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ABSTRACT

Oxidized phospholipids (0xPL) are generated by enzymatic or non-enzymatic reactions and play diverse roles in immunity and inflammation. OxPL are elevated in
tissues from many human diseases and are now recognized as endogenous damage-associated molecular patterns (DAMPs) that alert the immune system to challenge.
Early studies focused on the role(s) of non-enzymatically-formed oxPCs in cardiovascular disease, while more recently, the controlled generation of enzymatically-
oxidized PL (eoxPL) in blood cells and their participation in physiological hemostasis has been delineated. In the last decade, there has been an explosion of research
into their formation and roles in ferroptosis, a form of cell death driven by iron and lipid oxidation. This mini review aims to bring the reader up to date with recent
work in this area, focused on discoveries over the last few years that firmly extend our knowledge of the roles of oxPL as mediators of ferroptosis, innate and adaptive

immunity.

1. Generation and structures of oxPL

OxPL can be generated in vivo either by enzymatic or non-enzymatic
peroxidation of esterified PUFAs. The formation of oxPL in human in-
flammatory disease has been known about for decades. Seminal studies
undertaken in the 1980-1990’s first established that lipid oxidation,
including of PL, is a characteristic feature of atherosclerotic lesions,
where large numbers of diverse species are associated with foam cells.
These observations led to a quest to understand the formation, and
biological roles of oxPL, particularly of phosphatidylcholine (PC) that
were identified in lesions, and subsequently found to be bioactive
through mechanisms consistent with a central role in promoting disease
(summarized in Ref. [1]). Early studies on oxPL in atherosclerosis
focused mainly on species that contained truncated FA chains, such as
1-hexadecanoyl-2-(5(6)-epoxy-9-o0xo-11-hydroxy-7E,14Z-prostadie-
noyl)-sn-glycero-phosphocholine (POVPC) and 1-hex-
adecanoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) (Fig. 1) [2].
As these were the forms identified in atheroma lesions, it was generally
considered that oxPL formation was an uncontrolled free radical
dependent event in vivo. However, the action of vascular LOXs and
COXs can also lead to formation of truncated oxPL, if initial hydroper-
oxide species are not rapidly reduced and therefore undergo
beta-scission of PUFA chains. Through this, propagation of peroxidation
would form oxPL indistinguishable from those generated through
Fenton-type reactions. Although mainly considered to be non-enzymatic
in origin, since they were truncated structures generated through

secondary oxidation, the initiation of their formation is still unknown
and the relative impact of enzymatic vs non-enzymatic mechanisms in
formation of oxPL in atherosclerotic vessels is an open question. In that
regard, chiral analysis of fatty acyl (FA) chains released from
atheroma-derived oxPL has shown that several can originate from either
enzymatic or non-enzymatic reactions in that tissue [3-5].

Many studies describing physiological and pathological effects of
oxPL used oxidized palmitoyl-arachidonoyl-phosphatidylcholine
(OxPAPC) that was generated by exposure of precursor PAPC to air.
OxPAPC comprises dozens of oxidized species with either full-length or
truncated residues [6]. The most abundant molecular species which are
present in oxPAPC preparations are shown in Fig. 1, however there are
no standardized protocols for generating this, and defined mixtures of
oxPAPC do not exist. Essentially all biological effects of OXPAPC have
been reproduced using one or several of synthetic molecular oxPL spe-
cies containing either truncated residues such as POVPC and PGPC,
truncated residues with o,f-carbonyls [7], full-length cyclic residues
such as 1-hexadecanoyl-2-(5(6)-epoxy-9-oxo-11-hydroxy-7E,14Z-pros-
tadienoyl)-sn-glycero-phosphocholine (PEIPC), or full-length linear hy-
droperoxides (Fig. 1) [8]. Because only a few synthetic species are
commercially available, the structure-activity relationships are poorly
investigated and will not be discussed in this minireview.

Extensive research has identified diverse oxPL formed in many dis-
eases including infection, auto-immunity and cancer. A subset of oxPL
comprising mainly phosphatidylethanolamine (PE) species termed
enzymatically-oxidized PL (eoxPL), generated through regulated
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processes during innate immune response was discovered and charac-
terized. Enzymatic mechanisms involve either direct oxidation of PL-
esterified PUFA by 15-lipoxygenases (LOX) including 15-LOX1
(ALOX15) and 15-LOX B (ALOX15B) [9-12], or esterification of LOX
or cyclooxygenase (COX) products with lysophospholipids via the
Lands’ cycle [13-15]. The most abundant isomers are 12-HETE-PEs
generated by 12-LOX in thrombin-activated platelets, with levels in
the ng range and around a third of the 12-HETE generated ending up
rapidly esterified into PL pools [13]. Similar to this, neutrophils generate
a series of 5-HETE-containing PL in response to agonist activation [14],
while IL-4 treated human monocytes form 15-HETE-PEs via the action of
15-LOX1 [11]. The murine 12/15-LOX in peritoneal macrophages
similarly generates both 12- and 15-HETE-PLs [16], while platelet
COX-1 is a significant source of both 11- and 15-HETE-PLs [17]. Overall,
levels of these lipids are considered to be relatively abundant, being in
the ng/mg tissue or 10° cells range. The identification of eoxPL was
originally achieved using precursor scanning and later using untargeted
methods [18]. Methods for quantitation of the most abundant, including
synthesis of standards, were published previously, with more recent
studies applying novel computational approaches to aid oxPL identifi-
cation [19,20].

An extensive review in 2009 summarized the state of the art at that
time [1]. Other reviews that summarize our knowledge of oxPL focus on
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their potential role as biomarkers, drug targets and drug leads [21], and
others on their chemical [22] or enzymatic [23,24] generation. As an
update to these, this minireview will focus on two areas where recent
research has significantly extended our knowledge of oxPL during the
last 5 years, ferroptosis, and innate and adaptive immunity.

2. Ferroptosis: involvement in cancer and neurological diseases

The concept that Fenton-like chemistry involving lipid peroxidation
occurs in human disease and is detrimental to cell and tissue function
has been known for decades, with the free radical hypothesis of aging
being extensively researched during the 1980s-1990’s [25]. However,
since antioxidants were not found to be capable of preventing disease or
delaying aging back then, research into this idea waned. However,
recent years have seen a resurgence in interest, leading to the coining of
the term ferroptosis in 2012 [26]. This was demonstrated as a
non-necrotic and non-apoptotic form of cell death that is triggered by
uncontrolled phospholipid peroxidation, itself promoted by loss of
glutathione peroxidase 4 (GPX4) (Fig. 2) [27]. It was postulated that
ferroptosis had potential to be harnessed for promoting cancer cell death
or targeted for prevention of neurodegeneration [26].

In the last 13 years, huge strides have been made in delineating many
of the fundamental underpinning processes involved, and a new impetus
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Fig. 1. Examples of the most well-known abundant oxPL structures showing both enzymatically and non-enzymatically generated species.
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GPX4 depletion leads to iron or LOX
dependent lipid peroxidation
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Fig. 2. Ferroptosis results from iron-dependent lipid peroxidation following inactivation of GPX4. This leads to membrane breakdown and cell death.

to find pharmacological agents to regulate ferroptosis has become a
major focus for drug development. Many new proteins and small
molecule inhibitors or activators were uncovered, both endogenous and
pharmacological. These include small molecules such as erastin [26]
(blocks the cystine-glutamate antiporter system X ), buthionine sulfox-
amine (glutathione synthesis inhibitor) [28], RSL3 and ML210 (both
GPX4) [29] all of which can trigger ferroptosis and have been exten-
sively used in model systems. These firmly establish the protective roles
of thiol reductive pathways in preventing ferroptosis in healthy tissues.
Separate to this, the radical trapping activities of ubiquinone and
vitamin K, promoted by the NAD(P)H oxidizing enzyme, ferroptosis
suppressor protein-1 (FSP1) provide a central mechanism for preventing
mitochondrial ROS triggered lipid peroxidation [30-32]. This can be
mimicked using pharmacological radical trapping agents, such as the
synthetic agents ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1), both
identified through high-throughput screening approaches [26,33], as
well as squalene, generated through the cholesterol synthesis pathway at
higher levels when cholesterol levels are raised [34]. Another important
antioxidant pathway that dampens ferroptosis involves redox cycling of
biopterin by dihydrofolate reductase (DHFR) [35,36].

According to the current model, ferroptosis is due to unrestrained PL
peroxidation which eventually leads to membrane rupture [37,38].
Exactly what form of peroxidation is involved has not been extensively
clarified and many studies use non-specific outputs such as malondial-
dehyde or 4-hydroxynonenal as indicators. The application of liquid
chromatography-tandem mass spectrometry (LC/MS/MS) to the char-
acterization of the complex mixture of resulting lipid oxidation products
has identified the most abundant PE and phosphatidylcholine (PC) to be
targets [30,39,40], however specific positional isomers or enantiomers
were not defined. A role for 15- or 12/15-lipoxygenase (15-LOX, Alox15)

in triggering ferroptosis was originally proposed [27,40], however
studies on mice lacking Alox15 ruled out a role for enzymatic oxidation,
for example in driving embryonic lethality of GPX4 deficiency [41].
Furthermore, LC/MS/MS showed complex mixtures of isomers consis-
tent with non-enzymatic oxidation [30]. The pattern of products may
vary depending on the cell and tissue, related to the underlying PL
composition with higher levels of longer chain PUFA being present in
brain, and plasmalogens being enriched in both brain tissue and immune
cells. Whether a ferroptosis signature exists for particular tissues is not
yet known. Nowadays, ferroptosis is mainly considered to be a
non-enzymatic cell death process that could in some situations be
sensitized by the actions of LOXs [42]. However, how initiation happens
isn’t fully clear since a seeding hydroperoxide as well as free metals
would always be required. Considering that identifying ferroptosis and
clearly distinguishing it from other forms of cell damage can be tech-
nically difficult, a recent recommendation was published providing
guidance for researchers in the field [43].

Many recent studies consider that ferroptosis could be therapeuti-
cally harnessed, with most focusing on cancer [8,44-50], neuro-
degeneration [51], and renal failure [52,53]. Relating to cancer, the
premise is that selective activation of ferroptosis, could trigger cell death
in the tumor without impacting the host, particularly in the case of
persister and de-differentiated cancers. Early work conducted in sar-
coma cells identified selective cell death inducers that acted through
glutathione depletion [54] and was later recognized as ferroptosis.
Several cancers are highly sensitive to ferroptosis inducers, including
triple-negative breast cancers and tumors that express FSP1 which
include non-small cell lung cancer and pancreatic ductal adenocarci-
noma, making them highly relevant targets (reviewed in Ref. [55]).
Another therapeutic possibility could be to induce the immune system to
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activate immunogenic cell death, sensitized by the presence of ferrop-
totic cancer cells [56], although ferroptosis-derived damage-associated
molecular patterns (DAMP) (e.g. oxPL) don’t appear to induce an anti-
tumor immune response [57]. Identifying mechanisms to selectively
sensitize cancer cells may be needed, for example through altering
extracellular lipid supply, to restrict their accumulation in susceptible
PL pools, as recently shown in vitro [58]. As summarized in a recent
extensive review [55], inducing ferroptosis presents an exciting possi-
bility for cancer therapeutics, however the challenge remains selectively
targeting the tumor itself, for example via GPX4 inhibition. Drugs that
sense cancer specific markers, for example, PROTACs or nanoparticles
could be used, but additional studies are needed, and clinical studies or
trials have not yet been initiated in this area. See also this review for
studies on the role of ferroptosis in particular cancers, e.g. lung, liver and
hematological malignancies [59].

Several neurodegenerative diseases have been associated with iron
elevation in the brain (summarized here [59]) suggesting common
mechanisms that involve ferroptosis, although research into this is still
evolving. In support of a role for iron in the pathology of Alzheimer’s
Disease, ferritin is elevated in cerebrospinal fluid of APOE4 carriers, and
predicts outcome [60], while knockout of presenilin 1/2, or expression
of mutant forms, reduce GPX4 expression in vitro [61]. In Parkinson’s
disease, a similar increase in ferritin along with reduced GSH was
observed decades ago [62], while recent mouse studies found that
overexpression of mutated o-synuclein leads to a Parkinsonian pheno-
type that can be reduced using ferroptosis inhibitors [63]. A mechanism
was proposed where a-synuclein expression is associated with altered
levels of ferroptosis sensitive ether PL, although the biochemical process
by which this occurs isn’t yet clear and further studies are needed to
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substantiate this hypothesis [64]. So far, therapeutic strategies targeting
elevated iron have not proven to be effective [59]. Another challenge is
that studies measuring oxPL in brain tissue post-mortem may not
accurately reflect the situation in vivo, including where long-term
storage may lead to elevations in oxPL levels.

In summary, research into key mechanisms of iron/oxPL-driven cell
death in human disease has undergone a huge resurgence in interest in
recent years. Discoveries of the many new biochemical pathways and
processes involved are leading to novel targets being identified that
move beyond simple radical trapping antioxidants, providing new op-
portunities to selectively and specifically target this pathway. Combined
with new generation therapeutic strategies such as CRISPR/Cas9,
PROTAC and nanoparticle drug delivery, there is reason to be optimistic
that activation or inhibition of ferroptosis may have wide applicability
to preventing human diseases of aging in the future.

3. Innate and adaptive immunity: an update on formation,
signaling and therapeutic opportunities for oxPL

Interest in delineating the role(s) of PL oxidation in immunity surged
in the 1990’s following the identification of OXPAPC, POVPC, PGPC and
PEIPC as pro-atherogenic components of minimally oxidized LDL,
capable of triggering inflammation in the vascular wall [2]. Since then, a
large body of evidence demonstrated that exogenous oxPL induce
endothelial expression of leukocyte adhesion molecules, stimulate
adhesion of monocytes, and induce pro-inflammatory cytokines and
chemokines in various cell types [65]. Novel insights into the mecha-
nisms of generation and signaling actions of oxPL in immunity and
inflammation continue to be revealed, and the field is now looking

The contrasting actions of oxPL in inflammation and immunity.

Pro-inflammatory/damaging:

* Induction of chemokines and leukocyte
adhesion molecules.

* Promoting thrombosis.

* NET formation.

* Inflammasome activation.

* Activation of TLR (context-dependent).

* Dampening T-reg function (context-
dependent).

* Tumor immunosuppression.

Anti-inflammatory/beneficial:

* Nrf2 activation.

* Induction of Mox phenotype.

* Supporting physiological
hemostasis.

* Antagonism of TLR (context-
dependent).

* Endothelial barrier protection.

* Stimulation of anti-tumor
immunity.

Some therapeutic opportunities:
* Targeting oxPL-induced immunosuppression.
* Reduction of circulating levels by lowering Lp(a).
* Inactivation of oxPL by antibodies and
amphipathic peptides.

Fig. 3. A summary of contrasting actions of oxPL in inflammation and immunity, highlighting recent therapeutic avenues.
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towards clinical translation, as outlined below (Fig. 3). We summarize
the background in the next paragraphs, and follow this with expanded
text on current state-of-the-art of the role of oxPL in immunity.

Enzymatically-oxidized PL (eoxPL) are generated in circulating
blood cells via cyclooxygenase (COX) and lipoxygenase (LOX)-depen-
dent generation of oxylipins, followed by their esterification by Lands
cycle enzymes into PL [15]. In vitro and in vivo studies show that they
can promote phosphatidylserine-dependent coagulation in blood cell
membranes (summarized here [24]). This was recently found to be
altered in atherosclerotic cardiovascular disease (ASCVD) and rheuma-
toid arthritis (RA), directly contributing to the elevated thrombotic risk
observed in these conditions [66,67]. In ASCVD, a significant increase in
the most abundant platelet 12-LOX-derived eoxPL was found along with
reduced generation of related isomers made by COX-1, due to aspirin
supplementation [66]. This highlights a need to consider the impact of
common drug therapies on oxPL generation and their bioactivity. In
antigen induced arthritis (AIA) in mice, the elevation of eoxPL was
driven by interleukin-6 signaling, and contributed to an immune
response evidenced by higher levels of serum anti-eoxPL IgG immuno-
reactivity [67]. In platelets, acylation of 12-HETE to form diacyl-PE
eoxPL is catalyzed by lysophosphatidylcholine acyltransferase 3
(LPCAT3), but this enzyme is not involved in formation of other eoxPL
including those generated by COX-1 [66]. This indicates that the for-
mation of eoxPL is not only regulated by oxygenases but also specific
Lands cycle enzymes. The isoforms involved in forming other eoxPL in
platelets or in white cells are so far not characterized.

A major step forward was recent demonstration of pathogenic roles
for endogenously generated oxPLs. In mouse models, blocking anti-
bodies directed against oxPC reduce chronic and acute inflammatory
diseases including atherosclerosis [68], liver disease [69,70] and
ischemia-reperfusion injury [71]. In humans, recent observations of a
clinical association of Lp(a) with cardiovascular disease supports a
pathogenic role for oxPL [72]. In human plasma, oxPL are primarily
bound to Lp(a) rather than other blood lipoprotein classes making this
their major circulating carrier [73,74]. Due to this, it has been proposed
that the well-known pro-inflammatory and pro-thrombotic vascular
actions of Lp(a) are mediated by oxPL thus providing a mechanistic link
to cardiovascular disease risk [75].

Pro-inflammatory responses to oxPL are complex and context-
dependent, being triggered by multiple receptors from different fam-
ilies, including endocytotic, pattern-recognition, G-protein-coupled re-
ceptors and ligand-activated ion channels [65]. Recently, oxPAPC and
its components KOdiA-PC, POVPC, PGPC, and PEIPC were shown to
activate both canonical and noncanonical inflammasomes producing
IL-1B [76-78]. In contrast to inflammatory cytokines, oxPAPC generally
signals independently from the major pro-inflammatory transcription
factor NFkB, instead using alternative signaling pathways, such as
unfolded protein response and electrophilic stress response [65,79,80].
Unlike inflammatory cytokines, pathogen-associated molecular patterns
(PAMPs) and interleukins, which induce conventional M1 and M2
phenotypes in macrophages, oxPAPC induces Mox differentiation
characterized by high Nrf2-dependent gene expression. Here, the Mox
phenotype is characterized by reduced phagocytosis and chemotaxis, as
well as a specific gene expression pattern [81,82]. Mox macrophages
adopt a particular metabolic state characterized by reduced respiration
and an enhanced pentose phosphate pathway, which is required for
cellular antioxidant defence [83]. Metabolic changes are also seen
during pro-inflammatory activation of arterial endothelial cells by Lp
(a)-bound oxPL which activates glycolysis, while inhibition of glycolysis
by a small molecule PFK158 reduces inflammatory gene expression
[75]. Here, activation of glycolysis in endothelial cells by oxPAPC may
in part be mediated via Nrf2-dependent signaling [80]. Along with this,
oxPL are increasingly recognized as pathologically relevant
pro-inflammatory DAMP, molecules generated or released during stress
and disease to alert the immune system [76]. The first use of the term in
relation to oxPL was in 2011, when Miller et al. proposed that oxidation
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specific epitopes including oxPL should be considered DAMPs since they
mediate a variety of relevant immune actions [84].

Our knowledge of the impact of oxPL on innate immunity has
significantly increased in recent years, in particular, several studies have
identified how these lipids can act cooperatively with other inflamma-
tory agents to regulate leukocyte function. For example, oxPL can
modulate metabolic profiles and inflammatory responses of macro-
phages co-activated by PAMPs and cytokines. Here, co-treatment of
lipopolysaccharide (LPS)-primed macrophages with oxPAPC or PEIPC
stimulates glycolysis and boosts oxidative phosphorylation and ATP-
coupled respiration, in contrast to the effect of LPS alone. In addition,
the transition to a hypermetabolic state was accompanied by strongly
increased interleukin-1p (IL-1f) synthesis and secretion induced by
PEIPC, POVPC and PGPC [85]. Similarly, enhanced chemokine pro-
duction was observed after co-treatment of endothelial or monocytic
cells with oxPAPC, when combined with TNFa or IL-1p [86]. OxPL
activate neutrophils to release neutrophil extracellular traps (NET), an
important effector reaction for these cells. Recently POVPC, PGPC, and
PAzPC-induced NET formation was found to be inhibited by HDL [87]
and plant flavonoids [88]. Thus, these lipids directly activate innate
immune cells through a variety of receptors, signaling and effector
mechanisms, in some cases, acting in tandem with other inflammatory
agonists.

Several recent studies extend our knowledge of the regulation of
adaptive immunity by oxPL. For example, these lipids induce “hyper-
activated” dendritic cells (DCs) that secrete IL-1p but don’t undergo
pyroptosis. Because of their greater survival time, more IL-1§ is pro-
duced thus leading to stronger stimulation of T cells [76]. As a result,
conventional DC1 cells co-treated with LPS and OxPAPC or PGPC were
proposed to stimulate long-lasting anti-tumor immunity [89].

In contrast to their pro-inflammatory activities, oxPL were recently
reported to be immunosuppressive. As one example, intra-tumor accu-
mulation of oxidized phosphatidylcholines impaired the functions of
CD8" tumor-infiltrating lymphocytes [90]. Here, functionality of cells
was rescued by knockdown of CD36, a scavenger receptor known to bind
oxPL on the surface of endocytosed oxLDL suggesting that accumulation
of the lipids in adaptive immune cells in lipid-rich tumor microenvi-
ronments is immunosuppressive. As further evidence of immunosup-
pression, accumulation of oxidized lipids during ferroptosis inhibits T
cell function and promotes tumor growth; an effect that could be
reproduced by hydroperoxides of phosphatidylcholine and phosphati-
dylethanolamine [8]. In addition, OxPAPC, POVPC or PGPC induced by
antitumor treatment can recruit myeloid derived suppressor cells,
inhibiting immune responses and supporting tumor growth [91]. OxPL
also impair Treg phenotype and function. Here, treatment with exoge-
nous oxPAPC induced a Th1 shift in Treg and reduced their functional
capacity to counteract atherosclerosis after adoptive transfer [92].

Accumulating evidence for the pathological pro-inflammatory ac-
tivity of oxPLs make these lipids a promising drug target. Several ap-
proaches are currently being trialed as outlined below. The most
advanced is based on lowering blood levels of Lp(a), which removes
circulating oxPLs bound to this lipoprotein [73]. Drugs reducing Lp(a)
have been recently discussed here [93]. At the time of writing, several
siRNA based drugs that target Lp(a) formation, including zerlasiran
(NCT05537571) and muvalaplin (NCT05778864) have successfully
finished phase II, while pelacarsen (NCT04023552) and olpasiran
(NCT05581303) are in clinical phase III studies on cardiovascular events
as listed on ClinicalTrials.gov. Results from these trials should be
available from 2026. A second approach is based on antibodies that bind
and neutralize oxPL. This has been found to be effective in mouse studies
but has not yet been tested in humans [68-71]. In addition to passive
immunization or transgenic overexpression of antibodies, vaccination
with Streptococcus pneumonia, which raises antibodies that cross-react
with oxPC, was shown many years ago to inhibit the proatherogenic
effects of oxPL, reducing atherosclerosis in mice [94]. Taking this
further, studies on the effect of a pneumococcal vaccine are currently
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being undertaken in humans [95]. A third strategy to reduce or
neutralize oxPL is based on administration of amphipathic peptides, for
example, ApoA-I mimetic peptides which are known to inhibit their
effects. In this regard, peptide 6F produced in transgenic tomatoes was
recently shown to reduce accumulation of oxPL in mouse jejunum,
following feeding with western diet [96]. Last, pro-inflammatory
signaling mechanisms induced by oxPL could be targeted. This has
been recently tested using an amphipathic helical peptide L37pA that
targets scavenger receptors B and CD36 and was shown to inhibit in-
flammatory signaling and normalize endothelial permeability induced
by truncated oxPL [97]. In addition, the induction of pro-inflammatory
chemokines by oxPL can be inhibited by drugs supporting proteostasis,
such as inducers of heat shock proteins and chemical chaperones [98].

4. Concluding statements

As summarized in this review, research into the biology and patho-
physiology of oxPL continues at pace, with recent studies revealing new
mechanisms of their formation, biological mechanisms of action and
novel potential therapeutic approaches for vascular disease, cancer and
neurodegeneration. As some oxPL are generated by regulated enzymatic
pathways and required for homeostatic functions including hemostasis
and innate immunity, a challenge will be to ensure that preventing their
bioactivities doesn’t lead to unintended consequences such as bleeding
or infection risk. Beyond this, there are several areas needing further
research. First, the origin of many oxPL in various disease states is still
unclear, including in ferroptosis and atherosclerosis. Understanding this
is key to identifying small molecules or other approaches that prevent
their formation. Exactly how oxPL are removed from membranes has not
yet been determined, but is likely to involve Lands cycle enzymes, and
represents another area that could be therapeutically relevant. Last, how
formation of eoxPL regulates oxylipin bioactivity is not well understood,
but could involve either removal of oxylipins through esterification to
form oxPL, or release of oxylipins from oxPL using phospholipases
triggering signaling. Answering these questions in the coming years will
generate a far deeper understanding of the biology and biochemistry of
these intriguing lipids and hopefully lead to novel therapeutic strategies
for common human diseases, including inflammation and cancer.
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