
Definition (Model distribution)

Let  be a function that 
maps each data point to the corresponding 
model, i.e., valuation in propositional logic.





Namely, each data point supports a single 
model deterministically. 

m : Data × Models

p(mt |d1:t, m1:t−1, x1:t−1
1:I )

Def.2= {1 if mt = m(dt)
0 otherwise

Prop.2= p(mt |dt)

FUNDAMENTAL PROBLEMS 
Data scarcity, e.g., zero frequency 

No answer is straightforward as the robot has never been in Room 3.

Data smoothing works only when probabilistic models are simple enough.


Huge hypothesis spaces 
The three time-series data  best match the given locations. This leads to the 
prediction of Room 10. This requires a 4th-order Markov chain with  parameters.





Poor data transparency 
The prediction of Room 10 cannot be grounded in . Learning is the process of 
exploiting data to adjust the parameters of probabilistic models, whereas reasoning is 
the process of using the parameters, not the data itself, to make predictions.
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MOTIVATING EXAMPLE 
We want to predict the location of a robot moving 
around the building with ten rooms shown below.


Only information we can use is the twelve time-
series data, , collected by the robot.


Question 
The robot moved through Rooms 2, 3, and 8. 
Which room is the robot likely to be two time 
steps later — Room 4 or Room 10?


Existing solutions

Probabilistic models, e.g., Markov chains and 
hidden Markov models
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ABSTRACT     Standard probabilistic models face fundamental challenges such as data scarcity, a large hypothesis space, and poor data 
transparency. To address these challenges, we propose a novel probabilistic model of data-driven temporal propositional reasoning. Unlike 
conventional probabilistic models where data is a product of domain knowledge encoded in the probabilistic model, we explore the reverse 
direction where domain knowledge is a product of data encoded in the probabilistic model. This more data-driven perspective suggests no 
distinction between maximum likelihood parameter learning and temporal propositional reasoning. We show that our probabilistic model is 
equivalent to a highest-order, i.e., full-memory, Markov chain, and it can also be viewed as a hidden Markov model requiring no distinction 
between hidden and observable variables. We discuss that limits provide a natural and mathematically rigorous way to handle data scarcity, 
including the zero-frequency problem. We also discuss that a probability distribution over data generated by our probabilistic model helps 
data transparency by revealing influential data used in predictions. The reproducibility of this theoretical work is fully demonstrated by the 
included proofs.

OUR SOLUTION 
Reasoning is the process of using 
data for predictions.

3 ?

Definition (Data distribution)

Let  be a function that maps 
each data point to the one at the next time step.





Namely, data changes deterministically.

n : Data × Data

p(dt |d1:t−1, m1:t−1, x1:t−1
1:I )

Def.1=

1
|Data |  if t = 1

1 if t ≈ 1 and dt = n(dt−1)
0 otherwise

Prop.1= p(dt |dt−1)

Definition (Knowledge distribution)

Let  be the truth value of  in the 
model  and .





Namely, the truth values of formulas obey 
the semantics of propositional logic. 

[[Xi]]mt Xt
i

mt μ ∈ [0.5,1]
p(xt

i |d1:t, m1:t, x1:t−1
1:I , xt

1:i−1)
Def.3= {μ  if xt

i = [[Xi]]mt

1 − μ otherwise
Prop.3= p(xt

i |mt)

EVALUATIONS      A discrete-time, discrete-space localisation problem in a  grid. A robot retains the last ten visited locations, 
and it moves randomly while avoiding those in memory. When all adjacent accessible locations are stored, it remains in place.  
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propositional logic) at Time 1

Truth values of propositional 
formula  at Time 1X1

Equiv.→

Poor data transparency 
Probability distributions over 
data ground predictions in data. 
In fact, the prediction of Room 5 
is grounded in  at Time 1.d2

Theoretical result  
Given , our solution (TA: 
temporal abstraction) is equivalent 
to Markov chains (MC) with 
maximum likelihood parameters.

μ = 1
Data scarcity 

Given , TA outperforms MC 
with simple Laplace smoothing, 
which assigns an equal probability 
to zero frequency events.

μ ≈ 1
Huge hypothesis spaces 

TA has essentially linear complexity 
due to the deterministic data 
trajectory and deterministic data–
model support relation.
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p(D1:T, M1:T, X1:T
1:I ) Thm.1=
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∏
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