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Machine learning (ML) is revolutionising our ability to decode the complex genetic architectures of brain disorders. In this review
we examine the strengths and limitations of ML methods, highlighting their applications in genetic prediction, patient stratification,
and the modelling of genetic interactions. We explore how ML can augment polygenic risk scores (PRS) through advanced
techniques and how integrating functional genomics and multimodal data can address challenges like rare variants and weak
genetic effects. Additionally, we discuss the importance of embedding biological knowledge into ML models to enhance
interpretability and uncover meaningful insights. With the ongoing expansion of phenotype-genotype datasets and advances in
federated learning, ML is poised to compete with and surpass classical statistical methods in disease risk prediction and identifying
genetically homogenous subgroups. By balancing the strengths and weaknesses of these approaches, we provide a roadmap for
leveraging ML to unravel the genomic complexity of brain disorders and drive the next wave of discoveries.
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BACKGROUND

Brain disorders are complex and often highly heritable traits that
can be caused by a combination of genetic, physical, psycholo-
gical and environmental factors [1-3]. Such complexity is evident
in their diagnosis, which is often based on symptoms. There is no
clinical biomarker for schizophrenia or other psychotic disorders:
these conditions are usually diagnosed after assessment by a
specialist in mental health, and only a postmortem brain biopsy
can confirm the presence of a specific type of dementia [4].
Differentiation between brain disorders is further challenged by a
pronounced overlap in symptoms and comorbidities [5]. Neuro-
degenerative disorders like dementia, for example, cause a range
of psychiatric symptoms, including depression and anxiety, in
addition to physical difficulties like incontinence [6]. The
phenotypic complexity of brain disorders is mirrored in their
genetics. This includes a broad range of genetic variation which
impacts risk for psychiatric disorders [7], including common and
rare variants, single nucleotide changes, small insertions and
deletions, and large structural rearrangements such as copy
number variations (CNVs) and trisomy 21 [8-12]. While disorders
like schizophrenia are characterised by a wide spectrum of genetic
variation including a high burden of rare variants [13], others may
be characterised by common variants of stronger effect in genes
such as LRRK2 in Parkinson’s disease (PD), or APOE in Alzheimer's
disease (AD). This divergent genetic architecture magnifies
difficulties in modelling; a single modelling approach is unlikely
to work consistently across all brain disorders.

The rise of additive models
Genome wide association studies (GWAS) have been the driving
force behind cutting the Gordian knot. A focus on statistical power

and simple models helped to push through early quagmires in
candidate gene studies and onto the first robust genetic
associations with brain disorders like schizophrenia [14]. Proce-
dures for quality control and conducting GWAS are now routine
and robust. Applying hundreds of thousands of simple univariable
additive models with stringent thresholds for the strength of
evidence of association has ultimately been instrumental in
identifying the lion’s share of common variants associated with
psychiatric disorders and neurological diseases [15, 16].

If GWAS has been the workhorse of association, then polygenic
risk score (PRS) has carried the burden of prediction. PRSs were
originally designed to summarise genome-wide genotype data
into a single variable that measures genetic liability to a disorder
or trait. PRS studies often reach sufficiently high statistical
significance levels (small p-value) to suggest trait polygenicity,
but prediction accuracy is usually not sufficient for clinical utility.
For example, the predictive performance of PRS in schizophrenia,
a highly heritable disorder, is an Area Under the Curve (AUC) of
about 0.73, while in bipolar disorder the AUC is lower, at around
0.65 [17]. Nevertheless, PRS has been suggested as a useful tool
for the selection of individuals for clinical trials in individuals of
European ancestry across different traits [18-21]. Furthermore, the
PRS prediction accuracy of some traits is relatively high. Accuracy
for AD reaches 0.70-0.75, and even higher if the diagnosis is based
upon pathological confirmation (AUC up to 0.84) rather than
clinical assessment [22]. While the polygenic method undoubtedly
introduces noise by including some variants that are not involved
in disease susceptibility (i.e. false positives), this is more than offset
by the increased power to identify those at highest or lowest risk
of disease. The use of publicly available effect sizes from large
GWAS, and the reduction to a single variable, also means the
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sample size requirements for adequate power in the test set and
the multiple testing burden are relatively modest.

In addition to maximising power and interpretability, simple
additive models lessen the computational burden and therefore
cost of working with large datasets by being fast and using
relatively little memory. Efficient implementations of statistical
approaches for the biobank era have been a focus of recent years,
with some approaches even forgoing generalised linear models in
favour of linear approximations [23]. This trade-off means that
more complex modelling approaches must also factor-in
increased computational and cost needs.

Shortcomings of simplicity

Addressing complexity in data with simplicity in modelling has
been both computationally tractable and hugely successful in
alleviating early concerns that associations may not be genuine.
The strengths of GWAS and PRS lie in their ability to provide
robust, reproducible insights into genetic associations under
additive models. However, a growing awareness of their limita-
tions in capturing genetic complexity has emerged. Risk is not
only determined by the individual presence of factors, but also in
how they combine. GWAS and PRS assume that independent
variants combine additively, both for alleles within and across loci,
to influence disease risk. This has been invaluable but increasingly
stands in contrast to findings in statistical genetics and the
biological intricacies of disease mechanisms.

For instance, sample sizes in GWAS have increased dramatically
[24], yet they still fail to explain the level of heritability observed in
twin studies for brain disorders [25]. GWAS-based heritability
estimates also rely on the assumption of additive effects, which is
equivalent to looking for only the main effects of common
variants contributing to disease risk. In the genetics of complex
diseases, it remains unclear whether, and to what extent, non-
additive genetic interaction effects contribute to risk. In Alzhei-
mer’s disease, evidence of the huge discrepancy in disease risk
depending on APOE status, and the differential biological effects
such as amyloid deposition and microglial activation make it likely
that such interactions do exist. Apart from additivity, classical
models also typically assume predictors are independent, but
treating every predictor individually without jointly estimating
the effects also ignores a central tenet in clinical prediction
modelling - that the effects of a predictor should be estimated
jointly with others [26].

Association testing with GWAS and genetic risk prediction
modelling through PRS have become common approaches in
identifying associations and for assessing an individual’s risk of
developing a given disease. While these approaches have been
effective, their foundations mostly stem from ideas in the early
20" century [27], and were developed to address concerns around
false positives in early linkage and association studies, and the
computational limitations of the time. Over the last 15 years since
the first schizophrenia GWAS and PRS, the field has transformed.
There is now have a preponderance of heterogenous, complex
data, unprecedented computational power, and an array of
flexible modelling techniques. This convergence offers a pivotal
opportunity to move beyond simplicity and begin untangling the
intricate symphony of genetic risk. Previously, we have reported
systematic reviews assessing predictive performance and risk of
bias of machine learning (ML) in psychiatric disorders [28] and AD
[29] using purely genetic data. Here we take a narrative approach
to consider the broader context of brain diseases, multi-modal
data integration and advances in learning methodologies which
will likely underpin the next wave of advances.

DECODING COMPLEXITY WITH MACHINE LEARNING
ML is often divided into supervised, semi-supervised learning and
unsupervised learning. Unsupervised learning has been applied
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extensively in genomics and other omics fields, particularly for
dimensionality reduction using methods such as principal
component analysis (PCA). These are used frequently to handle
high-dimensional data and are useful for identifying subgroups
where no labels are available. Here, we focus on supervised and
semi-supervised methods. Supervised methods include a number
of now well known techniques such as neural networks (NNs),
support vector machines (SVMs), random forests (RFs), and
gradient boosting machines (GBMs). These may be applied to
classification tasks, for assigning discrete classes, or regression
problems, for predicting a continuous outcome. Lastly, semi-
supervised methods are suitable for scenarios where data are
partially labelled, such as in large meta-analyses which pool
together data where cohorts may lack a uniformly defined
outcome or consist of unscreened population samples which are
often assumed to be controls.

A common argument for using machine learning approaches is
that the exact effects of a variant on a specific outcome, in a given
population, are often unknown. Where half a million genotyped
variants are available, it is impractical to pre-specify known models
for each of these or thoroughly check if assumptions for a
regression model are met in each case. Traditional methods for
genetic prediction specify how variants affect traits a priori, often
taking all effects to be additive by default. Unlike these, machine
learning approaches seek to estimate some function that maps
from predictors, such as genotypes, to an outcome, like disease
status. As such they do not enforce a set relationship between
variants themselves, or variants and the outcome.

However, researchers applying ML models should be aware that
they are not completely free from assumptions. While they do not
prespecify a genetic model, the heuristics and algorithmic
frameworks used in learning implicitly define how types of
genetic variation are handled. In training, search for approxima-
tions of the true function mapping genes to disease is not
random, but drawn from a limited space of models defined by the
learning algorithm. For example, tree-based gradient boosting
iteratively builds decision trees on the output of the loss function
from previous trees. In turn, each decision tree partitions the
predictor space and calculates risk for the subgroups in its
terminal nodes. For rare variants, in which only 0 or 1 copies of the
risk allele are observed in training data, a decision tree will only
split between 0 and 1, so that individuals with 1 or 2 risk alleles are
treated the same in predictions. This incidentally learns a
dominant model as a consequence of applying this specific
algorithm to sparse data. In contrast, a linear regression would
model the effect on y of a unit change in the number of risk
alleles, enforcing an additive model. This illustrates that while ML
models are flexible and may be hypothesis-free, they are not
assumption-free.

Applications in genetic prediction of complex traits

Making assumptions in learning is essential, however, as these
guide the search for models and allow them to learn relationships
between variants without the computational burden of examining
every possible combination. This allows models to combat the
curse of dimensionality, which is prominent in genetics and often
makes an exhaustive search infeasible, through heuristic search
and the blessing of non-uniformity [30]. Combined with rigorous
procedures for model tuning, ML methods are able to balance
detection of complex patterns with overfitting.

In practice, ML methods have been employed to make
predictions from genotypes, with the potential to bring improved
prediction of outcomes; however, their current performance is
unclear [28, 29]. Based on systematic reviews by us and others, the
performance of machine learning methods has been highly varied
(0.48-0.95 AUC) and differed between schizophrenia (0.54-0.95
AUCQ), bipolar (0.48-0.65 AUC), autism (0.52-0.81 AUC) and anorexia
(0.62-0.69 AUCQ) [28]. For Alzheimer’s disease risk prediction AUC
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results have also varied (0.49-0.97) [29]. Given that genetic
prediction for complex traits is bounded by heritability and the
disease prevalence [31], these results match and outperform the
theoretical maximum prediction accuracy. For example, in AD
using PRS, an AUC of 0.82 was achieved assuming single
nucleotide polymorphism (SNP)-based heritability h>=0.24 and
life-time disease prevalence of 2% [19]. Nevertheless, the reported
high accuracy could also be a result of one or more biases, which
stems from study design and analysis flaws: choices related to
predictor selection, hyperparameter tuning, validation methodol-
ogy, and test set exposure during training.

The ability of machine learning methods to predict schizo-
phrenia or other psychiatric dis- orders from genetics remains
unclear. Attributes of studies which elevated risk of bias for
analysis often relate to information leaking from the test set to the
training set. Furthermore, comparison between machine learning,
logistic regression and polygenic risk scores is hampered by low
effective sample size. These limitations can be dealt with
adequately by considering simulations. Here, for any given
population parameters, a large external sample can be simulated
and used to inform hyperparameter choices separately from any
training data, avoiding the possibility of information leaking. In
addition, additivity of genetic effects, and deviations from this, can
be investigated alongside polygenic risk scores with and without
prior information.

Disease risk prediction so far using ML applied to genetics, as
measured by AUC, is comparable to PRS [32, 33]. A recent genome-
wide machine learning study on the largest European databank for
Alzheimer's disease [34] identified putatively novel loci but also
found no predictive improvement beyond PRS. Several factors
contribute to this. Firstly, SNPs generally only correlate with causal
variants, which limits the detection of nonlinear effects and
interactions—the primary advantages ML has over PRS. Secondly,
genetic predictors are relatively weak compared to others (e.g.,
biomarkers [35]), leading to an upper bound for AUC in complex
trait genetics that is significantly below 1 [31]. Weak predictor-
response relationships pose inherent challenges for flexible models,
and currently, complex models may lack sufficient power to
improve AUC substantially. Thirdly, large GWAS identify SNPs with
small association effect sizes in summary statistics, though these
effects may be larger in more homogeneous samples. For instance,
the odds ratio (OR) for APOE is approximately 3.4 in cohorts with a
mean age of ~72-73 years [36] but decreases in samples over 90
years old [37]. In pathology confirmed samples, typically older than
clinical cohorts, some GWAS-derived SNP effect sizes are larger than
those reported in clinically-assessed AD GWAS [22]. Homogeneous
datasets in terms of age, population, and cognitive scores (e.g., the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) [38]) tend to
show higher PRS AUC than clinical samples [39, 40]. Thus, while
large GWAS meta-analyses provide summary statistics enabling PRS
to achieve moderate AUC across datasets, they lack the specificity
required for high accuracy due to averaging effect sizes across
studies with varying recruitment criteria, outcome definitions, and
genetic ancestry.

Unravelling genetic interactions

For these reasons ML approaches have been explored widely for
their ability to detect interactions [41, 42]. Such epistatic effects go
well beyond Bateson’s two-locus masking effect (Fig. 1), including
512 models for two-locus fully-penetrant classification problems
alone [43]. Random forests have been extensively explored for
detecting genetic interactions, with modifications aimed at
improving their ability to identify such effects [44-46]. They have
been adapted for high-dimensional data [47] and applied to
conditions like rheumatoid arthritis [48] and age-related macular
degeneration [49]. Many studies have historically focused on
variable importance measures (VIMs) or adaptations to screen for
interactions [50, 51].
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Gradient boosting has been less widely applied but has shown
promise for identifying interacting SNPs in schizophrenia [52] and
complex traits [53]. SVMs have been combined with multifactor
dimensionality reduction [54] and applied in PD [55]. Neural
networks have shown mixed performance in modelling interac-
tions, sometimes outperforming traditional methods like logistic
regression and RFs [56, 57].

Despite a large literature on ML and interactions, there are
relatively few studies in which third parties have systematically
compared what different methods can learn from interaction data
(for example [58]). Given that each type of ML model makes
different assumptions in learning suggests that, when estimating a
decision boundary to separate to classes, they will not all learn
exactly the same boundary. This is both intuitive and well
established in the literature. An example illustrates this using
simulations to gain a fundamental understanding of the behaviour
of supervised ML approaches in the presence of main and
interaction genetic effects [59]. This simulation study examines ML
models trained on five distinct interaction types, representing
diverse and contrasting scenarios (Fig. 1). From this example,
which shows the decision boundaries from a single simulation, it is
clear that ML methods are generally more precise than Logistic
Regression (LR), but that this does not always translate into
improved AUC. However, each specific ML method tends to
perform best for specific interaction patterns. For example, the
exclusive-or (XOR) pattern is learned best by RBF SVMs, which can
be particularly flexible, while the “threshold” pattern is better
detected by XGBoost, and a “multiplicative” pattern is sufficiently
well captured by LR with an interaction term, based on Fisher’s
definition of epistasis [60].

More generally, it is common to report on detection of
interactions but much less common to report on predictions
from interactions. This partly because replicating an interaction is
particularly difficult: small sample sizes for genotype combina-
tions, alongside differences in minor allele frequency (MAF), effect
size and linkage disequilibrium (LD) across populations compound
[61]. It is also because, whether using an approach which implicitly
detects interactions, or one that explicitly searches for them, the
impact on prediction accuracy is often minimal. Challenges like
the need to aggregate rare variants or constrain the weak effects
of common variants to learn effectively further amplify existing
limitations. Model performance also tends to degrade under
imperfect conditions, highlighting the limitations of using genetic
data alone. Enriching genetic data with information from other
modalities may enhance models by providing constraints and
amplifying biological signals. However, multiple challenges remain
in model development and validation if these improvements are
to have an impact.

OPEN CHALLENGES IN APPLYING ML

Mitigating risk of bias

Though novel and exciting applications continue to emerge, there
are several clear challenges present across models which have
been applied in brain disorders and beyond (Fig. 2). A number of
these are specifically associated with the use of ML in genomics
including overfitting in high dimensions, addressing data hetero-
geneity, and procedures around model selection and reporting
[62]. Recent reviews [28, 29, 63] highlight that key steps in model
development and validation are frequently either not performed
or go unreported, sometimes leading to overstated conclusions.
Such omissions raise questions around data leakage in training,
which remains an important issue in ML study designs. Prior to
modelling or data processing, studies may utilise a design that is
sub-optimal for the target end point, such as a case-control design
from which accurate probability estimates cannot be obtained.
Nested case-control and case-cohort designs (Fig. 2) have been
highlighted as potentially more efficient and representative
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Handling epistasis in machine learning. Top: types of epistasis, as Bateson’s definition (left), a two-locus interaction on a quantitative

trait (middle) and on the odds scale for a binary trait (right). Bottom: decision boundaries displayed by contour plots under simple 2-SNP
interaction models when theta = 0.5 and minor allele frequency (MAF) =0.5. X and Y axes indicate two loci, with dark points highlighting
genotypes with increased risk. Effective classifiers should highlight dark points in green and white points in red. AUC, annotated on the top
right of each subplot, does not use a single threshold, and so classifiers may have high AUC but still assign both light and dark points to the
negative class. iPRS denotes an internal polygenic risk score which is trained from data in the training split, like all other models, rather than
external summary statistics. Logistic interaction refers to a logistic regression model with main effects and an interaction term, i.e. logit(y) ~
Bo + B1SNP; + B,SNP; + B3SNP;« SNP,. Five types of two-SNP interaction models, comprising multiplicative, threshold, two XOR and one

interference model were used, denoted by their code assigned by Li and Reich [43].

[64, 65]. For example, a recent case-cohort approach was taken in
the Danish national register to evaluate neural networks for cross-
disorder risk prediction [66], and work from our group has
employed a nested case-control design to compare ML
approaches for prediction of schizophrenia in the UK Biobank
[32]. These rely on subsampling a larger cohort, maintaining
statistical power and reducing computation [64], while allowing
for prediction estimates which can be scaled to proportions in the
original cohort [67]. As large databanks of health records and
population biobanks become more available, employing these
designs is becoming more necessary.

Common sources of bias include transforming variables before
cross-validation, and the absence of an independent test set [68].
Frequently, issues arise from a failure to separate the choice of an
optimal model in training (model selection) from its final
performance evaluation. When tuning hyperparameters, it is a
common issue for researchers to use the same cross-validation
rounds for both model selection and evaluation, leading to overly
optimistic performance estimates. Nested cross-validation (Fig. 2)
addresses this by separating the two processes, with an outer loop
for evaluation and an inner loop for model selection, running as
many times as there are parameter combinations [69, 70]. This
approach provides a more accurate estimate of model error but is
computationally intensive and under-utilised in genetics. While
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split-sample validation may suffice for extremely large datasets,
the cost of acquiring medical datasets, and subsequent small
sample size, often necessitates nested cross-validation. A
systematic investigation of various data leakage factors is an
underexplored topic in the genetics of complex traits and
warrants further investigation.

Confounders

Confounding is an ever-present issue in epidemiology [71]. The
literature for handling it is extensive and varied in classical
statistics [72, 73]. In ML, several such methods can be easily lifted-
over from medical statistics. Prior to modelling, strict quality
control procedures used in GWAS and PRS studies can similarly be
applied in ML studies [74, 75]. However, some ML approaches
remain difficult to adapt in the face of confounding. Neural
networks, for example, can include covariates which only directly
connect to the final layer, with predictions then made from all
non-covariate connections to the output node. In a random forest,
including covariates as predictors naturally integrates them into
the decision trees alongside other variables, making it difficult to
disentangle their effects from those of non-covariate predictors
when making predictions or drawing inferences. As such,
regressing covariates from both the predictors and the outcome
before modelling is often used [76], but is a sub-optimal approach.

SPRINGER NATURE
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Fig. 2 Building Better Models: Common Pitfalls of ML Applications in Brain Disorder Genetics.

More complex types of confounding, which cannot be accounted
for by simply including covariates, such as collider bias, are not
easily handled. Similar issues are present for genetic data, where
techniques for handling genetic ancestry and diverse cohorts are
not always easily implemented or applied.

Population structure is a significant source of bias in genetic
analyses, affecting associations and predictions [77-79]. Super-
vised machine learning methods have been highlighted as easily
able to learn such populations from labelled data [80], though
performance of flexible models has also been reported as similar
to linear approaches [81]. The degree to which bias from
mishandling of population stratification in machine learning
studies is unclear, as studies have mainly evaluated prediction of
populations directly using supervised ML. While modifications to
models or modelling procedures have been proposed [76, 82],
their efficacy has not been robustly validated. Adoption of
strategies in other fields which propose reporting the variance
in model predictions explained by confounders and a systematic
comparison of ML methods and the degree to which population
effects are handled in prediction of brain disorders, would be
valuable in mitigating risk of bias. Despite issues, lessons from
causal inference have positively influenced applications in the
biosciences, and efforts to improve debiasing or deconfounding in
ML have grown [83-86]. Approaches discussed below, such as
propensity score weighting which is often used to address
confounding by indication [87], may be expanded to cohorts
with genetic data to untangle effects in the presence such
confounding. More broadly, poor study design and reporting in
ML have been addressed by multiple groups. We point researchers
to several articles [88, 89], in particular the TRIPOD + Al guidelines
[90] which provides a checklist for improving reporting of artificial
intelligence (Al) models in medicine.

Replication of ML results

Concerns about whether signals are genuine or influenced by
biases in the training data necessitate discussions about replica-
tion. In ML, replication can be interpreted in various ways (Fig. 2),
including replicating the same effect of predictors in a new
dataset through the same or other approaches, replication of
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effects across different approaches, or complete retraining of the
model and demonstrating consistent predictor effects in an
independent external dataset. The latter is often infeasible. In
particular, cohorts for neurodegenerative diseases are affected by
inclusion of controls for whom the outcome is unmeasured, or
who are unlikely to have developed the disease yet, which differ in
external datasets and so negatively impact likelihood of replica-
tion. These effects are exacerbated by the ability of flexible ML
algorithms to identify complex patterns. They are consequently
more likely to encounter similar issues in varying effects, outcome
measurement or LD with causal variants, as noted for replicating
interactions across datasets in general. These replication chal-
lenges highlight the importance of external validation. However,
while external validation is a robust threshold for publication, it
may inadvertently exclude valid patterns or signals. A focus on
careful selection of cohorts for training, testing and replication is
vital to ensure novel insights are carried forward. Replication
across different ML approaches, by comparison, is not guaranteed
or even expected. As highlighted for interactions, each algorithm
may detect unique patterns in the data or classify individuals
differently based on traits or symptoms [32].

Ethical considerations and generalisability

Challenges in handling of population structure and replication in
ML point toward a more general issue of generalisation,
particularly across diverse populations. Though sample sizes in
non-European genetic cohorts have increased, they are far from
proportional to global population sizes [91], a disparity which
limits applicability of models globally [92]. In psychiatry, where key
predictors include genetic and social factors, there are genuine
concerns around misuse, for instance if a predictive model for
schizophrenia has a higher false positive rate for a minority ethnic
group. While increasing diversity of the data is the ultimate goal,
strategies are required to mitigate issues in the models built with
the data available now. To achieve this, it is essential that Al-based
interventions make algorithmic fairness a key priority through
evaluation of model outputs to ensure performance is equitable
across different groups. In addition, emerging methods in causal
machine learning (discussed under “emerging opportunities”)
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offer a principled framework for training models which avoid
spurious associations in data and reduce the risk of perpetuating
societal biases [93]. However, such technical approaches must be
combined with clear clinical guidelines for the responsible
communication of Al-derived information to prevent patient
stigmatisation [94]. More broadly, the FUTURE-AI framework offers
guidelines to researchers looking to develop trustworthy Al
applications in healthcare [95].

Limited data and data access

Machine learning research relies heavily on large datasets to train
models effectively and achieve accurate predictions [96]. The most
frequent limitation of ML studies using genetics and other data
modalities as predictors is sample size, with the total number of
participants from case-control studies often numbering less than a
thousand, whilst the number of predictors may comprise several
thousands. For example, as of 2021 the majority (85%) of studies
applying ML to predict Alzheimer’s disease from genetics alone
used the publicly available Alzheimer’'s Disease Neuroimaging
Initiative (ADNI) dataset [29], demonstrating clear overreliance on
a single data source of European origin. Conversely, population-
based databanks like UK Biobank (www.ukbiobank.ac.uk) or All of
Us (allofus.nih.gov), have a large sample size but are not
sufficiently enriched for cases, as brain disorders have low
prevalence in the general population and these cohorts often
include younger individuals who are unlikely to have developed
neurodegenerative disorders. ML studies must therefore push for
larger sample sizes, necessitating the combination of data from
potentially diverse sources, as in large meta-analyses from
consortia. Access to and sharing of data is essential for
achieving this.

Despite significant advancements in development of Al and ML for
healthcare applications such as disease diagnosis, prognosis, therapy
response prediction, survival estimation, and patient stratification,
only a limited number of ML tools have successfully transitioned into
clinical practice [95]. The data privacy regulations (e.g. Health
Insurance Portability and Accountability Act (HIPAA), the European
Union General Data Protection Regulation (GDPR)) mandate strict
guidelines to protect individuals’ privacy, requiring explicit consent for
data use and imposing constraints on data storage and sharing, and
outline legal and financial penalties for non-compliance. The standard
practice for securing biomedical and genetic data involves encrypting
data at rest, employing a secure computing infrastructure, and
deidentification strategies [97]. While they aim to balance data
protection with technological progress, its impact on data accessibility
remains a concern for researchers and organizations striving to
develop innovative Al solutions [98].

EMERGING OPPORTUNITIES IN MACHINE LEARNING
Advances fuelling Al

Despite the challenges outlined above, ML and Al methodologies
continue to advance rapidly and play a crucial role in uncovering
complex patterns within high-dimensional data. Advances in
biotechnology have enabled reliable recording of various aspects
of human biology, such as genetic data and other commonly used
biomarkers (e.g., cerebral blood flow and brain imaging). These
advancements have led to the accumulation of large biological
datasets that ML algorithms can analyse to classify participants or
predict membership in predefined categories [99]. The combina-
tion of genetic data with other data modalities often leads to
complexity, which cannot be processed easily by humans in an
un-biased way [100].

Improved interpretability with explainable Al (XAl)

While learning from this complexity has traditionally been difficult,
efforts in explaining the resulting models are now well-developed.
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The interpretability of machine learning models has been
significantly enhanced by the introduction of SHAP (SHapley
Additive exPlanations) values [101, 102] and related approaches.
Though alternatives exist and continue to be developed, SHAP
provides a unified approach to understanding the contributions of
individual features to a model's predictions by offering a
consistent and mathematically grounded method based on
Shapley values from cooperative game theory. Despite wide-
spread discussion of ML models as black boxes, researchers are
now able to obtain detailed explanations of predictions at the
global (averaged across individuals) and local (per-individual)
level, cluster individuals by their predicted values from all or a
selection of predictors, and explain how a prediction for a specific
individual was derived. It is an under-appreciated benefit that
explainable Al (XAl) approaches can offer greater insight at the
individual level than effect sizes from a regression which show the
change in the outcome for a given predictor averaged across all
individuals.

Causal machine learning

Approaches like SHAP are often applied under a traditional ML
paradigm, where researchers aim to explain improved prediction
of an outcome or identify novel risk factors. This primarily relies on
training a model which maximises prediction and subsequently
explaining the outputs. In contrast, causal machine learning
explicitly aims to model causal effects rather than associations, an
approach that has become increasingly important as large
electronic health records (EHRs) have become more accessible
to researchers [103]. This relies on a formal framework, where the
causal structure of the problem is considered, often using a
directed acyclic graph (DAG) [104]. In addition to careful design of
the study and specification of causal relationships, key methodo-
logical steps include defining the causal quantity of interest,
assessing underlying assumptions, selecting an appropriate ML
model, and conducting robustness checks [105]. Handling
confounding is at the core of causal ML, therefore addressing
many of the concerns raised about open challenges from past
efforts in the genetics of brain disorders. Furthermore, these
approaches inherently focus on estimation of individual treatment
effects (ITEs), rather than average treatment effects (ATEs), which
support clinical decisions more directly.

While SHAP applied to standard ML helps explain how variable
changes influence model predictions, it does not establish
whether these changes correspond to actual causal effects in
the studied individuals. By contrast, causal ML seeks to quantify
the impact of interventions on outcomes and answer “what if”
questions. This ultimately shares much of the framework,
principles and techniques from causal inference in statistics, while
leveraging the ability ML models to handle complex data
generating processes. This may involve using ML for modelling
treatment effects, or in other areas such as modelling the effects
of covariates on the likelihood to be treated. However, applying
causal learning remains difficult in practice. Researchers must
confront the fundamental problem of causal inference - that the
counterfactual is not observed - and address assumptions
including the stable unit treatment variable assumption (SUTVA),
positivity and ignorability. Methods for robust uncertainty
quantification in causal ML are also still evolving [103], though
implementations such as causal forests provide this [106]. In
neurodegenerative diseases, causal ML approaches have already
been applied to EHRs to identify drugs for repurposing in
dementia, where a long short-term memory (LSTM) model [107]
was used to estimate the longitudinal effects of covariates and
mitigate indication bias [108]. We expect similar applications to
become more popular, particularly when used in deep learning
approaches which integrate multimodal data for modelling risk
factors or confounders.
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learning.

Multimodal data

Alongside progress in building interpretable models through
careful design and analysis, models are also being enriched by
inclusion of information from diverse sources (Fig. 3). Current
diagnostic criteria for most brain disorders continue to rely heavily
on clinical assessments, such as medical and family history, clinical
interviews, and medication records. Over the past decade,
significant advancements have been made in multimodal
neuroimaging and genomic techniques. Moreover, blood and
cerebrospinal fluid (CSF) biomarkers have been rapidly and
successfully developed to identify individuals with prodromal
dementia, particularly Alzheimer’s disease. However, no single
measure can precisely define psychiatric or neurodegenerative
disease. For instance, our research, along with that of others,
shows that variations in CSF and plasma biomarkers are not fully
explained by genetic factors but can significantly enhance disease
risk prediction [109]. Furthermore, these biomarkers were found to
be associated with age at the time of sample collection,
suggesting sensitivity to age-related factors or preclinical neuro-
degenerative pathologies. Given the current state of knowledge, it
is unrealistic to expect any single measure to adequately assess
complex brain functions.

Decades of traditional neuroscientific research aimed at identify-
ing structural and functional brain differences associated with major
brain disorders have largely relied on multivariate statistics and
relatively simplistic brain models. To date, these approaches have
proven inadequate in uncovering the underlying causes of such
disorders and in enabling reliable, individualised diagnoses [110]. In
recent years, numerous studies have applied ML techniques to
structural magnetic resonance imaging (sMRI), functional MRI (fMRI),
genetic data, and selective phenotypic or clinical data to diagnose
brain disorders. These studies aimed to leverage multimodal data to
investigate the mechanisms and pathways involved in the
development and progression of dementia (for example, AD and
PD [111], and progression [112]), schizophrenia [113], depression
[114], and autism spectrum disorder [115]. However, there remains
no consensus on the appropriate ML methodologies, predictor sets,
or hyperparameter choices.

Both deep learning and multiple kernel learning (MKL) have
received continued attention. MKL requires the use of multiple
kernels such that data from different modalities each use a distinct
kernel. The method combines these to form a meta-kernel and
derive similarity scores for samples in different data sources,
ultimately feeding into a classification approach like SVMs. These
have been used to combine imaging, proteomic and genetic data
in Alzheimer’s disease, for example [116], with general approaches
compared recently [117].

SPRINGER NATURE

Though MKL is used for specific instances of data integration,
deep learning has emerged as the leading approach for fusion of
diverse data modalities due to its flexibility and the possibility of
creating end-to-end workflows with less requirement for feature
engineering. A distinction between early, intermediate and late
integration remains prominent in the field, though intermediate
integration is often highlighted as still being able to exploit
distinct attributes of data types, unlike early integration, while also
capturing interactions between modalities, as opposed to a late
integration approach [118].

Related to this is the topic of applying feature selection (FS)
when incorporating data from multiple modalities. Though
modality-specific filters may be required as part of quality control,
predictors should ideally be considered together during FS to
ensure any interaction between them is accounted for. However,
genomic data alone are particularly “wide” and combining them
with other omics predictors necessitates some attempt to
constrain dimensions, both to reduce computation and improve
generalisation. Wrapper and embedded FS on the full combined
data consider predictors together, but require significantly more
computational resources. This and a drive for simplicity often
mean researchers focus on pre-filtering features before modelling.
In doing so, researchers should be aware of the trade-off made by
pre-filtering on main effects or performing a modality-specific
screen, such as taking only independent SNPs below a certain p-
value threshold. Such an approach may prove computationally
necessary, and a careful approach can effectively reduce dimen-
sions while maintaining core signals likely to interact. However, it
may also remove features which combine non-additively or are
important only in the context of data from another modality. Early
integration is less susceptible to this issue where FS is performed
on the concatenated data, as is intermediate integration where
interactions primarily occur between emergent features at later
points in the network. Combined feature selection approaches,
such as joint estimation of effects in a penalised model, or cross-
modal attention may help to apply FS without information loss
which is essential to inter-modality interactions.

A variety of architectures are in use for data integration.
Extensive incorporation of imaging modalities has meant con-
volutional neural networks (CNNs) remain popular, e.g. [119],
which typically make use of a late fusion approach for combining
imaging data [118]. Applications also include recurrent neural
networks (RNNs) for longitudinal data in EHRs [120], graph neural
networks [121], and more recent use of generative approaches like
variational autoencoders (VAEs) for handling missing data like
DeepIMV [122] and GLUE [123]. A use of conditional restricted
Boltzman machines (cRBMs) as part of the PsychENCODE
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Consortium is also noteworthy for its scope, range of genomic,
transcriptomic and epigenomic resources, and freely available
model weights [124]. Models employing a late integration strategy
may only apply deep learning for a specific modality, often
neuroimaging, and combine the final outputs in tree-based
ensemble methods, for example [125, 126].

In addition to integrating data from multiple modalities,
biological knowledge can also be encoded directly into deep
learning architectures directly through biologically interpretable
neural networks [127] (Fig. 3). These seek to define layer
connections or weights through prior knowledge, such as
hierarchical gene ontology data or regulatory relationships [128].
The term is sometimes used expansively to cover both
knowledge-guided deep learning architectures and multi-modal
data integration [129]. More recently, biologically informed
network architectures have been combined with multi-modal
inputs to enhance genetic prediction and model interpretability
by incorporating expression quantitative trait loci (eQTLs) and
gene regulatory networks in brain disorders [130], and by
integrating methylation data, KEGG pathways and gene expres-
sion data in prediction of demographic and biomarker variables
[128]. With wide usage of smartphones and wearables, digital data
can also be easily collected and utilised for detection of a disease
at early stages. For example, ML models trained using accel-
erometry data achieved better test performance in distinguishing
both clinically diagnosed PD and prodromal PD up to 7 years pre-
diagnosis [131].

Emerging strengths of a federated approach

Despite the richness of diverse multimodal data and its
importance in understanding the basis and cause of the disease,
the inequality in resource of the owners, especially genetic data,
has led to concerns of knowledge colonialism whereby data is
taken but knowledge is not returned. Data privacy regulations also
restrict or delay the access to human data even within a single
country. Federated learning (FL) is a novel approach to address
this (Fig. 3), wherein separate ML models, often neural networks,
collaboratively train across diversely located and privately held
data in situ, respecting ownership rights and privacy concerns.
This contrasts with the classical central learning paradigm, and
ensures only model parameters, and not data, are securely shared
across sites with standard encryption procedures during weight
updates. The application of FL to national and international data
to assess and derive measures of disease risk therefore provides a
means to both respect the rights of data holders while increasing
the utility of disease risk prediction amongst diverse populations.
This offers a promising solution to overcome the constraints raised
by limited access to high-quality datasets.

Efforts to apply FL in medical data [132] and genetics [133] have
already paved the way for further advancements. Recent work has
also implemented a federated GWAS in age-related macular
degeneration (AMD) and cancer data [134]. Future research has
the potential to address common challenges such as heterogeneity
across datasets. For instance, in genetic risk prediction, variations in
allele frequencies or effect size distributions across cohorts can shift
predictor distributions, potentially introducing bias. Federated PCA
offers a strategy to identify outlying cohorts, which may benefit
from tailored approaches such as subsampling to handle non-
independent and identically distributed (non-lID) data during
training [135]. Evaluating strategies for collaborative learning,
including adaptive aggregation techniques or the sequential
integration of cohorts, can help minimize bias and enhance the
extraction of genuine biological signals. Additional incorporation of
methods like weak supervision, a form of semi-supervised learning
which can improve learning from unlabelled data, or multi-task
learning (MTL), in which multiple output labels are used in a neural
network, can further expand such federated approaches even to
siloed datasets with missing outcomes or proxy measures.
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For successful implementation of FL in health care, clear, widely
accepted guidelines are required on how healthcare Al tools
should be designed, developed, evaluated. These tools need to be
technically robust, clinically safe, ethically sound, and legally
compliant [95]. In parallel, privacy-enhancing technologies to
safeguard the data are appearing, with a promise to broaden FL
usage by providing means to share and analyse sensitive data
while protecting privacy [97].

The road ahead

One reason for the diagnostic delay of brain disorders is the
increasing number of evaluations requested, which increases the
waiting time for families to meet with a specialist. Developing
innovative Al-based technologies will help overcome these issues
and augment various diagnostic aspects in mental health care.
The success of ML predominantly depends on the quality of data,
features in the data, the choice of objective or loss function, and
the selection of an appropriate model architecture and hyper-
parameters that best fit the research question. Although, studies
aiming for the discovery of novel diagnostic biomarkers for brain
disorders have been advancing throughout the recent years, the
application of ML tools using genomics and neuroimaging data in
brain disorders is still in its infancy.

As the number of Al models grows, the future will undoubtedly
involve more interest in bringing these to clinical settings. Here
ML models have the potential to bring important benefits by
estimating individual treatment effects through causal ML or
understanding how variables affect a specific prediction using
explainable Al, both of which go beyond typical estimates of the
average effect in the study population. This should be a source of
great optimism. In practice, however, models are often mired in
poor development, validation or reporting practices [136, 137].
While Al models in brain disorder genetics have drawn from areas
such as computer science, genetics and neurology, efforts to bring
successful models to the clinic will also need expertise from
clinical prediction modelling [26]. This field is distinct from Al and
ML, with established best practices that address several of the
limitations in basic research, such as optimism bias (poor
generalisation) and the need for external validation [138].
Additionally, it emphasises key areas like clinical utility and
decision-curve analysis (DCA) [139]. A recent study on Al-improved
prediction of atrial fibrillation exemplifies the unification of these
fields [140]. The authors utilise expertise in deep learning and best
practices in clinical prediction modelling by combining electro-
cardiogram data and PRS and demonstrating higher net benefit of
the combined Al model through DCA. Prospective randomised
controlled trials (RCTs), the gold standard for assessing the efficacy
of an intervention, are relatively uncommon for Al. Trials often
focus on diagnostic aids or decision support for clinicians, or
chatbots for therapy-based interventions. To this end a recent RCT
demonstrated improved clinical outcomes for LLM assistance in
diagnosis of complex cases [141].

Beyond methodological rigor, an important challenge in clinical
translation is ensuring that the studied population aligns with the
target clinical population. Without this, even a well-validated
model may perform poorly when deployed in practice. Model
sharing and predictions are also import practical considerations. A
notable benefit of traditional regression modelling is that the
linear predictor can be easily shared, allowing exact variable
weights in a risk model to be transparently reported and
interpreted in publications. This enables clinicians to calculate
risk scores for individual patients to identify those at elevated risk
e.g. for clinical trials or screening programs for targeted
prevention or early intervention. By contrast, ML models present
challenges in sharing and implementation, as risk scores cannot
be directly computed without access to the trained model.
Deploying ML-based risk models requires storing the trained
model (through serialisation techniques like pickling) and serving
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it in a production environment, technical requirements that
demand specialised expertise beyond model development. A
higher demand for resources in training and a need to deploy live
models for prediction also adds a much greater financial cost to Al
models.

Before the clinic, the path ahead for research will likely involve
further uses of large language models (LLMs), which have had
substantial impact on a broad array of areas. LLMs have been
proposed for a number of tasks in bioinformatics [142], including
feature selection and engineering in genetics [143], and high-
lighting functional gene convergence and gene prioritisation after
analysis [144]. We expect use of LLMs for brain disorders and other
areas to increase, particularly with use of a foundation model and
retrieval-augmented generation (RAG) on specific bioinformatics
databases.

Future perspectives

Al technology is still relatively new in the field of risk prediction
for brain disorders, and significant advancements are needed to
develop more efficient and accurate predictive models. The
inherent heterogeneity of brain disorders, coupled with simul-
taneous functional and anatomical changes, presents challenges
for diagnosis and risk prediction. However, data and algorithms
have now reached a threshold where ML can rival classical
methods. Emerging approaches, such as federated learning,
provide opportunities to move beyond traditional meta-analyses
by integrating Al-based algorithms to harness the full potential
of diverse datasets. Future efforts should focus on developing
integrated methods or multimodal architectures that combine
features from high-dimensional data to amplify biological
signals and guide more effective model training. In genetic risk
prediction, it is both necessary and feasible to identify
genetically-defined clusters of individuals with distinct or
overlapping pathologies, paving the way for more personalized
and biologically-informed insights into brain disorders.

CONCLUSIONS

The ability to condense and reduce large-scale data, effectively
distinguishing signal from noise, while capturing the complexity of
brain disorders makes data-driven techniques powerful tools for
generating and validating hypotheses. Despite persistent chal-
lenges with bias and inadequate reporting that hinder clear
progress, advances such as federated learning present exciting
opportunities to incorporate more diverse data and deepen our
understanding of brain disorders. Both large-scale approaches in
data integration from different modalities with deep learning
models, as well as more subtle uses of ML in augmenting PRS or
existing linear models, promise to aid in unravelling the genetic
components of these disorders. However, the future success of
such endeavours depends on the willingness of researchers from
non-computational disciplines to openly collaborate with mathe-
maticians and computer scientists, their readiness to make data
accessible, and a collective effort to carefully develop, interpret
and report results. Ultimately, embracing these approaches has
the potential to illuminate the underlying mechanisms of brain
disorders, driving meaningful progress in research and
clinical care.
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