QU Stokes parameters maps, may be affected by E-to-B
leakage in the CMB contribution [31]. However, this potential bias does not affect the
outcome of our analysis as the major contribution to CBB,res,j

ℓ is coming from the foreground
components for all the considered frequency channels, and their E-to-B leakage is not as
relevant as in the case of CMB dominated maps.

From the residual power spectrum of eq. (3.1) we can estimate the ∆r associated with
the systematic effect for each frequency channel separately.

To get the bias ∆r associated to CBB,res,j
ℓ , we first compute the BB power spectrum

for that channel:

C̃BB,j
ℓ = CBB,fid

ℓ + CBB,res,j
ℓ + CBB,noise

ℓ , (3.2)

where CBB,fid
ℓ ≡ CBB,lensed

ℓ is the fiducial BB power spectrum10 (lensing only, r = 0) and
CBB,noise

ℓ is the noise power spectrum of the LiteBIRD CMB reconstruction, obtained by
combining simulated noise maps in the different frequency channels (see section 2) with the
assumed frequency-dependent component separation weights wj . The residual CBB,res,j

ℓ is
treated as if it were a spurious cosmological signal leading to a bias in the estimate of r.

Such a bias is the best-fit r value obtained assuming the observed power spectrum follows
an inverse-Wishart distribution [32, 33]:

−2lnL̃(r) = −2lnL(C̃BB,j
ℓ |CBB

ℓ (r) + CBB,noise
ℓ )

= fsky
∑

ℓ

(2ℓ + 1)
[

C̃BB,j
ℓ

CBB
ℓ (r) + CBB,noise

ℓ

− ln
(

C̃BB,j
ℓ

CBB
ℓ (r) + CBB,noise

ℓ

)]
,

(3.3)

where C̃BB,j
ℓ is the observed power spectrum of eq. (3.2), and CBB

ℓ (r) = CBB,lensed
ℓ +

CBB,tens
ℓ (r) is the theoretical BB power spectrum combining the lensing term and the tensor

component for a given value of r. The likelihood analysis is restricted to the multipole range11

9In our simple approach, using the weights from a parametric component separation method ignoring the
systematic effects is the fastest way to weigh the frequency channels. A more correct approach would be
to recompute the component separation weights each time for the CMB+foreground maps affected by the
systematic effect. In section 5.3 we check that our results are robust also to a full component separation
method (we considered a blind method). Additionally, in the parametric component separation one could
mitigate the systematic effects following the approach of ref. [30].

10The fiducial power spectrum is computed with Planck 2018 fiducial cosmology and no tensor modes.
11We computed the spectra up to 3 × NSIDE − 1, with NSIDE = 64.
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Figure 3. Chebyshev order 5 bandpass profiles for the LFT 40 GHz channel (left) and the HFT
402 GHz one (right) reconstructed with different resolutions. The coarser the resolution, the worse is
the reconstruction of the bandpass shape (which becomes more stable with finer resolutions of the
order of a few tenths of GHz), especially for narrower bandwidths and more complicated shapes such
as the Chebyshev ones. The effect is clearly worse in the left panel compared to the right one, since
the bandwidth of channel LFT 40 is the narrowest.

2 ≤ ℓ ≤ 191 of interest for LiteBIRD [34]. We renormalize the likelihood at the peak of
the distribution and adopt a flat prior on r.

The procedure above corresponds to the case where the bandpass uncertainty affects
only the reconstruction of a specific channel, while being null in all the others. Although
not fully realistic, in this way we can easily estimate the bias on r due to the systematic
residual, CBB,res,j, in the considered frequency channel and then forecast the amount of
residuals allowed to meet the budget of ∆r < 6.5 × 10−6. As discussed above, in this first part
of the analysis we deploy this approach only to three reference channels; we then verify in
section 5.1 that using the same resolution for all channels leads to a similar level of residuals
and to ∆r < 6.5 × 10−6. A more conservative approach would have been to set the threshold
per channel to ∆r < 6.5 × 10−6/Nchannels, assuming that each channel contributes equally
to the total systematic residual. What we find is that the dominant contribution to the
systematic budget comes from the most extreme channels, so this conservative choice would
have resulted in too stringent requirements. Our choice is further justified a posteriori by
the findings in section 5.

We derive ∆r for 40, 140 and 402 GHz channels, three bandpass shapes and different
values of bandpass resolution (see figure 4 and table 1). We consider sampling resolutions of
0.2 GHz, 0.5 GHz, 1 GHz and 2 GHz. As expected, we observe that the coarser the resolution,
the worse is the reconstruction of the bandpass shape, especially for the Chebyshev shapes
and for bandpasses with narrower bandwidth (see figure 3).

• LFT 40: for the LFT 40 GHz channel, the systematic residuals exceed the limit for
resolutions ≳ 1.5 GHz for all the three bandpass shapes. The amplitude of residuals
is large because lowering the sampling resolution for channels with small bandwidth
results in a poor bandpass reconstruction; see figure 3. Moreover, the amplitude of the
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perturbation is between 1 and 2 orders of magnitude larger than in the case of an ideal
HWP, since the simulated LFT HWP Mueller matrix is quite far from ideality for the
lowest LFT channel (see figure 1).

• MFT 140: for the MFT 140 GHz channel, all the assumed resolutions seem appropriate,
for all bandpass shapes (see figure 4). The residuals due to degrading resolutions of
τs do not exceed the limit ∆r < 6.5 × 10−6. This is due to the fact that systematic
residuals, being dominated by foreground distortions (see eq. (2.6)), are relatively less
dominant in CMB channels. We repeated the same analysis in the case of an ideal
HWP, and the results are very similar to the non-ideal HWP case. In fact, the Mueller
matrix elements assumed for MFT are not as far from ideality as, e.g. the LFT ones.

• HFT 402: for the HFT 402 GHz channel, the residuals for top-hat and Chebyshev
order 5 shapes allow to meet the ∆r requirement for all the selected resolutions. In the
case of Chebyshev order 3 profile, we obtain, instead, ∆r > 6.5 × 10−6 for resolution
> 1.5 GHz. As it is found for the low-frequency case, for this frequency channel the
systematic effect is larger than in the case of an ideal HWP, due to the deviations of
the HFT HWP from ideality, see figure 1.

By combining the results obtained in the three different channels, we can conclude
that a sampling resolution ≲ 1.5 GHz is enough to meet the requirement on ∆r assigned
to this systematic effect.

4 Requirement on the bandpass measurement error

In this section, we compare the residuals corresponding to different measurement errors in
the bandpass τs assumed in the map-making. The analysis pipeline is the same detailed
in section 3. We perturb τs with a Gaussian distributed error with values of σ spanning
per mille to tens of percent uncertainty. To apply the measurement error, we follow this
procedure: we start from the high-resolution τ profile, we add a Gaussian error with σinput =
[0.005, 0.01, 0.03, 0.05, 0.1], and we then bin the perturbed bandpass to a lower resolution.
τs will be this lower resolution and perturbed bandpass. Due to this binning procedure, the
effective σ is rescaled by a factor

√
0.1/

√
(τs resolution), where 0.1 GHz is the resolution of τ .

In this part of the analysis, we want to assess the impact of the measurement error and
disentangling it from that of the sampling resolution, since we aim at deriving an independent
requirement for this effect. To this scope, we set τs to an optimal resolution, such that the
two effects can be considered as almost independent. We find this resolution to be 0.5 GHz.
In such a case, keeping fixed σ and the error realization, we indeed find a balancing of the
effects of bandpass shape distortions due to the coarser resolution (see figure 3) and the
smoothing of the error oscillations when degrading the resolution. Furthermore, for τs = 0.5
GHz the residuals are more stable to changes in bandpass error realizations compared to a
sampling resolution of 1 GHz.12 We have verified that, at the chosen resolution, the effect
of the measurement error is almost decoupled from the effect of undersampling: we have

12This is probably due to the fact that, having less data points at 1 GHz with respect to 0.5 GHz, we have
less oscillations and a stronger dependence on the specific bandpass error realization.

– 10 –



J
C
A
P
1
0
(
2
0
2
5
)
0
3
8

0.2 0.5 1 2
Resolution of s [GHz]

10 9

10 8

10 7

10 6

10 5

10 4
r

LFT 40

top-hat
cheby ord. 5
cheby ord. 3

0.2 0.5 1 2
Resolution of s [GHz]

10 10

10 9

10 8

10 7

10 6

10 5

r

MFT 140

top-hat
cheby ord. 5
cheby ord. 3

0.2 0.5 1 2
Resolution of s [GHz]

10 7

10 6

10 5

r

HFT 402

top-hat
cheby ord. 5
cheby ord. 3

Figure 4. ∆r as function of different values of τs resolution for the three reference channels considered.
We use blue dots for top-hat bandpass profiles, orange stars for Chebyshev order 5 and green crosses
for Chebyshev order 3. We conclude that, as a single requirement for all channels, a resolution ≲ 1.5
GHz is needed not to exceed the threshold ∆r = 6.5 × 10−6 (marked by the blue horizontal line).

repeated the analysis presented in this section using 0.5 GHz as original resolution for τ , such
that the only present systematic effect is due to the measurement errors. The results are
compatible with those shown in the following, thus justifying the choice of τs = 0.5 GHz and
of treating the resolution and measurement error effects as if they were independent. We
assume no correlation between the bandpass errors of different channels.

The results shown in figure 6 and table 2 are just for one bandpass error realization, but
we have repeated this test with few other realizations.13 After having applied the Gaussian
distributed errors on the different bandpass profiles, we renormalize them to have max(τs) =
1 (see figure 5). We have verified that such a renormalization procedure does not affect our
results, since the bandpasses appear always in a ratio (see eqs. (2.3))–(2.5).

As done in section 3.1, we derive ∆r for the three reference channels and the three
bandpass shapes, and explore here the different values of σ.

13We consider only few realizations for the computational cost of the analysis. When doing NILC component
separation in section 5.3 we use 50 different CMB + bandpass noise + map noise realizations, so we can test
the robustness of the requirements to the different bandpass error realizations.
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Resolution 0.2 GHz 0.5 GHz 1 GHz 2 GHz
∆r LFT 40,

top-hat 2.9 × 10−10 7.2 × 10−10 8.1 × 10−09 3.3 × 10−05

∆r LFT 40,
Cheby. order 5 2.0 × 10−09 7.8 × 10−09 1.1 × 10−07 3.8 × 10−05

∆r LFT 40,
Cheby. order 3 2.2 × 10−09 3.8 × 10−09 1.2 × 10−08 6.8 × 10−05

∆r MFT 140,
top-hat 1.1 × 10−10 1.0 × 10−10 3.6 × 10−10 1.6 × 10−08

∆r MFT 140,
Cheby. order 5 1.2 × 10−10 1.5 × 10−09 6.2 × 10−09 5.6 × 10−09

∆r MFT 140,
Cheby. order 3 8.4 × 10−10 2.1 × 10−09 1.9 × 10−08 9.2 × 10−08

∆r HFT 402,
top-hat 2.0 × 10−08 2.1 × 10−08 2.1 × 10−08 9.6 × 10−08

∆r HFT 402,
Cheby. order 5 5.5 × 10−08 5.2 × 10−08 7.7 × 10−08 6.8 × 10−08

∆r HFT 402,
Cheby. order 3 1.7 × 10−07 3.9 × 10−07 1.4 × 10−06 1.1 × 10−05

Table 1. Residual ∆r for the three test channels, the selected bandpass shapes and the different
resolutions. The values in red are higher than the threshold ∆r < 6.5 × 10−6.

• LFT 40 For the LFT 40 GHZ channel, all the residuals for σ < 0.1×
√

0.1/
√

0.5 = 0.045
are acceptable. Repeating this test with another bandpass error realization, we get
higher residuals and an acceptable σ < 0.05 ×

√
0.1/

√
0.5 = 0.022. This channel is

however not the main driver of a joint requirement on σ, as discussed below and shown
in figure 6.

• MFT 140 For the MFT 140 GHz channel, the residuals are acceptable for σ < 0.045,
especially for the top-hat and Chebyshev order 5 profiles (see figure 6).

• HFT 402 The HFT 402 GHz channel drives the most stringent constraints on σ: tests
done with different error realizations show that σ ≲ 0.02 ×

√
0.1/

√
0.5 = 0.0089 is

needed for this channel.14

The requirement on σ which is valid for all cases is σ ≲ 0.02 ×
√

0.1/
√

0.5 = 0.0089 (see
figure 6 and table 2). This will be used in section 5.2. Repeating these tests with a lower
resolution (1 GHz) shows higher residuals than what we have seen so far, but in general the
constraint of σ ≲ 0.0089 appears to still be valid also in this case.

14This requirement comes from selecting the middle point between 0.01 ×
√

0.1/
√

0.5 and 0.03 ×
√

0.1/
√

0.5
and not from a precise interpolation of the curves in figure 6. This approximate approach is used to avoid
relying on the interpolation of the results of one single realization.

– 12 –



J
C
A
P
1
0
(
2
0
2
5
)
0
3
8

100 120 140 160 180 200
 [GHz]

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
iss

io
n

MFT 140, bandpasses with error

( )
s( ), res. 0.5 GHz, = 0.02 
s( ), res. 1 GHz, = 0.03 

Figure 5. Example of bandpasses τs when perturbed by a Gaussian distributed error, with respect to
the unperturbed and high resolution τ (in blue). The bandpasses are renormalized, to have max(τs)
= 1. We show one case with resolution 0.5 GHz and σ = 0.02 (orange), and one with resolution 1
GHz and σ = 0.03 (green). They have two different bandpass error realizations.

This requirement is more stringent than the level of measurement statistical error of
the POLARBEAR bandpasses [26]. We will verify in section 5.3 that this σ requirement
can be relaxed up to σ ≲ 0.05 when using NILC.

5 Testing the requirements on the full LiteBIRD frequency configuration

After deriving the acceptable levels for bandpass shape, resolution and measurement precision
from the previous analyses, we proceed to compute the total ∆r when bandpass mismatches
which match the derived requirements are injected in all frequency channels. As before, the
residual maps for each channel are combined with wj , the weights for CMB reconstruction
obtained from the FGBuster method and referring to the foreground model d0s0, to mimic
a component separation procedure.

To derive the bias ∆r due to the residuals from all the frequency channels, we follow
the same procedure detailed in section 3.1, except for the residual power spectrum which
is computed as:

CBB,res
ℓ = CBB(

∑
j

(mj
res · mmask) · wj)/(fsky(Bmax

ℓ pℓ)2). (5.1)

where Bmax
ℓ is the beam of the channel with the largest FWHM (corresponding to LFT 040,

FWHM ∼ 80′), and all residual maps have been smoothed to this resolution. This is the
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Figure 6. ∆r for different values of Gaussian error, σ, present in τs (which has a resolution of 0.5
GHz), and for the three reference channels. The x-axis at the top shows the σinput values of the
Gaussian error applied to the bandpass with 0.1 GHz resolution, then binned down to 0.5 GHz (see
the text for more details). The

√
0.1/

√
0.5 factor takes into account the rescaling of the error in τs

due to the binning; the effective σ values are shown in the bottom x-axis. We use blue dots for top-hat
profiles, orange stars for Chebyshev order 5 and green crosses for Chebyshev order 3. We conclude
that, to satisfy the requirement across all frequencies, a σ ≲ 0.02 ×

√
0.1/

√
0.5 = 0.0089 is needed not

to exceed the threshold ∆r = 6.5 × 10−6 (marked by the blue horizontal line). This plot refers to one
specific bandpass error realization, but we have verified that the results are stable to the change of
realizations.

power spectrum of the co-added residual maps from all the frequency channels, which are
appropriately weighted by the corresponding foreground cleaning weights wj .

5.1 Testing the resolution requirement

In section 3 we find that the sampling resolution of the map-making bandpass τs needs to be
≲ 1.5 GHz. In this section we consider a resolution of 1 GHz, this being the most frequently
assumed sampling resolution, and a bandpass shape corresponding to the Chebyshev order
3 case, for which we get the most stringent requirements.
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σ 0.0022 0.0045 0.013 0.022 0.045
∆r LFT 40,

top-hat 2.1 × 10−09 4.2 × 10−09 1.1 × 10−07 3.3 × 10−07 2.2 × 10−06

∆r LFT 40,
Cheby. order 5 7.7 × 10−09 7.5 × 10−09 8.0 × 10−09 9.5 × 10−09 4.8 × 10−08

∆r LFT 40,
Cheby. order 3 1.3 × 10−08 7.3 × 10−08 7.8 × 10−07 2.1 × 10−06 9.9 × 10−06

∆r MFT 140,
top-hat 6.5 × 10−09 2.7 × 10−08 7.7 × 10−08 8.7 × 10−08 8.2 × 10−08

∆r MFT 140,
Cheby. order 5 3.7 × 10−09 6.2 × 10−09 2.2 × 10−08 5.0 × 10−08 1.6 × 10−07

∆r MFT 140,
Cheby. order 3 1.1 × 10−07 3.7 × 10−07 2.5 × 10−06 4.5 × 10−06 8.2 × 10−06

∆r HFT 402,
top-hat 4.9 × 10−08 1.5 × 10−07 3.0 × 10−06 1.2 × 10−05 5.9 × 10−05

∆r HFT 402,
Cheby. order 5 1.7 × 10−07 6.2 × 10−07 6.1 × 10−06 1.7 × 10−05 5.8 × 10−05

∆r HFT 402,
Cheby. order 3 1.6 × 10−06 3.9 × 10−06 3.2 × 10−05 1.2 × 10−04 7.1 × 10−04

Table 2. Residual ∆r for the three test channels, the selected bandpass shapes and the different
values of σ for the Gaussian error. The values in red are higher than the threshold ∆r < 6.5 × 10−6.

Applying this setting to all the LiteBIRD frequency channels, computing the total
residual power spectrum as in eq. (5.1) (see figure 7) and computing the likelihood in eq. (3.3),
we derive a bias ∆r = 6.5 × 10−7. This is well within the limit assigned to each systematic
effect. We can then conclude that a sampling resolution of 1 GHz is acceptable for the
instrument across the whole frequency range.

5.2 Testing the σ requirement

The requirement found in section 4 for the standard deviation σ of the bandpass Gaussian
measurement error is σ ≲ 0.0089. As done in the previous sub-section, we now check that
the requirement from the first restricted analysis is still satisfied when the perturbation is
injected to all frequency channels. We consider only one bandpass shape, the Chebyshev
order 3 profile, for which we have the most stringent requirements. The resolution of τs

is 0.5 GHz (as explained in section 4) and the Gaussian error is applied with σ = 0.0089.
We apply this setting to all LiteBIRD channels, using a different bandpass error realization
for each channel in order to account for different uncorrelated statistical errors affecting
the different bandpass measurements.

Figure 7 shows the residual power spectra for both the case with resolution 1 GHz
(described in the previous subsection) and the case with σ ≲ 0.0089. The residual in the
latter case is higher, which is also reflected in the bias on r.
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Figure 7. Total residual power spectra when using a resolution of 1 GHz (left) or a resolution of 0.5
GHz and a Gaussian error with σ = 0.0089 (right) for τs across all LiteBIRD’s frequency channels.
The blue curve is the fiducial + noise power spectra, the red one is the systematic residual power
spectrum and the orange dash-dotted line is the sum of the two.

The bias on r derived in this case is ∆r = 4.7 × 10−6, which is larger than the case
with resolution 1 GHz and no error, but still within the limit of ∆r = 6.5 × 10−6. We then
conclude that the requirement of σ ≲ 0.0089 (using a resolution of 0.5 GHz) is appropriate
for the whole LiteBIRD instrument.

5.3 Testing the requirements with blind component separation

As a final validation of our results, we apply an alternative component separation pipeline
on the perturbed simulations. We use the Needlet Internal Linear Combination (NILC) [35,
36]. The NILC technique performs a reconstruction of the CMB signal from the input
multifrequency dataset with minimal assumptions. Specifically, it combines the maps with
frequency- and pixel-dependent weights which allow to recover the blackbody signal with
minimum overall variance. To effectively tackle the different contaminants, this combination
is implemented separately at different angular scales by leveraging the framework of needlet
filtering [37]. Minimum variance techniques, as NILC, need to be applied on scalar fields,
therefore the simulated Q and U maps are converted into B modes through a full-sky
harmonic transformation.

To mimic a realistic data analysis scenario, the component separation step is performed
on mout/templ + mnoise, i.e. we add a white noise map for each channel on top of mout/templ.
We generate mout and mtempl with 50 different CMB and noise realizations to improve the
significance of the results. To test the robustness of both requirements derived in sections 3
and 4, we consider the case of a bandpass mismatch either due to just the sampling resolution
(with τs resolution = 1 GHz) or due to measurement uncertainties (with σ = 0.0089 and
sampling resolution τs = 0.5 GHz). In the latter case, together with the realization of CMB
and noise, we also vary the realization for the uncertainties of the bandpasses measurements.
To reduce the computing time to generate these maps, we halved the sampling rate of
the observations (from the LiteBIRD default, i.e., 19 Hz, to 9.5 Hz). We have checked
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that this approximation results in a effect on the maps smaller than the one caused by
the systematic under study (the impact of changing the sampling rate is about 5% of the
systematic residual at map level).

We thus derive the NILC weights for mout/mtempl associated to each channel j:
wNILC

j,out/templ. The residual power spectrum is computed as:

CBB,res,NILC
ℓ = CBB

∑
j

(mj
out · wNILC

j,out − mj
templ · wNILC

j,templ) · mmask

 /fsky(Bmax
ℓ pℓ)2, (5.2)

where mj
out/templ · wNILC

j,out/templ is the CMB + foreground (+systematics) residual from com-
ponent separation, without noise.

As done before, all maps have been brought to the resolution of the largest FWHM,
Bmax

ℓ . We use the same likelihood as in eq. (3.3), L(C̃BB,NILC
ℓ |CBB

ℓ (r) + CBB,noise
ℓ ), where:

C̃BB,NILC
ℓ = CBB,fid

ℓ + CBB,res,NILC
ℓ + CBB,noise

ℓ , (5.3)

and CBB,noise
ℓ is the power spectrum of the NILC noise residuals when applied to the dataset

with systematics mB
out.

The ℓ range used in this case is 2 < ℓ < 150, restricting the range to less than
3 × NSIDE − 1.15 This choice speeds up the component separation step without losing con-
straining power on primordial tensor modes in the B-mode power spectrum.

The overall degradation of the sensitivity on the tensor-to-scalar ratio ∆r̂ is computed
from the distribution of ∆ri for the different 50 realizations as [38]:

∆r̂ =
√

µ2
∆ri

+ Var[∆ri] =
√

⟨∆r2
i ⟩. (5.4)

where µ∆ri
is the average over ∆ri.

We obtain:

• for the case with sampling resolution 1 GHz: ∆r̂ = 1.1 × 10−9, their standard deviation
is std(∆ri) = 2.2 × 10−10;

• for the case with σ = 0.0089 and sampling resolution 0.5 GHz: ∆r̂ = 3.0 × 10−8, their
standard deviation is std(∆ri) = 2.5 × 10−8.

Such results demonstrate that derived requirements on sampling and bandpass uncertain-
ties fully match the LiteBIRD ∆r budget allocated per systematic effect when performing
a blind component separation analysis.

Since the NILC methodology has been proven to be effective in removing the systematic
residual, we proceed to check whether the requirement on σ can be relaxed.16 We simulate
other 50 CMB + noise + bandpass noise realization with larger uncertainties on τs (σ = 0.05)

15This is slightly different from what has been done in previous sections but we have verified that earlier
results do not change significantly when evaluating the likelihood between 2 < ℓ < 150.

16From the results of section 3 we expect also a resolution of 1.5 GHz (with no measurement errors) to be
acceptable. We do not repeat the analysis also for this case, since a resolution of 1 GHz would anyway be
more widely assumed for most studies and it should not be challenging to obtain in FTS measurements.
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and sampling resolution kept fixed to 0.5 GHz. Even in this case, after applying NILC and
following the procedure described in this section, we find ∆r̂ = 1.2 × 10−6 (std(∆ri) = 1.0 ×
10−6). This indicates that the requirement on σ can be relaxed to σ ≲ 0.05 when using
NILC. Such an outcome is aligned to findings of other similar studies [38] as non-parametric
component separation methods demonstrated to be more robust with respect to distortions
of the foreground components. In our case, despite the distortion of the CMB signal being
present in our set of simulations due to the bandpass uncertainty, it is subdominant with
respect to the foreground distortion in B modes.

6 Conclusions

In this work we study the effect of bandpass uncertainties (resolution and measurement error)
on the estimate of r, in the context of the LiteBIRD satellite and in the presence of a non-ideal
HWP. We derive requirements on the level of bandpass resolution and measurement error such
that the bias on r does not exceed the threshold of 1% of the budget allocated to systematic
errors, i.e. ∆r < 6.5×10−6 [13, 14]. These requirements are derived using only three reference
LiteBIRD frequency channels, due to the computational cost of our procedure, and for
three bandpass shapes (top-hat, Chebyshev order 5 and Chevyshev order 3). We consider
a foreground sky with non-spatially varying dust and synchrotron (the d0s0 PySM models).
The impact of more complicated models is deferred to future work. We find that resolutions
≲ 1.5 GHz and a Gaussian errors with σ ≲ 0.0089 (for a resolution of 0.5 GHz) produce
acceptable levels of map residuals and bias on r for all three channels and bandpass shapes.

In a second part of the analysis, we restrict ourselves to the bandpass shape producing
the most conservative results (Chebyshev order 3), and check that the derived requirements
are still viable when systematic effects are injected in all the LiteBIRD frequency channels.
We compute the residual maps from all channels corresponding to a sampling resolution of 1
GHz and to a measurement error with σ = 0.0089 (and resolution 0.5 GHz). In both cases,
we derive the total residual power spectrum and the corresponding bias on r: ∆r = 6.5×10−7

in the case with resolution 1 GHz (with no error) and ∆r = 4.7 × 10−6 in the case with
Gaussian error. Both cases are still below the threshold ∆r < 6.5 × 10−6.

We have also verified that the requirements are still valid when performing a blind
component separation (NILC) analysis. We have generated 50 different CMB, noise and
bandpass noise realizations for the two requirements and performed NILC component sep-
aration. We find that the component separation step is more effective than our simple
deprojection procedure, leading to 10−10 < ∆r < 10−7. Since NILC is so effective in cleaning
the systematic residual, we also did a test on 50 realizations with τs resolution = 0.5 GHz
and Gaussian error with σ = 0.05. Using NILC, we get ∆r̂ =

√
µ2

∆ri
+ Var[∆ri] = 1.2 × 10−6.

This suggests that the requirement on σ can be relaxed to σ ≲ 0.05 when applying NILC as
a component separation method, due to its robustness against systematic effects that mainly
distort the foreground components in the B-mode field.
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