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A B S T R A C T

Translating natural language inquiries into executable Cypher queries (text-to-Cypher) is a persistent bottleneck 
for non-technical teams relying on knowledge graphs (KGs) in fast-changing industrial settings. Rule and tem
plate converters need frequent updates as schemas evolve, while supervised and fine-tuned parsers require 
recurring training. This study proposes a schema-guided prompting approach, namely text-to-Cypher with se
mantic schema (T2CSS), to align large language models (LLMs) with domain knowledge for producing accurate 
Cypher. T2CSS distils a domain ontology into a lightweight semantic schema and uses adaptive filtering to inject 
the relevant subgraph and essential Cypher rules into the prompt for constraining generation and reducing 
schema-agnostic errors. This design keeps the prompt focused and within context length limits while providing 
the necessary domain grounding. Comparative experiments demonstrate that T2CSS with GPT-4 outperformed 
baseline models and achieved 86 % accuracy in producing correct Cypher queries. In practice, this study reduces 
retraining and maintenance effort, shortens turnaround times, and broadens KG access for non-experts.

1. Introduction

In the data-driven era, organisations often need to manage and query 
highly interconnected information. Traditional relational databases, 
which store data in rigid two-dimensional tables, often struggle to effi
ciently represent and manage these intricate relationships [1]. Addi
tionally, relational database management systems (RDBMS) rely on 
costly JOIN operations, and their performance degrades as the depth of 
relationships grows. Graph databases were developed to overcome these 
limitations by using nodes and edges as the basic unit to represent data, 
which allows relationships to be traversed directly [2]. This architecture 
provides more predictable and faster query performance for 
relationship-rich data [3]. Therefore, graph databases are well-suited for 
applications where understanding connections is critical, such as social 
network analysis [4], recommendation systems [5], and fraud detection 
[6]. A knowledge graph (KG) is a type of graph database that organises 
domain-specific knowledge as a network of entities and relationships 
[7]. As a popular graph database platform, Neo4j uses the Cypher query 
language to store, manage, and query KGs [8]. However, writing correct 
Cypher queries requires understanding the graph’s structure and the 

query syntax. Many domain experts and casual users do not have this 
technical expertise [9]. As a result, non-technical users cannot easily 
query a KG on their own, and they must rely on technical staff. One 
approach to bridge this gap is text-to-Cypher, which translates a user 
inquiry into equivalent Cypher query. With a text-to-Cypher system, 
users can retrieve information from the graph by asking questions in 
plain language, without needing to learn the query language. However, 
existing text-to-query methods have inherent limitations. Rule-based 
systems and conventional machine learning (ML) models require labo
rious manual design of rules or features, and they often fail to generalize 
to varied or unforeseen queries. More advanced deep learning models 
can improve translation accuracy once trained, but they demand sub
stantial upfront training data and tend to be rigid when the domain or 
schema evolves [10]. In other words, if the KG’s structure changes or 
new concepts are introduced, these models need new annotated exam
ples and complete retraining to adapt, which is costly and time- 
consuming.

To avoid these limitations, large language models (LLMs) provide a 
flexible and powerful solution for the text-to-Cypher task. Based on vast 
amounts of pre-trained knowledge, LLMs understand and generate 
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human-like language without explicit hand-crafted rules. Moreover, 
LLMs can be guided using prompt engineering, where carefully 
designing the input prompt to include instructions or examples that lead 
the model to the desired output without expensive model retraining 
[11,12]. However, using LLMs alone in a specialised domain presents 
challenges. Without domain-specific context, an LLM might produce 
irrelevant or incorrect queries [13]. The key to accuracy is providing the 
model with the necessary domain knowledge. One way to achieve this is 
through fine-tuning the LLM on domain-specific data, but fine-tuning 
requires substantial resources, such as a large dataset, intensive 
computational demands, and extended training investment. Even 
parameter-efficient fine-tuning techniques, such as LoRA or QLoRA, 
partly mitigate this effort, they still require several hours of GPU time to 
adjust a model for each new domain or schema update [14,15]. Instead, 
in-context learning (ICL) is used to supply domain knowledge at query 
time, where embedding the relevant domain information directly into 
the LLM’s prompt rather than altering the model’s parameters [16]. This 
method enables the LLM to adapt to a new domain on the fly by elimi
nating the retraining overhead. By contrast, rule-based or deep learning 
approaches perform well once a schema is fixed, but each schema 
extension typically demands new annotations and a full retraining cycle 
[17,18].

A practical consideration when injecting domain knowledge into 
LLM prompts is the model’s limited context length. Long prompts exceed 
the limit, slow down the model’s response, and may lead to confusion or 
irrelevant outputs. Therefore, it is crucial to provide the appropriate 
amount of context: enough to inform the model, but not so much that the 
model is overloaded. We address this by using a semantic schema 
derived from domain ontology as a lightweight representation of the 
domain. The semantic schema captures the essential entities, categories, 
and relationships of the domain in a concise form. Unlike a full KG that 
contains numerous instance-level facts, the semantic schema is an 
abstracted outline of the domain’s structure. This focused representation 
is compact enough to include in a prompt and gives the LLM guidance on 
how the domain is organised. In the context of text-to-Cypher tasks, the 
semantic schema serves as an ideal prompt ingredient. Given these 
considerations, the following research question is posed: “How can an 
LLM be effectively aligned with domain-specific knowledge to generate 
accurate Cypher queries for graph databases?”. To answer this question, 
a schema-guided prompting approach, namely text-to-Cypher with se
mantic schema (T2CSS), is proposed. In T2CSS, the LLM is guided by 
domain knowledge through a semantic schema and a tailored prompting 
strategy. An adaptive information-filtering module selects the relevant 
subset of the semantic schema and Cypher syntax that are related to a 
user’s query to ensure that the prompt remains both concise and rele
vant. Also, a unified prompt template is employed to combine the user’s 
natural language question with the selected schema information. The 
main contributions are: (1) a domain semantic schema from domain 
ontologies is developed to cover the key concepts and relationships of 
the domain, (2) a mechanism is designed to dynamically filter and inject 
only the relevant portions of the semantic schema into the LLM’s prompt 
for each question, (3) a unified prompt template is proposed to integrate 
the user’s intent with the domain context. Section 2 reviews related 
works. Section 3 describes query language-informed meta-design. Sec
tion 4 illustrates the proposed methodology, followed by benchmarks 
and evaluation metrics in Section 5. A case study to demonstrate the 
practical application is presented in Section 6. Section 7 presents dis
cussions, and Section 8 summarises this study.

2. Related works

2.1. Domain knowledge representation using ontologies and KGs

As a structured framework for representing and organising infor
mation within specific domains, ontology emerges as a promising so
lution to address the semantic communication and interoperability 

issues for information sharing and reuse [19]. By formalising concepts, 
properties and their relationships, ontologies establish systematic 
knowledge conceptualisations [20]. Developing an ontology typically 
involves stages such as specification, knowledge acquisition, con
ceptualisation, integration, implementation, and evaluation [21]. 
Several applications of ontology demonstrate its utility in knowledge 
representation and modelling. For instance, a steelmaking ontology was 
designed to build a shared resource and capability model for supporting 
knowledge sharing and management [22]. Ontologies play important 
roles in the lightweight and efficient representation of structural 
knowledge schema for understanding and navigating domain knowl
edge, particularly when prioritising conceptual clarity over instance- 
level details [23].

In contrast to KGs, which store detailed instance-level data, ontol
ogies focus on abstracting domain principles into hierarchical relation
ships and semantic rules [24,25]. This makes ontologies more efficient 
and lightweight when the goal is to understand conceptual knowledge 
rather than specific instances. As explained in Section 1, ontologies play 
a key role in the T2CSS by providing a semantic schema, which is a 
simplified version of ontologies for representing domain concepts and 
relationships. The semantic schema guides LLMs in generating Cypher 
queries by offering essential domain knowledge without including 
extensive instance data. Unlike KGs, which can overwhelm LLMs with 
detailed information, the semantic schema is compact to ensure efficient 
token usage and better performance. While ontologies provide a foun
dational structure, KGs are used in this study to store and manage 
complicated and dynamic data, such as specific entities and their con
nections. Therefore, ontologies and KGs complement each other in this 
study: the ontology-derived semantic schema offers a lightweight and 
structural guide for LLMs to translate user intention into Cypher state
ments, and KGs serve as the graph database for executing those 
statements.

2.2. Large language models and prompt engineering

LLMs have made significant developments through deep learning 
paradigms and training on expansive corpora, such as processing natural 
language text and providing valuable information for specific tasks [26]. 
Prompt engineering emerges as an integral facet of leveraging the ca
pabilities of LLMs and interacting with them, where designing and 
optimising prompts (the input of LLMs) to guide LLMs towards the 
desired output. Prompt engineering involves the description of the task, 
general prompting strategies, the integration of user interest modelling 
and the presentation of candidate items [27]. While LLMs excel at broad 
language tasks, they lack enough contextual knowledge and intrinsic 
mechanisms for specialised reasoning, which results in wrong or 
“hallucinated” responses [13]. Thus, a key challenge of LLMs lies in 
bridging the gap between the general linguistic capabilities and context- 
aware knowledge in specific domains, which can be remedied by spe
cialised knowledge embedded in well-crafted prompts. Effective 
prompts should balance linguistic coherence with domain expertise 
[28]. For instance, medical applications designed prompts enriched with 
precise terminology and logical frameworks to reflect knowledge 
structures [29]. Similarly, in the text-to-Cypher task, LLMs often strug
gle to infer implicit relationships in the nuanced domain knowledge and 
adhere to strict syntactic constraints required for Cypher query gener
ation [30].

Moreover, since an increasing number of open-source LLMs and their 
variants exist, the performances of LLMs on different tasks have been 
recognised as varying by their inherent parameters and prompting 
contents. Selecting an appropriate LLM as a foundational model and 
constructing effective prompts are two important aspects to leverage the 
capabilities of LLMs. Therefore, different LLMs and context-aware 
prompt strategies tailored to domain scenarios are worth exploring in 
the text-to-Cypher task.
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2.3. Approaches for text-to-Cypher transformation

Cypher is the declarative query language for graph databases for 
enabling data retrieval and manipulation [9]. Text-to-Cypher bridges 
natural language interfaces with structured knowledge retrieval. Early 
rule-based systems employed pattern matching and semantic role 
labelling to decompose queries into Cypher. Also, ML models were 
constructed to determine key components. Oro et al. introduced a rule- 
driven semantic parsing with MANTRA language to bridge user queries 
with graph databases [31]. Litvin et al. mapped inflective-language 
phrases to Cypher queries by combining decision trees with flexible 
templates and addressed the variability with different natural languages 
[32]. However, these approaches attempted to find all possible in
stances. Subgraph matching or subgraph isomorphism search solves this 
problem by relaxing the requirement of an exact match [33]. However, 
these approaches still face labour-intensive design in modularity and 
explicit rules for precise translation and lack flexibility for diverse 
queries. Then, relevant research has shifted towards deep learning due 
to its exceptional performance in semantic generalisation and complex 
relationship modelling. Tran et al. introduced BERT for semantic 
parsing, GraphSAGE for graph-aware relation-property mapping, and 
transformers for query synthesis [17]. Liang et al. leveraged the capa
bilities of deep learning to extract the semantic features and fill in the 
predefined Cypher query sketch slots [18]. While effective once trained, 
deep learning approaches struggle with substantial upfront training ef
forts and suffer from rigidity when adapting to dynamic domain 
contexts.

LLMs have demonstrated promise by leveraging the extensive 
corpora of text data upon which they are trained. However, employing 
them in text-to-Cypher transformations is challenging, where problems 
arise in the nuanced understanding required beyond what LLMs 
currently grasp when models handle complicated queries. To address 
the misalignment between user inquiries and KGs, Zou et al. integrated 
fine-tuned LLMs with an unsupervised joint retrieval mechanism to 
retrieve neighbouring nodes and relations and avoid schema-agnostic 
query generation [34]. Recent parameter-efficient fine-tuning (PEFT) 
techniques, most notably LoRA [35] and QLoRA [36], adapted sub-10 B- 
parameter LLMs to the text-to-Cypher task with only a few million 
trainable weights. Studies such as GraphRAFT fine-tune a model while 
jointly retrieving relevant sub-graphs, achieving provably correct 
Cypher generation [14]. SyntheT2C shows that synthetic question- 
Cypher pairs can further raise accuracy when annotated data are 
scarce [15]. Despite these gains 70 % execution accuracy on public 
benchmarks, PEFT still incurs a highly computational cost of GPU 
training and task-specific data preparation. By contrast, an ICL-based 
approach was employed to bridge the gaps between text and struc
tured knowledge representations through prompt engineering, where 
the corresponding entities were identified to serve as the contextual 
supplement in guiding LLMs for generating desired outputs [37]. 
Another research further iterated prompts based on the chat history and 
an error correction module, and allowed users to retrieve different graph 
databases [30]. Prompt-only approaches inject a concise schema and a 
handful of exemplars at inference time without any fine-tuning.

3. Query language-informed meta-design

This artifact’s meta-requirements (MR1-MR4) are grounded in the 
formal rule families of the Cypher graph query language. In this section, 
the rule families are outlined and further explained, showing how each 
informs the artifact’s design. Four meta-requirements (MR1-MR4) are 
grounded in Cypher’s rule families, including pattern binding (MATCH), 
predicate filtering (WHERE, logical operators, and comparisons), pro
jection (RETURN), and, where applicable, aggregation/grouping and 
path constraints. Inspired by Cypher’s rule families and their role in 
query construction, each meta-requirement constrains a distinct design 
choice as follows. (i) MR1 surfaces domain relations in user terms. The 

system should expose and use domain-specific nodes and relationships 
from the semantic schema that correspond to the user’s query intent. In 
other words, relevant domain relations mentioned in the user’s own 
words must be reflected in the query structure, such as MATCH pattern. 
(ii) MR2 makes syntactic commitments explicit. The system should 
decide early on the necessary query structure, such as clauses and con
structs to use, and make the structure explicit in the prompt. Rather than 
leaving the LLM to infer all query syntax implicitly, the design provides a 
scaffold or template of Cypher clauses aligned with the user’s intent, 
such as MATCH/WHERE/RETURN, etc. (iii) MR3 filters to the relevant 
context. The system should include only information and syntax relevant 
to the specific query context. This entails filtering the domain knowl
edge (schema subgraph) and the Cypher rule base to the minimum 
needed subset before prompting. This mirrors how a WHERE clause 
filters data in a query by analogously filtering prompt content to prevent 
information overload. (iv) MR4 provides feedback and repairs with 
executability guarantees. The system should incorporate a feedback loop 
to refine the query or prompt if the generated Cypher is not immediately 
executable. In practice, this means validating the LLM’s output against 
the schema and syntax rules, and providing corrective guidance so that 
the final query is syntactically correct and runnable, such as ensuring a 
query has the proper RETURN clause and uses valid identifiers. This 
requirement is informed by the need for queries to execute successfully. 
Each of Cypher’s rule families maps onto one or more of the above meta- 
requirements, and these in turn inform specific modules in our artifact’s 
design. Table 1 summarises these mappings and design implications.

Table 1 
Mapping of Cypher rule families to meta-requirements and design elements in 
the artifcat.

Cypher rule 
families

Meta- 
requirements

Moduldes in 
artifact

Design implications

Graph pattern 
specification 
(e.g., MATCH 
clause family)

MR1, MR2 Schema mapping 
module, query 
scaffolding 
module

Domain concepts in the 
user query are 
identified and directly 
mapped to graph 
entities/relations. The 
system constructs an 
explicit MATCH pattern 
using those domain 
terms, ensuring user- 
intended relations 
appear in the query 
structure.

Conditional 
filtering 
(e.g., WHERE 
clause family 
and logical 
operators)

MR2, MR3 Information 
filtering module

Both the prompt 
content and the query 
conditions are 
constrained to what is 
relevant. The design 
mirrors Cypher’s 
WHERE by filtering out 
unrelated schema 
elements and providing 
only pertinent 
conditions (e.g., 
numeric or temporal 
filters mentioned by the 
user) in the prompt.

Result projection 
(e.g., RETURN/ 
WITH clause 
family)

MR2, MR4 Validation and 
feedback 
mechanism 
(query verifier)

The system enforces 
query completeness by 
including a RETURN 
clause structure and 
verifying the LLM’s 
output is executable. If 
the initial query is 
incomplete or 
incorrect, the design 
provides feedback (or 
iteratively repairs the 
prompt) to ensure a 
valid Cypher query that 
yields results.
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Building on the above, we can trace the logic flow of how Cypher’s 
theory informs our system’s operation. Firstly, given a user question and 
the domain schema, the schema mapping module surfaces the relevant 
domain entities and relationships (MR1), for example, identifying that 
“cold-rolled coils” and “tensile strength” are key concepts to appear in 
the query’s MATCH pattern. Next, the system selects and scaffolds the 
query clauses needed (MR2), committing to a skeleton Cypher structure. 
For instance, if the inquiry implies a filtering condition (e.g., “over 
standards” or a date range), the design includes a WHERE clause scaf
fold; if an aggregate or sorting is required, those syntax rules are chosen 
from the rule base. The prompt is then constructed with these clause 
placeholders and filled with the user’s terms and schema context. Sub
sequently, an information filtering step prunes the prompt content to 
only the relevant schema triples and syntax rules (MR3), which ensure 
that the LLM sees a concise context focused on the user’s intent. Guided 
by this focused prompt, the LLM generates a Cypher query, which the 
system then validates against the schema and syntax rules. If the query is 
not immediately executable, the system can leverage the LLM to refine 
the query using the rule base for fulfilling MR4 by guaranteeing an 
executable result.

4. Methodology

4.1. Overview of semantic schema-supported prompting for text-to-Cypher

In this study, a unified T2CSS prompt template incorporating domain 
knowledge and Cypher language rules is designed to guide LLMs for 
Cypher query generation. In contrast to KGs, which store instance-rich 
data, a semantic schema is simplified from ontologies to focus on 
defining the structure and domain semantics. This characteristic makes 
it suited for scenarios requiring schema-level understanding, such as 
guiding LLMs to understand the necessary domain knowledge. However, 
while ontologies provide foundational schemas for knowledge organi
sation, their static nature and limited scalability in dynamic environ
ments necessitate integration with KGs. KGs extend ontological schemas 
by incorporating real-world instances and their relationships. Thus, this 
study employs ontologies not as replacements for KGs but as comple
mentary tools. Specifically, lightweight semantic schemas from ontol
ogies guide LLM prompt structuring, while KGs serve as execution layers 
for querying instance-level data. Fig. 1 depicts an overview of the 
T2CSS. It begins with the establishment of a domain semantic schema, 
which defines relevant concepts, properties, and their relations from 
multiple sources. The user inquiries in natural language that reflect the 
user’s intentions are then collected. Also, the rule base is constructed to 
cover all Cypher syntax [9]. In the second stage, an information filtering 
mechanism is applied to select the subgraphs about specific user in
tentions. The contextual knowledge is then exported from the selected 
subgraphs, including the relevant concepts and relationships. According 
to user intentions, the necessary Cypher syntax is chosen. The refined 
prompts of LLMs are generated by merging these three parts: the user 
inquiries, the contextual knowledge from the subgraph, and the neces
sary Cypher syntax. In the last stage, LLMs interpret the refined prompts 
to output the desired Cypher statements, ready for execution in KGs.

4.2. Domain-specific semantic schema design

As mentioned before, the semantic schema is a promising way to 
illustrate principled knowledge rather than specific instantiations. It 
provides standardised and clear definitions that can be shared. Although 
the general types of things that share certain properties are modelled in 
domain-centric semantic schemas, these models do not contain infor
mation about specific individuals. Fig. 2 depicts the construction process 
of a domain semantic schema, covering domain and scope identification, 
requirement specification, formal design, instance creation, and evalu
ation. Each step serves a distinct purpose. The first step includes iden
tifying the domain, its intended use, the contexts in which it will be 

applied, and its maintenance strategy. Then, the requirement specifi
cation and existing reusable semantic schema are determined. The next 
step focuses on forming the structure of a domain semantic schema. It 
involves identifying key concepts and forming classes and subclasses 
using both top-down and bottom-up approaches. Meanwhile, the class 
properties are defined, such as object properties and data properties. 
Lastly, the general instances are created to generate the domain se
mantic schema, followed by evaluation to ensure error-free logic con
sistency and reasoning. When the semantic schema ensures logical 
consistency, clear reasoning, and practical use, it provides domain 
knowledge for LLMs in understanding task scenarios. Being lightweight, 
the schema is flexible and easy to adapt without being overwhelmed by 
too much detail. The balance between lightweight and semantic infor
mation makes the semantic schema a useful tool for applications that 
need context and a straightforward understanding of specific domain 
relationships and concepts.

4.3. Prompt design for text-to-Cypher tasks towards domain questions

The details of the proposed T2CSS prompting approach are demon
strated to guide LLMs in translating user intentions into structured 
Cypher queries in this section. The general prompt template is repre
sented by P(T,O,Q) to guide an LLM for Cypher generation. T =

{t1, t2,⋯, tn} denotes a set of domain inquiries within the natural lan
guage, which is defaulted to the English language in this study. O rep

Fig. 1. An overview of T2CSS for generating Cypher languages from text 
by LLMs.
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resents the semantic schema and Q =
{
q*

1, q*
2,⋯, q*

n
}

is a set of rules of 
Cypher syntax. P(T,O,Q) is calculated: 

P(T,O,Q) = t+C(O)+
∑n

i=1
S
(
q*

i

⃒
⃒q*

i ϵQ
)

(1) 

where C(O) represents the semantic schema-supported concepts and 
relationships relevant to t, and S(Q) denotes the text representations of 
Q. Subsequently, given a set of nodes N = {n1, n2,⋯, nn} (refers to pre
defined entities, such as “line speed” or “coil tensile strength”) and a set 
of relationships R = {r1, r2,⋯, rn} among nodes, which consist of the 

semantic schema O = {N,R}, O is a series of triples 
(
ni, rj, nk

)
, each 

representing a relationship between nodes within the semantic schema.
C(O) represents the extraction of concepts and relationships about 

the user inquiries from O, which can be articulated: 

C(O) =
∑

(ni ,rj ,nk)ϵO

ω
(
ni, rj, nk

)
• e

(
ni, rj, nk

)
(2) 

where ω
(
ni, rj, nk

)
is a weighting function that assesses the relevance of 

each triple within O, and e
(
ni, rj, nk

)
is an extraction function that de

rives information from each triple. C(O) is calculated by performing a 
weighted summation over all relevant triples in O, thereby capturing the 
key concepts and relationships inherent in O. Eq. (2) ensures the 
coverage of O and allows for differentiated weighting of triples to reflect 
the structural domain knowledge.

Although designing the general prompt template for T2CSS, there are 
two major challenges: (1) the complete domain semantic schema may 
arise with overloaded information for LLMs, and (2) LLMs have a limi
tation on context length. Overloading the prompt with too much data 
can waste LLM resources and be inefficient, such as introducing 
redundant information and generating irrelevant outputs. To address 
these challenges, a filtering process is proposed to restrict the inputs to 
be manageable for LLMs while maximising the retention of critical in
formation. The filtering process consists of three stages, including text 
preprocessing, semantic schema mapping, and query structure deter
mination. Fig. 3 details the filtering process of generating prompts for 
LLMs. Three parts marked by a red rectangular frame are three com
ponents of the prompts in Eq. (1), representatively, user inquiries, the 
semantic schema-supported information, and the necessary Cypher 
syntax.

The first stage aims to clean and standardise user inquiries T to 
extract key information and features, transforming the original text into 
a format for subsequent analysis and matching. It includes steps such as 
tokenisation, stop-word removal, and stemming. The numerical vector 
of each text ti is calculated: 

Tʹ = {E(ti) |ti ∈ T } =
1
|ti|

∑

wϵti

E(w) (3) 

Fig. 2. The process flowchart for building a domain-specific semantic schema.

Fig. 3. A detailed filtering process regarding prompt generation of T2CSS.
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where E(ti) represents the feature vector of a user inquiry ti, |ti| is the 
number of words in the ti, w denotes each word in the ti, and E(w) means 
the vector representations of each word w. Eq. (3) is applied to convert 
each word into a numerical vector, resulting in a feature representation 
for the next phase. The second stage is to map the processed text feature 
to the entities and relationships defined in the semantic schema and 
identify the most relevant semantic concepts by calculating their simi
larities to the text features. Their similarity S(Tʹ,O) can be obtained from 
the following equation. 

S(Tʹ,O) =
Tʹ • O

‖Tʹ‖‖O‖
(4) 

where terms ‖Tʹ‖ and ‖O‖ are the Euclidean norms of these vectors, 
which indicate their magnitudes or lengths in multi-dimensional space. 
Eq. (4) assesses the similarity between text features and concepts of O 
using similarity calculation functions for the accuracy and relevance of 
the mapping. After assessing the similarities, C(O) is constructed to serve 
as the relevant semantic input of LLMs. To address the context length 
limitation and the schema information overload, C(O) consists of a 
sequence of textual features of itself and its three-order concepts from ti. 
The final phase is to generate the most relevant Cypher syntax based on 
the previous stages, including the text features and semantic schema 
mapping results. The optimal rules are determined by q* =

argmaxqϵQZ(q|Tʹ ), where Z(q|Tʹ ) is calculated by: 

Z(q|Tʹ ) =
Z(Tʹ|q ) • Z(q)

Z(Tʹ)
(5) 

Z(q|Tʹ ) denotes the probability of choosing a query structure q given 
the text features Tʹ. Z(Tʹ|q ) represents the likelihood of observing the 
feature set Tʹ given a q. Z(q) is the prior probability of q, and Z(Tʹ) is the 
marginal probability of the feature set. Eq. (5) calculates the query rules 
to guide the LLMs for generating Cypher queries that can be executed on 
KGs. Specifically, the conditional probability is utilised to predict the 
most suitable query rules. The user intentions, the subgraph of the se
mantic schema, and the selected query rules are organised in prompts to 
generate query statements using LLMs.

The pseudo is demonstrated to bridge unstructured queries with 
structured knowledge via schema-guided LLM prompting to ensure 
domain fidelity and computational efficiency. The input user inquiry is 
first parsed to extract key concepts and their semantic relationships. This 
process involves tokenisation, stop-word removal and vectorisation, 
followed by similarity matching against the domain schema to ensure 
contextual alignment. For each user inquiry, the domain semantic 
schema is then dynamically extracted into a contextual alignment by 
linking key concepts to predefined schema triples. Concurrently, a 
syntax subset is extracted from the Cypher rule base guided by schema- 
concept relevance. A filtering process further prunes the subgraph and 
rule subset to comply with the input constraints of LLMs. Also, a com
bined prompt structured via Eq. (1) is fed into the LLM to generate a 
Cypher query, which is appended to the final output. The compiled 
Cypher queries are validated against the semantic schema for syntactic 
and semantic correctness before executing in the domain KG.

Algorithm 1 Pseudo-code for Text-to-Cypher Transformation
Input: Natural language text query T = {t1, t2,⋯, tn}, Domain-specific semantic 

schema O, Cypher language rule base Qʹ, Information filtering process F, Prompt 
template P. 
Output: Structured Cypher query M = {M1 ,M2,⋯,Mn}. 
1: Initialise the structured Cypher query M as an empty string. 
2: Parse the natural language text query T = {t1, t2,⋯, tn} to identify key concepts 
K = {k1, k2 ,⋯, kn} and their relationships R using schema O.

3: for each t in T 
4: for each concept k in K do 
5: identify the corresponding node or relationship in schema O 
6: construct related subgraph Oʹ of semantic schema O and the related rule subset 
Q =

{
q*

1, q*
2,⋯, q*

n
}

from Qʹ 

(continued on next column)

(continued )

7: end 
8: Apply filtering process F to ensure T, Oʹ and Q fit within the context length and 
token constraints. 
9: Generate the prompt P = T+ Oʹ+ Q.

10: Input P into LLMs. 
11: Return the response Mk of LLMs 
12: Append Mk to Cypher query M 
13: end 
14: Validate Cypher query M against schema O to ensure it does not exceed schema 
constraints 
15: Return the final structured Cypher query M

5. Experimental setup

5.1. Comparative models

To demonstrate the effectiveness of the proposed T2CSS, three 
widely used models for text-to-query tasks are selected to serve as 
benchmarks, including Seq2SQL [38], TypeSQL [39], and LGESQL [40]. 
Moreover, a set of LLMs is chosen to compare their performances, 
including ChatGPT (versions 3.5 and 4.0) [41], Claude 2.0 [41], LLaMA 
2 [41], and Mistral 7B [42]. Each model represents a unique blend of 
linguistic capabilities, training paradigms, and architectural in
novations. Among them, medium-scale models are moderately para
meterised LLMs (e.g., LLaMA and Mistral), and large-scale models have 
advanced capabilities of the commercial LLMs with large-scale param
eters (e.g., Claude 2.0, ChatGPT 3.5, and 4.0). Furthermore, to ensure a 
comprehensive assessment reflecting the most recent research trends, 
we additionally evaluated ChatGLM2, an advanced open-source LLM, in 
combination with fine-tuning strategies such as LoRA and QLoRA. These 
fine-tuning methods represent state-of-the-art techniques that have 
emerged in 2024 and 2025, providing a valuable benchmark for our 
T2CSS prompting approach.

5.2. Evaluation metrics

In this section, an evaluation approach has been established to 
include three metrics for performance comparisons under different 
models and prompting strategies for the targeted tasks. These metrics 
provide a holistic view of performance and efficiency. The comparative 
analysis includes detailed assessments of how different baseline models 
and diverse LLMs perform across three different metrics. 

(1) Logical accuracy (LA) measures the proportion of generated 
queries that correctly reflect the logical structure [43], which 
reflects the ability to generate logically coherent queries that 
align with user intents.

LA =
CL

T
(6) 

where CL is the count of generated queries with correct logic, and T is the 
total number of generated queries. 

(2) Execution accuracy (EA) assesses the percentage of the correct 
and expected results in Cypher queries executed in a Neo4j 
database [43].

EA =
CE

T
(7) 

where CE is the count of generated queries yielding correct results upon 
execution, and T is the total number of generated queries. For each user 
inquiry, domain experts manually define the correct Cypher query and 
its expected output. Each generated Cypher query is executed in a Neo4j 
database containing the domain-specific KG. Then, the output of each 
executed Cypher query is retrieved and compared to the predefined 
expected output. A query is counted as correct (incrementing CE) only if 
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its results match the benchmark exactly. Any mismatch classifies the 
query as incorrect. 

(3) Average token used (TU) calculates the average number of tokens 
utilised by the LLMs for generating each Cypher query. It is an 
indicator of the efficiency and complexity of the generated 
queries.

TU =

∑
N

T
(8) 

where TU means the average tokens used, and 
∑

N represents the sum of 
tokens in all, and T is the total number of generated queries.

6. Case study – results and discussion

6.1. Dataset description and preparation

Cold rolling is a key stage in steel manufacturing due to its ability to 
enhance diverse mechanical properties of steel strips, including 
increasing tensile and yield strengths, as well as improving hardness and 
surface finish. With the increasing demand for high-property steel strips 
in different industries, these improved characteristics of cold-rolled coils 
are indispensable for high-performance applications where precision 
and durability are crucial. Consequently, a cold-rolling case study is 
selected and conducted to validate the proposed T2CSS. Experimental 
data were provided by an electrical steel manufacturer with a reversing 
mill.

Fig. 4 shows the complete manufacturing workflow contributing to 
the production of cold-rolled coils in the steel industry. Various stages 
impact the quality of cold-rolled products to different extents, including 
hot rolling, hot-rolled coil properties, annealing, pickling, cold rolling, 
and quality inspection. Initially, hot-rolled coils undergo annealing to 
enhance ductility, reduce hardness, and improve workability, altering 
the coil’s physical and chemical properties. Subsequently, pickling 
treatment is applied to metal products to remove impurities like stains, 
inorganic contaminants, and rust. Using emulsion, the treated steel coils 
are then passed through a cold rolling mill for flat deformation. These 
steps are repeated to achieve the desired size. After straightening, the 
quality of the cold-rolled products is inspected on-site by technicians. 
Breakage defects in the strips are manually identified and marked. 
Finally, the inspected and approved cold-rolled coils are cut to the 
required length for packing and storage. Table 2 presents details of 
relevant concepts and characteristics extracted from multiple sources. 
Five resources are regarded as the contributing factors to the strip- 
breakage phenomenon, including the hot-rolling process, annealing, 
pickling, emulsion, cold-rolling process and quality inspection. The 

dataset was collected and stored from these resources, which cover a 
production period of six months. The historical dataset contains 1254 
samples and 94 variables.

6.2. Domain semantic schema design

In this section, a steel cold-rolling semantic schema (SCRS) was 
designed to provide structured domain knowledge for LLMs. This SCRS 
was constructed from six resources, including material, man, machine, 
method, measurement, and environment, through specification, 
knowledge acquisition, conceptualisation, integration, implementation, 
and evaluation. OWL was selected as the encoding language due to its 
compatibility with diverse data formats and its ability to provide formal 
and comprehensive semantics for Web content [44]. The SCRS was 
encoded and refined using Protégé5.5.0, which is a widely adopted tool 
for knowledge representation. The SCRS features a class hierarchy 
organised around the six key concepts.

As shown in Fig. 5, the hierarchy includes detailed subclasses. For 
example, the “machine” class contains cold rolling mills, which deform 
steel into thinner gauges, alongside auxiliary equipment like shearing 
machines and levelling machines, as well as inspection, transport and 
handling devices. Moreover, relationships with the SCRS are defined by 
object and data properties, as detailed in Table 3. Object properties link 
two individuals (a subject and an object) through a predicate, whereas 
data properties associate a single subject with attribute data using a 
predicate. For instance, “Operates” connects the “man” class with the 
“machine” class.

The SCRS was structured as a five-layer concept hierarchy capturing 
multi-sourced knowledge from cold-rolling processes, where its main 
structure is illustrated in Fig. 6. The top layer, “Things”, depicted as 
green rectangles, represents overarching concepts. Domain-specific 
subclasses, shown as yellow circles, include concepts related to cold- 
rolled coils. The bottom layer, with purple rhombuses, contains in
stances like “fault pattern” and “thickness”. The schema’s quality was 
verified using the “OOPS!” platform to confirm its logical consistency 
and reasoning integrity. By providing a simplified conceptual structure, 
the SCRS guides LLM within the proposed T2CSS to avoid the data 
overload that a detailed KG might introduce. In contrast, the KG serves 
as the data repository for Cypher query execution and result validation.

6.3. Semantic schema-supported prompt design for text-to-cypher task

The development of prompts for T2CSS was detailed in this section, 
which focuses on cold rolling processes in steel manufacturing. The 
questions about the cold-rolling process were first crafted to reflect the 
typical user inquiries and cover diverse aspects of the process, such as 
the impact of annealing temperature on steel properties and factors 
influencing cold-rolled steel strip strength.

Table 4 presents ten typical examples of user inquiries curated to 
reflect real-world challenges in steel manufacturing. These inquiries 
were derived from historical datasets, expert consultations, and tech
nical documentation. Selection criteria prioritised the representative
ness of core processes (e.g., annealing and pickling), quality metrics (e. 

Lubrication

Fig. 4. An overview of the cold rolling workflow in the steel industry.

Table 2 
Details of relevant concepts and characteristics extracted from multiple sources.

Sources Concepts and variables

Hot-rolling 
process

Hot-rolled coil properties, such as chemical contents, quench 
temperature, etc.

Annealing & 
Pickling

Annealing temperature, Jetflow speed, etc.

Emulsion Dirt result, pH, conductivity, chloride index, etc.
Cold-rolling 

process
The rolling operation, equipment, tension, measured 
parameters, etc.

Quality inspection Cold-rolled coil properties, such as weight ingoing, width, 
weight outgoing, etc.
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g., tensile strength and surface roughness), and complexity for balancing 
single-hop and multi-hop relationships to test semantic and syntactic 
alignment. Integrating a semantic schema into the prompts is critical for 
the proposed T2CSS and involves embedding essential entities and re
lationships. For instance, to design the prompt of Q1 in Table 4, the key 
concepts and their properties are identified, including cold-rolled coils, 
tensile strength, and six-month production. The subgraph of the SCRS is 
selected to contain key concepts and their three-order neighbours. After 
that, all triples included in the subgraph serve as domain knowledge to 
support the designed prompts and guide the LLMs for understanding 
domain nuances required, such as <cold rolling mill, produce, cold 

rolled coil>. To effectively construct and execute a Cypher query that 
retrieves cold-rolled coils with tensile strength over standards within six 
months, a clear understanding of the necessary Cypher language syntax 
is crucial. According to the rule families of Cypher language in Table 1, it 
is essential to incorporate Cypher syntax within the prompts. As shown 
in Table 5, the representations of key Cypher syntax needed for Q1 are 
utilised to prompt LLMs, including the use of clauses such as MATCH, 
WHERE, and RETURN, alongside functions such as AVG, MAX, or 
COUNT.

To provide prompts to LLMs for generating correct Cypher queries of 
Q1, the inputs should be structured to include the user inquiry, the 
domain knowledge from the semantic schema, and the necessary Cypher 
syntax. Fig. 7 depicts an interactive dialogue process between a user and 
an LLM, which focuses on the LLM-driven query formulation phase. The 
process begins with a predefined instructional prompt that con
textualises the LLM as a domain-specific expert in steel manufacturing 
for generating syntactically and semantically accurate queries. A sample 
user inquiry, “Which cold-rolled coils had tensile strength over standards for 
six-month production?” is then integrated with domain semantic sche
mas, including key entities and their relationships, alongside the 
essential rules of Cypher syntax. The framework further demonstrated 
contextual adaptability: the LLM appends a cautionary note advising the 
user to calibrate the property name (e.g., production_date) and temporal 
parameters (e.g., 2023-01-01 to 2023-06-30) for aligning with their 
specific graph schema and temporal constraints. The schema-aware 
customisation highlights the framework’s robustness in balancing 
automation with user-specific data requirements.

6.4. Comparative analysis across different models

6.4.1. Accuracy comparison across different approaches
To evaluate the effectiveness of T2CSS, we benchmarked three 

conventional text-to-query approaches (Seq2SQL, TypeSQL, LGESQL), 
one recently fine-tuned small-scale LLM (Qwen-1.5B), and five prompt- 
based T2CSS using diverse LLMs of varying size. These models are 
further classified into four groups: non-LLM models, fine-tuned small- 
scale LLMs, medium-scale LLMs and large-scale LLMs. Group 1 (non- 
LLM models) includes the conventional NLP methods, which serve as 
benchmarks to evaluate the effectiveness of LLM-based approaches, 
including Seq2SQL, TypeSQL, and LGESQL. Group 2 is the fine-tuned 

Fig. 5. The main hierarchical structure of the classes of the SCRS.

Table 3 
Description of examples of object and data properties of the SCRS classes.

Properties Description Examples

Object 
properties

Operates A cold rolling machine operator would operate 
the cold rolling mill.

Uses Maintenance personnel repair machines by 
maintenance plans and procedures.

Has_Input Hot-rolled coils are fed into the cold-rolling 
mill.

Has_Output A cold rolling mill produces cold-rolled coils.
Has_Observation A quality inspector checks for breakage in cold- 

rolled steel products.
Has_Procedure Auxiliary equipment has procedures for 

annealing and pickling processes.
Has_Property Mechanical measurements can reveal the 

properties of the hot-rolled coils.
Has_Parameter Process monitoring methods can be used to 

obtain machine parameters during the cold 
rolling process.

Is_Measured_By The properties of cold-rolled coils are 
determined through various inspection 
standards and approaches.

Is_Deployed_To Pickling procedures could be applied to 
pickling machines.

Data 
properties

Has_Pattern The cold-rolled coils can be identified into two 
patterns: strip breakage and normal.

Has_Attribute Describing textual attributes, formatted as 
strings, such as the ID of a steel coil.

Has_Value Indicating numeric attributes that have specific 
values, like the parameters involved in the 
pickling processes
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Qwen-1.5B (LoRA) model, which sits between groups 1 and 3 in 
parameter count but represents the recent studies in parameter-efficient 
tuning. Group 3 comprises medium-scale LLMs with T2CSS, such as 
Mistral 7B and LLaMA 2. Group 4 includes large-scale commercial LLMs 
based on T2CSS, namely Claude 2.0, ChatGPT 3.5, and ChatGPT 4.0. 
Specifically, for group 2, Qwen-1.5 B is a 1.5-billion-parameter bilingual 
model released by the Qwen team in 2024 as a lightweight alternative to 
their 7 B and 14 B checkpoints. A LoRA adapter (rank = 32, α = 16) is 
applied on a corpus of 11,042 questions (Cypher pairs). Among them, 
3042 are annotated from the cold-rolling KG, and 8000 synthetic pairs 
are generated with the SyntheT2C recipe. Training was carried out for 
four epochs at a learning rate of 5 × 10− 4 on a single NVIDIA GTX 2080 
Ti (11 GB VRAM) using 4-bit quantisation and gradient checkpointing. 
The run completed in approximately six hours, with peak GPU memory 
just under 10 GB. By structuring the experimental groups in this manner, 
we aim to demonstrate the benefits of employing LLMs with T2CSS for 
text-to-Cypher and provide a clear comparison of T2CSS performance 
across different model scales.

Figs. 8 and 9 compare the LA and EA of the proposed T2CSS with 
different LLMs and the baseline models. Group 1 (rule-based and ML 

models) showed moderate performance, with LGESQL showing the best 
performance among the group at 68 % LA / 66 % EA; their reliance on 
fixed patterns limits adaptation to dynamic queries. In Group 2, Qwen- 
1.5 B (LoRA) rose to 75 % LA / 73 % EA, which is substantially ahead of 
Group 1. This illustrates the benefit of lightweight fine-tuning, but it is 
still below the prompt-based T2CSS using LLMs. Group 3 (medium-scale 
prompt-only LLMs) edged higher, with LLaMA 2 reaching 76 % LA / 76 
% EA, confirming that even modest-sized models gain from schema- 
guided prompting. Group 4 (large-scale commercial LLMs) yielded the 
best results: ChatGPT 4.0 attained 86 % for both metrics, outperforming 
Mistral 7 B (Group 3) by 10 %.

EA trails LA in every group, which underscores the added difficulty 
of producing queries that both parse and run against a domain KG. The 
gap narrows in Groups 3 and 4. This pattern suggests that the semantic 
schema in T2CSS helps medium and large models align Cypher syntax 
with graph structure. Model architecture still matters. Claude 2.0 per
forms LLaMA 2 even though it has more parameters, indicating that the 
training strategy can limit domain-specific reasoning. LLaMA 2 matches 

Fig. 6. The main structure of the lightweight SCRS.

Table 4 
Examples of the specific questions of the cold rolling process for user inquiries.

Inquiries Descriptions

Q1 Which cold-rolled coils had tensile strength over the standards for six- 
month production?

Q2 What are the main factors influencing the strength of cold-rolled steel 
strips?

Q3 What role does the emulsion play in the cold rolling process?
Q4 Can the properties of hot-rolled coils influence the final quality of cold- 

rolled coils?
Q5 Is there some correlation between the surface roughness of cold-rolled 

coils and annealing temperature?
Q6 How do variations in jet flow speed during pickling influence the steel 

quality?
Q7 Which stage has the longest processing time in the cold rolling 

production line?
Q8 Which temperature control procedure is critical in the cold rolling 

process?
Q9 What are the key indicators of mechanical measurement in quality 

control of cold-rolled coils?
Q10 Which batches of cold-rolled coils had strip breakages recently?

Table 5 
The representations of the key Cypher syntax elements for Q1.

Cypher elements Explanations

MATCH The ‘MATCH’ clause is utilised to specify patterns in a graph, 
essentially denoting the structural form in which data is 
queried.

WHERE The ‘WHERE’ clause applies conditions that filter the results of 
the ‘MATCH’ clause, ensuring only entities that meet specified 
criteria are included in the query result.

RETURN The ‘RETURN’ clause defines the data to be returned from a 
query, which could be nodes, relationships, properties, or 
combinations thereof.

Property access To access properties of nodes or relationships, the syntax 
involves the entity followed by a ‘.’, then the property name.

Comparison 
operations

Operations, such as ‘>’, ‘<’, ‘≥’, ‘≤’, ‘=’, are used in the 
‘WHERE’ clause to compare property values against specified 
conditions.

Logical operations ‘AND’, ‘OR’, and ‘NOT’ operators are employed within 
‘WHERE’ clauses to combine multiple conditions for more 
precise data filtering.

Functions Cypher provides functions like ‘date()’ for converting strings 
to date values, used in date comparisons within the ‘WHERE’ 
clause.
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Claude’s execution accuracy with roughly half the parameters, which 
illustrates the efficiency of a well-integrated schema prompt. The pro
gression from 0.58 EA for Seq2SQL, 0.73 EA for Qwen-1.5 B with LoRA, 
to 0.86 EA for ChatGPT 4.0 with T2CSS supports two practical conclu
sions. First, parameter-efficient fine-tuning offers a meaningful accuracy 
boost when computer resources are limited. Second, schema-guided 
prompt engineering can close much of the remaining gap without the 
time, data, and energy that continual tuning demands.

6.4.2. Validation of the T2CSS model through different inputs
Following the comparison groups in Section 6.4.1, we further vali

dated the effectiveness of the designed prompts from T2CSS by 
comparing the performances of five models (groups 3 and 4 in Section 
6.4.1) under different input conditions. The proposed T2CSS approach 
integrates three key components to construct the prompts for LLMs: user 
inquiries, necessary Cypher syntax related to the inquiries, and semantic 
schema relevant to the inquiries. The inputs were divided into four 
strategies. Strategy 1 is to input only user inquiries, which aims to 
evaluate the performances of the models when no additional structural 

or semantic information is provided. Strategy 2 incorporated user in
quiries and the necessary Cypher syntax to assess the impact of neces
sary Cypher language rules. Strategy 3 included user inquiries and a 
semantic schema to assess the impact of domain knowledge. Strategy 4 
combined user inquiries, Cypher syntax, and semantic schema, aiming 
to showcase the full potential of the T2CSS approach. The experimental 
design of four strategies assesses how different input combinations affect 
model performance and demonstrates the potential of incorporating 
necessary Cypher syntax and semantic schema into the prompts.

Table 6 presents experimental results across different input condi
tions, which provide the detailed effectiveness of each input component 
in text-to-Cypher tasks. Under Strategy 1 (user inquiries only), both 
groups show limited accuracy. Medium models in Group 3 stay below 
0.55 EA, while the larger models in Group 4 remain under 0.60 EA, 
indicating that pre-training alone does not substitute for structural 
guidance. In strategies 2 and 3, adding Cypher syntax and semantic 
schema, respectively, both improved LA and EA across all groups. It 
highlights the importance of Cypher syntax and schema-driven con
textualisation. Semantic schema (Strategy 3) yields larger gains than 

Fig. 7. An illustrative visualisation of a prompting session.

Y. Wan et al.                                                                                                                                                                                                                                    Decision Support Systems 199 (2025) 114553 

10 



Cypher syntax alone (Strategy 2), confirming the value of domain 
knowledge. Strategy 4 produced the best scores: Group 3 models rose 
into the mid-0.70 EA range, while ChatGPT 4.0 reached 0.86 EA. Large- 
scale models in Group 4 consistently outperformed the medium-scale 
models in Group 3, reflecting the added benefit of parameter count 
when both groups received the full T2CSS prompt. Overall, the T2CSS 
prompting approach enhanced text-to-Cypher accuracy by integrating 
domain semantics, syntactic rules, and user intention, which advocates 
for hybrid prompting strategies in text-to-Cypher tasks requiring both 
logical coherence and execution fidelity.

6.4.3. Computational resource and token utilisation analysis
Following our previous experimental results in Section 6.4.2, it is 

evident that ChatGPT 4.0 with T2CSS outperformed other models in 
terms of LA and EA. However, given that ChatGPT 4.0 is a commercial, 
non-open-source model, it is crucial to analyse the token utilisation of 

various LLMs, where token efficiency directly impacts the cost and 
performance. Lower token counts generally indicate more efficient 
query generation, faster processing times and reduced computational 
costs. In this context, LLMs were categorised into two sets: set 1 (me
dium-scale LLMs) and set 2 (large-scale LLMs).

With the same prompts from the proposed T2CSS, the mean token 
usage of the five LLMs was calculated and compared in Fig. 10. Set 1 
exhibited a higher token usage and indicated that it requires more to
kens to generate queries, which may lead to higher computational costs 
and longer processing times. Compared to set 1, set 2 showed better 
token efficiency, especially ChatGPT 3.5, making them more suitable for 
applications where computational efficiency and processing speed are 
critical. By analysing the token utilisation, a clear understanding of the 
trade-offs between accuracy and computational resources was provided. 
For instance, ChatGPT 4.0 with the proposed T2CSS offered better ac
curacy than ChatGPT 3.5 based on T2CSS, but it comes with higher 

Fig. 8. Performance of the proposed T2CSS in comparison to baselines on LA.

Fig. 9. Performance of the proposed T2CSS in comparison to baselines on EA.
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computational costs. In this context, the token usage analysis helps in 
making informed decisions about the deployment of LLMs in various 
practical applications, balancing performance, cost, and computational 
feasibility.

7. Discussions

The findings of this study extend the principles of prompt engi
neering into an applied domain context, which illustrates how a se
mantic schema can guide an LLM in generating graph queries. By 
injecting a lightweight domain schema into the prompt, the T2CSS 
approach bridges the gap between unstructured natural language 
questions and the structured graph query language Cypher. It should be 
noted that this is not a new fundamental theory of prompting, but rather 
a practical extension of schema-guided prompt design to the text-to- 
Cypher task. The approach demonstrates that even without model 
retraining, an LLM can be aligned with domain-specific knowledge 

through in-context learning. When the domain ontology is distilled into 
a concise semantic schema, the model uses those structured relation
ships as contextual priors for query construction. This yields a form of 
structured knowledge grounding in the prompt, which reduces ambi
guity in the model’s understanding of user intent. Furthermore, the 
ability to regenerate the prompt rapidly with an updated schema 
(instead of retraining the model for each schema change) suggests a 
scalable alternative to traditional fine-tuning. Maintaining supervised 
learning across ten schema revisions would require ten retraining 
rounds, whereas the T2CSS prompt is regenerated in seconds by simply 
merging the updated schema fragment. The dynamic filtering of prompt 
content in T2CSS also exemplifies a resource-efficient strategy through 
ensuring that only relevant schema triples and Cypher syntax are 
included. In this regard, it offers a promising solution to token limita
tions by prioritising schema-level relationships (e.g., “machine-produce- 
coil” in Fig. 6) over instance-level data for resource-aware LLM 
deployment. In theory, this highlights how in-context learning can be 

Table 6 
Results of diverse models under different input conditions.

Strategies Models Inputs LA EA

User inquiries Cypher syntax Semantic schema

Strategy 1 Group 3 Mistral 7B √ 0.44 0.42
LLaMA 2 √ 0.54 0.54

Group 4 Claude 2.0 √ 0.46 0.4
ChatGPT 3.5 √ 0.48 0.44
ChatGPT 4.0 √ 0.58 0.56

Strategy 2 Group 4 Mistral 7B √ √ 0.64 0.58
LLaMA 2 √ √ 0.68 0.66

Group 4
Claude 2.0 √ √ 0.66 0.6
ChatGPT 3.5 √ √ 0.68 0.64
ChatGPT 4.0 √ √ 0.76 0.74

Strategy 3 Group 3 Mistral 7B √ √ 0.62 0.6
LLaMA 2 √ √ 0.68 0.62

Group 4 Claude 2.0 √ √ 0.64 0.62
ChatGPT 3.5 √ √ 0.68 0.64
ChatGPT 4.0 √ √ 0.78 0.78

Strategy 4 Group 3 Mistral 7B √ √ √ 0.74 0.72
LLaMA 2 √ √ √ 0.76 0.76

Group 4 Claude 2.0 √ √ √ 0.74 0.72
ChatGPT 3.5 √ √ √ 0.8 0.76
ChatGPT 4.0 √ √ √ 0.86 0.86

Bold values represent the maximum value in each column.

Fig. 10. Performances of diverse LLMs with the proposed T2CSS on TU.
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augmented with a structured semantic component to improve accuracy 
without exceeding context length limits. In summary, the theoretical 
significance lies in showing that schema-guided prompting is a viable 
and efficient approach to grounding LLMs in specialised domain 
knowledge for query generation.

In practical terms, the proposed T2CSS approach offers several 
benefits for real-world applications, especially in industrial and enter
prise settings. The first one is democratized access for non-experts. The 
method allows domain specialists and other non-technical users to query 
KGs directly using natural language without requiring expertise in 
Cypher or database query languages. In other words, as users can obtain 
answers from data by simply asking questions in plain language, it 
lowers the barrier to accessing complex graph databases. Therefore, 
organisations can eliminate lengthy technical training phases and de
pendency on database experts for faster decision-making and problem- 
solving. Also, it is helpful for knowledge sharing and reuse. By making 
querying more intuitive, T2CSS facilitates broader knowledge sharing 
across teams. Practitioners in different roles can retrieve information 
from the knowledge graph on their own, which promotes collaboration 
and reuse of data insights. The natural language interface serves as a 
user-friendly layer for enterprise knowledge management, so informa
tion is no longer siloed with IT specialists. In this regard, this improves 
human-computer interaction with graph data and empowers users to 
explore data on demand for evidence-based decision processes. Another 
benefit lies in cost efficiency and flexibility. The prompt-based approach 
reduces the need for extensive model training or costly development of 
custom query tools for each domain. Employing large commercial LLMs 
with T2CSS yields the highest accuracy, but the framework also works 
with smaller open-source models at lower cost, albeit with some accu
racy trade-off. In practice, organisations can balance performance and 
cost according to their resources. For instance, a company could choose 
an open-source LLM for routine queries to save on costs, and reserve a 
commercial model for cases requiring the utmost accuracy. The ability 
to update the domain schema without retraining the model further 
contributes to cost and time efficiency for rapidly adapting to evolving 
data. Additionally, T2CSS enhances scalability in industrial de
ployments. Because the semantic schema is a compact representation of 
domain knowledge, the prompt remains concise even as the underlying 
database grows. This schema-level prompting strategy reduces token 
usage per query, which lowers computational overhead and latency. In 
other words, queries can be generated and executed faster, making real- 
time or near-real-time querying feasible for time-sensitive applications. 
The approach also scales to new domains by simply swapping in a new 
schema and context, rather than rebuilding an entirely new system, 
which is advantageous for organisations that maintain multiple domain- 
specific KGs. Overall, these practical benefits mean that the T2CSS 
approach can accelerate data-driven decision-making and broaden the 
adoption of graph databases in industry.

Despite its promise, T2CSS has several limitations. Firstly, the T2CSS 
method relies on a manually crafted semantic schema tailored to a 
particular domain, which means the solution does not generalize out of 
the box to other domains. Secondly, the current implementation and 
evaluation are limited to English-language queries. Posing inquiries in 
other languages remains untested. Thirdly, maintaining and updating 
the semantic schema can be labour-intensive. In rapidly evolving do
mains, keeping the schema up-to-date with new concepts and relation
ships would demand continuous effort. Finally, the highest performance 
in our experiments was achieved with a large proprietary model (GPT- 
4), which may be expensive or inaccessible for some organisations. 
Future research should address the above limitations and explore new 
extensions of the schema-guided prompt approach. One important di
rection is to develop techniques for automating or evolving the semantic 
schema. Another vital extension is multilingual support. Additionally, 
the general framework could be adapted to other query languages and 
database types beyond Neo4j. Finally, future direction can focus on 
achieving comparable performance with lower resource requirements, 

such as exploring knowledge distillation or hybrid approaches that 
combine the strengths of large models with the efficiency of smaller 
ones.

8. Conclusions

This study addresses the critical challenge of translating unstruc
tured natural language into structured Cypher queries by ICL with LLM 
prompting. The proposed T2CSS demonstrates that schema-guided ICL 
enhances both syntactic precision and semantic alignment (86 % logical 
and execution accuracies) in text-to-Cypher tasks and outperforms 
baselines. T2CSS extends the application of schema-guided prompt en
gineering and the deployment of LLMs. Also, it empowers industries like 
steel manufacturing to simplify decision-making through timely and 
context-aware knowledge retrieval. Limitations include, but are not 
limited to, reliance on manually curated schemas and costs associated 
with commercial LLMs. Future work will explore incremental learning, 
multilingual and multimodal support, and computational cost 
optimisation.
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