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ABSTRACT Standard probabilistic models face fundamental challenges such as data scarcity, a large hypothesis space, and poor data
transparency. To address these challenges, we propose a novel probabilistic model of data-driven temporal propositional reasoning. Unlike
conventional probabilistic models where data is a product of domain knowledge encoded in the probabilistic model, we explore the reverse
direction where domain knowledge is a product of data encoded in the probabilistic model. This more data-driven perspective suggests no
distinction between maximum likelihood parameter learning and temporal propositional reasoning. We show that our probabilistic model is
equivalent to a highest-order, i.e., full-memory, Markov chain, and it can also be viewed as a hidden Markov model requiring no distinction
between hidden and observable variables. We discuss that limits provide a natural and mathematically rigorous way to handle data scarcity,
including the zero-frequency problem. We also discuss that a probability distribution over data generated by our probabilistic model helps
data transparency by revealing influential data used in predictions. The reproducibility of this theoretical work is fully demonstrated by the

iIncluded proofs.

MOTIVATING EXAMPLE

We want to predict the location of a robot moving
around the building with ten rooms shown below.
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Only information we can use is the twelve time-
series data, d, d,, . . .

Question

The robot moved through Rooms 2, 3, and 8.
Which room is the robot likely to be two time
steps later — Room 4 or Room 107

, d, collected by the robot.

FUNDAMENTAL PROBLEMS

+ Data scarcity, e.g., zero frequency ?
No answer is straightforward as the robot has never been in Room 3.
Data smoothing works only when probabilistic models are simple enough.

+ Huge hypothesis spaces
The three time-series data d,_, best match the given locations. This leads to the

prediction of Room 10. This requires a 4th-order Markov chain with 9 X 10* parameters.
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+ Poor data transparency 107 X 10 matrix

The prediction of Room 10 cannot be grounded in d,_,. Learning is the process of

exploiting data to adjust the parameters of probabilistic models, whereas reasoning is
the process of using the parameters, not the data itself, to make predictions.
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Let n : Data — Data be a function that maps 7
each data point to the one at the next time step.
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Namely, data changes deterministically.

Definition (Model distribution)

Let m : Data — Models be a function that
maps each data point to the corresponding
model, i.e., valuation In propositional logic.

Definition (Knowledge distribution)
Let [X;],,,r be the truth value of X in the

model m’ and u € [0.5,1].
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Namely, each data point supports a single
model deterministically.
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Namely, the truth values of formulas obey
the semantics of propositional logic.

0 otherwise 1 — u otherwise

EVALUATIONS A discrete-time, discrete-space localisation problem in a 7 X 7 grid. A robot retains the last ten visited locations,
and it moves randomly while avoiding those in memory. When all adjacent accessible locations are stored, it remains in place.

Theoretical result
Given u = 1, our solution (TA:

temporal abstraction) is equivalent with simple Laplace smoothing, _ G
which assigns an equal probability trajectory and deterministic data—

to zero frequency events.

to Markov chains (MC) with
maximum likelihood parameters.

+ Data scarcity
Given u # 1, TA outperforms MC  TA has essentially linear complexity Probability distributions over

+ Huge hypothesis spaces + Poor data transparency

data ground predictions in data.
In fact, the prediction of Room 5

is grounded in d, at Time 1.

due to the deterministic data

model support relation.
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