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THE BIGGER PICTURE Microfluidic chips enable control and measurement of microscale fluids and parti-
cles. By integrating different sensing (e.g., electrochemical, impedance, or potential measurement) and
manipulation (e.g., electric field, thermal field, magnetic field, or mechanical vibration) functions, microfluidic
electrodes transform channels into programmable labs-on-a-chip. Electrodes bridge the electronic and flu-
idic domains, ultimately determining chip performance. As sensors, they create critical connections between
samples in microchannels and external equipment, with their materials and dimensions directly influencing
detection resolution, responsiveness, and accuracy. As manipulators, electrodes generate various physical
fields through strategic shapes and arrangements, delivering precisely controlled forces at different magni-
tudes and spatial resolutions, and enabling the accurate manipulation of diverse biological samples. In this
review, we detail the working principles and applications of sensing electrodes and micromanipulation elec-
trodes. We propose future development directions regarding manufacturing methods, flexible designs, solid/
liquid interface improvements, and the use of Al in design optimization and data analysis.

SUMMARY

Microfluidic systems enable the precise measurement, manipulation, and control of fluids and particles at the
microscale, providing new tools and insights for biological, chemical, and medical research. Electrodes are
key components of microfluidic systems, functioning both as sensors for target detection and as microactua-
tors for sample manipulation. The integration of functional electrodes into microfluidic devices has broad-
ened the applications of microfluidic technology across various fields, enhancing its capacity to address
complex biochemical challenges. In this review, we first examine the construction of microfluidic electrodes,
focusing on manufacturing and bonding methods. We then classify the electrodes into two classes, i.e.,
sensing and manipulation, and discuss their fundamental principles alongside representative real-world ap-
plications. Finally, we highlight current challenges in microfluidic electrode technology and propose innova-
tive design strategies for electrode integration that could stimulate new research into micro/nano fabrication,
chemical engineering, and biological engineering.

INTRODUCTION sample purification, and synthesis of new materials.” An inte-

grated microfluidic system typically includes microfluidic

Integrated microfluidic systems allow for the integration of
various functional units on a single platform, enabling multiple
tasks to be performed in parallel. In combination with ad-
vancements in microelectromechanical systems (MEMSs)
and nanotechnology, integrated microfluidic systems can help
in analyzing chemical and biological samples. These systems
facilitate the detection of target species, separation of mixtures,

channels, valves, pumps, mixers, and electrodes. Electrodes
are used to establish electrical contact with the fluid and to
generate electric, thermal, acoustic, and magnetic fields that
can be employed to sense and manipulate fluids and particles.
The performance and configuration of electrodes directly influ-
ence the sensitivity of detection and analysis, the integrity and
reliability of sensing signals, and the accuracy of manipulations.
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Figure 1. Flow diagrams of the commonly used microfluidic electrode manufacturing processes

From top to bottom: photolithography, casting, printing, and xurography.

Over the years, microfluidic systems have evolved from basic
chemical analysis applications to droplet microfluidics for sin-
gle-cell analysis and, most recently, to organ-on-a-chip technol-
ogy, which is a microfluidic cell-culture platform that re-creates
key structural and biochemical features of living tissues.?

Previous reviews have discussed the principles and applica-
tions of integrated microfluidics, such as in dielectrophoresis
(DEP),®> DNA analysis,” and wearable devices.® In this review,
we focus on the perspectives of electrode fabrication and
bonding techniques and the development of sensing electrodes
and manipulation electrodes. We classify electrodes based on
their functions and discuss their basic operating principles and
recent developments. We also discuss remaining challenges
and outline future directions for microfluidic electrode fabrication
and applications.

FABRICATION TECHNIQUES OF MICROFLUIDIC
ELECTRODES

In the context of MEMS and microfluidics, electrodes are essen-
tial for establishing electrical contact between biological sam-
ples and the sensing/control devices. Electrodes inject electric
current into the fluid, creating an electric field that can be har-
nessed for sensing and manipulating fluids or particles.
Figure S1 shows an overview of these advancements in both mi-
crofluidics and electrode technology. In the design of electromi-
crofluidic chips, the fabrication of electrodes and the bonding
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methods used to integrate electrodes with microchannels are
chosen based on the intended functionalities, and the choice
of electrode materials often determines which manufacturing
methods are applicable. Researchers frequently use one or a
combination of these techniques to produce electrodes with
the desired properties. In this section, we introduce several
widely used fabrication and bonding methods for integrating
electrodes into microfluidic systems.

Photolithography and etching
Photolithography is a technique for transferring a predefined
pattern from a mask onto a substrate coated with photoresist
by selectively removing parts of the substrate surface. It gener-
ally involves five steps: (1) photoresist coating, (2) UV exposure,
(8) development, (4) etching, and (5) photoresist removal (liftoff)
(see Figure 1). The technique offers several advantages for
fabricating microfluidic electrodes: (1) precision and resolution
reaching the nanometer scale; (2) complex patterning, enabling
intricate two- (2D) and three-dimensional (3D) structures;
(3) repeatability and consistency suitable for mass production;
(4) flexible and customizable design enabling diverse func-
tionalities; and (5) strong compatibility for integrating with
other microfabrication technologies (e.g., microfluidic channel
manufacturing).

While photolithography is a mature micro/nanofabrication
method, its chemical processes can damage the layers and in-
terfaces in the finished device. In many microsystems, patterning
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occurs directly on solvent-susceptible organic functional layers
(e.g., conjugated polymers, small-molecule organics, or bioac-
tive coatings). Standard resists/developers (e.g., propylene
glycol methyl ether acetate (PGMEA) or aromatic solvents) and
UV/bake steps can dissolve, dope, or oxidize these layers,
degrading device performance, although in some cases, an
orthogonal photoresist/solvent can be used to mitigate such
damage.® Additionally, photoresist residues and photoacid-
generator by-products can remain after processing, affecting
downstream wetting, protein adsorption, and cell viability. Elas-
tomeric substrates such as polydimethylsiloxane (PDMS)
also readily absorb common lithographic solvents, causing
swelling, feature distortion, and subsequent leaching into micro-
channels during biological operations.’

Casting

Casting offers an alternative when direct contact with litho-
graphic solvents, resist residues, and PDMS swelling are of
concern. This technique can form electrodes without exposing
solvent-sensitive layers or biotic interfaces to photoresists/de-
velopers. In the casting approach, conductive materials (e.g.,
liquid metals [LMs], inks, or conductive polymers) are introduced
into prefabricated molds and then solidified under specific
conditions (e.g., temperature, pressure, or atmosphere). After
curing, the mold is removed, leaving behind the desired
electrode (Figure 1). Casting addresses some of the drawbacks
of photolithography, such as mold-limited resolution/roughness,
linewidth floors set by filling and trapped air, shrinkage/warpage
and adhesion issues during curing, material constraints, and
restricted multi-layer alignment. Nevertheless, photolithography
remains preferred for sub-10-pm, wafer-scale uniformity,
whereas casting excels in rapid, mask-free prototyping and
thick/3D electrodes on soft substrates.®

Screen printing, inkjet printing, and 3D printing
Screen-printing technology is widely used in circuit board
manufacturing. In this method, conductive ink is transferred
through a patterned screen, producing the desired electrode
shape once the ink dries (Figure 1). A critical step in screen
printing is designing and preparing the printing plate, typically
achieved by coating a polyester or stainless-steel mesh with
a photographic emulsion and exposing it through a photomask
to define the open areas.'® The conductive ink typically con-
sists of carbon, silver, gold, platinum, or copper powders, along
with additives such as thickeners. Screen printing provides
cost-effective design flexibility with $10-$100 reusable stencils
and high productivity through automated lines producing
hundreds of prints hourly.'" It creates 5- to 50-pm-thick films
with linewidths of 50-100 pm, making it ideal for large-area,
low-cost production.’> Compared to photolithography, screen
printing offers lower resolution and alignment accuracy.
Achieving features smaller than 20 pm and wafer-scale align-
ment remains impractical with conventional screens. Quality
improvements come from controlling emulsion-over-mesh
processes, optimizing squeegee parameters, and using
thermal/photonic sintering. Surface contamination can affect
analysis, but low-residue inks and standardized procedures
enhance detection precision.'*'*
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Inkjet printing is a non-contact method for fabricating elec-
trodes that does not require a lithography mask (Figure 1). In
this process, a computer-controlled nozzle deposits different
inks directly onto the substrate to form the designed electrode
patterns.’® Printable inks typically have viscosity of ~5-20
mPa-s and surface tension of ~25-50 mN-m~"', requiring wa-
ter-based systems to include dispersants, humectants, and sur-
factants.'®'” Under optimal conditions, inkjet produces ~20- to
50-pm linewidths (with ~50-100 um being practical for robust
devices), while aerosol jets can achieve ~10 pm at lower area
throughput.'® The main advantages of inkjet printing include a
maskless process and easy design iteration. However, this
method faces limitations, including nozzle clogging, coffee-ring
formation, and post-print sintering requirements. Due to the
limited nozzle size, particles in the ink can easily clog the nozzle.
Studies recommend particles of <200 nm (less than 1/10 of
nozzle size) to prevent clogging.'® The coffee-ring effect causes
uneven distribution of solid particles on the substrate after ink
drying, resulting in electrode quality issues. The coffee-ring
effect can be suppressed by inducing Marangoni flows,
which describe the surface-tension-driven circulation caused
by composition/temperature gradients. Using binary solvents
such as a fast-evaporating low-surface-tension component
with a slower, higher-surface-tension cosolvent or mild sub-
strate heating creates a surface tension gradient that drives in-
ward surface flow. This flow counteracts the outward capillary
flux, resulting in more uniform electrode films.'®2° Environmental
humidity also influences deposition patterns. A highly controlled
humidity environment during printing increases electrode quality
and reproducibility. For densification, chemically reactive silver
inks are effective at low temperatures, with particle-free Ag pre-
cursor inks achieving high conductivity at room temperature and
near bulk-Ag conductivity after mild annealing at 90°C.?"-??

Three-dimensional printing enables the fabrication of elec-
trodes with high precision and complex geometries by depos-
iting materials layer by layer under digital control. Compared to
subtractive processes (e.g., lithography and milling), this additive
approach generates minimal waste, thereby reducing costs
associated with raw materials, storage, and energy consump-
tion. For a given design, 3D printing can produce an object and
allow for straightforward iterations, potentially shortening the
R&D cycle.?® Based on bonding mechanisms and material types,
common 3D printing methods include material extrusion (e.g.,
fused deposition modeling, direct ink writing, and robocasting),
vat photopolymerization (e.g., stereolithography [SLA] and
digital light processing [DLP]), powder bed fusion (e.g., metal
laser sintering and electron beam melting), material jetting, sheet
lamination, and directed energy deposition (e.g., laser-engi-
neered net shaping).”**° Three-dimensional printed electrode
materials face a trade-off between printability and conductivity.
Inks and filaments require binders or solvents to be printable,
while high conductivity necessitates dense metal networks that
typically demand post-processing methods such as laser
sintering or electroplating.”® Photocured resins remain largely
non-conductive even with added conductive fillers (e.g., a DLP
acrylate with 4.8 wt % polyaniline reached only ~1073
S cm™").?” Extruded composites conduct electricity much worse
than electroplated metals and tend to crack under stress (e.g.,
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commercial black carbon/graphite filaments show bulk resistiv-
ities of ~3.9-27 Q-cm and increased brittleness with higher filler
content).”® Biocompatibility issues stem from residual mono-
mers/photoinitiators and from metal-ion leaching. SLA parts
release chemicals that can reduce cell viability without additional
treatment.?® In summary, while 3D-printed electrode structures
offer speed and design flexibility, they require additional
processing to meet the performance standards of microfluidic
devices.

Xurography

Xurography, also known as craft cutting/writing or razor writing,
was first introduced as a micromachining technique that uses
physical blades to pattern various materials (e.g., polymer films,
metal foils, or paper).>° Xurography does not require a clean
room and avoids the burning marks associated with laser cut-
ting. By integrating with computer-aided design (CAD) software,
xurography can also be used to produce masks for different
applications (e.g., electrode sputtering, electroplating, and wet
chemical etching) and to create microfluidic channels. By slicing
through multiple stacked layers, xurography facilitates the simul-
taneous fabrication of numerous microfluidic electrodes and
layered composites. However, it is unsuitable for cutting thicker,
harder materials and is limited by its relatively low resolution.
Kongkaew et al. demonstrated a craft-and-stick xurography
workflow that uses cut graphene-paper electrodes and polyeth-
ylene terephthalate (PET) microfluidic layers to create a flexible
electrochemical platform.®' When functionalized with Prussian
blue and glucose oxidase, the device provides reliable glucose
sensing. Wu et al. demonstrated an AC-electroosmosis micro-
mixer device by using the xurography method.*? Biocompatible
adhesive and copper foil are prepared with a digital cutting
plotter and laminated to create channels with tooth-shaped elec-
trodes. Their work highlights the value of xurography in devel-
oping disposable biosensors and point-of-care diagnostic tools.

Other fabrication methods and bonding techniques

Beyond conventional methods, several novel and portable
approaches have been developed for fabricating electrodes in
microfluidic systems. For example, growing specific particle
composites on a solid contact (SC) can yield sensing electrodes.
Huang and colleagues modified gold surfaces with wrinkled
microspheres composed of graphene oxide (GO) and zeolitic
imidazolate framework (ZIF-8) composites, demonstrating highly
sensitive responses to inorganic salt ions.** As another example,
Economou and coworkers used a pen-on-paper plotting
approach to fabricate multiple paper-based glucose detection
array electrodes in a single batch.®* Other techniques, such as
transfer printing, dealloying, and wire integration, can also be in-
tegrated into the electrode fabrication process. Transfer printing
enables patterning of conductive features onto elastomers
without exposing solvent-sensitive layers. For example, tape
transfer of Galinstan onto semi-cured PDMS produces ~150-
um lines that support stretchable circuits.>> Dealloying of Ag-
Au creates nanoporous gold electrodes with a high surface
area and excellent biofouling resistance; however, designers
must account for material shrinkage and mechanical fragility
during the process.®® Another approach, wire integration, in-
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volves directly inserting microwires into elastomer devices. Dou-
ville et al. embedded Ag/AgCl wire electrodes in two-layer PDMS
surrounding a porous membrane (500-pm Ag/AgCl wires seated
in 500-pm grooves), enabling robust, deposition-free measure-
ments inside the microchannel.®’

When one is designing electrodes for different functions, ma-
terials must be chosen to ensure electrical conductivity, chemi-
cal stability, and biocompatibility. Gold and platinum are the
most widely used electrode materials due to their conductivity
and inertness, although their high cost restricts broader applica-
tion. Silver, while more conductive and less expensive than gold
and platinum, lacks chemical stability. Carbon, by contrast,
offers conductivity, chemical stability, and low cost, making it
a viable alternative. However, the choice of carbon materials
also has limitations. Carbon films have conductivity several
orders of magnitude lower than metals, which increases series
resistance and noise; carbon surfaces are easily contaminated
in complex media, thus requiring surface treatment or anti-
fouling coatings; and because carbon cannot be soldered, es-
tablishing reliable interconnections with external wires presents
challenges. Other materials, such as liquid metals and conduc-
tive polymers, have been investigated for microfluidic elec-
trodes, each offering benefits, including reduced cost, flexibility,
and biocompatibility. Table S1 summarizes the characteristics of
various electrode materials and the corresponding fabrication
methods.

After fabrication, the electrodes must be bonded with
microchannels to form enclosed devices. Thermal bonding is
a temperature-driven direct bonding method commonly
employed for thermoplastic materials like polycarbonate (PC),
PDMS, polymethyl methacrylate (PMMA), and nylon. The mate-
rials are heated to their glass-transition temperature, and pres-
sure is applied to ensure tight contact, promoting the diffusion
of polymer chains across the surfaces and forming a robust
bond upon cooling. However, bubble formation between heat-
ed layers can deform the channels.*®

Solvent bonding is a direct bonding approach used for layers
of polymer materials with identical compositions. Solvents
such as ethanol and cyclohexane temporarily soften and
dissolve portions of the polymer layers, facilitating the interlink-
ing of polymer networks. The bonding effect is realized after the
solvent evaporates.®® Although solvent bonding minimizes
channel deformation, the introduction of organic solvents can
reduce device biocompatibility.

Another direct bonding method is oxygen plasma surface
treatment, often used for bonding PDMS microchannels. Acti-
vated PDMS surfaces expose numerous silanol (-Si-OH) groups,
which can form covalent siloxane (-Si-O-Si-) bonds between
layers, resulting in irreversible bonding. However, this method
provides limited bonding strength for other materials, such as
polystyrene (PS). Additionally, corona treatment and UV/ozone
treatment are frequently used for surface activation bonding.
Table S2 summarizes the characteristics of these bonding
methods.

Adhesive bonding is an indirect bonding technique that ap-
plies adhesives (e.g., epoxy resin or silicone-based adhesives)
or intermediary layers (e.g., double-sided tape or pressure-sen-
sitive adhesives) between surfaces. Although it is cost effective,
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simple, and fast, drawbacks include adhesive residue, biocom-
patibility concerns, and relatively lower bonding strength.*’
Other bonding strategies include magnetic bonding, surface mi-
cro/nano-shape bonding, and vacuum reversible bonding.*’

SENSING ELECTRODES

Sensing electrode units convert physical and chemical signals
from a sample into recognizable electrical signals. Here, we
categorize microfluidic electrode signals into three types based
on their readout methods: electrochemical current signal modal-
ities, optical signal modalities, and microwave signal modalities
(Figure 2).

Electrochemical current signal modalities

In microfluidic electrode devices, electrochemical readouts
convert local chemical events into electrical signals with high
spatiotemporal resolution. An electrochemical system within a
microfluidic chip includes a working electrode (WE), a reference
electrode (RE), and a counter electrode (CE). Three key signal
modalities are used: current-based methods (amperometry at
fixed potential or voltammetry with varying potential) quantify
redox analytes and enzyme reporters; potential-based methods
(potentiometry) measure the open-circuit potential between
the WE and the RE without externally applied current, using
high input impedance to keep interelectrode currents at pA-fA
levels; and impedance-based methods, such as electro-
chemical impedance spectroscopy (EIS) and impedance flow
cytometry (IFC), examine interfacial and tissue/barrier properties
across ~10 Hz-100 kHz for cell monitoring.

Amperometry and voltammetry

Electrochemical current analysis applies a potential to the WE
and measures the resulting current, which reflects the extent of
oxidation or reduction of the target analyte. In amperometry, a
constant potential applied to the WE yields a steady-state

current proportional to analyte concentration, enabling direct
quantification of redox activity. Representative techniques
include chronoamperometry and rotating disk electrode
methods.*?*® Voltammetry, by contrast, applies a programmed
scanning potential (e.g., linear, pulse, or cyclic waveform) to the
WE, capturing the dynamic current-potential relationship. This
approach measures the analyte concentration and provides
mechanistic insights, such as reaction reversibility and adsorp-
tion behavior. Examples include cyclic voltammetry, differential
pulse voltammetry, and stripping voltammetry. Both amperome-
try and voltammetry rely on a three-electrode configuration to
maintain precise potential control: the WE for target recognition,
the RE for potential stability, and the CE to close the electrical
circuit.

Amperometric and voltammetric sensing electrodes have
been developed for point-of-care testing (POCT), wearable
devices, and implantable devices. Zhang and colleagues em-
ployed micropillar array electrodes that disrupt microfluidic
flow while leveraging MXene fiber-gold nanoparticle 3D struc-
tures to enhance electrolyte transport, enabling efficient alpha-
fetoprotein detection.** Researchers have worked on the
miniaturization and integration of these detection technologies.
For instance, Liu and coworkers combined origami design with
amperometric sensing to develop a portable microfluidic
paper-based device (1PAD) for diagnosis of three cardiac blood
proteins, aiding early cardiovascular disease prevention
(Figure 3A).*® These detection methods can be incorporated
into wearable devices for analyzing target substances in bodily
fluids, particularly sweat. Wang and coworkers described a
wearable chip featuring patterned metal electrodes and phenyl-
alanine-imprinted enzyme-mimicking molecularly imprinted
polymers (MIPs) capable of direct electrocatalytic oxidation of
phenylalanine, achieving high sensitivity and specificity for sweat
analysis (Figure 3B).46 Integrating wireless data transmission
can enable real-time health monitoring and timely alerts. For
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Figure 3. Microfluidic systems with sensing electrochemical electrodes for amperometry and voltammetry

(A) Schematics of an electrochemical pPAD (E-pPAD) featuring an all-in-one origami design for rapid detection of cardiac protein markers in whole blood. E-pPAD
protocol for cardiac marker detection from finger-prick blood (copyright 2023, American Chemical Society).*°

(B) Layered structure of a wearable microfluidic chip with integrated sensing electrodes for sweat analysis. The electrodes detect sweat Phe through direct
electrocatalytic oxidation, with theoretical simulation showing charge transfer between the electrode and the Phe molecule under an external electric field.
Working principle of the vertically assembled microfluidic module. Photographs of the device during exercise on skin and optical micrographs of sweat flow,
alongside comparative analysis of simulated predictions versus experimental observations of sweat sampling and filling. Scale bar, 1 cm (copyright 2024,
Springer Nature).*®
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(A) Schematics of impedance flow cytometry-based single-cell sorting and desalting for mass spectrometry (MS) analysis. Layered structure of the microfluidic
chip: supporting layer, microchannel layer, electrode layer, and PZT actuator. Operating principle of PZT-based simultaneous sorting and desalting for single
cells (copyright 2024, Wiley).*’
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example, Liu et al. used screen-printed carbon conductive ink for
the WE and the CE and Ag/AgCl conductive ink for the RE,
followed by electrochemical deposition to measure riboflavin
and pH in sweat, with the results wirelessly transmitted for
real-time nutritional health tracking.*’
Potentiometry
Potentiometry uses a two-electrode system, consisting of a WE
and an RE, to measure target species by detecting the potential
difference arising from surface charge changes when the target
species binds on the sensing electrodes. Potentiometric sys-
tems employ ion-selective electrodes (ISEs) composed of ion-
selective membranes and a liquid contact structure. Based on
the membrane material, ISEs can be classified into glass
membrane electrodes, liquid electrodes, and solid electrodes.
Solid and liquid electrodes, in particular, can be integrated
into clinical analysis platforms for applications such as blood
analysis, enzyme reaction measurements, nucleic acids assay,
and proteins detection.*®

Papautsky and colleagues combined SC ISEs (SCISEs) with
electronic and fluidic components to develop a self-calibrating
system capable of multiplexed ionic analyte sensing.*® Potenti-
ometry detection methods can be incorporated into wearable
devices for sweat analysis. For instance, Liu and coworkers
developed a sandwich-type microfluidic patch featuring annular
copper electrodes that measured sweat rate and sweat chloride
concentration by tracking changes in double-layer capacitance
and charge-transfer resistance.’® Woon-Hong Yeo and col-
leagues integrated three ISEs with flexible circuitry to design a
saliva electrolyte sensing system, serving as a non-invasive
platform for continuous, real-time monitoring of an infant’s health
condition.”" Additionally, industrial water quality detection and
treatment are also important application areas for potentiometric
methods. Xu et al. fabricated all-solid-state ISEs using copper
and conductive polymers (poly(3,4-ethylenedioxythiophene)
and polystyrene sulfonate [PEDOT/PSS]) via electrodeposition.
They optimized a copper-ion-selective membrane and incorpo-
rated it into a microfluidic chip, enabling precise boiler water
quality detection.®?
Impedance-based techniques
Impedance spectroscopy is a label-free, non-destructive, and
real-time detection method that measures impedance signals
at the electrode-solution interface to characterize the properties
of samples in microfluidic channels. To achieve high-precision
impedance measurements, electrodes are generally integrated
into these channels. When an AC voltage is applied, factors
such as the electrode geometry, the fluid’s conductivity and
dielectric properties, and the presence of charged substances
influence the impedance measurement. By analyzing the result-
ing impedance spectrum, researchers can obtain information
about the fluid’s properties and composition, and the presence
of target species can be obtained.*®

Using electrical impedance spectroscopy, Queirés and
colleagues achieved sensitive and quantitative detection of

Device

surfactant protein B (SPB) in amniotic fluid on a screen-printed
gold electrode modified through surface functionalization, with
a detection limit of 0.1 ng/mL. The electrochemical biosensor
for SPB detection can provide benefits for prophylaxis and
treatment of neonatal respiratory issues.>* Researchers design
complex, 3D topological or patterned electrodes to increase
the mass-transfer interface area, thus enhancing detection
sensitivity. Hallaj and coworkers demonstrated this approach
by leveraging the electrocatalytic properties of paper-based
microfluidic electrodes composed of Ni/Fe layered double hy-
droxide for SARS-CoV-2 antigen detection.”” Their large surface
area, adjustable pore sizes, and mass transfer topology pro-
duced strong electrical signals, elevating detection sensitivity.

In addition to the impedance analysis methods discussed
earlier, which are based on chemical reactions, IFC can provide
label-free characterization of biological cells.”® In IFC, a liquid
containing particles or cells is continuously injected so that
they flow through a set of detection electrodes. By simulta-
neously measuring changes in current as particles pass
through at multiple frequencies, the technique can detect dif-
ferences in cell shape, structure, and composition. Leveraging
the fluid-handling capabilities of microfluidic systems and their
multi-channel parallel design, IFC enables high-throughput,
high-precision biological detection.

Wang and colleagues employed the IFC framework and piezo-
electric transducers (PZTs) in a microfluidic chip to sort breast
cancer cells and desalinate solutions, mitigating the impact of
non-volatile salts on the generation of single-cell mass spec-
trometry (Figure 4A).°” This detection method can collect
chemical information from cells and physical information such
as the 3D shape of single cells. Yalikun and coworkers found
that asymmetric cells passing through customized electrodes
produced asymmetric impedance signals with unequal slopes
and peaks, which differed from the signal of a symmetric cell.
They proposed a quantitative tilt index to assess the degree of
cell asymmetry and demonstrated that this index is independent
of the cell’s movement trajectory, providing insights into single-
cell shape measurement (Figure 4B).%®

Optical signal modalities

Photology detects molecular interactions by assessing changes
in optical properties (such as intensity, wavelength, refractive in-
dex, or polarization) caused by the binding of target molecules to
the sensing electrode surface. In optical biosensors, electrodes
are used to immobilize specific molecules and function both as
recognition elements and as transmitters of optical signals.
Common types of optical biosensors include surface plasmon
resonance (SPR) sensors and silicon photonic (SiP) sensors.

In SPR sensors, the electrode surface is coated with functional
molecules that recognize specific analytes. When target sub-
stances bind to these molecules, the oscillation behavior of the
plasmons at the metal-dielectric interface changes, altering the
refractive index and reflectivity of the incident light. This shift

(B) Microscopic impedance cytometry for single-cell shape quantification. Schematics of the microfluidic system with multiple electrodes for single-cell shape
measurement. The integrated device consists of a PDMS block incorporating microfluidic channels with inlet/outlet ports permanently bonded to a borosilicate
glass substrate patterned with Cr/Au electrodes. Simulated impedance results for symmetric and asymmetric micro-objects in microchannels (copyright 2021,

Elsevier).”®
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Figure 5. Microfluidic systems with sensing electrodes for photonic and microwave technologies

(A) A plasma detector based on fiber surface plasmon resonance combined with microfluidics. Detection via a one-step adalimumab (ADM) immunoassay on the
functionalized fiber optic (FO) probe, analyzed by an FO-SPR portable system (copyright 2022, Elsevier).°

(B) An all-dielectric metamaterial sensor for passive trapping. THz transmittance comparison with 0.2 mg L-proline, supported by electric field simulations

(copyright 2024, Elsevier).®

(C) A graphene-based wideband microwave sensor within microfluidics for DNA recognition. Coplanar waveguide analysis with signal conductor and DNA

detection (copyright 2023, The Royal Society of Chemistry).5?

(D) A 3D-printed microwave-microfluidic device with liquid metal electrodes. Formation and microwave characterization of droplet networks, monitored in flow
and assembled into droplet interface bilayer networks (copyright 2024, The Royal Society of Chemistry).®®

provides biological information in the spectrum.®® Lammertyn and
coworkers combined a fiber-optic SPR sensor with self-powered
microfluidics to enable portable detection of adalimumab in
plasma,®® achieving a detection limit of 0.35 pg/mL (Figure 5A).
SiP sensors use silicon or silicon nitride waveguides to confine
near-infrared light in both vertical and horizontal dimensions.
Part of the electric field extends beyond the waveguide as an
evanescent field, interacting with the surrounding medium to
form a region sensitive to refractive-index changes. An all-silicon
dielectric metamaterial sensor featuring etched grooves and
hole arrays can passively capture biomolecules in its resonant
cavity via an electric field, promoting light-matter interactions.®"
This design enables qualitative and quantitative analysis of
different amino acids, filling a gap in terahertz sensor research
(Figure 5B).

Microwave signal modalities

Microwave-based microfluidic biosensors can be classified
into narrowband sensors, which detect resonance shifts, and
broadband sensors, which extract complex permittivity. Liu and
colleagues integrated metamaterials into the microwave sensor
fabrication, designing an ultrasmall (20 x 16 mm? device
composed of a square split-ring resonator and a microstrip trans-
mission line.®* This sensor detects the concentration of sub-
stances by analyzing their dielectric constants, achieving a
maximum deviation of less than 0.7 %, which can be used for med-
ical diagnostic tools and environmental detection methods. Lom-
bardo and coworkers coupled gated graphene waveguides with
microfluidic channels to create a sensor that leverages the dual
mechanism of dynamic conductivity modulation from chemical
electrostatic doping in graphene and wave-propagation changes
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induced by edge field interactions with analytes.® It can analyze
DNA sequences, offering sensitivity beyond that of field-effect
transistors and single microwave sensors in detecting single-
base mismatches (Figure 5C). Three-dimensional print technology
and the use of liquid metal have enhanced microwaves within mi-
crofluidic systems, making them more integrated and portable. For
instance, Li and coworkers presented a 3D-printed microfluidic
chip incorporating liquid-metal electrodes as microwave split-
ring resonators to generate and detect water in oil emulsions
(Figure 5D).°® These emulsions could form a droplet network,
which acquired functionality via artificial cellular membranes and
reagents contained within each droplet component, exemplifying
applications in cell-free expression and synthesis.®>%°

Compared to electrochemical analysis, physical analysis
methods such as impedance-based and optical techniques
can detect target substances without chemical reactions. This
non-destructive nature allows for repeated measurements or
further analyses on the same sample, a crucial advantage in
areas such as drug development and quality control. Addition-
ally, other physical properties, such as flow rate and tempera-
ture, can be obtained by direct measurements with electrodes,
further expanding the capabilities of these methods.

MANIPULATION ELECTRODES

Manipulation electrodes can generate electrical, thermal,
magnetic, and mechanical forces, all of which are essential for
controlling fluids and particles within the system (Figure 6).

Electric field

Electric fields in fluids can induce electrodynamic phenomena
such as electrophoresis and electroosmosis. Electrophoresis
leverages these fields to separate various biological samples,

10 Device 4, 100964, February 20, 2026

e.g., nucleic acids, molecules, urine, and cell lysates, based on
differences in charge and size, whereas electroosmosis involves
fluid flow driven by the motion of charged particles in response to
the electric field. These mechanisms are vital for tasks in analyt-
ical and diagnostic applications, including sample preparation,
mixing, and separation.®’

An electrokinetic microfluidic system typically requires two
electrodes embedded in the inlet and outlet of the microchannels.
For example, Ramachandran et al. used isotachophoresis in a
microfluidic device to detect SARS-CoV-2 in 35 min with high
sensitivity and specificity®® (Figure 7A). An electric field can also
enable the manipulation of biological entities, e.g., cells and
DNA, through DEP, which uses non-uniform fields to exert forces
on dielectric particles. This approach is useful for applications
such as cellular assays and tissue engineering, where non-con-
tact cell handling is essential. In addition to particle manipulation,
electric fields can control fluid flow in microchannels. Arango et al.
introduced a programmable microfluidic system with electroactu-
ated valves to regulate liquid circuits® (Figure 7B).

Maintaining detecting performance over time requires consid-
eration of the following factors: (1) medium conductivity and
Joule heating: for example, when using culture medium (conduc-
tivity: 10-100 mS-m~"), applying several hundred volts can in-
crease local fluid temperature by 10°C-30°C within minutes. In
contrast, switching to a low-conductivity medium (~1 mS-m~")
limits the rise to 2°C—4°C during 300 s operation.”’ (2) Biosample
sensitivity: for mammalian cells, 2 kV cm™" serves as an upper
limit to avoid electroporation and viability loss (equivalent to
20 V for a 100-pm gap). This threshold should guide electrode
spacing and drive choices.”’ (3) Electrode stability under pro-
longed use: high electric fields in conductive buffers promote
electrolysis, bubble formation, and electrode deterioration,
which degrade DEP traps and flow uniformity. Countermeasures
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Figure 7. Microfluidic systems with manipulation electrodes to induce electric field
(A) Schematics of an electric-field-driven microfluidic chip operating in two modes: mode 1 enables isotachophoresis extraction for nucleic acid concentration
and purification from impurities, while mode 2 employs CRISPR detection, with positive samples showing strong fluorescent signals compared to negative

controls (copyright 2020, Proceedings of the National Academy of Sciences).®®

(B) A programmable microfluidic system controlling liquid circuits via electroactuated valves (e-gates) to form a “microfluidic clock.” The chip after pipetting 3 pL of
PBS with red dye: liquid travels through a 100-pm-wide, 15-mm-long channel and fills the clock’s center within 20 s. Microscope images show e-gates automatically
activated by a smartphone at 5-min intervals, marking the minutes of a 1-h clock (copyright 2020, American Association for the Advancement of Science).®”

include operating at higher AC frequencies, using insulation
layers, and periodically regenerating noble-metal electrodes
electrochemically to restore surface activity.”?

Thermal field
When circuits are connected to electrodes, thermal fields arise,
based on Joule’s law, which can produce uniform or non-
isothermal fields. Uniform-temperature fields, achieved through
electrode heating, are typically used in applications such as
polymerase chain reaction (PCR) and cell lysis. Due to their small
scale, microfluidic systems can establish strong temperature
gradients, creating non-isothermal fields that enable particle
manipulation. Various physical mechanisms induced by these
gradients facilitate controlling targets, including thermophoresis,
thermocapillary, and thermal convection.”®"*

Cong et al. developed a microfluidic system integrated with
electrodes to trap target objects, e.g., PS spheres and live

cells, via thermophoresis.”® Thermophoresis involves the direct
migration of particles in a temperature gradient. As this gradient
forms, buoyance forces drive thermal convection. Shen et al.
combined thermophoresis and convection in a microfluidic sys-
tem to control biological samples (Figure 8A).”® Thermal con-
vection can also be used to manipulate droplets, not just solid
particles and cells. Zhang et al. designed a microfluidic plat-
form with spiral electrodes for droplet migration, leveraging
thermal convection (Figures 8B).”” Because droplets exist in
two-phase fluid systems (e.g., oil and water), temperature gra-
dients at the interface can produce thermocapillary effects,
which can be used to release particles from droplets.

Unlike electric field manipulation, temperature-based ap-
proaches place no restrictions on the solution’s properties;
however, because electrodes must locally generate high
temperatures, this increases the design and placement re-
quirements of the electrodes. The thermal effect of resistance
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Figure 8. Microfluidic systems with manipulation electrodes to generate thermal fields

(A) An integrated microfluidic system with electrodes controlling sample movement via thermal convection. The system combines a disposable daughterboard
(glass cover, PDMS channel, and thin glass sheet) with a fixed motherboard (glass patterned with Au and Cr electrodes). Four electrodes act as microheaters to
manipulate particles (up) and cells (down) along distinct paths. Scalar bar, 150 pm (copyright 2020, The Royal Society of Chemistry).”®

(B) Schematics of a microfluidic platform with spiral electrodes for droplet migration via thermal convection. Multiple microheater electrodes positioned in the
microchannel continuously manipulate droplets containing yeast cells (copyright 2022, Elsevier).””

dictates that electrical energy converts to heat most efficiently
at locations with the highest resistance. When designing heat-
ing electrodes, specific positions must be reserved within the
manipulation area to form effective thermal fields. Standard
heating electrode designs such as spiral, maze, serpentine,
and ring patterns should be explored and optimized.”® These
designs typically use planar configurations. More efficient
heating control can be achieved by combining metal layers
with different conductivities using MEMS technology, resulting
in smaller and more efficient heating electrodes.”® Further-
more, multi-layer electrode arrangements enable the imple-
mentation of microheating electrode arrays.®°

Magnetic field

When spiral-shaped electrodes are used in a microfluidic system
and an alternating electric field is applied, a magnetic field is
formed. Lin et al. developed an automated microfluidic platform

12 Device 4, 100964, February 20, 2026

equipped with coil electrodes for nucleic acid detection suitable
for simultaneous detection of various viruses (Figure 9A).%" By
employing programmable coil electrodes, droplet manipulation
was improved, enabling automatic control of the system.

As a non-contact method, these electrodes reduce consider-
able flexibility across various applications. However, the main
limitation of magnetic field manipulation methods is their depen-
dence on magnetic materials, especially when manipulating bio-
logical cells. Most cells and nucleic acids possess only weak
diamagnetic properties; therefore, positive magnetophoresis
typically requires labeling with superparamagnetic beads.®*
This increases procedural steps and detection costs and intro-
duces risks of non-specific binding. Label-free negative
magnetophoresis avoids labeling issues but requires paramag-
netic media (such as ferrofluids), which may alter sample
viscosity and osmolarity, raising biocompatibility concerns.®®
When using labels, the cytotoxicity and immune effects of
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Figure 9. Microfluidic systems with manipulation electrodes to generate magnetic and acoustic fields
(A) Nucleic acid amplification testing on an automated system with coil electrodes for droplet manipulation: transporting, merging, mixing, aliquoting, disposing,

and delivery (scale bar, 5 mm) (copyright 2022, Springer Nature).®’

(B) An acoustic microfluidic system generating SSAWs for isolating blood cells and exosomes. SSAWSs apply acoustic forces on target particles, enabling
separation through designated exits. Scale bar, 500 pm (copyright 2017, Proceedings of the National Academy of Sciences).*”

(C) An array of 64 independent dual-mode interdigital transducers generating acoustic fields for droplet manipulation. Droplet movement along the transducer
array. When droplets are held at U*4, the signal switches from the x axis to the y axis. Automated droplet routing (SIL, left turns; SIR, right turns). Scale bar, 500 pm

(copyright 2020, American Association for the Advancement of Science).®

superparamagnetic iron oxide nanoparticles are related to
dosage and surface chemistry properties, highlighting the ne-
cessity of optimizing nanoparticle coating, charge, and washing
steps. Electromagnetic coils, while providing reconfigurable
magnetic fields, generate ohmic heating and power/packaging
limitations. Even millimeter-scale printed circuit board (PCB)
coils require thermal modeling and heat dissipation design, mak-
ing sensor placement and temperature control particularly
important in long-term detection.®®

Mechanical forces
When electrodes are fabricated on a piezoelectric substrate, me-
chanical vibrations occur via the piezoelectric effect, affecting

the movement of liquids and particles in microchannels. Cheng
et al. introduced a microfluidic fluorescence-activated cell
sorting (LFACS) microchip with integrated piezoelectric actua-
tors for analysis and enrichment of mammalian cells.®” This
disposable device provides a platform for fluorescence-based
cell detection, helping to prevent cross-contamination and miti-
gate aerosol hazards. Microfluidic systems with piezoelectric ac-
tuators can be applied to cell sorting and droplet generation.
Zhang and Xia used piezoelectric actuators to produce droplets
with controllable volume and spacing.®®

High-frequency mechanical vibrations can generate acoustic
waves that control objects. Objects in a liquid can be manipu-
lated through acoustic streaming, wherein acoustic waves
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interact with fluid motion. Wu et al. fabricated a microfluidic
system with crossed electrodes to generate standing surface
acoustic waves (SSAWSs) for exosome isolation from whole blood
(Figure 9B).®? Its high efficiency and throughput make it prom-
ising for clinical exosome isolation and analysis. The same group
also developed an electrode array to produce acoustic fields
for droplet manipulation (Figure 9C).2° Despite its label-free
and non-contact advantages, acoustic wave technology faces
several challenges. Acoustothermal heating, directly linked to
energy density and medium properties (e.g., conductivity and
viscosity), can raise local temperatures enough to compromise
cell viability and alter fluid characteristics. Additionally, ultra-
sound can generate fluid cavitation phenomena that disrupt
experimental outcomes.’® The competition between radiation
force acoustophoresis and streaming-induced drag is sensitive
to particle size, frequency, and fluid viscoelasticity. Even at
moderate intensities, prolonged exposure to acoustic waves
can damage cells through thermal effects or microstreaming
shear, making biocompatibility assessment essential.”’ To
address these challenges, future research directions include:
(1) developing phase-programmable, high-density phased
arrays and harmonic field technologies to achieve real-time guid-
ance of pressure nodes, supporting multiplexed analysis and
adaptive sorting; (2) utilizing thin-film PZTs and MEMS to achieve
low-power, flexible, and monolithically integrated acoustic sys-
tems; and (3) optimizing the balance between acoustic energy
density and thermal management.®” Next-generation acoustic
devices with mechanics-coupled designs can enhance acoustic
force transmission efficiency while controlling heat load, meeting
the requirements for clinical-scale processing.

CONCLUSION AND OUTLOOK

Microfluidic technology enables the handling, storage, and anal-
ysis of biological samples in spatially defined regions. Elec-
trodes play a critical role in these systems by endowing micro-
fluidic chips with the abilities to detect and manipulate
samples. These devices need to focus on improving precision,
expanding comprehensive capabilities, and enhancing intelli-
gence. To address these objectives, we propose the following
avenues for future investigation.

Electrode fabrication

Photolithography remains the preferred method for electrode
fabrication owing to its high precision and alignment accuracy;
however, when applied to microfluidic devices with integrated
electrodes, it faces several limitations. First, many electrode
functions require thick or 3D structures such as pillars, sidewall
contact points, and embedded contact pads. Fabricating such
3D structures poses challenges for photolithography, as it typi-
cally needs multiple processes of patterning and alignment,
leading to complex and time-consuming workflows. Yadav
et al. developed a template-assisted electroplating method
that uses an ultrasonic process to maintain uniform deposition
in 3D microelectrode arrays.”® Second, metal adhesion layer
durability presents a challenge for electrodes in aqueous envi-
ronments. Au on Cr, for example, can undergo undercutting
when exposed to AC fields, resulting in edge liftoff and delamina-
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tion.®* Third, creating stable metal patterns directly on elasto-
mers remains problematic due to the poor adhesion between
Au and PDMS. Furthermore, once electrodes are fabricated on
solid substrates, their static structure cannot be reconfigured
or adjusted after manufacturing.

Next-generation electrode processing technology needs
to expand in the following areas: (1) more efficient 3D
electrode manufacturing methods such as light-based additive
manufacturing, including SLA and multi-photon lithography
(MPL). SLA uses UV lasers to construct macroscopic 3D struc-
tures by sequentially curing photosensitive resins (achieving reso-
lution of approximately 10 pm), while MPL leverages focused
multi-photon absorption to achieve nanometer precision. SLA of-
fers advantages for prototype and mold fabrication with faster
printing speeds and lower costs, while MPL specializes in mi-
cro/nano manufacturing with exceptional resolution. Brown
et al. used MPL technology to develop a process for fabricating
3D electrodes with micrometer-level resolution on flexible sub-
strates (maximum height of 3D structures limited to a few
micrometers), which can effectively record electrical signals
from neural activity in small animals.®® (2) Electrode stability
enhancement such as by replacing Cr with alternative adhesion
layer strategies, electroplating Au to prevent corrosion, adding
thin parylene or atomic layer deposition passivation layers, or
embedding metals into elastomers to create contact points that
resist stretching and washing.®® (3) Three-dimensional flexible
electrodes: while planar electrodes benefit from the MEMS mini-
aturization for microfluidic channels, their rigidity can lead to tissue
damage and inflammation during long-term implantation.®”
Three-dimensional flexible electrodes employ stretchable non-
planar structures that conform precisely to biological tissues or or-
ganoids, significantly enhancing long-term stability, spatial resolu-
tion, and signal quality in biological detection. Park et al. used 3D
flexible mesh electrodes for real-time monitoring of brain organo-
ids.”® Three-dimensional flexible electrodes feature innovative
designs such as ultrathin metal serpentine traces embedded in
elastomers, mesh structures that envelop spheroids, and micro-
structures that soften after insertion.*®

Multi-functional electrode integration
Electrode-enabled microfluidic chips often perform detection
and actuation separately, though some integrated electrode
microfluidic systems already exist for cell sorting applications.
The integration of different electrodes presents challenges due
to their operational requirements. Sensing electrodes (used in
electrochemical detection like impedance analysis and amper-
ometry) require low noise and small excitation signals to mini-
mize electrode polarization. In contrast, manipulation electrodes
(for DEP, thermophoresis, and ultrasonics) typically need
higher voltage and frequency drives. In electrode integration sys-
tems, these manipulation electrodes introduce electromagnetic
interference and heat into nearby sensing electrodes. Several
strategies can reduce these interactions, including frequency-
division or time-division separation of sensing and actuation,
physical isolation and shielding between electrode types, and
remote placement of REs for electrochemical readouts.'%°
Brain-on-chip (BoC) platforms create micro physiological
models of neural tissue and neurovascular units on microfluidic
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chips. BoC platforms need to simultaneously handle fluid
actuation, cell stimulation, and drug release, requiring complex
microchannel and electrode structures for high-precision
measurement and control.”®'°" Future research in multi-func-
tional electrode integration will focus on two key directions: (1)
“release + detection” microfluidic electrode chips; for example,
PEDOT-based microelectrodes electrically release glutamate/
GABA while nearby microsensors quantify nitric oxide or neuro-
transmitter responses within seconds, enabling closed-loop
perturbation and measurement experiments.'% (2) “Detection +
screening” microfluidic chips, for example, DEP enrichment with
online impedance cell counting, where sorting on one frequency
band is monitored by label-free impedance metrics on another
band, providing feedback while limiting interference. '

Solid-liquid interface interactions of electrodes

Microfluidic electrodes can use liquid substrates instead of
rigid metals to reduce interface impedance, improve contact,
and allow reconfiguration after fabrication. (1) Liquid metals
(such as EGaln/Galinstan) can replace solid metal electrodes
by filling microchannels. Their bulk-like conductivity and flow
properties enable self-healing, reshaping, and rewiring capabil-
ities. However, their packaging design must prevent liquid
metal from causing embrittlement of certain metals and ensure
biocompatibility in exposed areas.'®* (2) Conductive hydrogels
(such as PEDOT/PSS or nanocarbon enhanced) provide tissue-
like, water-rich interfaces that can replace traditional electrode
surfaces. These hydrogels maintain low impedance while
reducing micromotion damage, which is an important feature
for signal detection in organ-on-chip and brain-on-chip de-
vices."%® (3) lonic liquid (IL) junctions and gel salt bridges can
replace conventional RE junctions, effectively preventing evap-
oration and junction potential drift in small-volume systems.'%®
(4) Slippery liquid-infused porous surfaces (SLIPS) can serve as
dielectric/passivation layers on electrodes, inhibiting biofouling
and preventing bubble adhesion.’®” This stabilizes long-term
electrochemical performance in protein-rich media.

Integrated electrode microfluidic chips are developing toward
portable sensing units and high-precision detection systems, in
particular for POCT applications. Scalable solid-state ISEs can
be embedded in microchannels carrying sweat or urine to enable
online electrolyte monitoring,'®® amplification-free peptide nu-
cleic acid (PNA) detection units can be integrated into dispos-
able cartridge chips for screening low-copy pathogenic nucleic
acids,®® and molecularly imprinted lossy mode resonance
(LMR) optical sensors can be integrated with on-chip wave-
guides or optical windows for selective detection of molecule
biomarkers.'% These technologies combine enhanced mate-
rial-level specificity with precise chip-level fluid control, address-
ing needs such as parallel multi-indicator detection, minimal
sample consumption, pump-free operation, and mobile readout
capabilities.

The development of artificial intelligence (Al) technology and
large predictive models creates opportunities for designing
and fabricating next-generation electrodes.”’®'"" Beyond
accelerating the R&D cycle, Al enables data-driven calibration
of multiplexed signals and closed-loop thermal control. In
data-driven calibration of multiplexed electrical signals, machine
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learning models can separate and correct crosstalk and drift in
multi-electrode readings. This improves identification and
quantification capabilities without requiring single-device
calibration. For closed-loop temperature control, Al controllers
and visual feedback can reduce the trial-and-error iterations
needed for PCR/heater arrays to achieve and maintain target
temperatures. Combining on-chip sensors with learning-based
calibration and control is crucial for next-generation microfluidic
chips featuring high-density electrode arrays.

In sensing electrode design, such as electrochemical
measurement, the electrode geometry and layout determine
detection sensitivity. Classical optimization models (such as
genetic algorithms and topology optimization) have been
extended to Bayesian optimization or deep surrogate models,
which learn objective functions through simulation and experi-
mental data, reducing the simulation burden and improving
performance.’'®""® In impedance cytometry, specific electrode
shapes (such as coplanar electrodes and bypass/ground elec-
trodes) have been shown to improve sensitivity and expand the
range of detectable particle sizes.''*'"® Integrating these param-
eters with Al can enhance signal accuracy and reliability. Al can be
used for the simulation of physical fields such as electric and
thermal fields for optimizing the fabrication of electrodes with
improved spatial controllability. In droplet microfluidic chips with
electrode arrays, researchers have used deep reinforcement
learning and semantic segmentation vision models to create
defect-resistant droplet paths, manage parallel scheduling, and
recognize system states. These technologies can perform mixing,
distribution, and parallel reaction sequences without human
oversight."'®""” Microheater electrodes are used in PCR, lysis,
mixing, and thermocapillary control; however, spatial temperature
non-uniformity can reduce their performance. Recurrent neural
networks (RNNs) have been used to reconstruct the on-chip
temperature distribution from fluorescence signals, achieving a
root-mean-square error of sub-0.1 K compared to a validated
COMSOL model, demonstrating that learning agents can infer
the complete thermal field from sparse or indirect measure-
ments."'® Meanwhile, physics-informed neural network (PINN)
frameworks for heat transfer and electrokinetic microfluidics
provide data-efficient, reliable solvers that can be embedded in
model predictive control (MPC) or reinforcement learning systems
to maintain precise temperature distributions even when load
conditions change.''® These methods enable verification of heat-
er performance during the design phase and enable the prediction
of microheater thermal field distribution using machine learning.
Unlike laser-focused heat sources, electrodes face size limitations
that restrict their ability to create smaller thermal points. Laser
heating based on photothermal effects provides advantages
through light spot focusing and positional flexibility. Schmidt
et al. demonstrated this by using gold nanorods to generate re-
configurable microscale thermal barriers within microchannels,
enabling real-time particle sorting.'?® This approach remains
underexplored in electrode microheater development. Combining
Al design with precision MEMS technology to create reconfigura-
ble thermal barriers for microelectrodes represents a promising
future research direction.

We have discussed various aspects of electrodes in micro-
fluidic systems, covering fundamental fabrication methods,
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the latest advancements in biochemistry, and current oppor-
tunities and challenges. By categorizing electrodes into
sensing and manipulation types, researchers from diverse
fields can more easily understand the technology and adapt
it to their work. Developments in these emerging microfluidic
electrode systems are poised to drive transformative applica-
tions in biomedicine, environmental monitoring, and chemical
analysis.
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