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SeG-Gaussian:Segmentation-Guided 3D Gaussian
Optimization for Novel View Synthesis

Ling-Xiao Zhang, Chenbo Jiang, Yu-Kun Lai Senior Member, IEEE and Lin Gao Member, IEEE

Abstract—Radiance field based methods have recently revolu-
tionized novel view synthesis of scenes captured with multi-view
photos. A significant recent advance is 3D Gaussian Splatting
(3DGS), which utilizes a set of 3D Gaussians to represent a
radiance field, yielding high-fidelity results in real-time rendering.
However, we have observed that 3DGS struggles to capture the
necessary details in sparsely observed regions, where there is
not enough gradient for effective split and clone operations. In
this paper, we present a novel solution to address this limitation.
Our key idea is to leverage segmentation information to identify
poorly optimized regions within the 3D Gaussian representation.
By applying split or clone operations on the corresponding
3D Gaussians in these regions, we aim to refine the spatial
distribution of Gaussians and enhance the overall quality of
high-fidelity 3D scene reconstruction. To further optimize the
reconstruction process, we introduce two spatial regularization
terms: repulsion loss and smoothness loss. These terms effectively
minimize overlap and redundancy among Gaussians, reducing
outliers in the synthesized geometry. By incorporating these
regularization techniques, our approach achieves state-of-the-art
performance in real-time novel view synthesis and significantly
improves visibility in less observed regions, leading to a more
compact and accurate 3D scene representation.

Index Terms—Gaussian Splatting, Radiance Fields, Semantic
Guidance, Regularization.

I. INTRODUCTION

H IGH-fidelity novel view synthesis plays a crucial role
in various vision and graphics applications such as

virtual reality, robotics, video games, and film. Radiance
field based methods have emerged as powerful techniques for
achieving remarkable results in these fields. Among recent
advancements, 3D Gaussian Splatting (3DGS) [1] has emerged
as a powerful approach, leveraging anisotropic 3D Gaussians
to represent complex scenes efficiently. Compared to tra-
ditional mesh-based methods and volumetric representations
like Neural Radiance Field (NeRF) [3], 3DGS provides both
high-quality reconstruction and real-time rendering capabili-
ties, making it an attractive choice for low-cost 3D content
creation. 3D Gaussian Splatting (3DGS) [1] adopts explicit

This work was supported by the National Natural Science Foundation of
China(No. 62322210), Beijing Municipal Science and Technology Commis-
sion (No. Z231100005923031), and Innovation Funding of ICT, CAS (No.
E461020). (Corresponding author: Lin Gao.)

Ling-Xiao Zhang and Lin Gao are with the Beijing Key Laboratory of
Mobile Computing and Pervasive Device, Institute of Computing Technology,
Chinese Academy of Sciences, Beijing 100190, China. Ling-Xiao Zhang and
Lin Gao are also with the University of Chinese Academy of Sciences, Beijing
101408, China (e-mail: zhanglingxiao@ict.ac.cn;gaolin@ict.ac.cn).

Chenbo Jiang is with McGill University, 845 Rue Sherbrooke O, Montréal,
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anisotropic 3D Gaussians as primitives and assigns view-
dependent radiance with spherical harmonics and opacity to
each Gaussian. 3DGS also incorporates an adaptive control
strategy, involving split and clone operations, to efficiently
optimize regions of interest. This strategy is vital for enhancing
the representation power of 3DGS since it relies on placing the
appropriate Gaussians in the correct positions. However, 3DGS
may struggle to represent details in inconspicuous regions.
Fig. 1 illustrates this limitation in the representation power
of 3DGS.

Recent works have sought to address these limitations.
AbsGS [4] and GOF [5] refine the densification process by
considering absolute gradient values instead of directional
gradients, allowing more robust capture of fine details in
regions with subtle geometric variations. Concurrently, 3DGS-
MCMC [6] reformulates Gaussian placement as a probabilistic
sampling problem, interpreting Gaussians as samples drawn
via Stochastic Gradient Langevin Dynamics (SGLD). By
introducing noise into Gaussian updates and redefining the
clone operation as a relocalization scheme, their approach
reduces dependence on initialization and improves Gaussian
efficiency. While 3DGS-MCMC provides a powerful global
optimization framework, it does not explicitly consider the
semantic structure of the scene when redistributing Gaussians.
The key limitation of AbsGS and GOF lies in their reliance
on view-space positional gradients, and they still densify
Gaussians when the average gradient magnitude surpasses
a threshold, even though they take absolute values before
averaging.

Our method aims to address the spatial distribution issue
in 3DGS by placing Gaussians in appropriate positions. In
other words, our approach focuses on optimizing the spatial
distribution of Gaussians. Firstly, we observe that 3D Gaus-
sians that are not well optimized often share some common
semantic region. This limitation arises from the reliance of
the original 3DGS approach on accumulated color gradients
for the split and clone operations. As a result, regions that are
only sparsely observed by a few views may not accumulate
sufficient gradients to trigger the split and clone operations.
Consequently, these regions are not adequately optimized and
can exhibit suboptimal representations in the 3D Gaussian
splatting process. For example, in the case of the bicycle
scene shown in Fig. 1, the shrub grass region is not well
optimized, while the bench is better optimized. Based on this
observation, we believe that identifying which regions have
poorly optimized Gaussians and applying splitting and cloning
operations specifically to those regions can lead to better
results. This idea is inspired by the work of Häne et al. [7], [8],
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Fig. 1. 3D Gaussian Splatting (3DGS) [1] represents radiance fields through a collection of 3D primitives known as 3D Gaussians. These primitives possess
radiance and opacity attributes. Despite its effectiveness, optimizing the spatial distribution of these primitives poses a challenge. In situations such as the
BICYCLE scene, where the shrub grass region is not well optimized, 3DGS and other methods based on it, such as Scaffold-GS [2], struggle to accumulate
sufficient gradients for split and clone operations. This limitation prohibits the achievement of detailed region reconstruction. Our proposed method utilizes
segmentation information to guide spatial optimization, enabling the reconstruction of intricate regions with infrequent occurrence.

who suggest that semantic segmentation and reconstruction
tasks in images can mutually benefit each other, as they share
many connections. As the change of visibility is usually due
to occlusion, 3D Gaussians not well optimized tend to be
clustered into regions, with boundaries often aligned with
object boundaries, so segmentation can be useful to identify
such regions. On the other hand, it is also desirable to have
optimized 3DGS with more regularly placed Gaussians and
fewer outliers. We observe that the original 3DGS uses plenty
of Gaussians to represent a scene, and this causes redundancy
and overlap. So we introduce regularization terms to constrain
the spatial distribution, leading to a more regular and efficient
representation.

Specifically, we first utilize Semantic-SAM [9] to extract
several segmentation masks for each image. Semantic-SAM
is capable of generating more detailed and multi-level masks
and achieves higher mask quality compared to SAM [10]. We
propose a different strategy for split and clone operations com-
pared to the original 3DGS. In 3DGS, the decision to perform
splitting and cloning on a particular Gaussian is determined
by the accumulated color gradient of each Gaussian. However,
it is challenging to obtain effective gradient accumulation
for regions that appear less frequently in the input images.
In contrast, our strategy involves testing whether each mask
region has been adequately optimized. If not, we perform
a re-projection of the pixels in that region onto the Gaus-
sians to determine which Gaussians correspond to the mask.
Subsequently, we apply split or clone operations on those
Gaussians to improve the optimization for the corresponding
mask region. Please note that 3D segmentation and multi-view
consistency are not necessary for our objectives. Our main
focus is novel view synthesis results, which naturally produce
2D images. Hence, it is sufficient to use these 2D images
directly to identify the regions that need improvement. Upon
identifying these regions, we can then re-project them onto
3D Gaussians for our optimization. Such re-projections from
different training images are aggregated, and a 3D Gaussian
corresponds to at least one such region is considered as

needing improvements. During the optimization process, we
incorporate two regularization terms for spatial regularization:
repulsion loss and smoothness loss. The repulsion loss aims
to minimize overlap and redundancy among the Gaussians.
By penalizing Gaussians that are too close or overlapping,
we encourage a more even distribution of Gaussians in space.
On the other hand, the smoothness loss is employed to reduce
outliers. It forces outlier Gaussians to move to the local surface
that is fitted by neighboring Gaussians. By incorporating
these regularization terms, we can improve the overall spatial
distribution and quality of the synthesized geometry.

Experimental results demonstrate that our method achieves
state-of-the-art in several metrics for real-time rendering in
novel view synthesis and better visual quality than others.
Our method exhibits noticeable benefits in regions that are
less frequently observed, such as the bicycle scene, as shown
in Fig. 1. We also evaluate reconstruction results in different
levels of visibility, as shown in Sec. IV-D. Besides, our method
can be integrated as a plug-and-play module and combined
with other 3D-Gaussian-based methods, which have the same
densification strategy as the original 3DGS. We show the
results of combining Scaffold-GS [2] with our method.

Overall, our contributions can be summarized as follows:
1) We introduce SeG-Gaussian, a novel approach that

leverages segmentation guidance and adaptive density control
to improve the distribution of 3D Gaussians, which can be
integrated as a plug-and-play module. This leads to better
results in synthesizing novel views and enhances the overall
quality of the rendered images.

2) We propose the integration of spatial regularization terms,
including repulsion loss and smoothness loss, to refine the
spatial arrangement of the Gaussians. This further improves
the rendering quality by reducing overlap, redundancy, and
outliers in the synthesized geometry.

3) Experiments demonstrate that our method achieves state-
of-the-art performance for real-time rendering in novel view
synthesis. Additionally, our approach produces visually su-
perior results with enhanced details in regions that are less
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Fig. 2. Overview of SeG-Gaussian. For each training view, we extract K masks through Semantic-SAM. For each region Mi, we calculate the mean L1

error LMi
= 1

∥Mi∥0
∥(I− Î)Mi∥1 between the region Mi of ground truth image I and rendered image Î. If LMi

is greater than the mean L1 error for the

whole image L1 = 1
∥Ii∥0

∥(I − Î)∥1, Gaussians that lie in that suboptimal region should be densified. To prevent excessive densification of Gaussians, we
involve Gaussians Gj with weights αjTj > 0.5 that contribute significantly to the final color in the densification process. We perform densification for every
pass through the training dataset. To further improve the 3D Gaussian distribution, we introduce two spatial regularization terms on 3D Gaussians, repulsion
loss Lr , which separates Gaussians that are too close, enabling a more even and regular Gaussian representation of the scene, and smoothness loss Ls that
forces outlier Gaussians to move onto the local surface fitted by neighbors.

frequently observed.

II. RELATED WORK

A. Novel View Synthesis

Novel View Synthesis (NVS) involves generating images
from new viewpoints based on a set of posed images.
NeRF [3], a representative method in this field, utilizes volume
rendering [11], [12] to accomplish this task. NeRF represents
the scene as implicit MLPs [13]–[15], which take the position
and direction as input and output color and density. With the
success of NeRF, several follow-up methods have aimed to
enhance the quality and speed of neural radiance fields. Mip-
NeRF [16], Mip-NeRF360 [17], and Zip-NeRF [18] achieve
impressive visual results in neural radiance fields, but they
require considerable training time and cannot render in real-
time. To speed up neural radiance fields, some works have
proposed different representations [19]–[28] to accelerate radi-
ance fields. However, these methods struggle to find a balance
between rendering quality and speed.

Recently, there have been some advancements in radiance
fields that gradually shift away from using neural networks and
instead employ explicit methods to represent scenes, result-
ing in state-of-the-art results in real-time rendering. Mobile-
NeRF [29] uses an explicit mesh to represent geometry and
assigns neural features to the geometry. This allows for the use
of a traditional rendering pipeline to render feature images,
which are then used to obtain RGB values using a lightweight
network. Point-NeRF [30] uses an explicit point cloud to
represent geometry and assigns features to the points. During
volume rendering, point features are converted to radiance
to render images. BakedSDF [31] optimizes a hybrid neural
volume-surface representation and bakes them onto triangle
meshes. These methods do not completely abandon neural
networks but instead utilize explicit geometry as a prior.
Plenoxels [32] represents a scene as a voxel grid and use
spherical harmonics (SH) features to represent view-dependent
radiance. To render the results, Plenoxels needs to interpolate
continuous radiance fields and conduct volume rendering. 3D
Gaussian Splatting (3DGS) [1] departs from the rendering
approach of NeRF and instead utilizes splatting [33], [34]

for rendering. 3DGS represents the scene as a collection of
3D Gaussians, with opacity and radiance defined on each
Gaussian. Additionally, it uses spherical harmonics (SH) to
represent radiance from different viewpoints. Through this
method, it achieves high-quality and real-time rendering si-
multaneously. Following that, many orthogonal methods aimed
at improving rendering quality and compressing 3D Gaussian
representations have emerged [2], [35]–[42]. Scaffold-GS [2]
uses anchor points to distribute local 3D Gaussians, and pre-
dicts their attributes on-the-fly based on the viewing direction.
FreGS [35] designs a progressive frequency regularization
to tackle the over-reconstruction issue within the frequency
space. Mip-Splatting [43] introduces a 3D smoothing filter and
a 2D Mip filter, eliminating multiple artifacts and achieving
alias-free renderings. These methods improve the quality of
novel view synthesis and are orthogonal to our method, which
can be combined together to produce better results.

B. Primitive-based Differentiable Rendering

Finding a suitable primitive to represent the scene is in-
deed a highly effective approach, especially in the field of
differentiable rendering. A good primitive can serve as an
efficient inductive bias to the scene. NeurMiPs [44] uses a
mixture of planes to represent scenes. DBW [45] represents
a scene with deformable primitives, including a background
icosphere, a ground plane, and object primitives. Recently,
there has been a significant focus on point-based differentiable
rendering [30], [46]–[50]. Among them, the splatting-based
method should be highlighted, which requires less training
time and less storage, and achieves real-time rendering. Dif-
ferentiable Surface Splatting [48] uses surface splatting to
represent geometry. 3D Gaussian Splatting (3DGS) [1] uses
anisotropic Gaussian splatting to represent radiance fields and
achieves impressive results while rendering in real-time. For
3DGS, adaptive control, including splitting and cloning for
Gaussians, is a key factor in its representation power. However,
this strategy may limit the optimization of 3DGS in capturing
fine details, as there might not be sufficient gradients available
to guide the splitting or cloning operations. We propose a



4

segmentation-based strategy to identify areas that are not well 
optimized and subsequently optimize them.

C. Segmentation and Reconstruction
The statement ”Image segmentation and dense 3D recon-

struction contribute valuable information to each other’s task”
[7], [8] points to the interconnectedness of segmentation un-
derstanding and 3D reconstruction. This insight, as highlighted
in the works of Häne et al. [7], [8], showcases the potential for
leveraging segmentation information to enhance the adaptive
control strategy of 3D Gaussian Splatting (3DGS) [1].

In this regard, the recent method SAM [10] has achieved
notable results in interactive segmentation. SAM can be em-
ployed to obtain a segmentation mask that can identify areas
where the optimization of 3DGS may be lacking. There have
been subsequent improvements to SAM as well. Semantic-
SAM [9] introduces hierarchical segmentation with a finer
grid, providing more detailed information. SAM-HQ [51]
focuses on generating high-quality masks compared to the
original SAM approach.

Recent methods tried to integrate 2D scene understanding
methods with NeRF and 3D Gaussians to produce a semantic-
embedded 3D scene representation. For example, Semantic
NeRF [52] jointly encoded semantics with appearance and
geometry within a NeRF for novel semantic view synthesis.
LERF [53] was the first to embed CLIP [54] features into
NeRF, enabling open-vocabulary 3D queries leveraging the
powerful CLIP representation. LangSplat [55] and LEGaus-
sians [56] are both methods that integrate semantic infor-
mation into 3D Gaussian representations to enhance scene
understanding and manipulation. However, there is currently
no existing method that directly enhances reconstruction qual-
ity by incorporating semantic information. By incorporating
segmentation information and techniques like SAM, Semantic-
SAM, and SAM-HQ into the adaptive control strategy of
3DGS, it is possible to enhance the representation power and
overall performance of 3DGS in capturing fine details and
optimizing its rendering quality.

III. METHOD

We propose SeG-Gaussian, a segmentation-guided 3D
Gaussian distribution optimization method for novel view
synthesis. The pipeline is illustrated in Fig. 2. Firstly, we
give the preliminary of 3D Gaussian Splatting [1] (Sec.
III-A). Secondly, we introduce the segmentation-guided 3D
Gaussian Distribution Optimization (Sec. III-B). We extract
segmentation masks from input images to find the regions for
densification. Thirdly, we introduce two spatial regularization
terms to constrain the spatial distribution of 3D Gaussians
(Sec. III-C).

A. Preliminary
3D Gaussian Splatting is a point-based scene representation

for real-time radiance field rendering [1]. The geometry is
modeled as a set of 3D Gaussians P that are defined by a
full 3D covariance matrix Σ at point µ:

G(x|µ,Σ) = e−
1
2 (x−µ)TΣ−1(x−µ). (1)

Because covariance matrices need to be positive semi-definite
by definition, it is modeled as Σ = RSSTRT with scaling
matrix S and rotation matrix R. To render an image for
a given view with extrinsic matrix W and intrinsic matrix
K, the projected 2D Gaussians’ mean is µ′ = KW[µ, 1]T,
and covariance matrix is Σ′ = JWΣWTJT, where J is
the Jacobian of the affine approximation of the projective
transformation. Finally, the rendered color C at pixel u is
obtained through blending N ordered points overlapping the
pixel:

C =
N∑
i=1

Tiαici, Ti =
i−1∏
j=1

(1− αj), (2)

where αi = G(u|µ′
i,Σ

′
i)oi, and ci, oi are the color and

opacity properties of each 3D Gaussian. ci is represented using
spherical harmonics (SH).

B. Segmentation-guided 3D Gaussian Distribution Optimiza-
tion

In 3D Gaussian Splatting [1], adaptive control is proposed to
populate regions with missing geometric features and regions
where Gaussians cover large areas in the scene. They densify
Gaussians with an average magnitude of view-space positional
gradients above a threshold ϵ. Their method is able to recon-
struct the most detailed regions with the adaptive control of
Gaussians.

However, it is hard to densify Gaussians in regions that
rarely appear in all images. Because in original 3DGS [1],
the Gaussian representation tends to resemble a global repre-
sentation. In other words, a Gaussian is associated with color
computations from various views. This makes it challenging
to match the designated threshold for densification after the
computation of cumulative gradients, even if significant gra-
dients are generated in certain views. As a result, regions that
are heavily occluded do not undergo sufficient optimization.
As illustrated in Fig. 1, the grass under the bench and the
clock behind the television occur infrequently in all images,
leading to artifacts and blurring in the rendered results. More
results are discussed in Sec. IV-D.

To better find the regions that need to be densified, we
propose a segmentation-guided 3D Gaussian distribution opti-
mization. First, for an input image I, we leverage the open-set
segmentation method [9] to extract K segmentation regions
{Mi, i = 1, ...,K}. Then, to obtain the contribution of each
Gaussian Gj made in region Mi to the color of pixel ui, we
keep track of the corresponding weight wui

j = αjTj for Gj at
pixel ui during the rendering process, and assign a weight

wi
j = max

w
ui
j

wui
j , j ∈ {1, ..., |P |} (3)

on Gaussian Gj , which represents the maximum contribution
of Gaussian Gj to the region Mi, ∥p∥ is the number of
Gaussians.

For each region Mi, we calculate the mean (per-pixel) L1

error LMi
= 1

∥Mi∥0
∥(I − Î)Mi∥1 between the region Mi of

ground truth image I and rendered image Î. If LMi is greater
than the mean L1 error L1 = 1

∥Ii∥0
∥(I − Î)∥1 for the whole
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3DGS AbsGS GOF Ours Ground Truth

Fig. 3. The comparisons of ours and other methods and the corresponding ground truth images. The scenes from top to bottom are: FLOWERS and ROOM from
the Mip-NeRF360 dataset; DRJOHNSON and PLAYROOM from the Deep Blending dataset [57]; TRUCK and TRAIN from the Tanks&Temples dataset [58].

image, Gaussians that lie in that region should be densified,
as this indicates segmentation regions not sufficiently well
reconstructed. To prevent excessive densification of Gaussians,
we involve Gaussians with weights wi

j > 0.5 that contribute
significantly to the final color in the densification process. As
shown in Fig. 1, our optimization can reconstruct more details
than 3DGS [1] and Scaffold-GS [2].

C. Spatial Regularization

To achieve a compact and efficient representation of the
scene, we introduce two spatial regularization terms for 3D
Gaussians: repulsion loss Lrep and smoothness loss Lsmooth.
These losses jointly encourage a more uniform Gaussian
distribution while preserving geometric details and reducing
redundancy.

A key observation is that, in the standard 3DGS framework,
the spatial distribution of Gaussians often does not align
well with underlying geometric structures. Specifically, due
to the absence of strong geometric constraints, Gaussians can
become excessively clustered in some regions while leaving
other areas under-sampled. Furthermore, outlier Gaussians

may persist and contribute to unwanted artifacts in the final
rendered result. To address these issues, we leverage local
geometry information to construct an adaptive spatial regu-
larization.

For each Gaussian Gi, we estimate a local geometric plane
by computing the principal components of its Q nearest
neighbors B(i) using Principal Component Analysis (PCA)
following DSS [48]. The normal of this plane is denoted as n̂,
and ûi, v̂i are the first 2 principal components. First, we define
the repulsion loss Lrep, which prevents excessive clustering of
Gaussians and encourages a more uniform distribution along
the local surface:

Lrep =
1

|P |

|P |∑
i=1

∑
j∈B(i)

−oje
−

r2i,j

h2 (4)

where µi and µj denote the centers of Gaussians Gi and Gj ,
respectively. h is a hyper-parameter to represent finite support
diameter [59], |P | is the number of Gaussians. The term oj
represents the opacity of Gj , ensuring that the loss is primarily
influenced by the significant Gaussians. Importantly, instead
of using the full Euclidean distance, we introduce a bilateral
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weighting term based on the local geometry: the term ri,j = 
∥Πi(µi −µj )∥2 projects the center difference vector onto the 
local plane, and Πi = [ûiv̂i][ûiv̂i]

T. By focusing the repulsion 
effect on the tangent plane, we prevent unnecessary movement 
in the normal direction, thereby avoiding the displacement of 
Gaussians away from the underlying geometry.

However, relying solely on repulsion loss may lead to 
excessive separation, causing a loss of geometric detail. To 
mitigate this issue, we introduce the smoothness loss Lsmooth, 
which encourages Gaussians to remain close to the estimated 
local surface by minimizing their distance to it. Specifically, 
we minimize the distance between a Gaussian’s center and the 
estimated local plane fitted by i ts neighboring Gaussians:

Lsmooth =
1

|P |

|P |∑
i=1

∑
j∈B(i)

ojd
2
ij , dij = n̂ · (µi − µj) (5)

This constraint helps prevent excessive deviations from the
local surface, reducing outlier Gaussians and improving the
smoothness of reconstructed geometry.

By jointly optimizing these two regularization terms, our
method strikes a balance between uniform Gaussian distribu-
tion and geometric detail preservation. The repulsion loss pre-
vents excessive clustering, while the smoothness loss prevents
Gaussians from deviating too far from the local surface. As
a result, our full model achieves a more compact and well-
structured Gaussian representation, leading to enhanced ren-
dering quality with fewer redundant Gaussians. The ablation
results are presented in Sec. IV-B.

D. Optimization Details

The total loss function is L1 combined with a D-SSIM term
and two regularization terms:

L = (1− λssim)L1 + λssimLD−SSIM + λrepLrep

+ λsmoothLsmooth (6)

We use λssim = 0.2, λrep = λsmooth = 0.1 in all our
experiments. Similar to 3DGS [1], we start by optimizing the
zero-order component and then introduce an additional band
of the SH after every 1000 iterations until all 4 bands of SH
are represented. We first run segmentation-guided optimization
for 15K iterations with densification every 500 iterations and
then run optimization with two geometry spatial regularization
terms for another 15K iterations. In other words, these two
regularization terms start to apply after 15,000 iterations.
Because the computation of k-nearest neighbors (KNN) is
time-consuming, we update and recalculate the KNN every
100 iterations. Due to different scene sizes, we set h =
0.05, Q = 15 for real-world scenes, and h = 0.005, Q = 5
for the synthetic Blender dataset.

IV. EXPERIMENT

We conduct experiments to demonstrate the effectiveness
of our method. First, we compare the results of novel view
synthesis, including real and synthetic data. For real data,
we use the following datasets: Mip-NeRF360 [17], Deep
Blending [57], and Tanks&Temples [58]. We compare against

(a) GT (b) Scaffold-GS (c) Scaffold-GS+Ours
Fig. 4. The comparisons of Scaffold-GS and the combination with our method
and the corresponding ground truth images. The scenes are FLOWERS and
ROOM from the Mip-NeRF360 dataset.

the following baselines: Plenoxels [32], InstantNGP [23], Mip-
NeRF360 [17], ZIP-NeRF [18], Point-NeRF [30], 3DGS [1],
AbsGS [4], GOF [5], Mip-Splatting [43] and Scaffold-GS [2].
We also show the results of the Scaffold-GS combined with
our method.

Next, we conduct some ablation experiments to explain
our design choices. We demonstrate the effectiveness of our
segmentation-guided approach, the two regularization terms,
and the comparison with different initializations. Finally, we
present two further analyses: a limited budget experiment to
evaluate the efficiency of our method under fixed Gaussian
capacity, and a visibility analysis to explore how semantic
guidance affects performance in occluded or sparsely visi-
ble regions. The evaluation metrics we used for comparison
include: PSNR (Peak Signal-to-Noise Ratio) to measure the
quality of synthesized images, SSIM (Structural Similarity In-
dex) to quantify the structural similarity between two images,
and LPIPS (Learned Perceptual Image Patch Similarity) which
considers human perception of image quality by calculating
the perceptual distance between image patches.

A. Novel View Synthesis

In this task, our objective is to input a set of images with
given camera poses and synthesize an image from a new
viewpoint. We conduct experiments on both real-world data
and synthetic data.

a) Real-World Scenes: First, we perform experiments in
real-world scenes. Similar to Mip-Nerf360 [17], we adopt the
dataset partitioning method that selects every 8th image for
testing. The results are presented in Table I. The results of
our method were obtained after training for 30K iterations,
following the same protocol as 3DGS. The detailed numbers
for each scene can be found in the supplemental material.

In a quantitative comparison involving 9 real scenes from
the Mip-NeRF360 dataset [17], our method achieves state-of-
the-art real-time performance in terms of SSIM and LPIPS.
Although Zip-NeRF [18] achieves higher PSNR scores, it
requires significantly longer training time and does not support
real-time rendering. In contrast, our method provides a more
efficient trade-off between quality and speed, offering fast
training and real-time rendering capability.

In terms of visual quality as shown in Fig. 3, our method
demonstrates significant improvements over 3DGS with fewer
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Fig. 5. The comparisons of our method with other methods and the corresponding ground truth images on synthetic Blender dataset. Our method can
reconstruct more details than other methods, such as the gear in LEGO scene.

TABLE I
QUANTITATIVE COMPARISON OF OUR METHOD WITH PREVIOUS WORK, COMPUTED OVER THREE REAL DATASETS. RESULTS OF PREVIOUS NERF-BASED

WORK ARE DIRECTLY QUOTED FROM THE ORIGINAL 3DGS PAPER. AND RESULTS OF OTHER METHODS ARE QUOTED FROM THEIR PAPERS WHENEVER
AVAILABLE. THE 1ST, 2ND, AND 3RD-BEST PERFORMANCES ARE INDICATED BY RED, ORANGE, AND YELLOW HIGHLIGHTS RESPECTIVELY.

Dataset Mip-NeRF360 Tanks&Temples Deep Blending
Metric SSIM↑ PSNR↑ LPIPS↓ Mem SSIM↑ PSNR↑ LPIPS↓ Mem SSIM↑ PSNR↑ LPIPS↓ Mem
Plenoxels 0.626 23.08 0.463 2.1GB 0.719 21.08 0.379 2.3GB 0.795 23.06 0.510 2.7GB
INGP-Base 0.671 25.30 0.371 13MB 0.723 21.72 0.330 13MB 0.797 23.62 0.423 13MB
INGP-Big 0.699 25.59 0.331 48MB 0.745 21.92 0.305 48MB 0.817 24.96 0.390 48MB
Mip-NeRF 360 0.792 27.69 0.237 8.6MB 0.759 22.22 0.257 8.6MB 0.901 29.40 0.245 8.6MB
Zip-NeRF 0.828 28.54 0.189 908M 0.839 23.64 0.100 908M 0.911 30.00 0.227 908M
3DGS 0.815 27.21 0.214 734MB 0.841 23.14 0.183 411MB 0.903 29.41 0.243 676MB
AbsGS 0.820 27.49 0.191 728MB 0.853 23.73 0.162 304MB 0.902 29.67 0.236 444MB
GOF 0.825 27.42 0.233 690MB 0.827 21.01 0.131 398MB 0.875 28.14 0.275 437MB
Ours 0.822 27.70 0.203 716MB 0.856 23.95 0.160 369MB 0.905 29.81 0.243 319MB
Scaffold-GS 0.807 27.51 0.239 178MB 0.852 23.96 0.176 77.6MB 0.905 30.21 0.254 54.0MB
Scaffold-GS+Ours 0.809 27.68 0.218 159MB 0.854 24.06 0.174 71.5MB 0.907 30.30 0.251 39.2MB
Mip Splatting 0.827 27.78 0.201 800M 0.826 23.09 0.140 476M 0.903 29.40 0.239 839M
Mip Splatting + Ours 0.830 27.94 0.198 732M 0.830 23.33 0.135 447M 0.904 29.75 0.234 772M

Gaussians, particularly in detail-rich regions such as the grass
in FLOWER scene and the guitar in the ROOM scene.

Compared to AbsGS [4] and GOF [5], which proposed
a new metric that accumulates the norms of the individual
pixel gradients, our method achieves better quality, such as
the detailed representation of a chair in the DRJOHNSON
scene from the Deep Blending dataset [57] and the wheels
in the TRAIN scene. This is mainly because both AbsGS
and GOF still densify Gaussians when the average magnitude
of view-space positional gradients is above a threshold, even
though they take the absolute value of each gradients before
averaging. It struggles to capture the necessary details in

sparsely observed regions, where there is not enough gradient
for effective densification. In contrast, our method calculates
the errors of segment regions in each training image, and if
a region’s average reconstruction error is greater than that of
the whole image, Gaussians lying in that region should be
densified, as this indicates these regions are not sufficiently
well reconstructed.

In the Tanks&Temples dataset [58] including TRUCK scene
and TRAIN scene, our method also demonstrates superior
visual quality and can reconstruct more details than others,
such as the steering wheel in scene TRUCK.

We also compare the results of the Scaffold-GS and the



8

TABLE II
PSNR SCORES FOR SYNTHETIC Blender DATASET [3], WE START WITH

100K RANDOMLY INITIALIZED POINTS THE SAME AS 3DGS.

Mic Chair Ship Materials Lego Drums Ficus Hotdog Avg.
Plenoxels 33.26 33.98 29.62 29.14 34.10 25.35 31.83 36.81 31.76
INGP-Base 36.22 35.00 31.10 29.78 36.39 26.02 33.51 37.40 33.18
Mip-NeRF 36.51 35.14 30.41 30.71 35.70 25.48 33.29 37.48 33.09
Point-NeRF 35.95 35.40 30.97 29.61 35.04 26.06 36.13 37.30 33.30
ZIP-NeRF 35.15 34.84 31.38 31.66 34.84 25.84 33.90 37.14 33.09
3DGS 35.36 35.83 30.80 30.00 35.78 26.15 34.87 37.72 33.32
AbsGS 36.02 36.00 30.78 29.97 35.77 26.08 34.74 37.67 33.38
GOF 36.06 36.18 30.67 30.19 35.56 26.17 35.01 37.45 33.41
Ours 35.38 36.07 30.81 30.26 35.84 26.21 34.96 37.83 33.42
Scaffold-GS 36.32 35.13 30.15 30.30 34.89 26.31 34.40 37.65 33.14
Scaffold-GS+Ours 35.36 35.44 30.38 30.41 35.06 26.63 34.80 37.75 33.35
MIP-Splatting 35.55 35.70 30.78 30.12 35.45 26.14 35.12 37.78 33.33
MIP-Splatting+Ours 36.63 35.66 31.56 30.45 36.44 26.33 35.54 38.01 33.82

combination with our method, as shown in Fig. 4 and Table I.
Combining Scaffold-GS with our method results in improved
performance and fewer Gaussians, such as enhanced detail in
the weeds under a chair in the BICYCLE scene. Scaffold-GS
adopts the same splitting strategy as the original 3DGS, which
densifies Gaussians based on the average magnitude of view-
space positional gradients exceeding a specified threshold.
This approach often fails to adequately capture essential details
in regions with sparse observations. This improvement can be
attributed to our method’s local density control.

b) Synthetic Bounded Scenes: In the evaluation of the
synthetic Blender dataset [3], we present the quantitative
results in Table II. Our method achieves comparable results,
starting from random initialization, which is consistent with
the approach used in 3DGS. For qualitative evaluation, please
refer to Fig. 5. Our method showcases superior visual quality,
particularly in capturing fine details. This is because other
methods rely on the average view-space gradient magnitude
for Gaussian splitting. However, since each Gaussian con-
tributes to multiple regions through volume rendering, aver-
aging gradients over many views smooths out local variations,
suppressing necessary densification in high-gradient areas,
leading to reconstruction artifacts as a result. Our method
overcomes this by directly comparing local and global recon-
struction errors, ensuring targeted densification where needed,
thus preserving finer details more effectively. For example, in
the CHAIR scene, both AbsGS and GOF exhibit imperfections
in the reconstruction of the seat edge, leading to penetration
artifacts on the chair legs from certain viewpoints. Meanwhile,
the 3DGS method introduces some floater artifacts. And our
method reconstructs the vent hole of the bass drum with
sharper and more complete edges in the DRUMS scene and the
detailed gear in the LEGO scene compared to other methods.

B. Ablation Studies

In this section, we conduct ablation experiments on two
design choices: segmentation-guided optimization and spatial
regularization. For segmentation-guided optimization, we fo-
cus on demonstrating the necessity of incorporating segmenta-
tion information in our method. We replace the segmentation
mask in our approach with a patch mask to illustrate the
importance of segmentation information. This highlights how
segmentation information plays a crucial role in guiding the
optimization process. Regarding spatial regularization terms,
we conduct experiments where we remove these terms to

TABLE III
QUANTITATIVE COMPARISONS WITH THE BASELINE THAT DIVIDES
IMAGES INTO 9× 6 PATCHES, SUPERPIXEL BASED SEGMENTATION

METHOD SLICO [60] AND WITHOUT REPULSION AND SMOOTHNESS LOSS
ON MIP-NERF360 DATASET.

Settings SSIM↑ PSNR↑ LPIPS↓

Baseline 0.808 27.30 0.210
SLICO 0.813 27.41 0.208
SAM 0.815 27.58 0.207
SAM-HQ 0.819 27.66 0.204
Ours 0.821 27.70 0.202
w/o Lrep + Lsmooth 0.813 27.59 0.209
w/o Lrep 0.814 27.62 0.205
w/o Lsmooth 0.818 27.64 0.204

(a) GT (b) Ours (c) Baseline (d) SLICO
Fig. 6. Qualitative comparison of novel view synthesis with the baseline and
superpixel-based method SLICO. (b) Our method can capture details, such as
the stair and the box behind the door in the BONSAI scene of MipNeRF360,
which are hard to capture for the (c) patch-based and (d) superpixel-based
optimization.

demonstrate their necessity. By comparing the results without
spatial regularization to our full method, we showcase the
importance of incorporating spatial regularization to improve
the synthesis quality and preserve fine details in the generated
images.

a) Segmentation-guided Optimization: Our method in-
corporates segmentation masks generated by Semantic-
SAM [9], which contain multi-level semantic information. To
assess the significance of this information, we design masks
without semantic information and utilize them for locally den-
sifying the scene, following the same approach as our original
method. We divide the images into 9× 6 patches to ensure a
similar number of masks as generated by Semantic-SAM [9],
and use superpixel-based method SLICO [60] to produce
masks. We also compare with SAM-based method, including
SAM [10] and SAM-HQ [51]. The quantitative results are
presented in Table III. Different SAM-based segmentation
methods have slight impact on performance, but all are better
than patch-based and superpixel-based segmentation. SAM-
HQ produces more accurate instance segmentation results than
SAM, but Semantic-SAM is able to produce more part level
segmentation, which has the best performance. In Fig. 6, (b)
Our method effectively captures fine details, such as the stair
and the box behind the door in the BONSAI scene of Mip-
NeRF360, which are challenging for the (c) patch-based and
(d) superpixel-based optimization methods. This is because
both baseline and SLICO methods produce segmentation with
weaker semantic consistency. Typically, regions with the same
semantics exhibit similar textures and materials. In this case,
our method correctly segments the patterned area of the box
as a distinct region, whereas the other methods merge it with
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(a) Ours (b) w/o Lrep

+Lsmooth

(c) w/o Lrep (d) w/o Lsmooth

Fig. 7. Qualitative comparison of Gaussians distribution without repulsion
loss and smoothness loss in the ROOM scene of MipNeRF360. Our full method
(a) achieves a more efficient spatial distribution of Gaussians. Our method
with fewer Gaussians maintains comparable rendering quality to (b), which
removes both the repulsion loss and smoothness loss. Without the repulsion
loss (c), some Gaussians are located very close to each other, resulting in
an uneven distribution and redundant Gaussians. Without the smoothness loss
(d), the influence of the repulsion loss enforces a more uniform Gaussian
distribution but at the cost of less precise geometric boundaries, also resulting
in redundant Gaussians. The interplay between these two losses enables a more
efficient Gaussian distribution while preserving rendering quality.

different areas, particularly the black top surface of the box.
This reduces the localized reconstruction error, leading to
suboptimal densification. Consequently, our method provides
a more accurate and detailed representation, producing a shape
closer to the ground truth’s circular form, while the other
methods yield a distorted, diamond-like shape.

From another perspective, the segmentation results of the
baseline and SLICO methods, as shown in Table III, can be
considered as cases of suboptimal or incorrect segmentation.
Despite this, their PSNR and LPIPS scores are higher than
those of the original 3DGS. This is mainly because of dif-
ferent densification strategies. This strategy helps improve the
reconstruction quality even when segmentation results are not
ideal.

b) Regularization: The effectiveness of the regulariza-
tions is demonstrated in Table III and Fig. 7. In Fig. 7, we
intentionally set the scale to a small value to better visualize
the Gaussian distribution. Our full method (a) achieves a more
efficient spatial distribution of Gaussians. Our method with
fewer Gaussians maintains comparable rendering quality to
(b), which removes both the repulsion loss and smoothness
loss. Without the repulsion loss (c), some Gaussians are
located very close to each other, resulting in an uneven
distribution and redundant Gaussians. Without the smoothness
loss (d), the influence of the repulsion loss enforces a more
uniform Gaussian distribution but at the cost of less precise
geometric boundaries, also resulting in redundant Gaussians.
By integrating both repulsion and smoothness regularizations,
our method effectively balances Gaussian distribution unifor-
mity and detail preservation, reducing redundant points while
maintaining high-fidelity geometry and enhancing rendering
accuracy compared to 3DGS.

c) Initialization from Structure from Motion (SfM): we
conducted experiments comparing 3DGS and our method
under random point initialization while keeping the same
poses. As shown in Fig. 8, our method consistently produces
better reconstructions in such cases. For instance, in the PLAY-
ROOM scene from the Deep Blending dataset, our approach
successfully recovers the wall socket even under random ini-

TABLE IV
PSNR COMPARISON UNDER LIMITED GAUSSIAN BUDGET ON THE DEEP

BLENDING DATASET. OUR METHOD ACHIEVES HIGHER RECONSTRUCTION
QUALITY THAN THE ORIGINAL 3DGS UNDER THE SAME GAUSSIAN

COUNT BY ALLOCATING REPRESENTATIONAL CAPACITY MORE
EFFECTIVELY.

#Gaussians 30K 60K 90K 120K 150K
3DGS 26.41 27.17 27.62 27.98 28.25
Ours 26.92 27.54 27.89 28.14 28.51

tialization, whereas 3DGS fails to reconstruct them. However,
in large-scale outdoor scenes like TRAIN from Tanks&Temples
dataset, our method struggles to reconstruct distant structures
(e.g., antenna towers) under random initialization. In such
scenarios, COLMAP-derived initialization proves critical for
convergence and fine reconstruction, as it compensates for
camera pose uncertainty and large depth ranges. These findings
suggest that while our semantic-guided densification improves
robustness under weak geometry, random initialization re-
mains limited in the presence of inaccurate poses and large-
scale depth variation.

C. Limited Budget Analysis

To evaluate the efficiency of our densification strategy under
constrained capacity, we conduct experiments on the Deep
Blending dataset by enforcing an upper bound on the total
number of Gaussians during training. Specifically, we set a
fixed maximum point count per scene and prevent further
densification once this threshold is reached. Note that the prun-
ing mechanism may remove redundant Gaussians, allowing
densification to resume when the total count drops below the
limit.

We compare our method with the original 3DGS under the
same budget constraint, using default hyperparameters for both
methods without additional tuning. As shown in Table IV,
we report rendering quality (PSNR) across different Gaussian
budget levels. Our method consistently achieves higher PSNR
under the same point count, demonstrating that semantic-
guided densification more effectively allocates representational
capacity to semantically under-optimized regions, resulting
in improved reconstruction quality without increasing model
complexity.

In terms of training time, our method introduces a mod-
erate overhead due to segmentation mask projection and
neighborhood-based regularization. For instance, on the BI-
CYCLE scene with an RTX 3090 GPU, the training times for
3DGS, Scaffold-GS, and our method are approximately 25,
35, and 40 minutes, respectively. This increase is comparable
to other improved 3DGS variants such as Scaffold-GS, which
also trade slight training overhead for better rendering quality.
Moreover, we note that in practical applications, training is
typically a one-time process per scene, while real-time ren-
dering is performed many times thereafter. Hence, rendering
efficiency and quality are usually more critical than minor
differences in training time.
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(a) GT (b) 3DGS-Random (c) 3DGS-SfM (d) Ours-Random (e) Ours-SfM
Fig. 8. Comparison of reconstruction results under random and COLMAP (SfM)-based point initialization. Our method consistently outperforms 3DGS in
both situations. In large-scale real-world scenes, COLMAP-based point initialization provides geometry priors that benefit the reconstruction, especially for
distant structures.

(a) Upper views

(b) Lower views
Fig. 9. We constructed a new scene to assess the visibility issue of 3DGS.
The scene we built incorporates natural occlusion, comprising a double board
table with two decorative bottles placed on top and a waffle cake with a
strawberry on the lower board. In this scene, the waffle cake is only visible
from lower views (b), not from upper views (a) due to occlusion by the upper
board.

D. Visibility

We constructed a new scene to assess the visibility issue of
3DGS, examining the performance of our method in compari-
son to the original 3DGS when the number of visible training
views of specific objects or parts in a scene is reduced.

The scene we built incorporates natural occlusion, compris-
ing a double board table with two decorative bottles placed on
top and a waffle cake with a strawberry on the lower board. In
this scene, the waffle cake is only visible from lower views,
not from upper views due to occlusion by the upper board
(as depicted in Fig. 9). To investigate various scenarios, we
created five different training sets with varying numbers of
lower views: 2, 3, 5, and 10. In the training set, we used 100
upper views along with the selected lower views, reserving 25
lower views for testing. This dataset is unbalanced, as only
a few views can observe the lower waffle cake. By reducing
visibility, we can evaluate the performance degradation of our
method compared to the 3DGS.

Comparison results presented in Fig. 10 demonstrate that
our method exhibits fewer blur artifacts compared to the
3DGS. Furthermore, Table V illustrates that our method is

(a) GT (b) Ours (c) 3DGS
Fig. 10. Comparison between our method and 3DGS for different levels of
visibility. The first row is trained with 3 lower views and 100 upper views.
The second row is trained with 5 lower views and 100 upper views. Our
method exhibits fewer blur artifacts compared to the 3DGS.

more robust and achieves better performance even with a
reduced number of training lower views.

In Fig. 11, we present the densification process of our
method and the 3DGS. The top row represents our method,
while the bottom row corresponds to the 3DGS. This visual-
ization showcases the results achieved through training on a
5-lower views dataset. The densification process is depicted
from left to right. Ours is more consistent with real geometry.

V. CONCLUSION

In this work, we propose a novel method for refining the
spatial distribution of 3D Gaussians within the framework
of 3D Gaussian Splatting (3DGS) to enhance the quality of
high-fidelity novel view synthesis. Our approach leverages
semantic information to identify poorly optimized regions
and employs splitting or cloning operations on the corre-
sponding 3D Gaussians to improve their representation. We
have introduced two spatial regularization terms, repulsion
loss, and smoothness loss, to ensure a more regular and
efficient distribution of Gaussians with reduced overlap and
outliers. These regularization terms contribute to enhancing
the overall spatial distribution of 3D Gaussians and improving
the synthesized geometry.
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(a) Ours

(b) 3DGS
Fig. 11. Visualization of the densification process. This visualization showcases the results achieved through training on a 5-lower views dataset. The
densification process is depicted from left to right for every 6000 iterations. Ours is more consistent with real geometry.

TABLE V
VISIBILITY QUANTITATIVE COMPARISON OF OUR METHOD AND 3DGS. BECAUSE THIS IS A RELATIVELY SIMPLE SCENE, WHEN OUR TRAINING SET HAS

10 LOWER VIEWS, OUR METHOD PERFORMS ALMOST THE SAME AS THE 3DGS. BUT WHEN THE TRAINING LOWER VIEWS ARE REDUCED, THE 3DGS
DECREASES FASTER THAN OUR METHOD.

Dataset 2-lower views 3-lower views 5-lower views 10-lower views
Metric SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS
GS-30K 0.979 26.25 0.028 0.979 26.21 0.029 0.991 31.74 0.015 0.997 45.72 0.004
Ours-30K 0.983 29.20 0.025 0.989 30.53 0.017 0.993 35.41 0.009 0.997 46.11 0.004

Experimental results on various datasets demonstrate the
effectiveness of our method. Our approach achieves state-of-
the-art real-time rendering performance in terms of metrics
such as SSIM, LPIPS, and PSNR, while also delivering
superior visual quality compared to baselines. In particular, our
method excels in reconstructing details in sparsely observed
regions, which significantly enhances the representation of
intricate parts of scenes.

However, our method still has limitations. Our method
does not model lighting and reflections explicitly, the same
as 3DGS, so our method can hardly capture glossy surfaces.
These can be addressed by using physically based rendering
like GS-IR [37] and GaussianShader [36]. Also, using more
efficient representations [40]–[42] can get a more compressed
result. And our method requires longer training time due to
KNN search of regularization term, which can be mitigated
by using more efficient implementation methods. Furthermore,
an exciting future direction is to explore semantic-level con-
trol to further enhance reconstruction quality. Our current
method focuses on a general approach to adaptive Gaussian
placement, but extending it to incorporate object-specific con-
straints—such as assigning different Gaussian attributes based
on material properties—could significantly improve realism
and controllability. We believe that our method opens new
avenues for future research, leveraging semantic segmentation
to improve not only the accuracy of 3D scene reconstruction
but also its adaptability to complex materials and object
structures.
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