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ABSTRACT

The synapse is a vitally important physiological structure fundamental to electrochemical communication between neurones, and is required for basic and important
functions we perform daily. Underpinning the normal physiological function of the synapse are crucial processes such as autophagy, calcium homeostasis, and
mitochondrial bioenergetics, all of which are modified during ageing. It is necessary to understand how ageing affects these processes at the synapse, from a
fundamental need to understand natural ageing, and in order to identify how these processes may become aberrant and indeed, pathological, in the context of ageing-
related disorders, such as Parkinson’s. This review addresses the importance of the aforementioned processes, autophagy, calcium homeostasis, and mitochondrial

bioenergetics at the synapse in normal physiology, and discusses how they are altered during ageing, and in Parkinson’s, an example of accelerated ageing.

1. Introduction: the synapse
1.1. Synapses as a conduit for physiological function

In contrast to normal ageing, neurodegenerative diseases represent a
group of disorders characterised by progressive loss of neurones and
synapses, leading to severe cognitive impairments and functional
decline. There is evidence to suggest that neurodegenerative diseases
are, in fact, an issue of accelerated ageing (Hou et al., 2019; Azam et al.,
2021; Kesidou et al., 2023) and synaptic dysfunction has been identified
as a key pathological process within them (Henstridge et al., 2016).

Using neurodegenerative disorders as exemplars of extreme ageing
allows us to better understand both the role of synapses in normal brain
function and how they are affected by ageing. In doing so, it also pro-
vides crucial insight into the pathological mechanisms underlying
neurodegenerative processes and assists with development of effective
therapeutic strategies. PD represents an exemplar neurodegenerative
disorder where synaptic dysfunction is reported as an early and pro-
gressive part of the disease process (Schirinzi et al., 2016).

PD is one of the most common neurodegenerative diseases (Su et al.,
2025). A multisystem disorder, it is characterised by neuronal loss
throughout the brain, with particular vulnerability shown by the

dopaminergic neurones of the substantia nigra pars compacta (SNpc)
(Mancini et al., 2020). Critically, synapse loss is considered a major
factor in PD with the "dying back" hypothesis suggesting that synaptic
dysfunction and demise precedes neuronal death (Mancini et al., 2020;
Burke and O’Malley, 2013; Beccano-Kelly et al., 2014; Parisiadou et al.,
2014; Volta et al., 2017; Matikainen-Ankney et al., 2018).

Several genes have been implicated in familial PD, including SNCA
(a-synuclein), LRRK2 (leucine-rich repeat kinase 2) and GBA1 (Gluco-
cerebrosidase) (Deng et al., 2018), which contribute to the ~5-10 % of
familial PD cases (Deng et al., 2018). Research into these genetic forms
of PD have provided valuable insights into the molecular mechanisms
underlying PD pathogenesis. Specifically, aberrant synaptic protein ag-
gregation, impaired autophagy, calcium dyshomeostasis, and mito-
chondrial dysfunction, all processes linked with synaptic function, have
been highlighted (Plowey and Chu, 2011).

Thus, a key field that has emerged is the study of synaptic dysfunc-
tion in PD. Many labs have identified aberrant synaptic function
(Beccano-Kelly et al., 2014) and associated cognitive deficits within
genetic models of PD (Hussein et al., 2022). PD mutation dependent
changes in synapse formation (Parisiadou et al., 2014), structure,
function (Matikainen-Ankney et al., 2016), plasticity
(Matikainen-Ankney et al., 2018), neurotransmitter release (Volta et al.,
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2017), synaptic vesicle trafficking (Cirnaru et al., 2014; Carrion et al.,
2017) and monoamine transporters (Cataldi et al., 2018) have been
observed. This substantial evidence points to the importance of the
synapse within PD pathology and offers it as a valuable model for
studying the ageing brain. The pathways, mechanisms, and targets
affected in both ageing and PD: autophagy, calcium handling, and
mitochondrial bioenergetics, are the subject of the remainder of the
review.

1.2. Plasticity at the synapse

Seminal works within the neuroscience field have shown that syn-
apses are incredibly plastic, with response to chemical signals capable of
being strengthened or weakened in an activity-dependent manner. This
innate ability allows for a variety of functions ranging from memory
formation and learning to cognitive flexibility. (Kandel and Tauc, 1965;
Bliss and Lomo, 1973; Bear et al., 1987; Tsien et al., 1996; Bi and Poo,
1998).

At excitatory synapses, glutamate activates both a-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and N-methyl-
D-aspartate receptors (NMDARs), but their roles in synaptic plasticity
differ. AMPARs mediate rapid membrane depolarisation via sodium
influx (Kauer et al., 1988), with strong depolarisation alleviating mag-
nesium block of NMDARs (Gustafsson et al., 1987; Citri and Malenka,
2008). This enables NMDAR-mediated calcium influx (Collingridge
et al., 1983), with the calcium level determining plasticity direction:
modest influx activates phosphatases like calcineurin and protein
phosphatase 1 (PP1), triggering AMPAR internalisation and long-term
depression (LTD) (Mulkey et al., 1993; Beattie et al., 2000) whilst
higher calcium influx triggers kinases including CaMKII, PKC, and
MAPK, enhancing AMPAR conductance, and promoting their insertion
into the post-synaptic membrane, thereby promoting long-term poten-
tiation (LTP) (Malenka, 1994; Roche et al., 1996; Hayashi et al., 2000).
Thus, NMDARs function as “coincidence detectors”, converting synaptic
input strength into long-lasting synaptic weakening or strengthening via
AMPAR regulation (Citri and Malenka, 2008).

As we age, LTP and LTD decline, compromising cognitive processes
such as memory and skill formation (Watson et al., 2002; Takeuchi et al.,
2014; Shetty et al., 2017). There have, however, been reports to the
contrary, highlighting heterogeneity in ageing (Kumar et al., 2007;
Sagheddu et al., 2024). A large body of evidence exists to support that
these changes are a result of NMDAR alteration during ageing. Gluta-
mate binding to NMDARs declines with age across various model sys-
tems (C57Bl/6, BALB/c mice, dogs, monkeys, Long-Evans rats) in a
region and strain-specific manner (Hof et al., 2002; Magnusson, 1995;
Magnusson et al., 2000; Nicolle and Baxter, 2003). While the GluN2A
subunit shows little change, age-related reductions in GluN1 and
GluN2B mRNA and protein, have been observed in several models
(C57Bl/6 mice, Fischer 344 and F344XBN rats, macaque monkeys),
likely contributing to decreased binding (Gazzaley et al., 1996; Eck-
les-Smith et al., 2000; Magnusson, 2000; Magnusson et al., 2002; Mag-
nusson et al., 2002, 2002; Bai et al., 2004; Mesches et al., 2004; Ontl
et al., 2004; Barria and Malinow, 2005; Shi et al., 2007; Zhao et al.,
2009). Reductions in receptor expression, changes in subunit composi-
tion, and reductions in NMDAR-dependent plasticity have been
reviewed extensively by Kumar (2015) and Magnusson et al. (2010), and
highlight how critical NDMAR expression and function are to synapses,
both physiologically, and during age-related decline (Magnusson et al.,
2010; Kumar, 2015).

As another example of important receptor alterations with age, it has
also been seen that adenosine A1l receptor (A1R) signalling plays a role
in age-related synaptic plasticity changes. A1Rs can be found on gluta-
matergic neurones, where they regulate neurotransmitter release, and
have been associated with development and consolidation of LTP
(Giménez-Llort et al., 2005). In middle-aged rats (7-10 months), LTP is
impaired in the basal but not apical dendrites of hippocampal pyramidal
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neurones compared to young adults (1-2 month-old) (Rex et al., 2005).
This is due to persistent A1R activation, likely from reduced adenosine
clearance, rather than receptor number changes, and was rescued by
A1R antagonism and AMPAR agonism (Rex et al., 2005).

2. Autophagy
2.1. Autophagy at the synapse

Autophagy maintains synaptic integrity through three primary
pathways; macroautophagy (autophagosome-mediated degradation),
microautophagy (direct lysosomal engulfment) and chaperone-
mediated autophagy (CMA) (LAMP2A dependent selective degrada-
tion of proteins bearing a KFERQ-like motif) (Fred Dice, 1990; Lynch--
Day et al., 2012; He et al., 2013; Feng et al., 2014; Kaushik and Cuervo,
2018; Hollenstein and Kraft, 2020; Liénard et al., 2024).

Post-mitotic neurones are dependent on autophagic quality control
due to their inability to dilute dysfunctional cellular components
through cell division, and the extreme protein turnover demands of re-
petitive neurotransmitter release (Deng et al., 2021; Siidhof, 2013).
Furthermore, the highly polarised structure of neuronal architecture
demands precise spatiotemporally regulated autophagy to maintain the
thousands of synaptic proteins essential for transmission, with auto-
phagic failure leading to synaptic dysfunction and neurodegeneration
(Cai and Ganesan, 2022; Hoffmann et al., 2019; Maday and Holzbaur,
2016).

A number of activity-based autophagy initiation systems have been
identified in recent years, whereby high metabolic demands and syn-
aptic activity are matched by upregulation of the autophagy pathway.
These include, but are not limited to, increases in autophagic activity
upon NDMA treatment (Shehata et al., 2012), and induction of targeted
autophagy to selectively clear damaged synaptic proteins (Hoffmann
et al., 2019). Furthermore, high frequency stimulation in the Drosophila
neuromuscular junction results in Atg8 (LC3)-positive autophagic
puncta formation in presynaptic terminals (Bademosi et al., 2023; Decet
and Soukup, 2024), and Atg9, a core member of the autophagy pathway,
has been shown to cycle between the plasma membrane and intracel-
lular vesicles in response to synaptic activity (Yang et al., 2022).

Independent of activity-based regulation, synaptic protein based
mechanisms of autophagy modulation also exist. Bassoon, a synaptic
protein, prevents excess synaptic vesicle degradation via interaction
with Atg5, a protein required for autophagosome formation. Loss of
Bassoon results in increased autophagosome number and reduction in
synaptic vesicle pools (Okerlund et al., 2017). Interestingly, Epidermal
Growth Factor Receptor (EGFR) activity also suppresses autophagy to
maintain synaptic stability, with EGFR inactivity resulting in autophagy
upregulation and degradation of active zone proteins such as Bruchpilot
(Brp) (Dutta et al., 2023).

Conversely, research has shown autophagy impairment, induction,
and loss of key autophagic pathway proteins also regulate synaptic
function and plasticity. Impaired autophagy causes growth of dendritic
spines (Tang et al., 2014). Loss of Atg7 in dopaminergic neurones of
mice, via selective deletion of the Atg7 gene in the substantia nigra by
dopamine transporter-controlled Cre expression, results in increased
dopamine release (Hernandez et al., 2012). Similarly, loss of Atg5 in
glutamatergic neurones of Atg5™/°* mice, via stereotactic injection of
CamKII-eGFP-Cre adeno-associated virus, alters AMPAR trafficking,
causing increased excitatory transmission and seizures (Overhoff et al.,
2022). Autophagic induction also facilitates degradation of endocytosed
AMPA receptors, causing memory destabilisation (Shehata et al., 2018),
and autophagy suppression via brain-derived neurotrophic factor
(BDNF) signalling is key for synaptic plasticity and memory
(Nikoletopoulou et al., 2017; Tavernarakis, 2020).

Overall, synaptic autophagy is an extremely intricate, fine-tuned
process. It ensures the proper maintenance of synaptic machinery and,
through this, the appropriate function of the synapse. It is clear that
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autophagy and synaptic activity influence each other and share a reg-
ulatory relationship which is vital within this environment.

2.2. Autophagy at the synapse in physiological ageing

Autophagic activity has been found to have crucial roles in various
aspects of health, disease and, indeed, ageing (Valencia et al., 2021).
Both the activity of this degradative pathway and its relevant proteins
have been found to decline over time. In fact, the build-up of abnormal
proteins within the cytoplasm has been identified as a representative
feature of senescence (He et al., 2013).

Further evidencing this change, a 70 % drop in autophagosome
biogenesis has been identified within synapses of 24-month-old aged
primary dorsal root ganglion (DRG) cultures compared to cultures from
1-month-old young mice (Tsong et al., 2023). Further research from the
same lab also identified an increase in abnormal autophagic structures,
with only 34 % in aged mice exhibiting double membrane morphology,
compared to 80 % in young mice (Stavoe and Holzbaur, 2019). It was
determined that WD Repeat Domain, Phosphoinositide Interacting
Protein 2 (WIPI2), another protein required for autophagosome crea-
tion, becomes less functional during ageing due to a change in phos-
phorylation states. With age, failure to dephosphorylate WIPI2, and thus
initiate productive autophagosome creation, accounts for loss of auto-
phagosomes seen in aged neurones. Furthermore, this inability to de-
phosphorylate, which could be due to mislocalisation of the relevant
phosphatase, could also account for the abnormal autophagosome
morphology observed in these neurones (Stavoe and Holzbaur, 2019).

In addition to this, autophagy related proteins such as Atg5, Atg7 and
Atg8, and those which form crucial molecular complexes with these core
aspects of the autophagy pathway, for example, Sirtuin 1, have been
identified as regulators of longevity. Phenotypes in both Atg5~/~ and
Sirt1~/~ mice, where the autophagy pathway is inhibited, both display
accumulation of damaged organelles, and early perinatal mortality (Lee
et al., 2008). It has also been found that various activators of autophagy,
such as caloric restriction, resveratrol (an indirect activator of Sirtuin-1),
spermidine, rapamycin, and down-regulation of p53, promote extension
of lifespan in various models ranging from yeast and cells to multicel-
lular organisms such as worms and flies (He et al., 2013).

Research has also found that autophagy enhancers such as spermi-
dine could be used to slow cognitive impairment, and potentially even
neurodegeneration. Treatment of aged mice with mild cognitive
impairment is possible using autophagy enhancers such as spermidine
and TAT-Beclinl. They were able to restore post-translational modifi-
cations on AMPA receptor subunit GluR1 (GluA1) which are crucial for
processing high memory loads, and rescue memory capacity deficits in
aged mice (De Risi et al., 2020; Lee et al., 2010).

Similar results have also been found in mouse hippocampal neuro-
nes. During ageing, autophagic activity within the hippocampus de-
creases (Glatigny et al., 2019). Induction of autophagy within this region
in aged mice was able to reverse memory deficits caused by ageing.
Although this study did not observe synaptic autophagy, specifically,
this autophagic upregulation resulted in enhancements to a number of
synapse-related processes, including dendritic spine formation,
neuronal facilitation and LTP (Glatigny et al., 2019). In combination
with other research detailed in this review, it is likely that this auto-
phagy induction affects a number of synaptic processes, such as GluAl
post-translational modification restoration seen above.

Work has also demonstrated that plant extracts can protect against
age-related synaptic decline through activity on the autophagy lyso-
somal pathway. Application of American ginseng (P. quinquefolius)
extract and exercise-mimetic compound p-guanidinopropionic acid
(B-GPA), a creatine analogue, to long term 3D brain explants improved
levels the active isoform of Cathepsin B (CatB), a lysosomal protease.
Alongside increased levels of active CatB, enhanced autophagic flux and
improved synaptic markers were seen, which indicated better synaptic
health. Use of these compounds on Chloroquine treated explants, which
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simulated age-related compromise of lysosomal protein clearance, dis-
played protection of pre and postsynaptic proteins (Fernandes de
Almeida et al., 2022).

CatB is a crucial lysosomal enzyme involved in regulating long-term
plasticity of dendritic spines, as shown by work in rat hippocampal
neurones. Back propagating action potentials can elicit lysosomal Ca%*
release, which triggers lysosomal exocytosis. This releases lysosomal
contents into the extracellular space, where CatB cleaves matrix
metalloproteinase-9, thereby enhancing its extracellular matrix remod-
elling capabilities (Padamsey et al., 2017). This is an important para-
digm which shows how integrated autophagy and calcium handling are
as fundamental, interconnected processes involved in synaptic health. It
is highly likely that this mechanism plays a part in protection against the
synaptic compromise seen in the research above.

Other aspects of autophagy are also changed during ageing. Wdfy3
(WD Repeat and FYVE Domain Containing 3) is a macroautophagic
scaffold protein which regulates autophagy, specifically the degradation
of certain cellular components such as mitochondria and glycogen.
Dysfunctions in this protein can cause accumulation of these compo-
nents, which can exacerbate age-related cognitive deficits, through
reduced synaptic density and altered synaptic plasticity (Napoli et al.,
2021). Mitochondria can also become damaged with age, and drive
changes to synaptic morphology (Rybka et al., 2019). Indeed, Wdfy3
haploinsufficiency in mice results in decreased mitophagy and accu-
mulation of damaged mitochondria with altered morphology, further
exacerbating problems that may be seen in ageing (Napoli et al., 2021).
This once again underlines how key autophagy is to maintaining a
healthy synaptic environment, especially during ageing.

Contrary to much of the evidence provided above, formalin-fixed,
paraffin-embedded human brain tissue from the prefrontal cortex,
corpus striatum, and hippocampus in elderly individuals show increased
autophagic and mitochondrial activity compared to young individuals.
There was, however, significant neurone loss identified in these regions,
implying these are compensatory mechanisms to cope with the degen-
erative changes. Unfortunately, it cannot be ascertained whether this is
the case specifically within synapses, as that was not a direct focus of this
study (Sukhorukov et al., 2022).

Research has also found that endolysosome deacidification may also
be an important mechanism involved in age-dependent synapse loss.
Aged neurites contained fewer terminal lysosomes, implying ageing
results in compromised lysosomal function at the synapse. Endolysoso-
mal activity at the synapse was reduced due to insufficient acidification
of the vesicle, associated with a reduction in v-ATPase subunit VOal, the
proton pump which acidifies lysosomes. This decreases with ageing.
Acidification of this vesicle was able to rescue degradative function and
reverse synaptic decline (Burrinha et al., 2023). This suggests once again
that this aspect of the autophagy pathway is crucial for both lysosomal
and synaptic health. It also identifies this as another key mechanism
involved in age-dependent synapse loss in neurones.

It has now become clear that autophagic perturbance is common
during ageing, and often leads to accumulation of damaged proteins and
synaptic compromise. Increased autophagic activity seen in human
brain samples can be considered compensatory mechanisms to account
for neuronal loss, yet this often fails to fully prevent synaptic decline.
Research collated here also demonstrates the effectiveness of autophagic
agonists and natural products. These compounds can rescue synaptic
function and, thus, higher-level cognitive processes through restoration
of autophagic flux and pathogenic protein degradation. Furthermore, it
is evident that various aspects of the autophagy lysosomal pathway,
including proteins and vesicles, at every step from initiation to degra-
dation, play some vital roles which support synaptic integrity.

2.3. Autophagy at the synapse in PD

Dysfunctional autophagy has regularly been shown as a robust
phenotype of PD (Alegre-Abarrategui et al., 2009; Orenstein et al., 2013;



S. Mukhtar et al.

P et al., 1997; Sidransky and Lopez, 2012). This dysfunction is thought
to be at the heart of toxic protein aggregation seen in the disorder,
resulting in the formation of Lewy bodies (LBs), a hallmark feature of
PD. a-synuclein, a protein localised within the synapse, is one of the
main components found within LBs (Spillantini et al., 1997). Wild type
a-synuclein is primarily degraded through CMA (see Fig. 1). Pathogenic
mutations in the SNCA gene, which encodes a-synuclein, such as A53T
and A50P, however, cause binding to LAMP2A. The LAMP2A receptor
facilitates the CMA process, and this binding blocks both a-synuclein
uptake and degradation, as well as that of other proteins (Cuervo et al.,
2004). Thus, blocked autophagy facilitates further a-synuclein aggre-
gation, and aggregation circuitously blocks autophagy. It has also been
discovered that overexpression of a-synuclein impairs macroautophagy
via inhibition of Rabla, another protein involved in autophagosome
formation (Winslow et al., 2010). This also leads to mislocalisation of
Atg9, which has been shown to be involved in activity-dependent
autophagosome biogenesis in C. elegans (Yang et al., 2022).

This provides multiple pathways through which autophagy is
inhibited, via prevention of autophagosome formation at the synapse, or
through an uptake blockade of proteins directly into the lysosome. This
clearly implies that synaptic activity would be affected through accu-
mulation of damaged proteins within the synapse. Furthermore,
enhanced deposition of a-synuclein in LBs and in presynaptic terminals
has been observed when there are deficits in autophagy and in Atg7 /"~
mice, respectively (Friedman et al., 2012; Sato et al., 2018).

In addition to this, work in human induced pluripotent stem cell
(hiPSC) derived dopaminergic neurones (DaNs) on another endocytic
protein, auxilin, showed how a PD LRRK2 mutant can affect synaptic
autophagy. Impairment of auxilin function resulted in build-up of oxi-
dised dopamine, which is toxic to the cell. This in turn contributed to
decreased activity of a lysosomal protease called GCase (encoded by the
GBA1 gene) (Nguyen and Krainc, 2018). It also increased levels of
a-synuclein. Loss of GCase activity impairs autophagy, leading to further
a-synuclein build up, which further reduces GCase activity, creating a
feedback loop that worsens protein accumulation. In addition to this,

Comrcclly acdified lysosome

Synaptic Homeostasis Senescent
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there is an increase in release of a-synuclein fibrils which can spread
a-synuclein pathology to healthy neurones (Gegg et al., 2020).

These pieces of evidence implicate the synapse as a core pathological
target within PD, and paints autophagy as a key player which is dysre-
gulated in this complicated environment. As aforementioned, PD is
reviewed here as a condition that exhibits accelerated ageing, and LB
pathology, of which a-synuclein is a key component, is also seen in
healthy individuals, albeit at later ages than in PD patients (Lewis et al.,
2025; Reeve et al., 2014). It is therefore likely that the pathological
mechanisms seen in PD are conserved in the later stages of physiological
ageing.

Heterozygous mutations in the GBAI gene are the biggest genetic
risk factor for PD. There are wide ranging consequences to loss of GCase
activity. This includes loss of activity of other proteases within the
lysosome, as well as disruption of lysosomal pH and stability, as well as a
build-up of sphingolipids and cholesterol within the lysosome
(Navarro-Romero et al., 2022). All of these alterations have an impact on
autophagy. There is also seemingly an impact on synaptic function.
Dysregulation of calcium signalling within heterozygous GBAI hiPSC
derived DaNs, particularly within the mitochondria, leads to reduced
mitochondrial membrane potential, and a lower oxygen consumption
rate. In turn, there is decreased synaptic activity as these neurones are
unable to meet the energy demand required for electrophysiological
activity (Beccano-Kelly et al., 2023).

a-synuclein is not the only protein involved in autophagy and
autophagy related proteins at the synapse. Endophilin-A (EndoA), a
protein involved in synaptic vesicle endocytosis, has been found to co-
immunoprecipitate with Atg9-positive membranes, and has been func-
tionally linked to three different PD associated proteins: leucine rich
repeat kinase 2 (LRRK2), PARK2/Parkin and synaptojaninl (SYNJI)
(Matta et al., 2012; Soukup et al., 2016; Soukup and Verstreken, 2017).
Further to this, it has been found to induce membrane curvature,
creating docking sites for autophagic proteins such as Atg3, and subse-
quently Atg8, crucial for autophagosome formation (Soukup and Ver-
streken, 2017).

2o Synaptic Vesicle
. Neurotransmitter
Mitochondria

. : Lysosome

Deacidfed lysosome

Parkinson's

Fig. 1. Synaptic autophagy in (A) Physiological synaptic homeostasis, (B) Senescent synapses, and (C) Parkinson’s Synapses. Created with BioRender.com. (A)
Represents optimal synaptic homeostasis and normal neurotransmitter release. WIPI2 maintains proper dephosphorylation status, critical for generation of LC3-1I
autophagosomes. 80 % of autophagosomes display characteristic double-membrane structure. There is a presence of healthy mitochondria and efficient mitoph-
agy. Properly acidified lysosomes are present in the pre and postsynaptic terminals, characterised by active v-ATPase and normal GCase and Cathepsin B activity. (B)
In senescent synapses, there is a reduction in autophagy, resulting in abnormal protein build-up. There is also a reduction in Wdfy3-mediated mitophagy. Auto-
phagosome morphology is altered, with only 34 % maintaining the normal double-membrane structure. Failure to dephosphorylate WIPI2 in ageing neurones ac-
counts for loss of autophagosomes. Lysosomes demonstrate reduced acidification due to reduction in v-ATPase subunit VOal. Reduced Cathepsin B activity. (C) In
Parkinson’s, there is reduced synaptic autophagy. Mitochondria display reduced membrane potential, and lower oxygen consumption rate, which in turn causes
reduced synaptic activity due to an inability to meet the required energetic demands. Overexpression of a-synuclein impairs macroautophagy via Rabla inhibition.
Pathogenic mutations in a-synuclein block chaperone mediated autophagy (CMA), prevent uptake and degradation of a-synuclein and other proteins. Blocked
autophagy facilitates a-synuclein aggregation. Other pathogenic mutations, such as in synaptojanin-1 (SYNJ-1) prevent autophagosome maturation, and further
disrupt autophagy. Reduced GCase is also seen which impairs autophagy, leading to further a-synuclein build-up, and impairs lysosomal pH and lysosomal stability.
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Work from the same lab has also identified novel PD risk variants
within EndoA which impair a form of synaptic activity dependent
regulation of autophagy. EndoA is able to mobilise from the plasma
membrane upon calcium influx and promote Atg8-containing autopha-
gosome formation (Decet and Soukup, 2024). Identified PD risk variants
nullify EndoA calcium sensing ability (G267V), or make EndoA more
rigid or flexible, (D265A and D265R), changing mobilisation ability and
thereby blocking autophagosome formation, or mimicking calcium
responsiveness, and over-activating autophagy (Bademosi et al., 2023).

In C. elegans, Atg9 dependent linking of the synaptic vesicle cycle to
autophagy through exoendocytosis at the presynapse is another form of
activity dependent autophagy regulation. PD associated mutations in
SYNJ1 also result in defective synaptic autophagy, and an accumulation
of Atg9 at the synapse (Yang et al., 2022). The R258Q PD associated
SYNJ1 mutation also disrupts its role in autophagy, but not synaptic
vesicle endocytosis, which remained normal in Drosophila. The affected
SAC1 domain dephosphorylates phosphatidylinositol 3-phosphate
(PI3P) and phosphatidylinositol 3,5-bisphosphate PI(3,5)P2, lipids
required for autophagosome maturation. The R258Q mutant leads to
abnormal accumulation of Atgl8a, which binds PI(3)P/PI(3,5)P2), and
an arrest of Atgl8a mobility between being membrane bound and sol-
uble (Vanhauwaert et al., 2017). This effectively traps Atgl8a on
nascent autophagosomes, preventing their maturation and disrupting
autophagy.

Synaptic autophagosome biogenesis was seen to be reduced in aged
primary DRG cultures due to phosphorylation status of WIPI2 (Tsong
et al., 2023), and the PD risk variants detailed above also converge onto
this autophagosome biogenesis and maturation pathway. While two of
the EndoA risk variants cause a reduction in biogenesis, and a-synuclein
overexpression can inhibit autophagosome formation via Rabla inhi-
bition (Winslow et al., 2010), the others presented here increase
biogenesis or halt autophagosome maturation, and are still associated
with PD pathogenesis. It seems that while aberrant increases in auto-
phagosome biogenesis can also be pathogenic, inhibition of the auto-
phagic pathway at this stage is a shared mechanism of aberrance in both
ageing and PD.

T T —
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These studies highlight the variety of ways in which autophagy is
blocked in PD, and general ageing. There are a number of activity-
dependent regulatory processes for autophagy within the synapse,
many of which are impacted by PD associated mutations in multiple
genes. These genes highlight many critical steps in the autophagy
pathway, and their impact is similar to that seen in ageing. This illus-
trates that the autophagy pathway is a critical process necessary for
synaptic function.

When considering how synaptic autophagy plays a role in synaptic
health, calcium handling has emerged as a key process which is involved
in both autophagic and synaptic activity (Luebke et al., 1993; Tian et al.,
2015). We will discuss the role of calcium handling in the synapse next.

3. Calcium handling
3.1. Calcium handling at the synapse

Calcium (Ca2+) dynamics are central to neurotransmitter release and
plasticity, with cytosolic levels rising from baseline 200 nM to low
micromolar concentrations following action potential-induced voltage-
gated calcium channel (VGCC) activation and ER Ca?* release (Bahar
et al., 2016; Kawamoto et al., 2012). These Ca®" transients drive re-
ceptor trafficking and vesicle dynamics that underlie synaptic trans-
mission, with homeostatic regulation maintained through Ca®* binding
proteins and active uptake in to organelles (Catterall et al., 2005; Xu
et al., 2022; Zamponi et al., 2015; see also Fig. 2).

3.1.1. Calcium handling via Voltage-Gated Calcium Channels (VGCCs)
VGCCs are key players in neuronal calcium signalling. In response to
action potentials increasing membrane voltage, VGCCs at the pre-
synapse undergo a conformational change to open and allow an influx of
Ca" ions into cells. One of the responses to this is the fusion of synaptic
vesicles with the plasma membrane, and subsequent neurotransmitter
release from presynaptic terminals. VGCCs are subdivided into families
(Cayl, Cay2, and Cay3) based on the current types they elicit, their
physiological properties, and the pharmacological inhibitors that affect
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Fig. 2. Synaptic calcium signalling and molecular changes in (A) Physiological synaptic homeostasis, (B) Senescent synapses, and (C) Parkinson’s synapses. Created
with BioRender.com. (A) Depicts a healthy synaptic state with balanced calcium dynamics. The presynaptic terminal displays a uniform distribution of Cay1 and
Cay2 type VGCCs. The ER expresses balanced RyRs, IP3Rs and efficient SERCA pumps maintaining calcium homeostasis, supported by appropriate levels of the Ca*’
binding proteins calbindin and parvalbumin. Mitochondria exhibit healthy morphology with optimal endoplasmic reticulum-mitochondria contact sites. Non-
aggregated o-synuclein maintains normal protein functionality. At the post-synaptic terminal, LTP and LTD are in equilibrium and there is efficient translocation
of CaMKII to post-synaptic receptors. (B) The presynaptic terminal displays heightened Ca®* levels due to increased Cay1 channel activity, more permeable RYRs and
IP3Rs, reduced SERCA pump efficiency and reduced Ca®* binding proteins. Increased MAM sites increase Ca®* transfer to mitochondria, and reduced ATP pro-
duction. NMDARs at the post-synapse shift in receptor subunit composition, with decreased NR2B subunits. There is reduced CaMKII translocation and a transition
towards LTD dominant signalling. (C) Parkinson’s synapses exhibit pronounced Cay1.3 channel activity and downregulated Cay2.3 channels. Hypersensitive Ca®"
release channels, critically dysfunctional SERCA pumps and reduced Ca®* binding proteins compromise calcium buffering. Aggregated a-synuclein directly interacts
with, and disrupts, ion channels. a-synuclein also localises to MAMs and disrupts Ca" transfer between organelles. Post-synaptic NMDARs become compromised and
there is a significant transition towards LTD signalling.
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them, aspects which has been extensively reviewed in literature
(Catterall et al., 2005; Zamponi et al., 2015). The distribution and
expression of each VGCC varies across neuronal subtypes and subcel-
lular compartments. This contributes to the unique synaptic trans-
mission properties that different neuronal subtypes possess (Vierra and
Trimmer, 2022). For instance, in dopaminergic neurones, neurotrans-
mitter release from presynaptic terminals is primarily modulated by
Ca2" influx from the N-type and P/Q-type VGCCs (Rusakov, 2006). This
facilitates the execution of the unique functions required by these
neurones.

3.1.2. Calcium handling and the endoplasmic reticulum

The endoplasmic reticulum (ER) plays an essential role in calcium
handling at the synapse, serving as a major Ca>" store and a key regu-
lator of local Ca?" dynamics. ER calcium release at the synapse is
mediated by two channels, inositol 1,4,5-trisphosphate receptors
(IP3Rs) and ryanodine receptors (RyRs) (Stutzmann and Mattson,
2011). In response to Ca®* influx via VGCCs, IP3Rs and RyRs facilitate
calcium-induced calcium release (Sandler and Barbara, 1999), ampli-
fying calcium signals at the synapse to facilitate neurotransmitter
release from presynaptic terminals, thereby facilitating synaptic plas-
ticity. The ER also aids in the termination of Ca?* signals and mainte-
nance of resting Ca%* levels by sequestering Ca®" through the action of
sarco/endoplasmic reticulum Ca®"-ATPase (SERCA) pumps (Wan et al.,
2012).

Other cellular organelles can take advantage of ER Ca2* stores.
Mitochondria use specialised contact sites known as mitochondria-
associated-membranes (MAMs) to draw Ca®" from the ER to generate
ATP. At the synapse, ATP is essential for the mobilisation, exocytosis and
recycling of synaptic vesicles, which are very energy dense processes
(Verstreken et al., 2005; Pathak et al., 2015).

3.1.3. Calcium handling and plasticity

Calcium signalling is involved in synaptic plasticity, with calcium
serving as a key signalling molecule in mediating short-term and long-
term changes in synaptic strength. At the presynaptic terminal, the
magnitude and duration of Ca?* flux directly influences neurotrans-
mitter release, contributing to short-term plasticity mechanisms such as
facilitation and depression (Catterall et al., 2013). Postsynaptically,
however, NMDA receptor activation results in Ca®" influx, which trig-
gers events critical for the induction of LTP and LTD (Liischer and
Malenka, 2012), as mentioned earlier. For instance, increased intracel-
lular Ca®" activates calcium/calmodulin-dependent protein kinase II
(CaMKII), a key mediator of LTP, which increases AMPA receptor
conductance and insertion into the postsynaptic membrane (Lisman
et al., 2012).

Ca®*-binding proteins (e.g., parvalbumin, calbindin, and calreticu-
lin) shape the spatial and temporal aspects of calcium signalling, influ-
encing the specificity of plasticity induction. Parvalbumin modulates the
decay of Ca?* signals and influences short-term plasticity (Caillard et al.,
2000). Calbindin and Calreticulin are involved in modulating the
amplitude and duration of Ca?" signals at presynaptic terminals
(Schwaller, 2020). Calcium signalling also interfaces with other sec-
ondary messenger systems, such as cyclic adenosine monophosphate
(cAMP) and endocannabinoid signalling, to fine-tune synaptic plasticity.
For instance, coincident activation of calcium and cAMP signalling can
lead to more robust and longer-lasting forms of LTP (Alberini, 2009).

3.2. Calcium handling at the synapse in physiological ageing

Ca?* signalling alters with age and has been implicated in neuro-
degenerative diseases, making it crucial to understand the intricacies in
Ca?* dynamics and dysregulation in the brain.

One of the most prominent age-related changes of Ca®* signalling is
dysregulation of intracellular Ca?* homeostasis (Nikoletopoulou and
Tavernarakis, 2012) (°%. Key factors like mitochondrial dysfunction,
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dysregulation of Ca?* channels by posttranslational modifications and
oxidative stress, as well as impaired Ca%* buffering, culminate in
disruption of neuronal Ca?* homeostasis during ageing (Gleichmann
and Mattson, 2011).

3.2.1. Calcium handling and VGCCs in physiological ageing

The function and expression of VGCCs change with age. Specifically,
alterations are observed in Cayl L-type calcium channels, contributing
to Ca®" overload and altered firing patterns (Moore and Murphy, 2020).
Immunoblotting studies in rats suggest that expression of L-type VGCCs
is upregulated during ageing, correlating with impairments in memory
(Veng et al., 2003; Veng and Browning, 2002). In ageing neurones from
rabbit hippocampal slices, increased Cay1 currents have been shown to
alter the afterhyperpolarization (AHP) phase of action potentials,
resulting in longer lasting and larger AHPs. This reduces neuronal
excitability and firing rates (Power et al., 2002). Intriguingly, this effect
varies across Cay1 channels, with Ca,1.3 more affected by these kinetic
alterations than the Cay1.2 subtype (Cataldi, 2013; Qian et al., 2017).
This increase in activity has been attributed to age-related changes in
signalling, affecting channel phosphorylation states (Li et al., 2022a).
Rat models of ageing have displayed a 2-fold increase in cAMP depen-
dent protein kinase A (PKA)-dependent phosphorylation and activation
of Ca,1 channels (Davare and Hell, 2003).

3.2.2. Calcium handling and the endoplasmic reticulum in physiological
ageing

At the synapse, Ca" release from intracellular stores becomes less
tightly regulated in ageing neurones. There is increased Ca®' release
from IP3Rs, age-related oxidative stress modifies RyRs making them
more prone to calcium leakage, and changes in the interaction between
RyRs and their regulatory proteins can lead to increased Ca*" channel
opening (Andersson et al., 2011; Thibault et al., 2007). Furthermore,
there are alterations in ER Ca’' buffering. SERCA pumps show
decreased efficiency with age, and there are alterations in the expression
of functional Ca®" binding proteins within the ER (e.g. Calreticulin),
reducing Ca?" storage capacity (Zarate et al., 2023). Age-related
changes in Ca?* binding proteins play a role in altered Ca?* signal-
ling. Calbindin and parvalbumin act as calcium buffers, and levels of
these proteins are seen to decrease with age (Moreno et al., 2012; Wu
etal., 1997; Riascos et al., 2011; Ueno et al., 2018). These factors lead to
increased synaptic Ca?" levels prolonging Ca?" signalling, altered syn-
aptic transmission and synaptic plasticity.

In ageing neurones, there is a general trend towards increased MAM
formation, with a higher number of contact sites between the ER and
mitochondria (Calvo-Rodriguez et al., 2016). Ca®** overload causes
mitochondrial dysfunction, reducing ATP production required for syn-
aptic function.

3.2.3. Calcium handling and plasticity in physiological ageing

In healthy ageing, synaptic plasticity mechanisms undergo subtle but
significant changes mentioned in the earlier plasticity section. This is
largely influenced by alterations in calcium homeostasis by the ER
affecting both LTP and LTD.

Due to age-related increases in Ca?" levels at the synapse, the LTP
induction threshold is heightened. Stronger or more repetitive stimula-
tion is required to induce LTP in aged neurones and, when induced, LTPs
show reduced magnitude and a shorter duration (Kumar, 2011). In fact,
aged neurones have an enhanced propensity for LTD induction (Norris
et al., 1996) and some forms of LTD are induced at stimulation fre-
quencies that would typically induce LTPs in younger neurones (Hsu
et al., 2002). The balance shift between LTP and LTD may be due to
alterations in NMDA receptor subunit composition. Specifically, a
decrease in the NR2B subunit incorporation affects receptor kinetics and
Ca%* permeability (Santucci and Raghavachari, 2008).

Furthermore, the Ca®*-dependent activation of CaMKII and trans-
location to the postsynaptic density is impaired in ageing, affecting its
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interaction with NMDARs required for LTP (Rumian et al., 2023). With
age, the coupling between Ca?* influx and cAMP production becomes
less efficient, leading to a higher threshold for coincident activation of
calcium and cAMP signalling, impacting LTP induction (Morrison and
Baxter, 2012). Additionally, altered endocannabinoid synthesis and re-
ceptor expression modifies Ca?" signalling, contributing to reduced
synaptic plasticity (Bilkei-Gorzo, 2012).

Whilst these changes are part of normal ageing, they can set the stage
for increased vulnerability to stress and neurodegenerative processes.

3.3. Calcium handling changes in PD

In PD, dysregulated intracellular Ca?* levels and impaired calcium
homeostasis are hallmark pathological features, and PD patients have
been shown to exhibit higher average cytosolic Ca®* levels compared to
healthy individuals (Samavarchi Tehrani et al., 2020).

3.3.1. Calcium handling and VGCCs in PD

Dopaminergic neurones (DaNs) have unique calcium dynamics due
to their pacemaking activity (Guzman et al., 2009). This is driven by
L-type Cayl channels, particularly the Ca,1.3 subtype, making them
particularly vulnerable to disturbances in Ca®" homeostasis (Shin et al.,
2022). The Cay1.2 and 1.3 channels allow oscillatory Ca’* influx into
DaNs. Therefore, the increased Ca,1 function observed in PD leads to
sustained postsynaptic Ca®* entry (Verma and Ravindranath, 2019;
Hurley et al., 2013), dysregulating synaptic transmission and plasticity.
In adult mice, Ca,2.3 channels have recently emerged as the most
abundantly expressed VGCCs in dopaminergic neurones. Interestingly,
there is no significant difference between Ca,1.2, Cay1.3 and Ca,2.3
channels in juvenile mice, illustrating an important temporal shift in
functional expression of Ca®* channels (Benkert et al., 2019). In models
of PD Ca,2.3 channels are downregulated, resulting in the reduction of
action potential AHP amplitude. This alteration in action potential dy-
namics results in increased dopaminergic neurone vulnerability to
degeneration (Benkert et al., 2019). Since Cav2.3 is more abundantly
expressed at later ages, the effect of vulnerability is more pronounced in
aged neurones. L-type Cay channels seem to be more important to DaN
pacemaking activity at younger ages (Guzman et al., 2009), illustrating
the importance of taking temporality into account in the assessment of
synaptic function.

Mutant a-synuclein has also been shown to interact with ion chan-
nels to induce dopamine release (Subramaniam et al., 2014). When Cay2
channels are present on lipid-rich membranes, more energy is required
for the channel’s conformational change from closed to open (Levitan
et al.,, 2010; Lundbaek et al., 1996). Mutant a-synuclein promotes
relocalisation of Cay2 channels to low lipid environments, promoting
Ca" influx into the presynapse, and inducing neurotransmitter release
(Ronzitti et al., 2014). Furthermore, elevated Ca®" levels have been
shown to promote conformational changes and aggregation of a-synu-
clein, creating a positive feedback loop where a-synuclein dependent
calcium dysregulation promotes further aggregation (Nath et al., 2011;
Follett et al., 2013; Ramezani et al., 2023; Paillusson et al., 2017).

3.4. Calcium handling and the endoplasmic reticulum in PD

In PD, intracellular calcium stores in the ER exhibit significant dys-
regulation at the synapse. RyRs exhibit increased sensitivity to activa-
tion, leading to enhanced Ca?*-induced calcium release. This
dysregulation is exacerbated by oxidative modifications of RyRs, further
increasing their open probability, resulting in uncontrolled Ca®* release
and dysregulation to action potential activation (Sun and Wei, 2021).
IP3Rs exhibit altered function in PD synapses, with increased sensitivity
to IP3. This hypersensitivity leads to excessive calcium release, dis-
rupting local calcium signalling cascades crucial for synaptic plasticity
(Yamamoto et al., 2019).

ER calcium homeostasis is severely disrupted in PD synapses. Genetic
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PD models show that the activity of SERCA pumps is diminished,
impairing calcium sequestration into the ER (Solana-Manrique et al.,
2021). The resultant cytoplasmic calcium elevations contribute to
elevated neurotransmitter release resulting in excitotoxicity.
Conversely, aggregated a-synuclein can activate SERCA pumps, pro-
moting Ca®" uptake into the ER, resulting in reduced cytosolic Ca®*
levels at the synapse (Betzer et al., 2018).

As observed in ageing, in PD there is an increase in ER-mitochondria
contact sites, leading to enhanced calcium transfer between these or-
ganelles, ultimately contributing to mitochondrial calcium overload and
dysfunction (Ramezani et al., 2023). The protein composition of MAMs
is altered in PD, with increased localization of a-synuclein to these sites,
disrupting Ca®" transfer to the mitochondria, and dysregulating ATP
production required for synaptic function (Paillusson et al., 2017).

3.5. Calcium handling and plasticity in PD

In PD, alterations in synaptic plasticity are heavily influenced by
disrupted calcium dynamics. LTP induction in the striatum typically
requires coordinated activation of D1 dopamine receptors and NMDA
receptors, leading to calcium influx and subsequent activation of
calcium-dependent signalling cascades (Meunier et al., 2015). The
pathological loss of dopaminergic cells that occurs in PD disrupts this
coordinated activation.

The balance between LTP and LTD is further skewed by altered
calcium buffering in dendritic spines. In PD models, reduced expression
of calcium-binding proteins like parvalbumin leads to prolonged cal-
cium transients, potentially favouring LTD-like mechanisms over LTP.
This shift can contribute to the weakening of specific synaptic connec-
tions important for motor control (Fernandez-Suarez et al., 2012).
There’s a marked decrease in Calbindin in dopaminergic neurones,
impairing their ability to buffer calcium influx, exacerbating excito-
toxicity and oxidative stress (Ito et al., 1992; lacopino and Christakos,
1990).Interestingly, Calbindin is preferentially expressed in dopami-
nergic neurones that are resistant to degeneration in models of PD
(Inoue et al., 2019).

LTD, which normally relies on endocannabinoid signalling in the
striatum, is also affected. The calcium-dependent synthesis of endo-
cannabinoids is dysregulated due to abnormal cytosolic calcium levels.
This disrupts retrograde signalling to presynaptic CB1 receptors, altering
neurotransmitter release probability and affecting LTD induction
(Stampanoni et al., 2017).

4. Energy and mitochondria

As covered previously, neuronal communication is a complex com-
bination of processes which are finely balanced and require large
amounts of energy. Thus, amongst the processes driving synaptic
transmission, the function of intact mitochondria is also key. With age,
the capacity of mitochondria to generate the required energy is dimin-
ished over time, affecting the efficiency of synaptic communication
within the neuronal network (Chistiakov et al., 2014; Cicali and
Tapia-Rojas, 2024). The energetic currency for transferring information
between neurones is provided by ATP, generated mainly by glycolysis
and oxidative phosphorylation (OXPHOS) (Li and Sheng, 2022). Bio-
energetic failure is starting to be regarded as a common mechanism of
early ageing and neurodegeneration, and evidence for this has been
found in multiple neurodegenerative diseases, including AD, PD, and
ALS (Btaszczyk, 2020; Strope et al., 2022).

4.1. Mitochondrial maintenance of synaptic functions

The release of a single synaptic neurotransmitter containing vesicle
alone requires approximately 2 x 10* molecules of ATP (Cunnane et al.,
2020; Rangaraju et al., 2014). This is a large amount of energy for a
singular synaptic function, even before addressing other processes
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within the neurone and the synapse, such as maintenance of the resting
membrane potential, and neurotransmitter recycling at the synaptic
cleft, which require even more ATP. Whilst changes in synaptic activity
with enhanced energy requirements (e.g. prolonged synaptic stimuli)
can be easily maintained in healthy conditions, during ageing and dis-
ease, this ability is compromised (Li and Sheng, 2022; Petralia et al.,
2014; Devine and Kittler, 2018). As such, mitochondria are one of the
central players in maintenance of proper neuronal performance. This,
however, comes with the cost of production of reactive oxygen species, a
major jeopardising factor of mitochondrial homeostasis (Li et al., 2020).

Synaptic mitochondria produce more ROS by default compared to
soma mitochondria. This intrinsic difference is due to the decrease of
their membrane potential, which is directly influenced by their distance
from the nucleus (Baranov et al., 2021). Hence, distal neuronal com-
partments have a higher chance of accumulating dysfunctional mito-
chondria, which has a major impact on synaptic function. Synaptic
mitochondrial dysfunction can range from structural alteration to elec-
tron transport chain defects, all of which lead to ATP decline and a drop
in synaptic efficiency (Boveris and Navarro, 2008). A contra-effect of
reduced synaptic mitochondria membrane potential is their reduced
ability to support calcium handling, which is pivotal for both neuro-
transmitter release and uptake (Brown et al., 2006).

Physiologically, normal mitochondrial functions are maintained
through tightly regulated mitochondrial turnover. This starts with
biogenesis and culminates with mitophagy to eliminate defective or-
ganelles. With age, control over this mitochondrial turnover is lost
(Bereiter-Hahn and Osiewacz, 2014).

Moreover, the deficits seen with age are observed in PD. Many PD
related genes, such as E3-ubiquitin protein ligase Parkin, PTEN induced
kinase 1 (PINK1), protein deglycase DJ1 (DJ1) and leucine-rich repeat
kinase 2 (LRRK2), either directly or indirectly pathologically alter
mitochondrial functions and life cycle (Henrich et al., 2023).

LRRK2 mutations can interfere with the main mitochondria turnover
pathways via DRP1 (fission) (Su and Qi, 2013), Miro (mitochondrial
transport) (Hsieh et al., 2016, 2019), and PINK/Parkin (mitophagy)
(Bonello et al., 2019). In healthy physiological conditions, de novo
mitochondrial biogenesis, occurs primarily in the cell body. However,
new mitochondria can be also generated distally through fission, the
division of pre-existing mitochondria, a mechanism that is regulated by
a member of the GTPase family, dynamin-related protein 1 (DRPI). In
models with induced DRP1 mutation, in DRP1 deficient samples, mito-
chondrial fission was suspended, which led to mitochondria depletion at
synapses, and altered neurotransmission (Palikaras and Tavernarakis,
2020; Duarte et al., 2023). On the other hand, even uncontrolled fission
can generate dysfunctional mitochondria which can alter synaptic ac-
tivity. In a knock-in mouse model with the most prevalent LRKK2
pathogenic mutation, G2019S, aberrant LRRK2 kinase function
over-activates DRPI, altering the organelle dynamics and generating
fragmented mitochondria (Ho et al., 2018). This pathological effect of
LRRK2 has been shown to potentially be inhibited in vitro by over-
expressing a GTPase that regulates mitochondrial fusion, mitofusin 2
(MFN2), which counteracted the pathological occurrence of fission,
promoting fusion between two mitochondria (Wang et al., 2012).

It is the well-balanced modulation of these two dynamic mechanisms
that preserves intact mitochondrial function at the synapse, and has
positioned these organelles as central hubs in synaptic modulation.
However, when fusion/fission are not sufficient to maintain and provide
enough functional mitochondria, Rho GTPase miro 1/2-driven mito-
chondrial transport and PINK and Parkin selective mitochondrial auto-
phagy (mitophagy) are activated.

Miro 1 and 2, located on the outer mitochondrial membrane, anchor
to microtubule motor proteins (kinesin and dynein), and orchestrate
mitochondrial trafficking. Miro 1/2 have Ca®* binding domains which
can sense a reduction in calcium flux (Duarte et al., 2023). These binding
sites activate the anchorage to kinesin (anterograde transport) and
promote mitochondrial translocation at the synapse to fulfil synaptic
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metabolic demands. A detailed description of miro mitochondrial traf-
ficking has been covered previously by Devine et al. (2016) (Devine
et al., 2016). This highly conserved mechanism acts in concert with
PINK and Parkin to remove defective mitochondria from synapses
through mitophagy (via dynein retrograde transport). These mecha-
nisms are dependent on the proper function of leucine-rich repeat kinase
2 (LRRK2). It has been shown that LRRK2 forms a complex with Miro
and microtubule proteins which appears to dictate mitochondrial traf-
ficking dynamics (Singh et al., 2019). In LRRK2 G2019S PD mutant
hiPSC derived neurones, pathogenic kinase function has been shown to
arrest mitochondrial translocation, inhibiting mitophagic degradation
of dysfunctional mitochondria through the PINK1/Parkin pathway
(Hsieh et al., 2016, 2019).

The integrity of the mitochondrial degradation pathway is pivotal for
synaptic maintenance. Dysfunctional mitochondria also produce more
ROS, which can promote mitochondrial DNA (mtDNA) mutations.
Accumulation of mtDNA mutations increase OXPHOS chain defects,
which not only affect mitochondrial ability to produce ATP, but also
alter calcium homeostasis, which culminates in synaptic failure
(Palikaras and Tavernarakis, 2020).

Although mitochondrial dynamics represent core mechanisms for
maintaining healthy neuronal communications, Friedlander has pro-
posed a two-hit model of mitochondrial driven synapse loss in ageing
and neurodegeneration (Baranov et al., 2021). The first hit is compart-
ment specific, discriminating between synaptic viability and function.
Non-synaptosomal mitochondria anterogradely transported to the syn-
apse generally appear to be more functional than mitochondria that
reside at synapses. Proximal mitochondria have intact functional ca-
pacity, not only due to lack of site-related free radical damage, but also
because they can import functional proteins encoded by nuclear DNA
(Mootha et al., 2003; Pfanner et al., 2019). Fusion and fission
distally-generated mitochondria do not have adequate membrane po-
tential to support the specialised protein import complexes needed for
protein renewal (Malhotra et al., 2013). Furthermore, Baranov et al.
(2019) suggest that dysfunctional distal mitochondria are more prone to
cytochrome c release, which, instead of promoting normal synaptic
remodelling, may negatively affect synaptic function (e.g. Ca%t ho-
meostasis) and neuronal viability (Baranov et al., 2019).

The second hit, according to Friedlander, is acquired cellular stress.
Cellular stress can be either accumulated over time, such as ageing, or be
innate, for example, disease causing mutant protein expression. It is this
additional stressor which possibly drives synaptic vulnerability and
cognitive decline as seen in several age-related neurodegenerative dis-
eases (Baranov et al., 2021).

However the maintenance of healthy synaptic function is dependent
on metabolic integrity as well, which will be discussed in the next
section.

4.2. Synaptic metabolic support

Most of the brain’s energy supply is used on synaptic transmission,
therefore the amount of energy available to the synapse can make the
difference in synaptic recovery i.e. deficits vs loss/degeneration. In the
grand scheme of energy expenditure at the synapse, the main contrib-
utors are neurotransmitter release and reuptake, Ca®* flux, and gener-
ation of synaptic currents (Harris et al., 2012).

In normal conditions neurones can adapt to bioenergetic challenges
(e.g. changes in energy availability, energy source), either strengthening
pre-existing synapses and neuronal circuitry, or reducing their firing
rate. The preferential energy source for brain cells is glucose. However,
depending on the circumstance, energy sources from other metabolic
pathways can be used temporarily, for example, ketone bodies (Owen
et al., 1967) and lactate (Camandola and Mattson, 2017). To be capable
of “switching” between different energy sources, neurones are equipped
with different carriers with a high affinity for these metabolites, and can
also rely on astrocytic nutrient shuttles (Machler et al., 2015). Glucose
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transporter 3 (GLUT3), predominantly located in axon and dendrites,
ensures a constant glucose supply even when glucose is scarce, to pre-
vent a drop in synapse energetics. When the ATP supply from glucose is
not sufficient, the monocarboxylic acid transporter 2 (MTC2), starts to
pump lactate, pyruvate and ketone bodies at synaptic junctions to
maintain and support synapse metabolism (Camandola and Mattson,
2017 see also Fig. 3).

Although these mechanisms run smoothly in a disease-free envi-
ronment with intact antioxidant capacity, energetic performance
steadily declines with age, and worsens with disease. Age-related
glucose hypometabolism (de Leon et al., 1983) and poor utilisation
(Gage et al., 1984), together with reduced nicotinamide adenine dinu-
cleotide (NAD) bioavailability (Covarrubias et al., 2021; Lautrup et al.,
2019; Verdin, 2015), reduced expression of glucose transporter proteins
(Ding et al., 2013) and a reduction in key mitochondrial enzymes
(Bowling et al., 1993) with increased oxidative stress, enhanced synaptic
vulnerability and dysfunction, is observed.

In PD, besides the clear role of mitochondrial involvement in syn-
aptic decline, studies have shown, at an early disease stage, a drop in the
enzymatic efficiency of the pentose phosphate pathway (Dunn et al.,
2014), as well as a pathological interaction between a-synuclein and
glucose utilisation (Salah et al., 2022).

Although more studies are needed to elucidate the temporal evolu-
tion of energetic synaptic decline in ageing and disease, the current
knowledge suggests that the interaction between these mechanisms, and
subsequent loss of metabolic homeostasis, may drive aberrant synaptic
function.

4.3. Strategies to restore/maintain or enhance neuronal bioenergetics

Metabolomics investigations of wild type mice brains at different
time points (3 weeks, 16 weeks, 59 weeks and 92 weeks) show distinct
metabolic signatures at each time point, with no overlap among the
groups (Ding et al., 2021). The main metabolic shifts highlighted by this
were around mitochondrial and synaptic metabolism, with glycolysis
byproducts and neurotransmitter biosynthesis as the main hits (Ding
et al., 2021). As confirmed by these results, the ageing brain goes
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through a metabolic crisis that may result in cognitive decline. While the
mouse brain metabolome changes drastically when the animals are
under calorie restriction, glucose levels tend to remain consistent despite
the fasting, activating parallel metabolic pathways to maintain glucose
homeostasis to preserve normal brain functions (Shao et al., 2023).

Although calorie restriction is one of the most effective non-
pharmacological  treatments to enhance neural functions
(Fontan-Lozano et al., 2008), maintenance of an adequate energy ho-
meostasis solely through a restricted diet in individuals with type 2
diabetes (T2D) has been shown to be challenging. At the core of T2D,
there is an altered cellular metabolism driven by an inadequate insulin
response which prevents the use of glucose as a source for energy pro-
duction. Individuals affected by T2D have been shown to have a higher
predisposition to developing neurodegenerative diseases, such as de-
mentias, Alzheimer’s and PD (Rotermund et al., 2018). Interestingly, in
T2D patients treated with metformin, the incidence of developing
neurodegenerative diseases has been found to be reduced, with positive
influences on synaptic homeostasis in different neural networks. These
effects appear to be related to metformin-mediated 5-AMP-activated
protein kinase (AMPK) activation. The AMPK mediated neuroprotective
role has been reported to improve mitochondrial function (e.g. mito-
chondrial membrane potential, mitochondrial biogenesis) and the
autophagic pathway, all mechanisms that affect neuronal function (Li
et al., 2022b). Metformin has also been found to improve synaptic
function, acting directly on the level of neurotransmitter release, or by
modulating receptor expression on the postsynaptic membrane (Chen
et al., 2020; Katila et al., 2017, 2020; Samuel et al., 2014).

With the same premise of boosting AMPK activity through metformin
to improve neural function, activation of the serine/threonine kinase 1
(LKB1)-AMPK pathway has been shown to positively interfere with
synaptic ageing. Samuel et al. (2014) illustrated that LBK1 and AMPK
are involved in age-related synaptic remodelling (Samuel et al., 2014).
Using the retina as an accessible model to study synaptic changes, they
identified that a reduction in LBK1-AMPK levels or deletion of either
LBK1 or AMPK led to age-related changes within retinal synapses of
young mice (3-5 months) mirroring the one observed in old animals
(24-30 months) (e.g. loss of synaptic connections within retinal layers
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Fig. 3. Synaptic metabolism in (A) Physiological synaptic homeostasis, (B) Senescent synapses and (C) Parkinson’s synapses. Created with BioRender.com. (A)
Synaptic energy requirements are fulfilled by ATP production through mitochondrial OXPHOS. Constant substrate supply of glucose, pyruvate, lactate and ketone
bodies through GLUT3 and MCT2 guarantee the energy homeostasis needed to support synaptic function. Equally, MIRO mediated mitochondrial transport at the
synapse and an equilibrium between mitochondrial fusion and fission provide enough mitochondria to the synapse to match the functional demand. (B) During
ageing, these processes are disrupted, with an increased number of dysfunctional mitochondria (with reduced ATP production capability and increased ROS pro-
duction), due to reduced MIRO mediated mitochondrial transport and disrupted fusion-fission balance. Reduction of glucose metabolism affects the LBK1-AMPK
pathway, which is dependent on ATP as well, which promotes synaptic pruning. (C) In Parkinson’s Disease all these mechanisms are exacerbated to the extreme,

leading to severe loss of synaptic function.


http://BioRender.com

S. Mukhtar et al.

and synaptic pruning). Samuel et al. (2014) hypothesised that with age
LKB1 protein levels decrease, reducing the ability to activate AMPK.
Another hypothesis is that age-related metabolic decline, with conse-
quent reduction in ATP levels, may limit the ability of AMPK to serve as
a substrate for LBK1 (Samuel et al., 2014). To this end, experiments
showed that caloric restriction led to a 50 % improvement in synaptic
functions implying that other molecules might also be involved in the
modulation of the LBK1-AMPK pathway. Thus, the literature suggests
that both metformin and caloric restriction are able to interact with the
LBK1-AMPK pathway, implying both hypotheses are true but not fully
explaining the pathway. More work to further elucidate this pathway is
required.

Studies carried out by Hang et al. (2019; 2021) found disruption in
the AMPK pathway in different models of PD, suggesting that the AMPK
pathway and its interaction with mitochondrial metabolism may be a
key component of PD pathogenesis, but the mechanism can be partially
reversed with pharmacological interventions targeting AMPK (e.g.
metformin) (Hang et al., 2019, 2021).

Similarly to metformin, glucagon-like peptide 1 (GLP-1) receptor
agonists, newly developed drugs for T2D, have been shown to be neu-
roprotective and to modulate synaptic transmission, affecting both
excitatory and inhibitory pathways (Nowell et al., 2023; Zheng et al.,
2024).

From these studies it can be concluded that energy homeostasis and
neuronal functions are strictly related. However, a “one size fits all”
approach with all the mechanisms that govern metabolite balance in the
CNS will never be feasible. On the other hand, utilising a spatio-
temporal approach looking at metabolic changes throughout time may
help to identify pathway changes in a timely manner, before they lead to
a pathological cascade.

5. Conclusion

Synapses are vitally important structures providing an interface via
which neuronal communication can occur. This communication is
electrochemical in nature, and neurotransmission and propagating
electrical activity are fundamental to this process. However, to condense
synapses to just ion channels and neurotransmitter containing vesicles is
far too reductive. In this review we have covered key processes normally
associated with wholesale cellular function, but which have specific and
critical roles in the normal function of the synapse.

Despite these processes often being regarded as separate in nature to
synaptic communication, here we have highlighted how autophagy,
calcium homeostasis, and mitochondria directly impact synaptic func-
tion, and provide an important level of control to neuronal communi-
cation. As synapses hold such a complex and intricate role in animal
physiology, it is of little wonder that multiple pathways exist to dictate
the intricate control of their activity, plasticity, and signal integration.

These synaptic tasks drive key functions from movement to speech
and cognition. Therefore, dysfunction of pathways such as autophagy,
which contribute to synaptic function, will affect the ability to execute
fundamental tasks. Our review has focused on the ageing synapse, and
this review highlights direct evidence to show that the impact of age on
processes at the synapse are the culprit.

Each of these processes can impact one another, perpetuating the
decline of the synapse and accelerating the deterioration of processes
like cognition. For instance, reduction of inhibitory transmission via loss
of inhibitory synapses could result in knock-on overexcitation of neu-
rones downstream of excitatory neurones. As excitatory neurones use
more energy (Harris et al., 2012), this could further stress dysfunctional
mitochondria present within synapses on these neurones. Furthermore,
increased activity on downstream synapses could also impede plasticity
of smaller synapses via aberrant pLIMK activity present in aged neuro-
nes and in smaller synapses. Thus, alterations to specific neuro-
architecture can have an effect on mitochondrial function at the
synapse, exacerbating the deficits caused by either alone. This is one
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potential example of the damaging ‘synergistic’ effect which could be
possible with synaptic processes, although more have been described
throughout the course of the review.

The exacerbation of synaptic dysfunction and the resultant clinical
phenotypes have also been described here in the context of PD. PD
represents a disorder intrinsically linked with age and which has been
shown to have a profound and robust, early and persisting, synaptic
dysfunction phenotype. Here we have described how PD affects path-
ways known to be impacted by age, and which are important for syn-
aptic function. PD, and neurodegenerative disorders at large, are
therefore assisted by an improved understanding of the processes which
affect synaptic function, and which are perturbed in ageing. Here we
have highlighted key targets and pathways which have either been, are
being, or should be of interest to investigate moving forwards.

As a note, we do not claim that our work here has covered all
functions which impact synaptic pathways. The formation of tripartite
synapses with astrocytes, for instance, has not been covered. Those that
have not been covered here have not been done so as they were either
not internal processes within the neuronal synapse and thus deemed
outside the scope of the current review, or research on the effects of
ageing and/or ageing related diseases with regards to those topics was
lacking, and thus information was sparse.

As a priority moving forwards, synaptic function must be researched
in the context of all processes which affect its fundamental task of
communication. Without such a holistic approach, we as a community
risk missing critical pieces of information, and possible points of inter-
vention for disorders related to age. As illustrated in our review, the
impact of processes “outside the normal scope” of synaptic function are
critical to assess, and represent a novel way to look at ageing in the
synapse.
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