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ABSTRACT

Context. Gamma-ray bursts (GRBs) are the most powerful explosions in the Universe; their energy release reaches us from the end of
the re-ionisation era, making them invaluable cosmological probes. GRB 230307A is the second brightest GRB ever observed in the
56 years of observations since the discovery of the phenomenon in 1967. Follow-up observations of the event at longer wavelengths
have revealed a lanthanide-rich kilonova with long-lasting X-ray emission immediately following the prompt gamma-rays. Moreover,
the gamma-ray light curve of GRB 230307A exhibits high amplitude variability, especially within the first 15 s.
Aims. We performed a timing analysis of the prompt emission of GRB 230307A collected with INTEGRAL’s SPectrometer of INTE-
GRAL AntiCoincidence Shield (SPI-ACS) and Fermi’s Gamma-Ray Burst Monitor (GBM).
Methods. We used Fourier analysis, wavelets, and Gaussian processes. We critically assessed all three methods in terms of their
robustness for detections of quasi-periodic oscillations (QPOs) in fast transients such as GRBs.
Results. Our analyses reveal QPOs at a frequency of ∼1.2 Hz (0.82 s period) near the burst’s peak emission phase, consistent across
instruments and detection methods. We also identify a second, less significant QPO at ∼2.9 Hz (0.34 s) nearly simultaneously. We
hypothesise that the two QPOs originate from the transition epoch at the end of the jet acceleration phase. These QPOs represent
plasma circulation periods in vorticity about the jet axis carried outwards to the prompt radiation zone at much larger radii. They are
sampled by colliding structures (e.g. shocks) in the spinning jet, possibly marking the evolution of plasma rotation during the final
stages of the progenitor neutron star coalescence event.

Key words. methods: data analysis – methods: statistical – gamma-ray burst: general – gamma-ray burst: individual: GRB 230307A

1. Introduction

The prompt emission of gamma-ray bursts (GRBs) in X-rays
and γ-rays shows a complex time evolution (see e.g. Pe’er 2015,
for an overview). Unlike supernovae with their well-ordered rise
and decay patterns, GRBs’ prompt light curves are extremely
variable on short timescales, with a broad diversity in their tem-
poral structure among the burst population. The origin of this
variability is still largely unknown. There have been numerous
studies of the minimum variability timescales, tvar,min, by various
groups, including rapid rise times. In studies with the Compton
Gamma Ray Observatory’s (GGRO) Burst And Transient Source
Experiment (BATSE) and with Fermi’s Gamma-Ray Burst Mon-
itor (GBM), tvar,min values around or shorter than a millisecond
have been reported in the 100 keV–1 MeV band (Walker et al.
2000; MacLachlan et al. 2013), though Golkhou et al. (2014)
suggests that these timescales may be underestimated. At the
higher energy, >100 MeV band accessed by Fermi’s Large Area
Telescope (LAT), the variability can still be on timescales of
less than a tenth of a second (Aldrich & Nemiroff 2024). Such
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tvar,min timescales yield estimates of the physical size of the GRB
emission regions typically on the scale of light minutes (i.e.
∼1 AU), and have provided clues about the presence of a struc-
tured, weakly magnetised jet (Camisasca et al. 2023).

Searches for periodic or quasi-periodic signals in prompt
GRB emission are particularly interesting, because the spe-
cific timescales implied by a quasi-periodic oscillation (QPO)
imposes strong constraints on the possible underlying emission
mechanism and can potentially constrain the central engine.
Some short GRBs have recently been identified as extragalac-
tic giant flares from magnetars, strongly magnetised neutron
stars (NSs) known for their extraordinary bursting behaviour
in X-rays and γ-rays (Roberts et al. 2021; Trigg et al. 2024).
Galactic giant flares exhibit both periodic oscillations associ-
ated with the NS’s rotation period, and QPOs associated with
torsional vibrations of the magnetar (Strohmayer & Watts 2005;
Israel et al. 2005). Kilohertz QPOs were seen in GRB 200415
(Castro-Tirado et al. 2021), indicating the nature of a magnetar
giant flare; these QPOs were subsequently identified as possi-
ble overtones of crustal oscillations using numerical simulations
(Sotani et al. 2023).
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Various QPOs have been claimed and contested in the lit-
erature in both long and short GRBs, using a range of differ-
ent statistical methods and tests, sometimes with contradictory
results. Of particular note is the contested detection in GRB
090709A, where a QPO was reported with a period of around 8 s
in Swift, Konus, Suzaku, and INTEGRAL data (Markwardt et al.
2009; Golenetskii et al. 2009; Gotz et al. 2009), but where sub-
sequently Cenko et al. (2010) showed that removing the over-
all trend from the light curve can lead to significant false pos-
itive detections, and similarly a reanalysis by de Luca et al.
(2010) also excluded a significant oscillation. Many studies
have focused on the very large catalogues of GRBs observed
with the CGRO/BATSE and Swift/BAT instruments. A system-
atic search for QPOs in 44 bright short GRBs observed with
Fermi/GBM, Swift/BAT, and CGRO/BATSE provided no detec-
tions (Dichiara et al. 2013) and, similarly, Liu & Zou (2024)
searched for QPOs in 532 short GRBs observed with BATSE
using Fourier-based techniques and reported no compelling
detections. Guidorzi et al. (2016) analysed 215 bright long
GRBs observed with Swift/BAT, and report three potential can-
didates, but at a low significance given the size of the sam-
ple. Conversely, Tarnopolski & Marchenko (2021) report on the
detection of 34 QPOs in the prompt emission of GRBs observed
with Swift/BAT using an approach based on wavelets, and
Chirenti et al. (2023) present two kilohertz QPOs in short bursts,
GRB 910711 and GRB 931101B, observed with BATSE. A sys-
tematic search for QPOs in precursors of both short and long
GRBs yielded no significant detections so far (Xiao et al. 2022),
except for a candidate in the Swift/BAT and Fermi/GBM obser-
vations of the precursor of the kilonova-associated long-duration
GRB 211211A (Xiao et al. 2024). Chirenti et al. (2024) report a
19.5 Hz oscillation in GRB 211211A, thought to be the result
of a merger between a NS and a black hole. Overall, the view
of QPOs in GRBs is somewhat unclear: different methods come
to different conclusions on the same datasets, and some detec-
tions have been contested on statistical grounds, leaving behind
an uncertainty about the robustness and reliability of the existing
detections.

Searches for QPOs in GRBs most often employ one of two
approaches (or sometimes both): Fourier analysis and wavelets.
Fourier periodograms have a long history across astronomy (e.g.
van der Klis 1989) and other areas of science in the detection and
characterisation of periodic and quasi-periodic signals, and are
thus well tested and well understood. As we detail more below,
however, Fourier periodograms struggle with non-stationary sig-
nals; that is, time series whose statistical properties change as a
function of time. In such cases, wavelets are often considered the
prime alternative for their ability to characterise time-variable
signals (e.g. Foster 1996). Recently, Gaussian processes (GPs)
have been presented as a possible alternative in QPO searches in
short transients (Hübner et al. 2022b), and have been explored
specifically for GRBs by Song & Mao (2024).

On March 7 2023 at 15:44:06.67 UTC, multiple space-
based γ-ray telescopes detected GRB 230307A (see e.g.
Fermi GBM Team 2023; Dichiara & Fermi GBM Team 2023b)
originating from the direction of the Magellanic Bridge.
The event’s T90 duration (Kouveliotou et al. 1993) was 41.5 s
(Sun et al. 2023); its gamma-ray fluence (10–1000 keV) reached
the level of 3× 10−3 erg cm−2 (Sun et al. 2023), making it the
second-brightest GRB ever observed. Further, a lanthanide-rich
kilonova coincident with the position and time of the GRB was
identified (Yang et al. 2024; Levan et al. 2024), indicating that
this event was due to a merger of two compact objects, rather
than the core collapse of an evolved star. Sun et al. (2023) per-

formed a comprehensive broadband spectral analysis and iden-
tified emission likely related to a magnetar1 central engine, sug-
gesting that a QPO search might reveal the magnetar’s spin
period.

In this paper, we present a thorough QPO search2 of
the prompt emission of GRB 230307A observed with both
Fermi/GBM and INTEGRAL’s SPectrometer of INTEGRAL
AntiCoincidence Shield (SPI-ACS). We applied all three major
QPO search methods: Fourier analysis, wavelets, and GPs. We
report on a candidate detection with a period of 0.82 s present
across instruments and detection methods, and a less significant
candidate with a period of ∼0.34 s. Beyond this specific search
for QPOs in this specific event, we also critically evaluated the
assumptions that each method makes of the data, and whether
these assumptions are fulfilled by GRBs more generally and this
event in particular. As we show, all of the currently available
statistical methods for QPO searches in GRBs and other short
transients make strong assumptions that are not supported by the
data: as a result, the differing assumptions made by each method
can lead to strong disparities in the significance of a candidate
signal and no clear, robust conclusion about the presence of that
signal.

In Section 2, we present the data used in this study. Section 3
presents our results using Fourier-based methods, Section 4 the
analysis of the same data using wavelet transforms, and Section 5
a QPO search using GPs. For all three techniques, we critically
evaluate the robustness of the method and the significance of the
candidate signals. Finally, Section 6 connects these candidates
with potential physical mechanisms, and considers the ability
of current methods to robustly detect and characterise quasi-
periodic signals in short transients.

2. Data

We analysed data collected with two γ-ray instruments: the
Anti-Coincidence Shield (ACS) of the spectrometer (SPI) on
board the INTErnational Gamma-Ray Astrophysics Laboratory
(INTEGRAL) and the Fermi/Gamma-ray Burst Monitor (GBM).
SPI-ACS provides GRB light curves above 80 keV with 50 ms
time resolution (von Kienlin et al. 2003)3. GBM detectors pro-
vide Time-Tagged Events (TTE) with a minimum readout capa-
bility of 2 µs in the 8–700 keV, 200–10 000 keV bands for the
GBM/NaI and GBM/BGO detectors, respectively. We analysed
data of two Fermi/GBM detectors (NaI 10 and BGO 1). All
remaining GBM detectors either had detector zenith to source
angles exceeding 60o or were blocked by other parts of the
spacecraft (Dichiara & Fermi GBM Team 2023a), thus not suit-
able for analysis.

For the GBM detectors, we used TTE data binned to 50 ms
time resolution. When binning the TTE data we corrected for
the detector deadtime (τ = 2.6 µs; Meegan et al. 2009) using the
nonparalysable formula:

n =
m

1 − mτ
, (1)

where n is the corrected count rate and m is the recorded
count rate (Knoll 2010). Deadtime introduces complex fea-

1 Magnetars are extremely magnetised, isolated NSs. Their spin peri-
ods are clustered in a narrow range from 0.5–12 s. (For a review on
magnetars, see Kaspi & Beloborodov 2017).
2 Code related to this paper is available at https://github.com/
dhuppenkothen/GRB230307A_QPOSearch
3 Data downloaded from https://www.isdc.unige.ch/
integral/science/grb#ACS
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tures into the periodogram, but is unlikely to strongly affect
our timing analysis on very long timescales compared to the
deadtime interval. At long timescales, nonparalysable deadtime
such as that observed from Fermi/GBM effectively reduces the
amplitude of any present signal (see, e.g. Bachetti et al. 2015;
Huppenkothen & Bachetti 2022).

INTEGRAL/SPI-ACS saturates above ∼1.8 × 106 counts/s
(e.g. Savchenko et al. 2024). We checked the INTEGRAL light
curve for bins that reach or exceed that saturation limit, and
found only two bins. To check the effect of these bins, we per-
form the analysis in Section 3 both with the unaltered data and
with a light curve where the two bins above the saturation limit
are replaced by the average of its neighbouring bins. This allows
us to perform a periodogram analysis, which requires evenly
sampled data without gaps. Similarly, we performed the wavelet
analysis in Section 4 both with the unaltered data, and with a
light curve that has the two time bins in question removed. We
find no appreciable differences between the results of the analy-
sis, and thus in this paper solely report the results derived using
the original light curve.

Due to the high count rates of the event, GBM TTE data suf-
fered data loss between 2.5 s and 7.5 s after the trigger time (bad
time interval, BTI; Dichiara & Fermi GBM Team 2023a), where
the data packets are lost due to the bandwidth limit between the
instrument and the spacecraft. With this caveat in mind, we pro-
ceeded by analysing the full light curves for both Fermi/GBM
and INTEGRAL/SPI-ACS, as well as light curves where the
BTI has been excised (where the methodological approaches
described below allow for light curves with gaps). We converted
all photon arrival times to the solar system barycenter to align the
observations and remove any potential effects due to spacecraft
orbital motion.

To determine the background level for each instrument,
we fitted a linear function to data segments in the pre-burst
(−25 to −5 s) and post-burst (100 to 120 s) intervals using the
entire energy range. Then, we subtracted the background level
from each corresponding time series to obtain the background-
free burst data. While the T90 duration of this burst is 41.5 s
(Sun et al. 2023), we performed the search in the 0–60 s inter-
val to capture any variability in the remainder of its gamma-ray
emission phase. Figure 1 (left panels) shows the light curve of
the kilonova-associated GRB, which exhibits high degree of flux
variability, motivating us to search for possible periodic or quasi-
periodic modulations in the light curves of this event.

3. Fourier-based methods and analysis

The most common standard method of searching for peri-
odic and quasi-periodic signals in astronomical data uses the
Fourier transform. An introduction into the formalism and sta-
tistical background can be found in van der Klis (1989) and
Bachetti & Huppenkothen (2023). We produced periodograms
for the full GRB light curve for each instrument, normalised
using the formalism by Leahy et al. (1983), and show the peri-
odograms in Figure 1 (bottom row of panels). The periodograms
show a high amount of excess power above the Poisson noise
level across the entire frequency range we probed, and in partic-
ular a set of broad, prominent features in all three instruments
peaking near 0.45, 0.6, and 1.2 Hz.

3.1. Search for (quasi-)periodic oscillations

We followed the approach introduced by Vaughan (2010),
adapted to transients by Huppenkothen et al. (2013), and imple-

mented in the stingray Python library (Huppenkothen et al.
2019; Bachetti et al. 2024) to search for periodicities and nar-
row QPOs. First, we fitted a model for the broadband timing
variability at frequencies below 10 Hz. We chose between a sim-
ple power law and a broken power law by applying a like-
lihood ratio test (LRT). The LRT was calibrated using sim-
ulations from the simpler model, drawn from the posterior
for the parameters of the power law model. We chose uni-
form priors between 0 and 5 for the power law indices, and
wide, log-uniform priors for the normalisation of the model,
and for the break frequency. We sampled the power law model
using Markov chain Monte Carlo, implemented in the package
emcee (Foreman-Mackey et al. 2013), and checked visually and
through computation of the autocorrelation time whether the
chains had converged. We then simulated 1000 periodograms
from the posterior, and computed the LRT for each, in order to
compute a tail probability (p value) for the observed LRT. For
all three datasets, p > 0.05, suggesting that the null hypothesis
(a power-law model) cannot be rejected.

We subsequently simulated another 1000 periodograms from
the posterior for this model, performed a maximum likelihood fit
of the power-law model for each, and computed the highest out-
lier in each periodogram. The null hypothesis that the maximum
power in the observed periodogram can be explained by intrin-
sic, non-periodic variability can be rejected if the tail probabil-
ity for the observation based on the sample of simulated highest
outliers is small. For all three instruments, this null hypothesis
cannot be rejected (p > 0.05).

Outlier detection methods are most powerful when the puta-
tive signal is concentrated in a single frequency bin, as is the
case for a very narrow QPO or a strictly periodic signal. As is
shown in Figure 1, the peaks visible below 1.5 Hz are distributed
across multiple frequencies. To search for these signals, we per-
formed another LRT, but comparing the power-law model for the
broadband noise with one that also includes a Lorentzian com-
ponent to model a putative QPO. As for the power law, we used a
wide, log-uniform prior for the Lorentzian’s normalisation and a
log-uniform prior across the entire frequency range of the spec-
trum for the Lorentzian centroid frequency. We parametrised the
Lorentzian’s width in terms of the quality factor, q = νc/∆ν,
where the quality factor is defined as the ratio between the cen-
troid frequency and the full width at half maximum (FWHM),
and applied a uniform prior between 2 and 100. We compared
that LRT with those calculated for periodograms simulated from
the null hypothesis (only the power law).

For all three instruments, we confidently reject the null
hypothesis with p < 0.001, with a putative QPO detection at
1.2 Hz (see Figure 2 for details for the INTEGRAL data; addi-
tional figures for the NaI and BGO data are in Appendix A,
Figures A.1 and A.2). This is somewhat unsurprising: the null
hypothesis involves a stochastic process where powers in neigh-
bouring bins are statistically independent. It is obvious from the
periodograms that this is not the case here: for the peaked struc-
tures in the periodogram, where neighbouring bins are clearly
correlated in some way, it would make sense that the LRT
highly favours a model with a Lorentzian. Adding a second
Lorentzian component to the model and comparing that model
with the power law and single Lorentzian also yields a sig-
nificant rejection of the latter model in the INTEGRAL data
(p = 0.006), but not in the Fermi/GBM NaI (p = 0.033) or
Fermi/GBM BGO detectors (p = 0.199). We found includ-
ing additional Lorentzians beyond two challenging in prac-
tice, even when exploring a wide range of starting parame-
ters. Often, these components would optimise to local min-
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Fig. 1. Top: Light curves of GRB 230307A in 50 ms temporal resolution as seen with SPI-ACS (left panel), and the brightest GBM NaI and BGO
detectors; NaI 10 (middle panel) and BGO 1 (right panel). The time is in seconds since the trigger time. The orange area within the lower plots
marks the time interval of 2.5 to 7.5 s, for which the GBM team issued a warning for possible data problems. Bottom: Fourier periodograms
corresponding to the GRB light curves on the top. We show both the unbinned periodogram (black) and the log-binned periodogram (blue). Note
that for the Fermi/GBM data, these do include the segment for which a warning was issued. All three periodograms contain strong variability above
the instrumental noise limit at all frequencies considered here, and show peaks on top of the broadband variability present across all frequencies
in the periodogram.

ima and very broad, flat features as part of the broadband
variability.

Overall, Fourier analysis suggests that there exist at least
one, and possibly two QPOs in the data. We sampled the poste-
rior for both QPO components along with the power law model
for all three instruments in order to obtain credible intervals on
the QPO properties. For INTEGRAL, we find a centroid fre-
quency of the first QPO components of ν1 = 1.217+0.0281

−0.027 Hz

and a FWHM of ∆ν1 = 0.094+0.093
−0.059 Hz, corresponding to a qual-

ity factor of ν1/∆ν1 = 12.9. Parameter estimates for the BGO
data are consistent, while the results for the NaI data suggest a
larger FWHM, ∆ν1 = 0.32+0.21

0.16 Hz (though we note the substan-
tially larger errors on the NaI result). For the higher-frequency
QPO in the INTEGRAL data, we find a centroid frequency of
ν2 = 2.987+0.083

−0.035 Hz and fairly large credible intervals for the
QPO width, ∆ν2 = 0.120+0.133

−0.095 Hz.
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Fig. 2. Left: Fourier periodogram of the INTEGRAL data with posterior draws from the three models compared via LRTs: in green, the power
law model; in blue, a power law model with a Lorentzian component for a single QPO; in orange, a model comprising a power law and two
Lorentzians. Middle: Distribution of the likelihood ratios from 1000 simulated periodograms. The likelihood ratio for the observed periodogram
is a clear outlier. Right: Same as middle panel, but for the model with two QPOs. Again, the observed likelihood ratio is a clear outlier compared
with the null hypothesis (a single QPO).

To check for any energy dependence of the QPOs, we gen-
erated Fermi light curves in different energy ranges: 8−40 keV,
40−200 keV, and 200−700 keV for the NaI detectors, and
200−700 keV, 700−3000 keV and 3000−10 000 keV for the
BGO detectors. The shared energy band between the two GBM
detectors serves as a useful cross-check for consistency. Since
the SPI-ACS detector does not record the energy of incoming
photons, we cannot perform a similar analysis on the Integral
data (von Kienlin et al. 2003). For the Fermi/GBM light curves,
we find that the fractional root mean square (rms) amplitude
of the QPO at 1.2 Hz is strongly energy-dependent (Figure 3,
increasing from ∼16% to ∼88% from the lowest to the highest-
energy band). This behaviour persists across the detectors, and
the fractional rms amplitude for the overlapping band is consis-
tent within statistical uncertainties. Because of the lower signifi-
cance, and the wide credible intervals on the QPO width for the
second QPO in the Fermi/GBM data, we did not perform a sim-
ilar analysis for the potential QPO candidate at 2.9 Hz.

The increase in the rms amplitude with energy band might
well be expected for a wide array of physical emission mecha-

nisms. The time variability of the flux at different energies will
naturally couple to spectral variability: the spectral shape will
likely not be preserved as the flux goes up and down, and at
energies where the spectrum is steeper, fluxes are likely to vary
more. This effect is most pronounced if the break energy varies.
When this happens, the fractional changes in fluxes are likely
to be greater at a fixed photon energy above the break than at a
fixed energy below the break where the spectrum is flatter. For
this burst, Band model fits (see e.g. Table 2 of Dichiara et al.
2023) indicate that the break energy Ebr ∼ 635−970 keV and the
spectral indices α (below Ebr) and β (above) all vary substan-
tially over the time interval pertinent to the QPO analysis. Thus,
fluctuations in Ebr are likely to lead to a higher RMS amplitude
for QPOs above this energy than below it.

3.2. Assumptions and limitations

The Fourier-based methods used in this section are well tested
and well understood in the context of periodicity and QPO
searches in astronomical light curves. As has been described
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Fig. 3. Fractional rms amplitude as a function of photon energy for the
two Fermi/GBM detectors.

in van der Klis (1989) and Bachetti & Huppenkothen (2023), we
understand the statistical properties of periodograms of stochas-
tic processes observed with X-ray and gamma-ray instruments
very well. However, these methods make specific assumptions
that are a challenge in QPO detections in fast transients such as
GRBs. In particular, one assumption that underpins the analysis
above is that of weak stationarity. Weak stationarity (or wide-
sense stationarity) assumes that the mean of the process and the
autocovariance of the process do not change as a function of
time. This is generally true in the context of X-ray binaries and
active galactic nuclei over the timescales of interest for QPO
searches, where many of these methods are routinely applied
successfully. However, it is obviously not true for short tran-
sients: by definition, they have a beginning and an end, and as
in the case of this GRB, may show very significant changes in
the variability as a function of time. As is shown in Hübner et al.
(2022a), a key consequence of this non-stationarity is that pow-
ers in neighbouring bins are no longer statistically independent.
Any method that relies on that independence, as the ones above
do, will tend to overestimate the significance of any candidate
signal.

The mismatch between the model above and the data con-
sidered here is easily illustrated by generating periodograms
from the posterior for the parameters of the model with two
QPOs, and simulating light curves from those periodograms
using the method in Timmer & König (1995). We show the
results in Figure 4. The mismatch between the GRB and the pro-
cess assumed for both the overall variability and the possible
QPO is immediately obvious: while a stationary stochastic pro-
cess can still display large-amplitude variability, the properties
of this variability do not change as a function of time, whereas
for the GRB they do.

One possible solution to the above problem could be to de-
trend the light curve. This would entail fitting a model to the
overall shape of the burst, subtracting the best-fit model, and then
continuing with the Fourier analysis assuming the residuals fol-
low a stationary stochastic process as assumed by the statistical
methods above. However, this approach also comes with a range
of challenges. First and foremost, it assumes that the observed
light curve can be neatly separated into an overall burst shape
and a stationary stochastic process. This may be the case, but
the presence of variability from the stochastic process will sig-
nificantly bias the fit to the overall burst, and thus also intro-
duce biases into the residuals that again lead to a departure from
the statistical assumptions of the method. Additionally, remov-

ing an overall trend generally removes power from the smallest
frequencies in the periodogram. As Cenko et al. (2010) showed,
doing so may lead to artefacts in the periodogram of the residu-
als that can mimic a QPO, and thus lead to spurious detections, a
result recently confirmed by Song & Mao (2024). Finally, in this
particular case, it is unlikely that detrending will solve the under-
lying problem. In all three instruments, the amplitude of the vari-
ability appears to be time-dependent; that is, the amplitude of the
variability in the first ten seconds or so is significantly larger than
twenty seconds after the burst. Thus, removing an overall trend
will not yield residuals that can be modelled with a stationary
stochastic process. We thus did not proceed with detrending.

4. Wavelets

A common method applied to short bursts and other astronom-
ical transients is the wavelet transform (e.g. Hurley et al. 1998;
Morris et al. 2010; Golkhou et al. 2014), a generalisation of the
Fourier transform to a wider range of basis functions beyond
sines and cosines. Crucially, most common wavelet functions
are localised in both time and frequency. As a result, they do
not require stationarity and are often used, for example, to detect
time-dependent periodic and quasi-periodic signals.

4.1. Search for (quasi-)periodicities

We performed a wavelet transform with the Python library
PyWavelets (Lee et al. 2019) using a complex Morlet wavelet,
defined as

ψ(t) =
1
√
πβ

exp
(
−

t2

β

)
exp (2πiνct), (2)

where β is the bandwidth and νc is the centre frequency. The
bandwidth, β, describes the spread of power in the frequency
domain (corresponding to a time decay in the time domain). The
centre frequency, νc, should be chosen near the frequencies of
interest to be explored using the wavelet transform. The complex
Morlet equation above describes a complex exponential win-
dowed by a zero-centred Gaussian, with a width set by

√
β/2.

We chose a centre frequency of νc = 1.5 Hz, broadly in the range
where we expect to see signals based on the periodogram, and
a bandwidth of β = 10, corresponding to around 20 rotational
cycles. We show the two-dimensional wavelet transform and the
one-dimensional wavelet periodogram for the INTEGRAL data
in Figure 5.

The two-dimensional wavelet transform (or spectrogram)
shows strong power at the lowest frequencies, and also clearly
shows the candidate signal at 1.2 Hz. The candidate signal at
2.9 Hz, however, is less visible, though there are some faint
structures at higher frequencies. All power is concentrated early
in the light curve, suggesting that any signal is transient and only
present in the first ∼10–20 seconds. The wavelet periodogram
(Figure 5, right panel) is very consistent with the Fourier peri-
odogram, as expected for this kind of wavelet.

Estimating significance in wavelet spectrograms is gener-
ally a challenging task. The standard approach in the literature
(e.g. Ghosh et al. 2023) takes a variability model (often a power-
law-like red noise model or equivalent) and generates simulated
light curves from this model, and significance is then deter-
mined using per-bin outlier tests comparing the observed wavelet
power in a bin to the distribution of simulated wavelet power in
the same bin. We followed this approach and simulated 20 000
light curves from the posterior for the power law model gener-
ated in Section 3 using the approach in Timmer & König (1995),
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Fig. 4. Left: INTEGRAL light curve of GRB230307A (black), with three random light curves generated from the stochastic process used in the
QPO detection methods outlined in this section (orange). The GRB has a well-defined beginning and an end, in between which there exists rapidly
changing variability. The simulated light curves also contain variability at a high amplitude, but the overall process does not change throughout
the light curve. This is expected for a stationary stochastic process. Right: Periodogram of the INTEGRAL data (black) and of the simulated
light curves (orange). While the periodogram of the GRB exhibits peaks formed by excess power in correlated neighbouring frequency bins, the
periodograms of the stochastic process contain – by design and construction – powers that are statistically independent.

Fig. 5. Left: 2D wavelet transform (spectrogram) of the INTEGRAL observation of GRB230307A. The transform shows transient power at low
frequencies in the first ∼20 seconds or so of the burst, where the variability is particularly strong. It also shows a short, transient signal between
0−10 s at 1.2 Hz, similarly to what was identified in the Fourier periodogram. The candidate signal at 0.32 Hz identified in the Fourier periodogram
is less apparent here. Right: Fourier periodogram (black) and wavelet periodogram (blue) with the candidate signals found in the Fourier analysis
noted as dashed orange lines. The Fourier and wavelet periodograms largely match.

and subsequently produced wavelet spectrograms for each sim-
ulated light curve in the same way as for the real data. We then
computed 99.99% percentiles for each time-frequency bin, and
identified those bins where the observed wavelet power exceeds
the 99.99% percentile derived from the simulations. We per-
formed this analysis independently for each dataset (i.e. INTE-
GRAL, Fermi/GBM NaI and BGO detectors), using their
individual posterior distributions for the power law model. The
results are presented in Figure 6. This approach clearly identifies
regions in the spectrogram where the observed wavelet power
is an outlier compared to the simulations with p < 0.0001. In
all three instruments, the candidate signal at 1.2 Hz is clearly
detected, and present only in the first ∼10 s or so of the burst.

In Fermi/GBM, this overlaps with much of the interval flagged
by the Fermi/GBM team for potential data issues (BTI). How-
ever, we also note the similarity of the period, width and tempo-
ral extent of the signal in all three instruments, which may sug-
gest that these data issues do not significantly affect the detec-
tion of the QPO. We find a weaker area of significance at the
candidate signal around 2.9 Hz identified in the Fourier analy-
sis. This, too, is highly localised to a small segment of the over-
all burst within the first ∼5 s after the trigger, though we also
note that the signal evolves temporally to a higher frequency
with time in all three instruments. There are additional small
regions where bins exceed the significance threshold, but we
find that these are not consistent in time or frequency across
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Fig. 6. Wavelet spectrograms for GRB 230307A for all three instruments. In all three, we find significant power at the lowest frequencies, as well
as power at 1.2 Hz. In white contours, we overplot the 99.99% percentiles. In the Fermi/GBM data, we mark the segment flagged by the Fermi
team for potential data issues as the shaded region.

the three instrument, and thus consider them likely spurious
candidates.

The results presented in Figure 6 constitute single-trial p val-
ues, and are thus not corrected for the number of trials. Estimat-
ing the number of trials for a wavelet spectrogram is challeng-
ing because for all but very specific choices of frequency and
time resolution, neighbouring bins in the spectrogram are not
statistically independent. In addition, a trial-corrected p value
calculated using the approach above would require millions of
simulations given that we would need to correct for 76 680 fre-
quency bins (making the conservative but incorrect assump-
tion of statistical independence), which is computationally
prohibitively expensive. The fact that there are patches of signifi-
cance rather than individual pixels does not necessarily constitute
additional evidence for the existence of a QPO: because neigh-
bouring bins are not statistically independent, observing patches
of high significance can be a result of that lack of independence,
rather than evidence for the existence of a real signal.

We also performed the most conservative possible estimation
of significance, and compared the single bin with the highest
wavelet power to the distribution of the highest wavelet power
found across all simulations, and found that, using this metric,
none of the candidate QPOs are significant (p = 0.1 for both
INTEGRAL and Fermi/GBM NaI data, respectively; p = 0.075
for the Fermi/GBM BGO data). However, we note that this is
likely too conservative, because it does assume statistical inde-
pendence of spectrogram bins.

Finally, we used the simulations to compute single-trial
significances in the wavelet periodogram integrated over time
(Figure 7). This analysis is similar to the Fourier periodogram
in that integrating over the time dimension means we lose the
advantage of time-dependent modelling of the wavelet spec-
trogram. Calculating single-trial significances at a significance
threshold of p < 10−4 corresponds to a trial-corrected signif-
icance threshold of p < 0.012, or approximately 3σ. We find
that in agreement with the results from the Fourier analysis, the
candidate QPO at 1.2 Hz is above this 3σ threshold in all three
instruments, whereas the 2.9 Hz signal only reaches 3σ in the
Fermi/GBM BGO data.
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Fig. 7. Wavelet periodograms (black) and red noise simula-
tions (orange) for all three instruments (top: INTEGRAL; middle:
Fermi/GBM NaI; bottom: Fermi/GBM BGO). The wavelet peri-
odogram corresponds to the 2D wavelet spectrogram integrated over
the time axis. In orange, the posterior mean derived from 1000 sim-
ulated wavelet periodograms, along with 10 posterior draws from the
power-law stochastic model sampled in Section 3. In blue, we show
the 99.99% single-trial detection limit. The candidate QPO at 1.2 Hz
exceeds that limit for all three instruments, while the candidate QPO
at 2.9 Hz exceeds this limit only for the Fermi/GBM BGO data. Note,
however, that integrating over the time axis will necessarily yield lower
significances given the short-lived nature of both candidate signals in
the wavelet spectrogram.
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4.2. Assumptions and limitations

A key limitation of the wavelet-based method is the challeng-
ing determination of significance and the number of trial correc-
tion in the presence of correlated frequency- and time-bins. In
the analysis above, we have stated both single-trial significances
as well as results for the most conservative possible assump-
tion (that all bins are statistically independent), which will vastly
decrease sensitivity of the QPO detection. The truth likely lies
somewhere in the middle. Given the persistence of the signal at
1.2 Hz in the wavelet periodogram and its consistency with the
Fourier analysis, we consider this to be a strong candidate for a
QPO. The putative signal at 2.9 Hz is a little less clear: it, too,
is present in all three wavelet spectrograms, but with less con-
sistency than the 1.2 Hz signal. Additional power in the wavelet
periodogram is inconsistent between the three instruments, and
we consider these likely to be statistical artefacts. We note that
a fraction of the 1.2 Hz signal falls into the segment flagged as
subject to data quality issues in Fermi/GBM. However, given the
consistency of the signal in Fermi/GBM and INTEGRAL, and
that a part of the signal is present before the BTI, we suggest
that the relevant data issues have not significantly impacted the
detection of the QPO.

There is, however, a somewhat more fundamental open chal-
lenge with the analysis above. While wavelet transforms are bet-
ter suited to the detection of transient signals, and especially
of transient periodic signals, we still must compare them to a
model parametrising the null hypothesis. Here, we followed the
standard analysis for QPOs with wavelets in the literature and
used the same stochastic power-law-shaped process as defined in
Section 3. This means that irrespective of the transform applied
to the data (and simulations), the same caveats nevertheless
apply: a stationary stochastic process is not a good representa-
tion of the underlying data (see also Figure 4), which in turn
will affect the trustworthiness of the significances derived using
simulations generated from this process.

This is also the reason why we do not combine p values for
the three instruments for any of the analysis methods consid-
ered in this paper: doing so is only permissible if the assump-
tion of independence holds. Here, this assumption holds only
for instrumental noise, which will be generated independently in
each detector, but not for stochastic variability in the GRB itself,
which is produced at the source. To derive more reliable signif-
icances requires a more realistic, non-stationary model for the
data, which we define in the next section.

5. Gaussian processes

We searched for QPOs in the time domain using the
method developed in Hübner et al. (2022b) based on GPs (e.g.
Williams & Rasmussen 2006; for an introduction to GPs in
astronomy, see Aigrain & Foreman-Mackey 2023). In short, the
method directly models the light curve as a combination of a
non-stationary trend function parametrising the overall shape of
the burst and combines this with a stochastic process to model
variability on top of this trend function. Through Bayesian model
comparison, different classes of models (e.g. different types of
trend functions) can be compared. This model can take into
account the non-stationary nature of a burst in a more princi-
pled way through the trend function, though we note that we
can currently not yet implement a nonstationary QPO except in
some simple forms described in Hübner et al. (2022b). Due to
the exceptionally bright nature of this GRB, the Gaussian mea-

Table 1. Prior distributions for the model parameters.

Parameter Meaning Distribution
tp peak of the skew-Gaussian U(0, 60)
log(Am) log-amplitude of the skew-Gaussian U(5, 15)
log(σrise) log of the rise time of the skew-Gaussian U(−1, 3.5)
log(σfall) log of the fall time of the skew-Gaussian U(1, 4.0)
log(νc) log of the QPO centroid frequency U(log(1), log(3))
log(AQPO) log-amplitude for the QPO U(2, 40)
log(CQPO) log-width for the QPO U(−20, 40)
log(ARN) log-amplitude for the red noise U(2, 40)
log(CRN) log-width for the red noise U(−20, 40)
log(α) logarithm of the AR parameters U(−20, 20)
log(β) logarithm of the MA parameters U(2, 20)

Notes.U(a, b) corresponds to a uniform prior distribution between lim-
its (a, b). The first four parameters describe the skew-Gaussian mean
function, followed by three parameters describing the QPO, and finally
two parameters describing a DRW stochastic process. We also include
priors for the CARMA(2,1) model considered in Section 5.4.

surement uncertainties for the data assumed in GPs are broadly
applicable.

The approach chosen here appears similar to detrending, but
has the advantage that it can take into account uncertainties in
the parameters of the detrending function. It can also correctly
account for correlations between the parameters of that function
and the variability not modelled by the trend function. By simul-
taneously considering both the trend function and the variability
on top of it, we can derive appropriately unbiased estimates of
the trend function, and take into account uncertainties in that
estimate, as well as correlations between the parameters of the
trend function and the stochastic process.

We chose a skew-Gaussian function4 as a trend function,
defined as

f (t) = A


exp

(
−(t−tc)2

2σ2
1

)
t < tc

exp
(
−(t−tc)2

2σ2
2

)
t ≥ tc.

(3)

The skew-Gaussian function provides a flexible model for
the asymmetric, approximately exponential rise and decay of
the burst. We compared two stochastic processes: one model
parametrises a damped random walk (DRW), the second that
same DRW combined with a QPO parametrised as a stochasti-
cally driven damped harmonic oscillator. The DRW, also known
as an Ornstein-Uhlenbeck process or an autoregressive (AR)
process of order 1 (AR(1)) is a fairly simple stochastic process
that parametrises the flux at time t + 1 in terms of the flux at
the previous time, t, and a random component. In Section 5.4,
we consider higher-order AR moving-average processes as an
alternative to this process.

We implemented wide, uninformative priors reflecting our
lack of prior knowledge in most of the model parameters (see
Table 1). Many relevant parameters depend on the properties of
the data: amplitudes depend on the sensitivity of the instrument,
and the frequency range we can search depends on the length
of the GRB. For those parameters, we set priors that reflect the
ranges we can reasonably expect to see in our data. Priors on
parameters for the trend function and the DRW that exist in both
the model with and without QPO are the same for both.

We constructed each model using the GP library tinygp
(Foreman-Mackey et al. 2023) and sampled the posterior using

4 Note that we use this here as a functional form, rather than its usual
use as a statistical distribution.
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Fig. 8. Left: SPI-ACS light curve (black points) in units of counts per 0.05 s bin, the predicted rates from the maximum a posteriori combined
model consisting of the mean function, the stochastic process and a QPO (blue), and posterior draws from the mean function (orange). Right:
Posterior probability density for the QPO centroid period.

nested sampling, implemented in the Python package jaxns
(Albert 2020), with 2000 live points. We compared the two mod-
els using the Bayes factor,B21, for the model with a QPO (model
M2) versus a model without (modelM1). In logarithmic form,
a positive value for log10(B21) can be interpreted as evidence for
the presence of a QPO component, whereas a negative Bayes
factor can be interpreted as evidence against. The significance
of the Bayes factor was calibrated using the common scale by
Kass & Raftery (1995), which considers log(B21) > 2 as deci-
sive evidence for model M2 (more information on the method,
including simulations to calibrate its ability to detect QPOs, can
be found in Hübner et al. (2022b)).

5.1. SPI-ACS GP QPO search

Comparing GP models with and without QPO yields a highly
significant signal centred at the frequency of 1.21± 0.01 Hz
with a Bayes factor of log10(B21) = 3.70, indicating deci-
sive evidence for the presence of a QPO component in the
data (Kass & Raftery 1995). The posterior distribution for the
QPO’s centroid frequency is narrow and unimodal, and the sig-
nal is fairly coherent, with a quality factor log(q) = 2.63+1.18

−0.82,
corresponding to q ' 13, highly consistent with the estimate
from the Fourier analysis. We present the corresponding pos-
terior period distribution in the right panel of Figure 8, which
peaks at 0.82± 0.01 s. Overall, the posterior distributions are
well-constrained for both M1 and M2 (see the corner plot in
Figure A.3 in Appendix A, generated with the Python package
corner (Foreman-Mackey 2016)), and uncertainties in the indi-
vidual evidences used to compute the Bayes factor are small
(∼0.1). The sampling results are stable across multiple runs and
the Bayes factor remains significant even when changing the
uninformative priors significantly.

Even though the SPI-ACS data are not affected by the same
instrumental issues during the brightest intervals of the GRB as
Fermi/GBM is, we repeat the analysis with the Fermi/GBM BTI
excised, in order to directly compare results across instruments,
under otherwise identical conditions (i.e. with the same priors
and nested sampling settings). We find evidence of a strong QPO
in this light curve as well (Figure 9), but a different frequency

broadly consistent with the second candidate signal found in the
Fourier and wavelet representations: ν0 = 2.880± 0.001 Hz, cor-
responding to a period of 0.347 s. The signal’s significance is
B21 = 3.99 ± 0.1, indicating a decisive preference for the model
with a QPO. As with the full dataset, this result is stable across
nested sampling runs and when varying the already very wide
priors. The signal has a high quality factor, log(q) = 4.77+0.57

−0.52,
indicating that the signal is quite coherent. We note that while
this period is much shorter, it does not correspond to a harmonic
of the signal detected in the full data.

The wavelet representation suggests that much of the 1.2 Hz
signal is covered by the BTI, and thus excised from the light
curve along with that BTI. On the other hand, the candidate QPO
at 2.9 Hz in the Fourier and wavelet representations is concen-
trated into a short interval before the BTI. When considering a
model containing only one QPO, it makes sense that the poste-
rior will be concentrated on the stronger of the two signals. When
considering the whole light curve, this will be the 1.2 Hz QPO.
However, removing the BTI, and much of the 1.2 Hz QPO with
it, yields a light curve requiring a model with a QPO at 2.88 Hz.

5.2. Fermi/GBM GP QPO search

We performed a similar analysis with the data of both NaI
(na) and BGO (b1) detectors. For each, we modelled the full
light curve – including BTIs – with both M1 and M2, and
found results that are highly consistent with the SPI-ACS data
(see Figure 10). Both light curves show highly significant
QPOs, with Bayes factors of log10(B21) = 2.12 (NaI detec-
tor) and log10(B21) = 4.68 (BGO detector). In both, the pos-
terior probability density for the period is very constrained,
PNaI = 0.825+0.07

−0.02 s and PBGO = 0.826 ± 0.009 s. The distribu-
tion for quality factors for the NaI data is somewhat broader,
log(q) = 2.37+1.52

−3.47, reflecting a broader period posterior, but
again we see very high coherence of the signal in the BGO detec-
tor, log(q) = 3.34+1.51

−1.16.
The strong consistency between the results for SPI-ACS and

Fermi/GBM leads us to conclude that the data loss likely did
not significantly impact the timing results. We note that the
period posterior for the NaI detector shows a minor mode at
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Fig. 9. Re-analysis of the SPI-ACS data excising the brightest part of the GRB (i.e. BTI), which is affected by data loss in Fermi/GBM. In the left
and middle panel, we show observations in black, the maximum a posteriori combined model in blue, and draws from the posterior probability
density for the mean function in orange. The left-most panel shows the results forM1 (skew-Gaussian mean function and DRW), the middle panel
forM2 (skew-Gaussian mean function, DRW and QPO). In the right-hand panel, we show the posterior probability density for the period of the
QPO, which is narrowly constrained around P = 0.347 s.
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Fig. 10. Left panels: Light curve (black), maximum a posteriori model (blue) and posterior draws from the mean model (orange) for the Fermi/GBM
NaI detector (na; top) and the BGO detector (b1; bottom). Right: Corresponding posterior probability densities for the period in the model including
a QPO.
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Fig. 11. Distribution of the Bayes factors obtained by modelling 100
simulated GRBs based on a model consisting of a skew-Gaussian trend
function and a DRW, but without a QPO (grey). The Bayes factor
obtained for the SPI-ACS data is a strong outlier compared to the sim-
ulations, indicating that our analysis captures additional variability not
present in the simpler model.

∼0.34, where we found a significant signal when excluding the
Fermi/GBM BTI in the SPI-ACS data. We also analysed the
Fermi/GBM data with the BTI excluded in order to obtain a
light curve unaffected by data loss and less affected by dead-
time. As with the SPI-ACS data, we find that the QPO period
has shifted to P = 0.3476±0.008 s, consistent with the SPI-ACS
results (Figure A.4 in Appendix A). For both datasets, we find
high Bayes factors, log(B21,NaI) = 5.25 and log(B21,BGO) = 5.57,
respectively, and strongly constrained, high quality factors for
the QPO, log(qNaI) = 6.75+1.35

−2.73 and log(qBGO) = 4.69+0.72
−0.78.

5.3. Detection sensitivity

Bayes factors are notoriously sensitive to prior choices. The
empirical model we employed means that we largely chose wide,
uninformative priors, which in turn may affect the sensitivity to
QPOs in the data. To calibrate the detection sensitivity for the
Bayes factor, we simulated fake GRBs drawing only from the
joint posterior for M1; that is, the model without a QPO. For
each draw, we generated a trend function and sampled from a GP
combining that trend function with a realisation of the DRW pro-
cess. We added Poisson photon counting noise to this simulated
GRB to generate a realistic light curve. We modelled this sim-
ulated light curve in the same way we do for the real SPI-ACS
data, using the same models and prior assumptions. We repeated
this procedure for a 100 different simulations5 drawn from the
posterior, and generated a distribution of Bayes factors expected
under the model without a QPO. This allowed us to explore what
range of Bayes factors we would expect under modelM1.

In Figure 11, we present the resulting distribution; com-
pared to the observation, we find much smaller Bayes factors for
the simulated observations, indicating that we should not have
observed the high Bayes factor recorded for the SPI-ACS data if
the latter had been generated by a simple stochastic process and
the trend function.

5.4. Alternative stochastic models

The DRW model considered above to explain the variability in
the GRB is a fairly simple model with a power spectrum con-

5 We limit ourselves to 100 simulations in order to keep computational
requirements manageable.

strained to Lorentzian centred at zero. While our goodness-of-fit
test has shown that this model can explain the data, we never-
theless implement a somewhat more complex model: a contin-
uous autoregressive, moving-average (CARMA) model of order
p = 2 and q = 1. CARMA models consider both an AR process
and a moving-average (MA) process simultaneously. Here, the
AR describes the future of a system based on its current state
and a random perturbation. The MA process parametrises the
time series of a system in terms of a signal and its convolu-
tion with an impulse response function. The orders, p for the
AR process and q for the MA process, describe the time lags
and length of the impulse response, respectively (Moreno et al.
2019). The CARMA(2,1) process we implement here is capable
of a wider range of power spectral shapes. We limit ourselves to
this process, since higher-order CARMA processes can intrisi-
cally include QPO-like behaviour, making them not practica-
ble as an alternative model in the context of QPO searches. We
use the Python package tinygp for the implementation of an
CARMA(2,1) process, and combine it with the same prescrip-
tion for the mean function above. The priors for the parameters
α and β of the CARMA process are similarly wide and unin-
formative as for the DRW (see Table 1); the amplitude of the
process is in this parametrisation folded into the MA parameter,
β.

We modelled the full light curves for all three instruments
with both a mean function and a CARMA(2,1) process, and
a model that additionally includes a QPO. For all three light
curves, we once again find Bayes factors that strongly favour the
model including a QPO (log10(B21) > 2 for all three datasets).
The QPO period is similarly constrained to 0.83 s in with this
model as with the model containing a DRW (see Figure 12 for an
example). The independence of our results of the chosen model
for the underlying variability strongly suggest that the QPO is
real.

When we exclude the flagged segment (BTI) of the burst, we
find strong signals at 2.9 Hz (0.34 s) in the data of all three instru-
ments with similarly significant Bayes factors (see Figure 13)
and results consistent with the analysis using the DRW model.

5.5. Assumptions and limitations

Gaussian processes provide two key advantages over standard
Fourier analysis and wavelet methods: they enable robust mod-
elling of unevenly sampled light curves directly in the time
domain, minimising aliasing and windowing effects, and they
enable to joint modelling of a stochastic process together with
an overall, deterministic trend, as we do here. This comes at con-
siderable computational cost to calculate and calibrate the Bayes
factors.

A main assumption of GP modelling is that data uncertain-
ties are normally distributed. While not strictly true for the data
considered here, GRB 230307A is bright enough for the Gaus-
sian approximation to be justified. A second key assumption is
that the GRB can be decomposed into a linear combination of a
trend function parametrising the global rise and fall of the burst,
and a stochastic process parametrising the variability on shorter
timescales. Empirically, this appears to be not a bad assump-
tion, but we also note that none of the models implemented
here – GPs or in any of the previous methods – are physically
motivated. While the DRW is a simple choice for a covariance
function, increasing the flexibility by considering a higher-order
CARMA process did not substantially alter our conclusions. We
note, however, that visually the amplitude of the variability over
the course of the GRB appears to change as a function of time.
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Fig. 12. Left: INTEGRAL SPI-ACS observation (black) with the maximum a posteriori model comprising a CARMA(2,1) process, a QPO and a
skew-Gaussian mean function (blue), with posterior draws from the mean function in orange. Right: Posterior probability density of the period
parameter shows a clear peak at 0.82 s, consistent with results obtained using the simpler DRW model.
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after trigger (right). The posteriors show a remarkable degree of agreement between the three instruments, at frequencies corresponding to ∼1.2 Hz
(0.83 s period) for the full light curves and at ∼2.9 Hz (0.34 s) without BTI.

This is at odds with the models considered here, and implemen-
tation of a model including some form of non-linear variability
component is beyond the scope of this paper.

6. Discussion

In this paper, we have presented a thorough analysis of the
light curves of GRB 230307A taken with both INTEGRAL/SPI-
ACS and Fermi/GBM’s NaI and BGO detectors. Across multi-
ple detection methods, instruments and wavelengths, we consis-
tently identify a short-lived QPO at 1.2 Hz (0.82s) in the first
ten seconds of the GRB, when emission is at its brightest. Given
that the signal is very strongly present in the SPI-ACS data, we
exclude the possibility that its presence in the GBM data could
be related to data issues concurrent with the signal’s presence.

A second, short-lived QPO appears to exist simultaneously
in all three instruments at 2.8 Hz (0.34s), though not all tests

return a confident detection. In the wavelet spectrogram, this sig-
nal appears to show an upward frequency trend over its lifetime.
This signal is especially strongly present in QPO detection tests
that excise the Fermi/GBM BTI. Given that most QPO detec-
tion methods are designed to find a single, strongest QPO candi-
date, this is unsurprising: removing most of the interval contain-
ing the 1.2 Hz QPO naturally leaves this second candidate as the
strongest signal.

All three methods used have limitations and, as we have
shown, make assumptions that are not met by the light curves
analysed here. In particular, the assumption of pure stochas-
tic (red) noise made by standard analyses in Fourier and
wavelet domains hampers our ability to make robust detec-
tions in counter-intuitive ways: Hübner et al. (2022a) showed
that many approaches may overconfidently detect QPOs in this
context, because non-stationary light curves break the station-
arity assumption of most methods. Wavelets – while excellent at

A149, page 13 of 19



Huppenkothen, D., et al.: A&A, 702, A149 (2025)

detecting non-stationary, short-lived QPOs – cannot free us from
this challenge if the assumed null hypothesis remains a station-
ary process. As theoretical modelling of GRBs improves, physi-
cally motivated predictions for the variability expected in prompt
GRB emission would dramatically improve our robustness and
sensitivity in finding these signals.

We quote significances for all three detections indepen-
dently: combining detection probabilities across instruments or
methods is generally not applicable in analyses containing sub-
stantial amounts of intrinsic source variability beyond detector
noise, because the multiplication of probabilities relies on strict
statistical independence of the underlying tests. This is given in
the case of pure instrumental noise, but much more complicated
when the underlying variability is intrinsic to the source emis-
sion, and thus shared across instruments (modulo some energy-
dependence of the variability). However, we consistently find 3σ
detections (or equivalent) in multiple methods for both QPOs,
and thus conclude that both are very strong candidates.

Physically, the signature evidence of two QPOs at frequen-
cies in the Hertz range can be explained in terms of a jet launch-
ing and evolution scenario. We note that different values for these
frequencies might be obtained if different time windows could
be probed with sufficient statistical precision in ν space, and the
main information is that they are not in the kilo-Hertz range. The
jet birth picture will focus on a binary merger progenitor, though
the scenario described can also apply to a core collapse hyper-
nova, should kilonova associations with long-duration bursts like
GRB 230307A become more widely established.

As a binary NS merger proceeds, the tidal disruption that
extracts plasma from one or both stars that eventually becomes
the GRB jet only arises just before coalescence. This corre-
sponds to an orbital semi-major axis of a few NS radii RNS at
most, and natural orbital frequencies of Ω = 2πν ∼ c/(3RNS) ∼
104 Hz for jet birth. As the merger proceeds to smaller radii,
r, the Ω value increases modestly before the plasma shedding
abruptly terminates at coalescence in presumably forming a
black hole. Millisecond QPO periods from the merger proxim-
ity are likely mostly obscured by the plasma shroud, which thins
out only at photospheric radii, Rph ∼ 1012 cm, for long-duration
GRBs. Yet we note the recent report (Chirenti et al. 2023) of
kilo-Hertz QPOs present in two short duration GRBs from the
BATSE archive. This is an interesting result, albeit indicating
the rarity of QPOs among the GRB population.

As the jet is launched, due to pressure from the surround-
ing medium comprising the disc and cocoon, it nominally devel-
ops a quasi-parabolic morphology (Tchekhovskoy et al. 2008;
Komissarov et al. 2009) with an extraction of significant angular
momentum, J, in the form of magnetic field helicity and plasma
vorticity in a Poynting-flux dominated jet. The field maintains
causal connection to the rotation (i.e. Ω) at the jet’s r ∼ RNS
base during the acceleration phase, wherein γ ∝ r1/2 approxi-
mately (Tchekhovskoy et al. 2008). Eventually, the cocoon pres-
sure declines and becomes insufficient to control the jet shape
and dynamics, so that jet enters a coasting phase prior to its
prime prompt GRB emission epoch. While the cocoon shapes
the jet and controls its dynamics, it acts as the boundary to an
acoustic cavity of circumference ∝ r1/2 transverse to the jet axis.
Once the jet coasts, this boundary has effectively dissolved and
rotational plasma fluctuations in the lateral dimension have no
preferred timescale.

For the gas, at a light cylinder radius, typically quite close
to the resultant compact object, the plasma vorticity saturates as
the circular speed of the gas about the jet axis nudges c. There-
after, as the jet expands to larger radii, r, its lateral (sheath)

extent scales as r1/2, while the circular speed is still c, so that the
plasma rotation period, P, in the observer frame increases as P ∼
2π(r RNS)1/2/c ∝ r1/2. A ‘freeze-out’ of the plasma, P, occurs
approximately when it enters the coasting epoch, which for fidu-
cial jet launching models (see Fig. 8 of Tchekhovskoy et al.
2008) is around a resultant jet, γ = 103, at around r/RNS ∼ 106,
leading to P ∼ 0.1−1 s. This is consistent with the QPO peri-
ods observed herein, with the rotational freeze-out arising at dis-
tances of r ∼ 1012 cm from the merger product, around the pho-
tospheric radius. More than one period may be sampled as the
chaotic driver of the central engine interfaces with the cocoon
sheath at the onset of the coasting and optically thin epoch.

In a quasi-acoustic phenomenon controlled by the cavity
extent lateral to the jet direction, colliding plasma structures rid-
ing the gas vorticity in the jet would subsequently sample Fourier
power at this rotational period as the jet becomes optically
thin. Higher-frequency Fourier power from earlier epochs would
generally be muted due to high photospheric densities. After
dynamic decoupling of the jet from the cocoon, plasma fluctu-
ations have no natural acoustic driver, and so their timescales
decouple from further lateral expansion of the jet. Throughout,
longitudinal fluctuations exist, but are not bounded geometri-
cally, and so possess a chaos associated with the activity of the
central driving engine, reflected in the light curves we see.

The QPOs observed thus constitute approximate images
of the freeze-out plasma vorticity in a radially structured jet
acquired at the larger distances, rrad ∼ 1014−1016 cm, associated
with prompt GRB radiation. As such, they enable jet archaeol-
ogy by providing a window into the cessation of the jet launch
and acceleration phase that is approximately contemporaneous
with the jet’s exit from the photosphere. Accordingly, a core goal
of jet launching simulations should be the reproduction of these
rotational periods at the onset of coasting. The two QPO frequen-
cies could be an imprint of the immediate pre-merger NS-NS
binary evolution, carried forth to rrad: higher-frequency signals
correspond to jet plasma preparation deeper in the pre-merger
gravitational potential where the Keplerian period is shorter. The
observed values of P = 2π/Ω at ∼0.8 and ∼0.35 seconds do not
distinguish whether the product of the merger is a black hole,
a NS, or even a magnetar. They could well be analogous to
year-timescale periods in flux levels observed from γ-ray blazars
(Peñil et al. 2024) with their jets emanating from supermassive
black holes.
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Appendix A: Supplementary figures
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Fermi/GBM NaI Periodogram and Model Comparison

Fig. A.1. Left: Fourier periodogram of the Fermi/GBM NaI data with posterior draws from the three models compared via LRTs: in green, the
power law model; in blue, a power law model with a Lorentzian component for a single QPO; in orange, a model comprising a power law and two
Lorentzians. Middle: Distribution of the likelihood ratios from 1000 simulated periodograms. The likelihood ratio for the observed periodogram
is a clear outlier. Right: Same as middle panel, but for the model with two QPOs. Again, the observed likelihood ratio is a clear outlier compared
with the null hypothesis (a single QPO).
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Fermi/GBM BGO Periodogram and Model Comparison

Fig. A.2. Left: Fourier periodogram of the Fermi/GBM BGO data with posterior draws from the three models compared via LRTs: in green, the
power law model; in blue, a power law model with a Lorentzian component for a single QPO; in orange, a model comprising a power law and two
Lorentzians. Middle: Distribution of the likelihood ratios from 1000 simulated periodograms. The likelihood ratio for the observed periodogram
is a clear outlier. Right: Same as middle panel, but for the model with two QPOs. Again, the observed likelihood ratio is a clear outlier compared
with the null hypothesis (a single QPO).
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Fig. A.3. Posterior probability densities for all parameters in the DRW+QPO model for the SPI-ACS data described in Section 5.1.
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Fig. A.4. Left panels: light curve (black) with BTI removed, maximum a posteriori model (blue) and posterior draws from the mean model (orange)
for the Fermi/GBM NaI detector (na; top) and the BGO detector (b1; bottom). Right: corresponding posterior probability densities for the period
in the model including a QPO. This figure suppements the results in Section 5.2.
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