Decision Support Systems 199 (2025) 114553

i

Decision Support Systems

Contents lists available at ScienceDirect

Decision Support Systems

journal homepage: www.elsevier.com/locate/dss

FI. SEVIER

Check for

Prompting large language models based on semantic schema for
text-to-Cypher transformation towards domain Q&A

Yuwei Wan?, Zheyuan Chen ", Ying Liu™", Chong Chen “, Michael Packianather *

@ Department of Mechanical Engineering, School of Engineering, Cardiff University, Cardiff CF24 3AA, UK

b Guangzhou Institute of Industrial Intelligence, Guangzhou 511458, China

¢ Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China

4 Guangdong Provincial Key Laboratory of Cyber-Physical System, Guangdong University of Technology, Guangzhou 510006, China

ARTICLE INFO ABSTRACT

Keywords:
Text-to-Cypher
Prompt engineering
Semantic schema

Translating natural language inquiries into executable Cypher queries (text-to-Cypher) is a persistent bottleneck
for non-technical teams relying on knowledge graphs (KGs) in fast-changing industrial settings. Rule and tem-
plate converters need frequent updates as schemas evolve, while supervised and fine-tuned parsers require
Large language models recurring training. This study proposes a schema-guided prompting approach, namely text-to-Cypher with se-
In-context learning mantic schema (T2CSS), to align large language models (LLMs) with domain knowledge for producing accurate
Neodj Cypher. T2CSS distils a domain ontology into a lightweight semantic schema and uses adaptive filtering to inject
the relevant subgraph and essential Cypher rules into the prompt for constraining generation and reducing
schema-agnostic errors. This design keeps the prompt focused and within context length limits while providing
the necessary domain grounding. Comparative experiments demonstrate that T2CSS with GPT-4 outperformed
baseline models and achieved 86 % accuracy in producing correct Cypher queries. In practice, this study reduces

Cypher query

retraining and maintenance effort, shortens turnaround times, and broadens KG access for non-experts.

1. Introduction

In the data-driven era, organisations often need to manage and query
highly interconnected information. Traditional relational databases,
which store data in rigid two-dimensional tables, often struggle to effi-
ciently represent and manage these intricate relationships [1]. Addi-
tionally, relational database management systems (RDBMS) rely on
costly JOIN operations, and their performance degrades as the depth of
relationships grows. Graph databases were developed to overcome these
limitations by using nodes and edges as the basic unit to represent data,
which allows relationships to be traversed directly [2]. This architecture
provides more predictable and faster query performance for
relationship-rich data [3]. Therefore, graph databases are well-suited for
applications where understanding connections is critical, such as social
network analysis [4], recommendation systems [5], and fraud detection
[6]. A knowledge graph (KG) is a type of graph database that organises
domain-specific knowledge as a network of entities and relationships
[7]. As a popular graph database platform, Neo4j uses the Cypher query
language to store, manage, and query KGs [8]. However, writing correct
Cypher queries requires understanding the graph’s structure and the

* Corresponding author.
E-mail address: 1.iuY81@Cardiff.ac.uk (Y. Liu).

https://doi.org/10.1016/j.dss.2025.114553

query syntax. Many domain experts and casual users do not have this
technical expertise [9]. As a result, non-technical users cannot easily
query a KG on their own, and they must rely on technical staff. One
approach to bridge this gap is text-to-Cypher, which translates a user
inquiry into equivalent Cypher query. With a text-to-Cypher system,
users can retrieve information from the graph by asking questions in
plain language, without needing to learn the query language. However,
existing text-to-query methods have inherent limitations. Rule-based
systems and conventional machine learning (ML) models require labo-
rious manual design of rules or features, and they often fail to generalize
to varied or unforeseen queries. More advanced deep learning models
can improve translation accuracy once trained, but they demand sub-
stantial upfront training data and tend to be rigid when the domain or
schema evolves [10]. In other words, if the KG’s structure changes or
new concepts are introduced, these models need new annotated exam-
ples and complete retraining to adapt, which is costly and time-
consuming.

To avoid these limitations, large language models (LLMs) provide a
flexible and powerful solution for the text-to-Cypher task. Based on vast
amounts of pre-trained knowledge, LLMs understand and generate

Received 27 July 2024; Received in revised form 30 September 2025; Accepted 4 October 2025

Available online 6 October 2025

0167-9236/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-

nc/4.0/).

mailto:LiuY81@Cardiff.ac.uk
www.sciencedirect.com/science/journal/01679236
https://www.elsevier.com/locate/dss
https://doi.org/10.1016/j.dss.2025.114553
https://doi.org/10.1016/j.dss.2025.114553
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dss.2025.114553&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Y. Wan et al.

human-like language without explicit hand-crafted rules. Moreover,
LLMs can be guided using prompt engineering, where -carefully
designing the input prompt to include instructions or examples that lead
the model to the desired output without expensive model retraining
[11,12]. However, using LLMs alone in a specialised domain presents
challenges. Without domain-specific context, an LLM might produce
irrelevant or incorrect queries [13]. The key to accuracy is providing the
model with the necessary domain knowledge. One way to achieve this is
through fine-tuning the LLM on domain-specific data, but fine-tuning
requires substantial resources, such as a large dataset, intensive
computational demands, and extended training investment. Even
parameter-efficient fine-tuning techniques, such as LoRA or QLORA,
partly mitigate this effort, they still require several hours of GPU time to
adjust a model for each new domain or schema update [14,15]. Instead,
in-context learning (ICL) is used to supply domain knowledge at query
time, where embedding the relevant domain information directly into
the LLM’s prompt rather than altering the model’s parameters [16]. This
method enables the LLM to adapt to a new domain on the fly by elimi-
nating the retraining overhead. By contrast, rule-based or deep learning
approaches perform well once a schema is fixed, but each schema
extension typically demands new annotations and a full retraining cycle
[17,18].

A practical consideration when injecting domain knowledge into
LLM prompts is the model’s limited context length. Long prompts exceed
the limit, slow down the model’s response, and may lead to confusion or
irrelevant outputs. Therefore, it is crucial to provide the appropriate
amount of context: enough to inform the model, but not so much that the
model is overloaded. We address this by using a semantic schema
derived from domain ontology as a lightweight representation of the
domain. The semantic schema captures the essential entities, categories,
and relationships of the domain in a concise form. Unlike a full KG that
contains numerous instance-level facts, the semantic schema is an
abstracted outline of the domain’s structure. This focused representation
is compact enough to include in a prompt and gives the LLM guidance on
how the domain is organised. In the context of text-to-Cypher tasks, the
semantic schema serves as an ideal prompt ingredient. Given these
considerations, the following research question is posed: “How can an
LLM be effectively aligned with domain-specific knowledge to generate
accurate Cypher queries for graph databases?”. To answer this question,
a schema-guided prompting approach, namely text-to-Cypher with se-
mantic schema (T2CSS), is proposed. In T2CSS, the LLM is guided by
domain knowledge through a semantic schema and a tailored prompting
strategy. An adaptive information-filtering module selects the relevant
subset of the semantic schema and Cypher syntax that are related to a
user’s query to ensure that the prompt remains both concise and rele-
vant. Also, a unified prompt template is employed to combine the user’s
natural language question with the selected schema information. The
main contributions are: (1) a domain semantic schema from domain
ontologies is developed to cover the key concepts and relationships of
the domain, (2) a mechanism is designed to dynamically filter and inject
only the relevant portions of the semantic schema into the LLM’s prompt
for each question, (3) a unified prompt template is proposed to integrate
the user’s intent with the domain context. Section 2 reviews related
works. Section 3 describes query language-informed meta-design. Sec-
tion 4 illustrates the proposed methodology, followed by benchmarks
and evaluation metrics in Section 5. A case study to demonstrate the
practical application is presented in Section 6. Section 7 presents dis-
cussions, and Section 8 summarises this study.

2. Related works
2.1. Domain knowledge representation using ontologies and KGs
As a structured framework for representing and organising infor-

mation within specific domains, ontology emerges as a promising so-
lution to address the semantic communication and interoperability

Decision Support Systems 199 (2025) 114553

issues for information sharing and reuse [19]. By formalising concepts,
properties and their relationships, ontologies establish systematic
knowledge conceptualisations [20]. Developing an ontology typically
involves stages such as specification, knowledge acquisition, con-
ceptualisation, integration, implementation, and evaluation [21].
Several applications of ontology demonstrate its utility in knowledge
representation and modelling. For instance, a steelmaking ontology was
designed to build a shared resource and capability model for supporting
knowledge sharing and management [22]. Ontologies play important
roles in the lightweight and efficient representation of structural
knowledge schema for understanding and navigating domain knowl-
edge, particularly when prioritising conceptual clarity over instance-
level details [23].

In contrast to KGs, which store detailed instance-level data, ontol-
ogies focus on abstracting domain principles into hierarchical relation-
ships and semantic rules [24,25]. This makes ontologies more efficient
and lightweight when the goal is to understand conceptual knowledge
rather than specific instances. As explained in Section 1, ontologies play
a key role in the T2CSS by providing a semantic schema, which is a
simplified version of ontologies for representing domain concepts and
relationships. The semantic schema guides LLMs in generating Cypher
queries by offering essential domain knowledge without including
extensive instance data. Unlike KGs, which can overwhelm LLMs with
detailed information, the semantic schema is compact to ensure efficient
token usage and better performance. While ontologies provide a foun-
dational structure, KGs are used in this study to store and manage
complicated and dynamic data, such as specific entities and their con-
nections. Therefore, ontologies and KGs complement each other in this
study: the ontology-derived semantic schema offers a lightweight and
structural guide for LLMs to translate user intention into Cypher state-
ments, and KGs serve as the graph database for executing those
statements.

2.2. Large language models and prompt engineering

LLMs have made significant developments through deep learning
paradigms and training on expansive corpora, such as processing natural
language text and providing valuable information for specific tasks [26].
Prompt engineering emerges as an integral facet of leveraging the ca-
pabilities of LLMs and interacting with them, where designing and
optimising prompts (the input of LLMs) to guide LLMs towards the
desired output. Prompt engineering involves the description of the task,
general prompting strategies, the integration of user interest modelling
and the presentation of candidate items [27]. While LLMs excel at broad
language tasks, they lack enough contextual knowledge and intrinsic
mechanisms for specialised reasoning, which results in wrong or
“hallucinated” responses [13]. Thus, a key challenge of LLMs lies in
bridging the gap between the general linguistic capabilities and context-
aware knowledge in specific domains, which can be remedied by spe-
cialised knowledge embedded in well-crafted prompts. Effective
prompts should balance linguistic coherence with domain expertise
[28]. For instance, medical applications designed prompts enriched with
precise terminology and logical frameworks to reflect knowledge
structures [29]. Similarly, in the text-to-Cypher task, LLMs often strug-
gle to infer implicit relationships in the nuanced domain knowledge and
adhere to strict syntactic constraints required for Cypher query gener-
ation [30].

Moreover, since an increasing number of open-source LLMs and their
variants exist, the performances of LLMs on different tasks have been
recognised as varying by their inherent parameters and prompting
contents. Selecting an appropriate LLM as a foundational model and
constructing effective prompts are two important aspects to leverage the
capabilities of LLMs. Therefore, different LLMs and context-aware
prompt strategies tailored to domain scenarios are worth exploring in
the text-to-Cypher task.

Y. Wan et al.
2.3. Approaches for text-to-Cypher transformation

Cypher is the declarative query language for graph databases for
enabling data retrieval and manipulation [9]. Text-to-Cypher bridges
natural language interfaces with structured knowledge retrieval. Early
rule-based systems employed pattern matching and semantic role
labelling to decompose queries into Cypher. Also, ML models were
constructed to determine key components. Oro et al. introduced a rule-
driven semantic parsing with MANTRA language to bridge user queries
with graph databases [31]. Litvin et al. mapped inflective-language
phrases to Cypher queries by combining decision trees with flexible
templates and addressed the variability with different natural languages
[32]. However, these approaches attempted to find all possible in-
stances. Subgraph matching or subgraph isomorphism search solves this
problem by relaxing the requirement of an exact match [33]. However,
these approaches still face labour-intensive design in modularity and
explicit rules for precise translation and lack flexibility for diverse
queries. Then, relevant research has shifted towards deep learning due
to its exceptional performance in semantic generalisation and complex
relationship modelling. Tran et al. introduced BERT for semantic
parsing, GraphSAGE for graph-aware relation-property mapping, and
transformers for query synthesis [17]. Liang et al. leveraged the capa-
bilities of deep learning to extract the semantic features and fill in the
predefined Cypher query sketch slots [18]. While effective once trained,
deep learning approaches struggle with substantial upfront training ef-
forts and suffer from rigidity when adapting to dynamic domain
contexts.

LLMs have demonstrated promise by leveraging the extensive
corpora of text data upon which they are trained. However, employing
them in text-to-Cypher transformations is challenging, where problems
arise in the nuanced understanding required beyond what LLMs
currently grasp when models handle complicated queries. To address
the misalignment between user inquiries and KGs, Zou et al. integrated
fine-tuned LLMs with an unsupervised joint retrieval mechanism to
retrieve neighbouring nodes and relations and avoid schema-agnostic
query generation [34]. Recent parameter-efficient fine-tuning (PEFT)
techniques, most notably LoRA [35] and QLoRA [36], adapted sub-10 B-
parameter LLMs to the text-to-Cypher task with only a few million
trainable weights. Studies such as GraphRAFT fine-tune a model while
jointly retrieving relevant sub-graphs, achieving provably correct
Cypher generation [14]. SyntheT2C shows that synthetic question-
Cypher pairs can further raise accuracy when annotated data are
scarce [15]. Despite these gains 70 % execution accuracy on public
benchmarks, PEFT still incurs a highly computational cost of GPU
training and task-specific data preparation. By contrast, an ICL-based
approach was employed to bridge the gaps between text and struc-
tured knowledge representations through prompt engineering, where
the corresponding entities were identified to serve as the contextual
supplement in guiding LLMs for generating desired outputs [37].
Another research further iterated prompts based on the chat history and
an error correction module, and allowed users to retrieve different graph
databases [30]. Prompt-only approaches inject a concise schema and a
handful of exemplars at inference time without any fine-tuning.

3. Query language-informed meta-design

This artifact’s meta-requirements (MR1-MR4) are grounded in the
formal rule families of the Cypher graph query language. In this section,
the rule families are outlined and further explained, showing how each
informs the artifact’s design. Four meta-requirements (MR1-MR4) are
grounded in Cypher’s rule families, including pattern binding (MATCH),
predicate filtering (WHERE, logical operators, and comparisons), pro-
jection (RETURN), and, where applicable, aggregation/grouping and
path constraints. Inspired by Cypher’s rule families and their role in
query construction, each meta-requirement constrains a distinct design
choice as follows. (i) MR1 surfaces domain relations in user terms. The

Decision Support Systems 199 (2025) 114553

system should expose and use domain-specific nodes and relationships
from the semantic schema that correspond to the user’s query intent. In
other words, relevant domain relations mentioned in the user’s own
words must be reflected in the query structure, such as MATCH pattern.
(ii) MR2 makes syntactic commitments explicit. The system should
decide early on the necessary query structure, such as clauses and con-
structs to use, and make the structure explicit in the prompt. Rather than
leaving the LLM to infer all query syntax implicitly, the design provides a
scaffold or template of Cypher clauses aligned with the user’s intent,
such as MATCH/WHERE/RETURN, etc. (iii) MR3 filters to the relevant
context. The system should include only information and syntax relevant
to the specific query context. This entails filtering the domain knowl-
edge (schema subgraph) and the Cypher rule base to the minimum
needed subset before prompting. This mirrors how a WHERE clause
filters data in a query by analogously filtering prompt content to prevent
information overload. (iv) MR4 provides feedback and repairs with
executability guarantees. The system should incorporate a feedback loop
to refine the query or prompt if the generated Cypher is not immediately
executable. In practice, this means validating the LLM’s output against
the schema and syntax rules, and providing corrective guidance so that
the final query is syntactically correct and runnable, such as ensuring a
query has the proper RETURN clause and uses valid identifiers. This
requirement is informed by the need for queries to execute successfully.
Each of Cypher’s rule families maps onto one or more of the above meta-
requirements, and these in turn inform specific modules in our artifact’s
design. Table 1 summarises these mappings and design implications.

Table 1
Mapping of Cypher rule families to meta-requirements and design elements in
the artifcat.

Cypher rule Meta- Moduldes in Design implications

families requirements artifact

Graph pattern MR1, MR2 Schema mapping Domain concepts in the
specification module, query user query are
(e.g., MATCH scaffolding identified and directly
clause family) module mapped to graph

entities/relations. The
system constructs an
explicit MATCH pattern
using those domain
terms, ensuring user-
intended relations
appear in the query
structure.

Conditional MR2, MR3 Information Both the prompt
filtering filtering module content and the query
(e.g., WHERE conditions are
clause family constrained to what is
and logical relevant. The design
operators) mirrors Cypher’s

WHERE by filtering out
unrelated schema
elements and providing
only pertinent
conditions (e.g.,
numeric or temporal
filters mentioned by the
user) in the prompt.

Result projection MR2, MR4 Validation and The system enforces

(e.g., RETURN/ feedback query completeness by
WITH clause mechanism including a RETURN
family) (query verifier) clause structure and

verifying the LLM’s
output is executable. If
the initial query is
incomplete or
incorrect, the design
provides feedback (or
iteratively repairs the
prompt) to ensure a
valid Cypher query that
yields results.

Y. Wan et al.

Building on the above, we can trace the logic flow of how Cypher’s
theory informs our system’s operation. Firstly, given a user question and
the domain schema, the schema mapping module surfaces the relevant
domain entities and relationships (MR1), for example, identifying that
“cold-rolled coils” and “tensile strength” are key concepts to appear in
the query’s MATCH pattern. Next, the system selects and scaffolds the
query clauses needed (MR2), committing to a skeleton Cypher structure.
For instance, if the inquiry implies a filtering condition (e.g., “over
standards” or a date range), the design includes a WHERE clause scaf-
fold; if an aggregate or sorting is required, those syntax rules are chosen
from the rule base. The prompt is then constructed with these clause
placeholders and filled with the user’s terms and schema context. Sub-
sequently, an information filtering step prunes the prompt content to
only the relevant schema triples and syntax rules (MR3), which ensure
that the LLM sees a concise context focused on the user’s intent. Guided
by this focused prompt, the LLM generates a Cypher query, which the
system then validates against the schema and syntax rules. If the query is
not immediately executable, the system can leverage the LLM to refine
the query using the rule base for fulfilling MR4 by guaranteeing an
executable result.

4. Methodology
4.1. Overview of semantic schema-supported prompting for text-to-Cypher

In this study, a unified T2CSS prompt template incorporating domain
knowledge and Cypher language rules is designed to guide LLMs for
Cypher query generation. In contrast to KGs, which store instance-rich
data, a semantic schema is simplified from ontologies to focus on
defining the structure and domain semantics. This characteristic makes
it suited for scenarios requiring schema-level understanding, such as
guiding LLMs to understand the necessary domain knowledge. However,
while ontologies provide foundational schemas for knowledge organi-
sation, their static nature and limited scalability in dynamic environ-
ments necessitate integration with KGs. KGs extend ontological schemas
by incorporating real-world instances and their relationships. Thus, this
study employs ontologies not as replacements for KGs but as comple-
mentary tools. Specifically, lightweight semantic schemas from ontol-
ogies guide LLM prompt structuring, while KGs serve as execution layers
for querying instance-level data. Fig. 1 depicts an overview of the
T2CSS. It begins with the establishment of a domain semantic schema,
which defines relevant concepts, properties, and their relations from
multiple sources. The user inquiries in natural language that reflect the
user’s intentions are then collected. Also, the rule base is constructed to
cover all Cypher syntax [9]. In the second stage, an information filtering
mechanism is applied to select the subgraphs about specific user in-
tentions. The contextual knowledge is then exported from the selected
subgraphs, including the relevant concepts and relationships. According
to user intentions, the necessary Cypher syntax is chosen. The refined
prompts of LLMs are generated by merging these three parts: the user
inquiries, the contextual knowledge from the subgraph, and the neces-
sary Cypher syntax. In the last stage, LLMs interpret the refined prompts
to output the desired Cypher statements, ready for execution in KGs.

4.2. Domain-specific semantic schema design

As mentioned before, the semantic schema is a promising way to
illustrate principled knowledge rather than specific instantiations. It
provides standardised and clear definitions that can be shared. Although
the general types of things that share certain properties are modelled in
domain-centric semantic schemas, these models do not contain infor-
mation about specific individuals. Fig. 2 depicts the construction process
of a domain semantic schema, covering domain and scope identification,
requirement specification, formal design, instance creation, and evalu-
ation. Each step serves a distinct purpose. The first step includes iden-
tifying the domain, its intended use, the contexts in which it will be

Decision Support Systems 199 (2025) 114553

I. Preparing the original inputs of LLMs
Constructing domain semantic schema
Multi-source data

Structured data: tabular

|

|

|

|

|

data, linked data--- . |
Design Construct |
Semi-structured data: | |
K, Encyclopedia-+ :
|

|

|

|

E Unstructured data: text,
=) picture--+

Hierarchical structure Domain-specific

of the classes semantic schema

Rule 1 Rule 2

@ User inquiry text with il it

|
|
|
} Rule3 Rule4
|
|
natural language |

II. Generating refined prompts of LLMs

Rulel ‘xurcm,; Person) RETURN p J Input" J' Input

Merge Rule2 lxurcl-np Person)-[rKNOWS]->(£ Person) RETURN p f] Output

Information filtering
Rule3 ‘MATCHKP Person) WHERE p name = 'Alice’ RETURN p] process

$ Output

-
Export \ /«1

Subgraph of the
semantic schema

Rulek bL-\TCH (p:Person) RETURN count(p)]

@ The necessary Cypher syntax about
user inquiries

[Merge
—
@@@J

@ Contextual knowledge within
specific domain inquiries

empoc'f>

Prompts

IIL. Domain Q&A with LLMs

v
Output >q Execute) e
E— — \é)

Cypher query Desired Answer

Fig. 1. An overview of T2CSS for generating Cypher languages from text
by LLMs.

applied, and its maintenance strategy. Then, the requirement specifi-
cation and existing reusable semantic schema are determined. The next
step focuses on forming the structure of a domain semantic schema. It
involves identifying key concepts and forming classes and subclasses
using both top-down and bottom-up approaches. Meanwhile, the class
properties are defined, such as object properties and data properties.
Lastly, the general instances are created to generate the domain se-
mantic schema, followed by evaluation to ensure error-free logic con-
sistency and reasoning. When the semantic schema ensures logical
consistency, clear reasoning, and practical use, it provides domain
knowledge for LLMs in understanding task scenarios. Being lightweight,
the schema is flexible and easy to adapt without being overwhelmed by
too much detail. The balance between lightweight and semantic infor-
mation makes the semantic schema a useful tool for applications that
need context and a straightforward understanding of specific domain
relationships and concepts.

4.3. Prompt design for text-to-Cypher tasks towards domain questions

The details of the proposed T2CSS prompting approach are demon-
strated to guide LLMs in translating user intentions into structured
Cypher queries in this section. The general prompt template is repre-
sented by P(T,0,Q) to guide an LLM for Cypher generation. T =
{t1,tz, -, t,} denotes a set of domain inquiries within the natural lan-
guage, which is defaulted to the English language in this study. O rep-

Y. Wan et al.

Step 1 Step 5

o Evaluating the pitfalls and the

e Identifying the domain and scope
logic consistency of the semantic

Domain

schema.
Purpose of semantic
. OntOlogy Pitfall Scanner!
Scenario schema Er
Maintenance s
Step 2

Step 4
e Determining the requirement

. . e Creating instances.
specification. &

Ny
A

*

e Considering the reusable
semantic schemas.

Step 3

Constructing the class
hierarchical structure

Formal

5 Data property
design

Defining the class
properties

Object property

Fig. 2. The process flowchart for building a domain-specific semantic schema.

resents the semantic schema and Q = {q7,q5, -, ¢, } is a set of rules of
Cypher syntax. P(T, O, Q) is calculated:

P(T,0,Q) =t+C(0)+ > _5(q;|g;¢Q) @
i=1

where C(O) represents the semantic schema-supported concepts and
relationships relevant to t, and S(Q) denotes the text representations of
Q. Subsequently, given a set of nodes N = {ny,ng, --,n,} (refers to pre-
defined entities, such as “line speed” or “coil tensile strength™) and a set
of relationships R = {ry,73,--,7,} among nodes, which consist of the

Decision Support Systems 199 (2025) 114553

semantic schema O = {N,R}, O is a series of triples (ni,rj7nk), each
representing a relationship between nodes within the semantic schema.

C(0) represents the extraction of concepts and relationships about
the user inquiries from O, which can be articulated:

> o(nr,m) e e(n,r,ne))

(nl,rj,nk)so

c(0) =

where w(ni, T, nk) is a weighting function that assesses the relevance of
each triple within O, and e(ni,rj7 nk) is an extraction function that de-
rives information from each triple. C(O) is calculated by performing a
weighted summation over all relevant triples in O, thereby capturing the
key concepts and relationships inherent in O. Eq. (2) ensures the
coverage of O and allows for differentiated weighting of triples to reflect
the structural domain knowledge.

Although designing the general prompt template for T2CSS, there are
two major challenges: (1) the complete domain semantic schema may
arise with overloaded information for LLMs, and (2) LLMs have a limi-
tation on context length. Overloading the prompt with too much data
can waste LLM resources and be inefficient, such as introducing
redundant information and generating irrelevant outputs. To address
these challenges, a filtering process is proposed to restrict the inputs to
be manageable for LLMs while maximising the retention of critical in-
formation. The filtering process consists of three stages, including text
preprocessing, semantic schema mapping, and query structure deter-
mination. Fig. 3 details the filtering process of generating prompts for
LLMs. Three parts marked by a red rectangular frame are three com-
ponents of the prompts in Eq. (1), representatively, user inquiries, the
semantic schema-supported information, and the necessary Cypher
syntax.

The first stage aims to clean and standardise user inquiries T to
extract key information and features, transforming the original text into
a format for subsequent analysis and matching. It includes steps such as
tokenisation, stop-word removal, and stemming. The numerical vector
of each text t; is calculated:

D> _Ew) ®3)

1 | wet;

T — (E@) |6 € T} = Il

Rule 1 ‘ MATCH (p:Person) RETURN p ‘
Rule 2 ‘ MATCH (p:Person)-[r:KNOWS]->(f:Person) RETURN p, ‘

Rule 3 ‘ MATCH (p:Person) WHERE p.name ='Alice' RETURN p ‘

Rule n ‘ MATCH (p:Person) RETURN count(p) ‘

Part 3
Probability
Iculation
Query 4' e
—_—
structure >neo J
determinig
Rule base of Cypher syntax
Part 1
Text e:a Procedure
processing) ;
Inquiry text T Operator
Semantic y
schema \i
mapping

Semantic schema

N/
-
e
8'7‘

=
E
>
=
g

Similarity calculation

Vector representations of T
® [08[07[05] -]
°
o [0AT0z[0I]]

o [07[09704]]

° - 2 -hoﬁ ﬂ-h"P

Three-order subgraph

Fig. 3. A detailed filtering process regarding prompt generation of T2CSS.

Y. Wan et al.

where E(t;) represents the feature vector of a user inquiry ¢, |t;| is the
number of words in the t;, w denotes each word in the ¢t;, and E(w) means
the vector representations of each word w. Eq. (3) is applied to convert
each word into a numerical vector, resulting in a feature representation
for the next phase. The second stage is to map the processed text feature
to the entities and relationships defined in the semantic schema and
identify the most relevant semantic concepts by calculating their simi-
larities to the text features. Their similarity S(T', O) can be obtained from
the following equation.
T o0

S(T,0) = ——— 4
(T-0) = frryoy @

where terms ||T'|| and ||O|| are the Euclidean norms of these vectors,
which indicate their magnitudes or lengths in multi-dimensional space.
Eq. (4) assesses the similarity between text features and concepts of O
using similarity calculation functions for the accuracy and relevance of
the mapping. After assessing the similarities, C(O) is constructed to serve
as the relevant semantic input of LLMs. To address the context length
limitation and the schema information overload, C(O) consists of a
sequence of textual features of itself and its three-order concepts from t;.
The final phase is to generate the most relevant Cypher syntax based on
the previous stages, including the text features and semantic schema
mapping results. The optimal rules are determined by q" =
argmax,.oZ(q|T), where Z(q|T') is calculated by:

Z(Tq) » Z(q)

Z(q|T') = Z(T)

5)

Z(q|T') denotes the probability of choosing a query structure q given
the text features T'. Z(T'|q) represents the likelihood of observing the
feature set T given a q. Z(q) is the prior probability of g, and Z(T') is the
marginal probability of the feature set. Eq. (5) calculates the query rules
to guide the LLMs for generating Cypher queries that can be executed on
KGs. Specifically, the conditional probability is utilised to predict the
most suitable query rules. The user intentions, the subgraph of the se-
mantic schema, and the selected query rules are organised in prompts to
generate query statements using LLMs.

The pseudo is demonstrated to bridge unstructured queries with
structured knowledge via schema-guided LLM prompting to ensure
domain fidelity and computational efficiency. The input user inquiry is
first parsed to extract key concepts and their semantic relationships. This
process involves tokenisation, stop-word removal and vectorisation,
followed by similarity matching against the domain schema to ensure
contextual alignment. For each user inquiry, the domain semantic
schema is then dynamically extracted into a contextual alignment by
linking key concepts to predefined schema triples. Concurrently, a
syntax subset is extracted from the Cypher rule base guided by schema-
concept relevance. A filtering process further prunes the subgraph and
rule subset to comply with the input constraints of LLMs. Also, a com-
bined prompt structured via Eq. (1) is fed into the LLM to generate a
Cypher query, which is appended to the final output. The compiled
Cypher queries are validated against the semantic schema for syntactic
and semantic correctness before executing in the domain KG.

Algorithm 1 Pseudo-code for Text-to-Cypher Transformation

Input: Natural language text query T = {t1,tz, -, tn }, Domain-specific semantic
schema O, Cypher language rule base Q, Information filtering process F, Prompt
template P.
Output: Structured Cypher query M = {M;,Ma, -+, M, }.
1: Initialise the structured Cypher query M as an empty string.
2: Parse the natural language text query T = {t1,ts, -, t,} to identify key concepts
K = {ki,k2, -,k } and their relationships R using schema O.
3:foreachtin T
4: for each concept k in K do
5: identify the corresponding node or relationship in schema O
6: construct related subgraph O’ of semantic schema O and the related rule subset
Q={4.9. "¢y} from Q

(continued on next column)

Decision Support Systems 199 (2025) 114553

(continued)

7: end

8: Apply filtering process F to ensure T, O' and Q fit within the context length and
token constraints.

9: Generate the prompt P =T+ O + Q.

10: Input P into LLMs.

11: Return the response My of LLMs

12: Append My to Cypher query M

13: end

14: Validate Cypher query M against schema O to ensure it does not exceed schema
constraints

15: Return the final structured Cypher query M

5. Experimental setup
5.1. Comparative models

To demonstrate the effectiveness of the proposed T2CSS, three
widely used models for text-to-query tasks are selected to serve as
benchmarks, including Seq2SQL [38], TypeSQL [39], and LGESQL [40].
Moreover, a set of LLMs is chosen to compare their performances,
including ChatGPT (versions 3.5 and 4.0) [41], Claude 2.0 [41], LLaMA
2 [41], and Mistral 7B [42]. Each model represents a unique blend of
linguistic capabilities, training paradigms, and architectural in-
novations. Among them, medium-scale models are moderately para-
meterised LLMs (e.g., LLaMA and Mistral), and large-scale models have
advanced capabilities of the commercial LLMs with large-scale param-
eters (e.g., Claude 2.0, ChatGPT 3.5, and 4.0). Furthermore, to ensure a
comprehensive assessment reflecting the most recent research trends,
we additionally evaluated ChatGLM2, an advanced open-source LLM, in
combination with fine-tuning strategies such as LoRA and QLoRA. These
fine-tuning methods represent state-of-the-art techniques that have
emerged in 2024 and 2025, providing a valuable benchmark for our
T2CSS prompting approach.

5.2. Evaluation metrics

In this section, an evaluation approach has been established to
include three metrics for performance comparisons under different
models and prompting strategies for the targeted tasks. These metrics
provide a holistic view of performance and efficiency. The comparative
analysis includes detailed assessments of how different baseline models
and diverse LLMs perform across three different metrics.

(1) Logical accuracy (LA) measures the proportion of generated
queries that correctly reflect the logical structure [43], which
reflects the ability to generate logically coherent queries that
align with user intents.

_Ga

LA
T

(6)
where Cj, is the count of generated queries with correct logic, and T is the
total number of generated queries.

(2) Execution accuracy (EA) assesses the percentage of the correct
and expected results in Cypher queries executed in a Neo4j
database [43].

Cg
EA =— 7
where Cg is the count of generated queries yielding correct results upon
execution, and T is the total number of generated queries. For each user
inquiry, domain experts manually define the correct Cypher query and
its expected output. Each generated Cypher query is executed in a Neo4j
database containing the domain-specific KG. Then, the output of each
executed Cypher query is retrieved and compared to the predefined
expected output. A query is counted as correct (incrementing Cg) only if

Y. Wan et al.

its results match the benchmark exactly. Any mismatch classifies the
query as incorrect.

(3) Average token used (TU) calculates the average number of tokens
utilised by the LLMs for generating each Cypher query. It is an
indicator of the efficiency and complexity of the generated
queries.

>N
TU = =— 8
T (8)
where TU means the average tokens used, and) N represents the sum of
tokens in all, and T is the total number of generated queries.

6. Case study - results and discussion
6.1. Dataset description and preparation

Cold rolling is a key stage in steel manufacturing due to its ability to
enhance diverse mechanical properties of steel strips, including
increasing tensile and yield strengths, as well as improving hardness and
surface finish. With the increasing demand for high-property steel strips
in different industries, these improved characteristics of cold-rolled coils
are indispensable for high-performance applications where precision
and durability are crucial. Consequently, a cold-rolling case study is
selected and conducted to validate the proposed T2CSS. Experimental
data were provided by an electrical steel manufacturer with a reversing
mill.

Fig. 4 shows the complete manufacturing workflow contributing to
the production of cold-rolled coils in the steel industry. Various stages
impact the quality of cold-rolled products to different extents, including
hot rolling, hot-rolled coil properties, annealing, pickling, cold rolling,
and quality inspection. Initially, hot-rolled coils undergo annealing to
enhance ductility, reduce hardness, and improve workability, altering
the coil’s physical and chemical properties. Subsequently, pickling
treatment is applied to metal products to remove impurities like stains,
inorganic contaminants, and rust. Using emulsion, the treated steel coils
are then passed through a cold rolling mill for flat deformation. These
steps are repeated to achieve the desired size. After straightening, the
quality of the cold-rolled products is inspected on-site by technicians.
Breakage defects in the strips are manually identified and marked.
Finally, the inspected and approved cold-rolled coils are cut to the
required length for packing and storage. Table 2 presents details of
relevant concepts and characteristics extracted from multiple sources.
Five resources are regarded as the contributing factors to the strip-
breakage phenomenon, including the hot-rolling process, annealing,
pickling, emulsion, cold-rolling process and quality inspection. The

©_ =
CSE— ?
FeA 3
_@ — ickélg Waéhin]grym

-
" v

’ (-] ~\

'\ (] s (o] H
~~___¢

Emulsion

Cutting into e Quality inspection < — Cold rolling

sheets

Fig. 4. An overview of the cold rolling workflow in the steel industry.

Decision Support Systems 199 (2025) 114553

Table 2
Details of relevant concepts and characteristics extracted from multiple sources.

Sources Concepts and variables

Hot-rolling Hot-rolled coil properties, such as chemical contents, quench

process temperature, etc.
Annealing & Annealing temperature, Jetflow speed, etc.
Pickling
Emulsion Dirt result, pH, conductivity, chloride index, etc.
Cold-rolling The rolling operation, equipment, tension, measured
process parameters, etc.

Quality inspection ~ Cold-rolled coil properties, such as weight ingoing, width,

weight outgoing, etc.

dataset was collected and stored from these resources, which cover a
production period of six months. The historical dataset contains 1254
samples and 94 variables.

6.2. Domain semantic schema design

In this section, a steel cold-rolling semantic schema (SCRS) was
designed to provide structured domain knowledge for LLMs. This SCRS
was constructed from six resources, including material, man, machine,
method, measurement, and environment, through specification,
knowledge acquisition, conceptualisation, integration, implementation,
and evaluation. OWL was selected as the encoding language due to its
compatibility with diverse data formats and its ability to provide formal
and comprehensive semantics for Web content [44]. The SCRS was
encoded and refined using Protégé5.5.0, which is a widely adopted tool
for knowledge representation. The SCRS features a class hierarchy
organised around the six key concepts.

As shown in Fig. 5, the hierarchy includes detailed subclasses. For
example, the “machine” class contains cold rolling mills, which deform
steel into thinner gauges, alongside auxiliary equipment like shearing
machines and levelling machines, as well as inspection, transport and
handling devices. Moreover, relationships with the SCRS are defined by
object and data properties, as detailed in Table 3. Object properties link
two individuals (a subject and an object) through a predicate, whereas
data properties associate a single subject with attribute data using a
predicate. For instance, “Operates” connects the “man” class with the
“machine” class.

The SCRS was structured as a five-layer concept hierarchy capturing
multi-sourced knowledge from cold-rolling processes, where its main
structure is illustrated in Fig. 6. The top layer, “Things”, depicted as
green rectangles, represents overarching concepts. Domain-specific
subclasses, shown as yellow circles, include concepts related to cold-
rolled coils. The bottom layer, with purple rhombuses, contains in-
stances like “fault pattern” and “thickness”. The schema’s quality was
verified using the “OOPS!” platform to confirm its logical consistency
and reasoning integrity. By providing a simplified conceptual structure,
the SCRS guides LLM within the proposed T2CSS to avoid the data
overload that a detailed KG might introduce. In contrast, the KG serves
as the data repository for Cypher query execution and result validation.

6.3. Semantic schema-supported prompt design for text-to-cypher task

The development of prompts for T2CSS was detailed in this section,
which focuses on cold rolling processes in steel manufacturing. The
questions about the cold-rolling process were first crafted to reflect the
typical user inquiries and cover diverse aspects of the process, such as
the impact of annealing temperature on steel properties and factors
influencing cold-rolled steel strip strength.

Table 4 presents ten typical examples of user inquiries curated to
reflect real-world challenges in steel manufacturing. These inquiries
were derived from historical datasets, expert consultations, and tech-
nical documentation. Selection criteria prioritised the representative-
ness of core processes (e.g., annealing and pickling), quality metrics (e.

Y. Wan et al.

Raw material

™~

Products

S~

Auxiliary material

/!

Decision Support Systems 199 (2025) 114553

Maintenance
routine

Quality control

Process flow
procedure

has subclass has subclass has subclass has subclass has subclass has subclass Auxiliary
\ \/ / equipment
Performance Material Method
metric \ \
has subclass has subclass has subclass has subclass
\ / / has subclass Cold rolling mill
Process has subclass Measurement has subclass OWL: has subclass Machine
monitoring Things
has subclass Trans&handle
equipment
has subclass has subclass has subclass has subclass
Quality assessment /
Man Environment
/ / \ \ Inspection
equipment

has subclass has subclass

Maintenance

personnel management

has subclass

Operator

has subclass has subclass

Workshop

R condition

Fig. 5. The main hierarchical structure of the classes of the SCRS.

Table 3
Description of examples of object and data properties of the SCRS classes.

Properties Description Examples
Object Operates A cold rolling machine operator would operate
properties the cold rolling mill.

Uses Maintenance personnel repair machines by
maintenance plans and procedures.

Has_Input Hot-rolled coils are fed into the cold-rolling
mill.

Has_Output A cold rolling mill produces cold-rolled coils.

Has_Observation A quality inspector checks for breakage in cold-
rolled steel products.

Has_Procedure Auxiliary equipment has procedures for
annealing and pickling processes.

Has_Property Mechanical measurements can reveal the
properties of the hot-rolled coils.

Has_Parameter Process monitoring methods can be used to
obtain machine parameters during the cold
rolling process.

Is_Measured_By The properties of cold-rolled coils are
determined through various inspection
standards and approaches.

Is_Deployed_To Pickling procedures could be applied to
pickling machines.

Data Has_Pattern The cold-rolled coils can be identified into two
properties patterns: strip breakage and normal.

Has_Attribute Describing textual attributes, formatted as
strings, such as the ID of a steel coil.
Indicating numeric attributes that have specific
values, like the parameters involved in the

pickling processes

Has_Value

g., tensile strength and surface roughness), and complexity for balancing
single-hop and multi-hop relationships to test semantic and syntactic
alignment. Integrating a semantic schema into the prompts is critical for
the proposed T2CSS and involves embedding essential entities and re-
lationships. For instance, to design the prompt of Q1 in Table 4, the key
concepts and their properties are identified, including cold-rolled coils,
tensile strength, and six-month production. The subgraph of the SCRS is
selected to contain key concepts and their three-order neighbours. After
that, all triples included in the subgraph serve as domain knowledge to
support the designed prompts and guide the LLMs for understanding
domain nuances required, such as <cold rolling mill, produce, cold

rolled coil>. To effectively construct and execute a Cypher query that
retrieves cold-rolled coils with tensile strength over standards within six
months, a clear understanding of the necessary Cypher language syntax
is crucial. According to the rule families of Cypher language in Table 1, it
is essential to incorporate Cypher syntax within the prompts. As shown
in Table 5, the representations of key Cypher syntax needed for Q1 are
utilised to prompt LLMs, including the use of clauses such as MATCH,
WHERE, and RETURN, alongside functions such as AVG, MAX, or
COUNT.

To provide prompts to LLMs for generating correct Cypher queries of
Q1, the inputs should be structured to include the user inquiry, the
domain knowledge from the semantic schema, and the necessary Cypher
syntax. Fig. 7 depicts an interactive dialogue process between a user and
an LLM, which focuses on the LLM-driven query formulation phase. The
process begins with a predefined instructional prompt that con-
textualises the LLM as a domain-specific expert in steel manufacturing
for generating syntactically and semantically accurate queries. A sample
user inquiry, “Which cold-rolled coils had tensile strength over standards for
six-month production?” is then integrated with domain semantic sche-
mas, including key entities and their relationships, alongside the
essential rules of Cypher syntax. The framework further demonstrated
contextual adaptability: the LLM appends a cautionary note advising the
user to calibrate the property name (e.g., production_date) and temporal
parameters (e.g., 2023-01-01 to 2023-06-30) for aligning with their
specific graph schema and temporal constraints. The schema-aware
customisation highlights the framework’s robustness in balancing
automation with user-specific data requirements.

6.4. Comparative analysis across different models

6.4.1. Accuracy comparison across different approaches

To evaluate the effectiveness of T2CSS, we benchmarked three
conventional text-to-query approaches (Seq2SQL, TypeSQL, LGESQL),
one recently fine-tuned small-scale LLM (Qwen-1.5B), and five prompt-
based T2CSS using diverse LLMs of varying size. These models are
further classified into four groups: non-LLM models, fine-tuned small-
scale LLMs, medium-scale LLMs and large-scale LLMs. Group 1 (non-
LLM models) includes the conventional NLP methods, which serve as
benchmarks to evaluate the effectiveness of LLM-based approaches,
including Seq2SQL, TypeSQL, and LGESQL. Group 2 is the fine-tuned

Y. Wan et al.

Decision Support Systems 199 (2025) 114553

l ® RollingProcess] eq\.m::e

MaintenanceProc
edure

@ Productiol X

RateOfQuality

ngProcedure

iency

ic

]) AnnealingPickii
g

4 TOFF

@ RolingParamete
@ Heavy_End

® Mechan ?"“M'As”sm AuxilaryMateri
rement al

24
‘l ColdRollingMate
al

ling_Pyro m

il Product

t @ Tonnes_on_Cutte
SurfaceQualityl L
i 4 Trnss s [Sran]
-) ingEquipment
[Forkift | Y [T
| —

ElectricalTechn
icians

x=n

Management

I * ming_m{

GAUGE

I LogisticsManage juctionManag I
r

HRC_quench_star
t_temp

Fig. 6. The main structure of the lightweight SCRS.

Table 4 Table 5
Examples of the specific questions of the cold rolling process for user inquiries. The representations of the key Cypher syntax elements for Q1.

Inquiries Descriptions Cypher elements Explanations

Q1 Which cold-rolled coils had tensile strength over the standards for six- MATCH The ‘MATCH’ clause is utilised to specify patterns in a graph,
month production? essentially denoting the structural form in which data is

Q2 What are the main factors influencing the strength of cold-rolled steel queried.
strips? WHERE The ‘WHERE’ clause applies conditions that filter the results of

Q3 What role does the emulsion play in the cold rolling process? the ‘MATCH’ clause, ensuring only entities that meet specified

Q4 Can the properties of hot-rolled coils influence the final quality of cold- criteria are included in the query result.
rolled coils? RETURN The ‘RETURN’ clause defines the data to be returned from a

Q5 Is there some correlation between the surface roughness of cold-rolled query, which could be nodes, relationships, properties, or
coils and annealing temperature? combinations thereof.

Q6 How do variations in jet flow speed during pickling influence the steel Property access To access properties of nodes or relationships, the syntax
quality? involves the entity followed by a ‘.’, then the property name.

Q7 Which stage has the longest processing time in the cold rolling Comparison Operations, such as ‘>, ‘<’, ‘>’, ‘<’, ‘=’, are used in the
production line? operations ‘WHERE’ clause to compare property values against specified

Q8 Which temperature control procedure is critical in the cold rolling conditions.
process? Logical operations ‘AND’, ‘OR’, and ‘NOT’ operators are employed within

Q9 What are the key indicators of mechanical measurement in quality ‘WHERE’ clauses to combine multiple conditions for more
control of cold-rolled coils? precise data filtering.

Q10 Which batches of cold-rolled coils had strip breakages recently? Functions Cypher provides functions like ‘date()’ for converting strings

Qwen-1.5B (LoRA) model, which sits between groups 1 and 3 in
parameter count but represents the recent studies in parameter-efficient
tuning. Group 3 comprises medium-scale LLMs with T2CSS, such as
Mistral 7B and LLaMA 2. Group 4 includes large-scale commercial LLMs
based on T2CSS, namely Claude 2.0, ChatGPT 3.5, and ChatGPT 4.0.
Specifically, for group 2, Qwen-1.5 B is a 1.5-billion-parameter bilingual
model released by the Qwen team in 2024 as a lightweight alternative to
their 7 B and 14 B checkpoints. A LoRA adapter (rank = 32, a = 16) is
applied on a corpus of 11,042 questions (Cypher pairs). Among them,
3042 are annotated from the cold-rolling KG, and 8000 synthetic pairs
are generated with the SyntheT2C recipe. Training was carried out for
four epochs at a learning rate of 5 x 10~* on a single NVIDIA GTX 2080
Ti (11 GB VRAM) using 4-bit quantisation and gradient checkpointing.
The run completed in approximately six hours, with peak GPU memory
just under 10 GB. By structuring the experimental groups in this manner,
we aim to demonstrate the benefits of employing LLMs with T2CSS for
text-to-Cypher and provide a clear comparison of T2CSS performance
across different model scales.

Figs. 8 and 9 compare the LA and EA of the proposed T2CSS with
different LLMs and the baseline models. Group 1 (rule-based and ML

to date values, used in date comparisons within the ‘WHERE’
clause.

models) showed moderate performance, with LGESQL showing the best
performance among the group at 68 % LA / 66 % EA; their reliance on
fixed patterns limits adaptation to dynamic queries. In Group 2, Qwen-
1.5 B (LoRA) rose to 75 % LA / 73 % EA, which is substantially ahead of
Group 1. This illustrates the benefit of lightweight fine-tuning, but it is
still below the prompt-based T2CSS using LLMs. Group 3 (medium-scale
prompt-only LLMs) edged higher, with LLaMA 2 reaching 76 % LA / 76
% EA, confirming that even modest-sized models gain from schema-
guided prompting. Group 4 (large-scale commercial LLMs) yielded the
best results: ChatGPT 4.0 attained 86 % for both metrics, outperforming
Mistral 7 B (Group 3) by 10 %.

EA trails LA in every group, which underscores the added difficulty
of producing queries that both parse and run against a domain KG. The
gap narrows in Groups 3 and 4. This pattern suggests that the semantic
schema in T2CSS helps medium and large models align Cypher syntax
with graph structure. Model architecture still matters. Claude 2.0 per-
forms LLaMA 2 even though it has more parameters, indicating that the
training strategy can limit domain-specific reasoning. LLaMA 2 matches

Y. Wan et al.

User Inquiry

Decision Support Systems 199 (2025) 114553

Question 1: Which cold rolled coils had tensile strength over standards for six-month production?

!

)

The domain-specific knowledge

<machine, has subclass, cold rolling mill>,

<cold rolling mill, has input, hot rolled coils>
<cold rolling mill, produce, cold rolled coil>,
<cold rolled coil, has property, tensile strength>, ...

Key elements of cypher syntax

“date()’

(30 el sz
‘AND’, ‘OR’, ‘NOT”

Function
Comparison Operations
Logical Operations

T2CSS Instruction

You are a knowledgeable expert in the steel manufacturing domain, adept at collaborating with specialists like problem solvers,
mathematicians, and statisticians. Your expertise in this domain, especially in cold rolling processes, equips you to craft accurate
cypher queries using the provided semantic schema and the cypher language grammar.

}

You are a knowledgeable expert in the steel manufacturing domain, adept at collaborating with specialists like
problem solvers, mathematicians, and statisticians. Your expertise in this domain, especially in cold rolling processes,
equips you to craft accurate cypher queries using the provided semantic schema and the cypher language grammar.

|
=

are limited to the basic principles of the language...

I will present you with a question: “Which cold rolled coils had tensile strength over standards for six-month
production?”. Please convert this question into a cypher query code for querying within knowledge graphs in the
Neo4j database. However, do not rush to respond. To assist you in providing an accurate answer, I will also supply

you with additional information.

D)

|

I provide you with a semantic schema of cold rolling processes, which includes numerous triplets of the format <head
entity, relation, tail entity>. An example of such a triplet is <cold rolling mill, produce, cold rolled coil>, indicating
that cold rolled coils are produced by... These triples are...I also provide some necessary syntax for the cypher
language, such as 'MATCH'... Translate the question “Which cold rolled coils had tensile ..?” in cypher query.

Great! Based on your information, the Cypher query might look like this:
In this query, MATCH finds all nodes...Please adjust the property names
and the date range according to your actual graph schema ...

()

That's an interesting and specific scenario. While I'm equipped with a broad range of knowledge across various
domains, including some aspects of steel manufacturing and data analysis, my capabilities in writing Cypher queries

Absolutely, I'm ready to help you with the Cypher query. Please go ahead and provide the additional information you
mentioned, so I can craft an accurate query for your needs.

MATCH (cxc:ColdRolledCoil)- [:HAS_PROPERTY]->(ts:TensileStrangth),
(3:Standaxd)

AS CoilID, ts

AS TensileStrength

Fig. 7. An illustrative visualisation of a prompting session.

Claude’s execution accuracy with roughly half the parameters, which
illustrates the efficiency of a well-integrated schema prompt. The pro-
gression from 0.58 EA for Seq2SQL, 0.73 EA for Qwen-1.5 B with LoRA,
to 0.86 EA for ChatGPT 4.0 with T2CSS supports two practical conclu-
sions. First, parameter-efficient fine-tuning offers a meaningful accuracy
boost when computer resources are limited. Second, schema-guided
prompt engineering can close much of the remaining gap without the
time, data, and energy that continual tuning demands.

6.4.2. Validation of the T2CSS model through different inputs

Following the comparison groups in Section 6.4.1, we further vali-
dated the effectiveness of the designed prompts from T2CSS by
comparing the performances of five models (groups 3 and 4 in Section
6.4.1) under different input conditions. The proposed T2CSS approach
integrates three key components to construct the prompts for LLMs: user
inquiries, necessary Cypher syntax related to the inquiries, and semantic
schema relevant to the inquiries. The inputs were divided into four
strategies. Strategy 1 is to input only user inquiries, which aims to
evaluate the performances of the models when no additional structural

10

or semantic information is provided. Strategy 2 incorporated user in-
quiries and the necessary Cypher syntax to assess the impact of neces-
sary Cypher language rules. Strategy 3 included user inquiries and a
semantic schema to assess the impact of domain knowledge. Strategy 4
combined user inquiries, Cypher syntax, and semantic schema, aiming
to showcase the full potential of the T2CSS approach. The experimental
design of four strategies assesses how different input combinations affect
model performance and demonstrates the potential of incorporating
necessary Cypher syntax and semantic schema into the prompts.

Table 6 presents experimental results across different input condi-
tions, which provide the detailed effectiveness of each input component
in text-to-Cypher tasks. Under Strategy 1 (user inquiries only), both
groups show limited accuracy. Medium models in Group 3 stay below
0.55 EA, while the larger models in Group 4 remain under 0.60 EA,
indicating that pre-training alone does not substitute for structural
guidance. In strategies 2 and 3, adding Cypher syntax and semantic
schema, respectively, both improved LA and EA across all groups. It
highlights the importance of Cypher syntax and schema-driven con-
textualisation. Semantic schema (Strategy 3) yields larger gains than

Y. Wan et al. Decision Support Systems 199 (2025) 114553
1.0
ZZ Z Seq2SQL
S S‘ TypeSQL
4 E=JLGEsqQL
Qwen-1.5B .86
EEH Mistral 7B
0.8 o LLaMA 2 :
[Claude 2.0 0.75 0.74 0.76
E= ChatGPT 3.5
[T ChatGPT 4.0 0.68
0.64
0.6 - 0.6
«
| 4
0.4 4
0.2 -
8eq2SQL TypeSQL LGESQL [Qwen-1.5B | Mistral 7B LaMA2 | Claude20 [ChatGPT35] ChatGPT 4.0
Group | | Growp2 | Group 3 | Group 4
Fig. 8. Performance of the proposed T2CSS in comparison to baselines on LA.
1.0
Seq2SQL
TypeSQL
{1 E=JLGEsQL
[TT]]Qwen-1.5B 0.86
H-H Mistral 7B
0.8 4 JrLama2
] Claude 2.0 0.73 0.76
=] ChaiGPT 3.5 - 0.72
1 I ChatGPT 4.0 0.66
0.6 L2
0.56 SEEEEEEE
-«
|
0.4 -
0.2 -
Seq2SQI TypeSQI LGESQIL] Qwen-1.5B I Mistral 7B LLaMA 2 I Claude 2.0 ChatGPT 3.5 ChatGPT 4.0
Group 1 [Grow2 | Group 3 | Group 4

Fig. 9. Performance of the proposed T2CSS in comparison to baselines on EA.

Cypher syntax alone (Strategy 2), confirming the value of domain
knowledge. Strategy 4 produced the best scores: Group 3 models rose
into the mid-0.70 EA range, while ChatGPT 4.0 reached 0.86 EA. Large-
scale models in Group 4 consistently outperformed the medium-scale
models in Group 3, reflecting the added benefit of parameter count
when both groups received the full T2CSS prompt. Overall, the T2CSS
prompting approach enhanced text-to-Cypher accuracy by integrating
domain semantics, syntactic rules, and user intention, which advocates
for hybrid prompting strategies in text-to-Cypher tasks requiring both
logical coherence and execution fidelity.

6.4.3. Computational resource and token utilisation analysis

Following our previous experimental results in Section 6.4.2, it is
evident that ChatGPT 4.0 with T2CSS outperformed other models in
terms of LA and EA. However, given that ChatGPT 4.0 is a commercial,
non-open-source model, it is crucial to analyse the token utilisation of

11

various LLMs, where token efficiency directly impacts the cost and
performance. Lower token counts generally indicate more efficient
query generation, faster processing times and reduced computational
costs. In this context, LLMs were categorised into two sets: set 1 (me-
dium-scale LLMs) and set 2 (large-scale LLMs).

With the same prompts from the proposed T2CSS, the mean token
usage of the five LLMs was calculated and compared in Fig. 10. Set 1
exhibited a higher token usage and indicated that it requires more to-
kens to generate queries, which may lead to higher computational costs
and longer processing times. Compared to set 1, set 2 showed better
token efficiency, especially ChatGPT 3.5, making them more suitable for
applications where computational efficiency and processing speed are
critical. By analysing the token utilisation, a clear understanding of the
trade-offs between accuracy and computational resources was provided.
For instance, ChatGPT 4.0 with the proposed T2CSS offered better ac-
curacy than ChatGPT 3.5 based on T2CSS, but it comes with higher

Y. Wan et al.

Decision Support Systems 199 (2025) 114553

Table 6
Results of diverse models under different input conditions.
Strategies Models Inputs LA EA
User inquiries Cypher syntax Semantic schema
Strategy 1 Group 3 Mistral 7B Vv 0.44 0.42
LLaMA 2 v 0.54 0.54
Group 4 Claude 2.0 v 0.46 0.4
ChatGPT 3.5 v 0.48 0.44
ChatGPT 4.0 v 0.58 0.56
Strategy 2 Group 4 Mistral 7B v v 0.64 0.58
LLaMA 2 v v 0.68 0.66
Claude 2.0 v Vv 0.66 0.6
Group 4 ChatGPT 3.5 v v 0.68 0.64
ChatGPT 4.0 v v 0.76 0.74
Strategy 3 Group 3 Mistral 7B \/ \/ 0.62 0.6
LLaMA 2 v Vv 0.68 0.62
Group 4 Claude 2.0 v v 0.64 0.62
ChatGPT 3.5 v v 0.68 0.64
ChatGPT 4.0 v Vv 0.78 0.78
Strategy 4 Group 3 Mistral 7B v v v 0.74 0.72
LLaMA 2 v v v 0.76 0.76
Group 4 Claude 2.0 v v v 0.74 0.72
ChatGPT 3.5 v Vv Vv 0.8 0.76
ChatGPT 4.0 v v v 0.86 0.86
Bold values represent the maximum value in each column.
400
U Mistral 7B
360.3 R LLaMA 2
——] Claude 2.0
[[[1]] ChatGPT 3.5
314.6 -] ChatGPT 4.0
300
281.4
je=]
2200 193
1334
100
0
Mistral 7B | LLaMA 2 Claude 2.0 [chaiGPT 3.5] ChatGPT 4.0
Set 1 (medium-scale LLMs) Set 2 (large-scale LLMs)

Fig. 10. Performances of diverse LLMs with the proposed T2CSS on TU.

computational costs. In this context, the token usage analysis helps in
making informed decisions about the deployment of LLMs in various
practical applications, balancing performance, cost, and computational
feasibility.

7. Discussions

The findings of this study extend the principles of prompt engi-
neering into an applied domain context, which illustrates how a se-
mantic schema can guide an LLM in generating graph queries. By
injecting a lightweight domain schema into the prompt, the T2CSS
approach bridges the gap between unstructured natural language
questions and the structured graph query language Cypher. It should be
noted that this is not a new fundamental theory of prompting, but rather
a practical extension of schema-guided prompt design to the text-to-
Cypher task. The approach demonstrates that even without model
retraining, an LLM can be aligned with domain-specific knowledge

12

through in-context learning. When the domain ontology is distilled into
a concise semantic schema, the model uses those structured relation-
ships as contextual priors for query construction. This yields a form of
structured knowledge grounding in the prompt, which reduces ambi-
guity in the model’s understanding of user intent. Furthermore, the
ability to regenerate the prompt rapidly with an updated schema
(instead of retraining the model for each schema change) suggests a
scalable alternative to traditional fine-tuning. Maintaining supervised
learning across ten schema revisions would require ten retraining
rounds, whereas the T2CSS prompt is regenerated in seconds by simply
merging the updated schema fragment. The dynamic filtering of prompt
content in T2CSS also exemplifies a resource-efficient strategy through
ensuring that only relevant schema triples and Cypher syntax are
included. In this regard, it offers a promising solution to token limita-
tions by prioritising schema-level relationships (e.g., “machine-produce-
coil” in Fig. 6) over instance-level data for resource-aware LLM
deployment. In theory, this highlights how in-context learning can be

Y. Wan et al.

augmented with a structured semantic component to improve accuracy
without exceeding context length limits. In summary, the theoretical
significance lies in showing that schema-guided prompting is a viable
and efficient approach to grounding LLMs in specialised domain
knowledge for query generation.

In practical terms, the proposed T2CSS approach offers several
benefits for real-world applications, especially in industrial and enter-
prise settings. The first one is democratized access for non-experts. The
method allows domain specialists and other non-technical users to query
KGs directly using natural language without requiring expertise in
Cypher or database query languages. In other words, as users can obtain
answers from data by simply asking questions in plain language, it
lowers the barrier to accessing complex graph databases. Therefore,
organisations can eliminate lengthy technical training phases and de-
pendency on database experts for faster decision-making and problem-
solving. Also, it is helpful for knowledge sharing and reuse. By making
querying more intuitive, T2CSS facilitates broader knowledge sharing
across teams. Practitioners in different roles can retrieve information
from the knowledge graph on their own, which promotes collaboration
and reuse of data insights. The natural language interface serves as a
user-friendly layer for enterprise knowledge management, so informa-
tion is no longer siloed with IT specialists. In this regard, this improves
human-computer interaction with graph data and empowers users to
explore data on demand for evidence-based decision processes. Another
benefit lies in cost efficiency and flexibility. The prompt-based approach
reduces the need for extensive model training or costly development of
custom query tools for each domain. Employing large commercial LLMs
with T2CSS yields the highest accuracy, but the framework also works
with smaller open-source models at lower cost, albeit with some accu-
racy trade-off. In practice, organisations can balance performance and
cost according to their resources. For instance, a company could choose
an open-source LLM for routine queries to save on costs, and reserve a
commercial model for cases requiring the utmost accuracy. The ability
to update the domain schema without retraining the model further
contributes to cost and time efficiency for rapidly adapting to evolving
data. Additionally, T2CSS enhances scalability in industrial de-
ployments. Because the semantic schema is a compact representation of
domain knowledge, the prompt remains concise even as the underlying
database grows. This schema-level prompting strategy reduces token
usage per query, which lowers computational overhead and latency. In
other words, queries can be generated and executed faster, making real-
time or near-real-time querying feasible for time-sensitive applications.
The approach also scales to new domains by simply swapping in a new
schema and context, rather than rebuilding an entirely new system,
which is advantageous for organisations that maintain multiple domain-
specific KGs. Overall, these practical benefits mean that the T2CSS
approach can accelerate data-driven decision-making and broaden the
adoption of graph databases in industry.

Despite its promise, T2CSS has several limitations. Firstly, the T2CSS
method relies on a manually crafted semantic schema tailored to a
particular domain, which means the solution does not generalize out of
the box to other domains. Secondly, the current implementation and
evaluation are limited to English-language queries. Posing inquiries in
other languages remains untested. Thirdly, maintaining and updating
the semantic schema can be labour-intensive. In rapidly evolving do-
mains, keeping the schema up-to-date with new concepts and relation-
ships would demand continuous effort. Finally, the highest performance
in our experiments was achieved with a large proprietary model (GPT-
4), which may be expensive or inaccessible for some organisations.
Future research should address the above limitations and explore new
extensions of the schema-guided prompt approach. One important di-
rection is to develop techniques for automating or evolving the semantic
schema. Another vital extension is multilingual support. Additionally,
the general framework could be adapted to other query languages and
database types beyond Neo4j. Finally, future direction can focus on
achieving comparable performance with lower resource requirements,

13

Decision Support Systems 199 (2025) 114553

such as exploring knowledge distillation or hybrid approaches that
combine the strengths of large models with the efficiency of smaller
ones.

8. Conclusions

This study addresses the critical challenge of translating unstruc-
tured natural language into structured Cypher queries by ICL with LLM
prompting. The proposed T2CSS demonstrates that schema-guided ICL
enhances both syntactic precision and semantic alignment (86 % logical
and execution accuracies) in text-to-Cypher tasks and outperforms
baselines. T2CSS extends the application of schema-guided prompt en-
gineering and the deployment of LLMs. Also, it empowers industries like
steel manufacturing to simplify decision-making through timely and
context-aware knowledge retrieval. Limitations include, but are not
limited to, reliance on manually curated schemas and costs associated
with commercial LLMs. Future work will explore incremental learning,
multilingual and multimodal support, and computational cost
optimisation.

CRediT authorship contribution statement

Yuwei Wan: Writing - original draft, Validation, Methodology,
Investigation, Formal analysis, Conceptualization. Zheyuan Chen:
Writing — original draft, Validation, Methodology, Investigation. Ying
Liu: Writing - review & editing, Supervision, Methodology, Conceptu-
alization. Chong Chen: Validation, Methodology, Investigation.
Michael Packianather: Writing — review & editing, Supervision.

Declaration of competing interest

We wish to confirm that there are no known conflicts of interest
associated with this publication and there has been no significant
financial support for this work that could have influenced its outcome.

We confirm that we have given due consideration to the protection of
intellectual property associated with this work and that there are no
impediments to publication, including the timing of publication, with
respect to intellectual property. In so doing we confirm that we have
followed the regulations of our institutions concerning intellectual
property.

We understand that the Corresponding Author, Prof Ying Liu, is the
sole contact for the Editorial process (including Editorial Manager and
direct communications with the office). Prof Liu is responsible for
communicating with the other authors about progress, submissions of
revisions and final approval of proofs. We confirm that we have pro-
vided a current, correct email address which is accessible by the Cor-
responding Author and which has been configured to accept email from
LiuY81 @cardiff.ac.uk.

Data availability

The authors do not have permission to share data.

References
[1] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, D. Wilkins, A comparison of a

graph database and a relational database: a data provenance perspective, in:

Proceedings of the 48th Annual ACM Southeast Conference, 2010, pp. 1-6.

[2] Y. Unal, H. Oguztuzun, Migration of data from relational database to graph

database, in: Proceedings of the 8th International Conference on Information

Systems and Technologies, 2018, pp. 1-5.

M. Besta, et al., Demystifying Graph Databases: Analysis and Taxonomy of Data

Organization, System Designs, and Graph Queries 56(2), 2023, pp. 1-40.

A. Ariadi, T. Shi, H. Ma, A.S. Da Silva, S. Hartmann, A graph database supported

GA-based approach to social network analysis, in: in 2021 IEEE Symposium Series

on Computational Intelligence (SSCI), IEEE, 2021, pp. 01-08.

S. Sen, A. Mehta, R. Ganguli, S. Sen, Recommendation of influenced products using

association rule mining: Neo4j as a case study, SN Comput. Sci. 2 (2021) 1-17.

[3]

[4]

[5]

mailto:LiuY81@cardiff.ac.uk
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0005
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0005
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0005
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0010
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0010
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0010
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0015
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0015
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0020
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0020
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0020
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0025
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0025

Y. Wan et al.

[6]

71

[8]

[9]

[10]

[11]
[12]
[13]
[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

R. Ojino, R. Ndolo, Knowledge graph for fraud detection: case of fraudulent
transactions detection in Kenyan SACCOs, in: International Conference on Artificial
Intelligence: Towards Sustainable Intelligence, Springer, 2023, pp. 178-186.

L. Nizzoli, M. Avvenuti, M. Tesconi, S. Cresci, Geo-semantic-parsing: Al-powered
geoparsing by traversing semantic knowledge graphs, Decis. Support. Syst. 136
(2020) 113346.

B. Liu, X. Wang, P. Liu, S. Li, Q. Fu, Y. Chai, UniKG: A unified interoperable
knowledge graph database system, in: in 2021 IEEE 37th International Conference
on Data Engineering (ICDE), IEEE, 2021, pp. 2681-2684.

N. Francis, et al., Cypher: an evolving query language for property graphs, in:
Proceedings of the 2018 International Conference on Management of Data, 2018,
pp. 1433-1445.

H.S. Dar, M.I. Lali, M.U. Din, K.M. Malik, S.A.C. Bukhari, Frameworks for Querying
Databases Using Natural Language: A Literature Review, arXiv preprint arXiv:
1909.01822, 2019.

J.Z. Pan, et al., Large Language Models and Knowledge Graphs: Opportunities and
Challenges, arXiv preprint arXiv:2308.06374, 2023.

S. Pan, L. Luo, Y. Wang, C. Chen, J. Wang, X. Wu, Unifying Large Language Models
and Knowledge Graphs: A Roadmap, arXiv preprint arXiv:2306.08302, 2023.

K. Singhal, et al., Large language models encode clinical knowledge, Nature 620
(7972) (2023) 172-180.

A. Clemedtson, B. Shi, GraphRAFT: Retrieval Augmented Fine-Tuning for
Knowledge Graphs on Graph Databases, arXiv preprint arXiv:2504.05478, 2025.
Z. Zhong, L. Zhong, Z. Sun, Q. Jin, Z. Qin, X. Zhang, Synthet2c: Generating
Synthetic Data for Fine-tuning Large Language Models on the text2cypher Task,
arXiv preprint arXiv:2406.10710, 2024.

N. Mihindukulasooriya, S. Tiwari, C.F. Enguix, K. Lata, Text2kgbench: a
benchmark for ontology-driven knowledge graph generation from text, in:
International Semantic Web Conference, Springer, 2023, pp. 247-265.

Q.-B.-H. Tran, A.A. Waheed, S.-T. Chung, Robust text-to-cypher using combination
of BERT, GraphSAGE, and transformer (CoBGT) model, Appl. Sci. 14 (17) (2024)
7881.

Y.-L. Liang, C.-Y. Chang, S.-J. Wu, KEI-CQL: a keyword extraction and infilling
framework for text to cypher query language translation, Int. J. Des. Anal. Tools
Integr. Circ. Syst. 13 (1) (2024).

Z.Ming, G. Sharma, J.K. Allen, F. Mistree, An ontology for representing knowledge
of decision interactions in decision-based design, Comput. Ind. 114 (2020) 103145.
L. Otero-Cerdeira, F.J. Rodriguez-Martinez, A. Gomez-Rodriguez, Ontology
matching: a literature review, Expert Syst. Appl. 42 (2) (2015) 949-971.

M. Fernandez-Lopez, A. Gomez-Pérez, N. Juristo, Methontology: from Ontological
Art towards Ontological Engineering, 1997.

Q. Cao, S. Beden, A. Beckmann, A core reference ontology for steelmaking process
knowledge modelling and information management, Comput. Ind. 135 (2022)
103574.

A. Konys, An ontology-based knowledge modelling for a sustainability assessment
domain, Sustainability 10 (2) (2018) 300.

L. Ehrlinger, W. W68, Towards a definition of knowledge graphs, in: SEMANTiCS
(Posters, Demos, SuCCESS) 48(1-4), 2016, p. 2.

F.N. Al-Aswadi, H.Y. Chan, K.H. Gan, From ontology to knowledge graph trend:
ontology as foundation layer for knowledge graph, in: Iberoamerican Knowledge
Graphs and Semantic Web Conference, Springer, 2022, pp. 330-340.

F. Maibaum, J. Kriebel, J.N. Foege, Selecting textual analysis tools to classify
sustainability information in corporate reporting, Decis. Support. Syst. 183 (2024)
114269.

W. Wang, V.W. Zheng, H. Yu, C. Miao, A survey of zero-shot learning: settings,
methods, and applications, ACM Trans. Intell. Syst. Technol. 10 (2) (2019) 1-37.
J. He, N. Lin, Q. Bai, H. Liang, D. Zhou, A. Yang, Towards fair decision: a novel
representation method for debiasing pre-trained models, Decis. Supp. Syst. 181
(2024) 114208.

A. Ahmed, X. Zeng, R. Xi, M. Hou, S.A. Shah, MED-prompt: a novel prompt
engineering framework for medicine prediction on free-text clinical notes, J. King
Saud Univ. 36 (2024) 101933.

M. Hornsteiner, M. Kreussel, C. Steindl, F. Ebner, P. Empl, S. Schonig, Real-time
text-to-cypher query generation with large language models for graph databases,
Fut. Internet 16 (12) (2024) 438.

E. Oro, M. Ruffolo, A Natural Language Interface for Querying RDF and Graph
Databases, Consiglio Nazionale delle Ricerche Istituto di Calcoloe Reti and Alte
Prestazioni, 2015.

14

Decision Support Systems 199 (2025) 114553

[32] A. Litvin, V.Y. Velychko, V. Kaverynskyi, Tree-based semantic analysis method for
natural language phrase to formal query conversion, Radio Electron. Comp. Sci.
Control 2 (2021) 105-113.

C. Sun, A Natural Language Interface for Querying Graph Databases, Massachusetts
Institute of Technology, 2018.

Y. Zou, Y. Wang, D. Liu, Q2Cypher: Converting natural language questions to
cypher with fine-tuned large language models, in: in 2024 5th International
Conference on Artificial Intelligence and Computer Engineering (ICAICE), IEEE,
2024, pp. 783-788.

E.J. Hu, et al., Lora: low-rank adaptation of large language models, ICLR 1 (2)
(2022) 3.

T. Dettmers, A. Pagnoni, A. Holtzman, L. Zettlemoyer, Qlora: efficient finetuning of
quantized llms, Adv. Neural Inf. Proces. Syst. 36 (2023) 10088-10115.

G. Feng, et al., Robust nl-to-cypher translation for kbqa: Harnessing large language
model with chain of prompts, in: China Conference on Knowledge Graph and
Semantic Computing, Springer, 2023, pp. 317-326.

V. Zhong, C. Xiong, R. Socher, Seq2sql: Generating Structured Queries From
Natural Language Using Reinforcement Learning, arXiv preprint arXiv:
1709.00103, 2017.

T. Yu, Z. Li, Z. Zhang, R. Zhang, D. Radev, Typesql: Knowledge-based Type-aware
Neural Text-to-sql Generation, arXiv preprint arXiv:1804.09769, 2018.

R. Cao, L. Chen, Z. Chen, Y. Zhao, S. Zhu, K. Yu, LGESQL: Line Graph Enhanced
Text-to-SQL Model With Mixed Local and Non-local Relations, arXiv preprint
arXiv:2106.01093, 2021.

Y. Chang, et al., A Survey on Evaluation of Large Language Models, ACM
Transactions on Intelligent Systems and Technology, 2023.

A.Q. Jiang, et al., Mistral 7B, arXiv preprint arXiv:2310.06825, 2023.

A. Guo, X. Li, G. Xiao, Z. Tan, X. Zhao, SpCQL: a semantic parsing dataset for
converting natural language into Cypher, in: Proceedings of the 31st ACM
International Conference on Information & Knowledge Management, 2022,

pp. 3973-3977.

D.L. McGuinness, F. Van Harmelen, OWL web ontology language overview, W3C
Recommend. 10 (10) (2004) 2004.

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

Yuwei Wan received Ph.D. degree from School of Engineering, Cardiff University, UK in
2025. She has published over 10 papers in international journals and conferences. Her
research interests mainly focus on data mining, machine learning, knowledge engineering,
intelligent manufacturing, decision-support systems, and large language models.

Zheyuan Chen received PhD degree from the School of Engineering, Cardiff University,
UK in 2023. Dr. Chen is conducting post-doctoral research at Guangzhou Institute of In-
dustrial Intelligence. He has published over 10 papers in international journals and con-
ferences. His research interests mainly focus on intelligent manufacturing, knowledge
engineering and large language models.

Ying Liu is currently Professor and Chair in Intelligent Manufacturing and the Group
Leader for High-value Manufacturing with the Department of Mechanical Engineering at
the School of Engineering in Cardiff University, Cardiff, UK. His research interests focus
primarily on engineering informatics, digital and intelligent (smart) manufacturing, Al
and machine learning for engineering, design methodology and process and advanced ICT
in engineering design and manufacturing, in which areas he has published over 250
scholarly articles, one edited book and more than 25 journal special issues.

Chong Chen received PhD degree from the School of Engineering, Cardiff University, UK
in 2021. He is currently a lecturer with Guangdong Provincial Key Laboratory of Cyber-
Physical System, Guang-dong University of Technology. He has published over 40 pa-
pers in international journals and conferences. His research interests mainly focus on
intelligent manufacturing, artificial intelligence and industrial big data.

Michael Packianather is a Senior Lecturer at Cardiff University. In 2005 he was
appointed as the Director of Postgraduate Research Studies at the MEC. His research in-
terests include Industry 4.0, data mining and machine learning, deep neural networks and
Al robotics and human-robot collaboration, and intelligent optimisation. Dr. Michael
Packianather has several journal and conference publications. He is a Full Member of the
EPSRC College, an Expert Reviewer for European Commission FET PROACT Research
Programme, and an Expert Reviewer for SMART4.0 Programme. He is an Associate Editor
of the IEEE Systems Engineering Journal and IMechE Proceedings Part I.

http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0030
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0030
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0030
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0035
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0035
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0035
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0040
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0040
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0040
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0045
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0045
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0045
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0050
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0050
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0050
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0055
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0055
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0060
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0060
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0065
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0065
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0070
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0070
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0075
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0075
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0075
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0080
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0080
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0080
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0085
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0085
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0085
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0090
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0090
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0090
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0095
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0095
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0100
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0100
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0105
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0105
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0110
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0110
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0110
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0115
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0115
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0120
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0120
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0125
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0125
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0125
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0130
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0130
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0130
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0135
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0135
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0140
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0140
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0140
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0145
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0145
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0145
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0150
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0150
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0150
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0155
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0155
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0155
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0160
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0160
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0160
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0165
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0165
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0170
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0170
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0170
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0170
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0175
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0175
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0180
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0180
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0185
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0185
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0185
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0190
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0190
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0190
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0195
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0195
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0200
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0200
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0200
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0205
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0205
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0210
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0215
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0215
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0215
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0215
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0220
http://refhub.elsevier.com/S0167-9236(25)00154-X/rf0220

	Prompting large language models based on semantic schema for text-to-Cypher transformation towards domain Q&A
	1 Introduction
	2 Related works
	2.1 Domain knowledge representation using ontologies and KGs
	2.2 Large language models and prompt engineering
	2.3 Approaches for text-to-Cypher transformation

	3 Query language-informed meta-design
	4 Methodology
	4.1 Overview of semantic schema-supported prompting for text-to-Cypher
	4.2 Domain-specific semantic schema design
	4.3 Prompt design for text-to-Cypher tasks towards domain questions

	5 Experimental setup
	5.1 Comparative models
	5.2 Evaluation metrics

	6 Case study – results and discussion
	6.1 Dataset description and preparation
	6.2 Domain semantic schema design
	6.3 Semantic schema-supported prompt design for text-to-cypher task
	6.4 Comparative analysis across different models
	6.4.1 Accuracy comparison across different approaches
	6.4.2 Validation of the T2CSS model through different inputs
	6.4.3 Computational resource and token utilisation analysis

	7 Discussions
	8 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

