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A B S T R A C T

Oxidized phospholipids (oxPL) are generated by enzymatic or non-enzymatic reactions and play diverse roles in immunity and inflammation. OxPL are elevated in 
tissues from many human diseases and are now recognized as endogenous damage-associated molecular patterns (DAMPs) that alert the immune system to challenge. 
Early studies focused on the role(s) of non-enzymatically-formed oxPCs in cardiovascular disease, while more recently, the controlled generation of enzymatically- 
oxidized PL (eoxPL) in blood cells and their participation in physiological hemostasis has been delineated. In the last decade, there has been an explosion of research 
into their formation and roles in ferroptosis, a form of cell death driven by iron and lipid oxidation. This mini review aims to bring the reader up to date with recent 
work in this area, focused on discoveries over the last few years that firmly extend our knowledge of the roles of oxPL as mediators of ferroptosis, innate and adaptive 
immunity.

1. Generation and structures of oxPL

OxPL can be generated in vivo either by enzymatic or non-enzymatic 
peroxidation of esterified PUFAs. The formation of oxPL in human in
flammatory disease has been known about for decades. Seminal studies 
undertaken in the 1980–1990’s first established that lipid oxidation, 
including of PL, is a characteristic feature of atherosclerotic lesions, 
where large numbers of diverse species are associated with foam cells. 
These observations led to a quest to understand the formation, and 
biological roles of oxPL, particularly of phosphatidylcholine (PC) that 
were identified in lesions, and subsequently found to be bioactive 
through mechanisms consistent with a central role in promoting disease 
(summarized in Ref. [1]). Early studies on oxPL in atherosclerosis 
focused mainly on species that contained truncated FA chains, such as 
1-hexadecanoyl-2-(5(6)-epoxy-9-oxo-11-hydroxy-7E,14Z-prostadie
noyl)-sn-glycero-phosphocholine (POVPC) and 1-hex
adecanoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) (Fig. 1) [2]. 
As these were the forms identified in atheroma lesions, it was generally 
considered that oxPL formation was an uncontrolled free radical 
dependent event in vivo. However, the action of vascular LOXs and 
COXs can also lead to formation of truncated oxPL, if initial hydroper
oxide species are not rapidly reduced and therefore undergo 
beta-scission of PUFA chains. Through this, propagation of peroxidation 
would form oxPL indistinguishable from those generated through 
Fenton-type reactions. Although mainly considered to be non-enzymatic 
in origin, since they were truncated structures generated through 

secondary oxidation, the initiation of their formation is still unknown 
and the relative impact of enzymatic vs non-enzymatic mechanisms in 
formation of oxPL in atherosclerotic vessels is an open question. In that 
regard, chiral analysis of fatty acyl (FA) chains released from 
atheroma-derived oxPL has shown that several can originate from either 
enzymatic or non-enzymatic reactions in that tissue [3–5].

Many studies describing physiological and pathological effects of 
oxPL used oxidized palmitoyl-arachidonoyl-phosphatidylcholine 
(OxPAPC) that was generated by exposure of precursor PAPC to air. 
OxPAPC comprises dozens of oxidized species with either full-length or 
truncated residues [6]. The most abundant molecular species which are 
present in oxPAPC preparations are shown in Fig. 1, however there are 
no standardized protocols for generating this, and defined mixtures of 
oxPAPC do not exist. Essentially all biological effects of OxPAPC have 
been reproduced using one or several of synthetic molecular oxPL spe
cies containing either truncated residues such as POVPC and PGPC, 
truncated residues with α,β-carbonyls [7], full-length cyclic residues 
such as 1-hexadecanoyl-2-(5(6)-epoxy-9-oxo-11-hydroxy-7E,14Z-pros
tadienoyl)-sn-glycero-phosphocholine (PEIPC), or full-length linear hy
droperoxides (Fig. 1) [8]. Because only a few synthetic species are 
commercially available, the structure-activity relationships are poorly 
investigated and will not be discussed in this minireview.

Extensive research has identified diverse oxPL formed in many dis
eases including infection, auto-immunity and cancer. A subset of oxPL 
comprising mainly phosphatidylethanolamine (PE) species termed 
enzymatically-oxidized PL (eoxPL), generated through regulated 
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processes during innate immune response was discovered and charac
terized. Enzymatic mechanisms involve either direct oxidation of PL- 
esterified PUFA by 15-lipoxygenases (LOX) including 15-LOX1 
(ALOX15) and 15-LOX B (ALOX15B) [9–12], or esterification of LOX 
or cyclooxygenase (COX) products with lysophospholipids via the 
Lands’ cycle [13–15]. The most abundant isomers are 12-HETE-PEs 
generated by 12-LOX in thrombin-activated platelets, with levels in 
the ng range and around a third of the 12-HETE generated ending up 
rapidly esterified into PL pools [13]. Similar to this, neutrophils generate 
a series of 5-HETE-containing PL in response to agonist activation [14], 
while IL-4 treated human monocytes form 15-HETE-PEs via the action of 
15-LOX1 [11]. The murine 12/15-LOX in peritoneal macrophages 
similarly generates both 12- and 15-HETE-PLs [16], while platelet 
COX-1 is a significant source of both 11- and 15-HETE-PLs [17]. Overall, 
levels of these lipids are considered to be relatively abundant, being in 
the ng/mg tissue or 106 cells range. The identification of eoxPL was 
originally achieved using precursor scanning and later using untargeted 
methods [18]. Methods for quantitation of the most abundant, including 
synthesis of standards, were published previously, with more recent 
studies applying novel computational approaches to aid oxPL identifi
cation [19,20].

An extensive review in 2009 summarized the state of the art at that 
time [1]. Other reviews that summarize our knowledge of oxPL focus on 

their potential role as biomarkers, drug targets and drug leads [21], and 
others on their chemical [22] or enzymatic [23,24] generation. As an 
update to these, this minireview will focus on two areas where recent 
research has significantly extended our knowledge of oxPL during the 
last 5 years, ferroptosis, and innate and adaptive immunity.

2. Ferroptosis: involvement in cancer and neurological diseases

The concept that Fenton-like chemistry involving lipid peroxidation 
occurs in human disease and is detrimental to cell and tissue function 
has been known for decades, with the free radical hypothesis of aging 
being extensively researched during the 1980s-1990’s [25]. However, 
since antioxidants were not found to be capable of preventing disease or 
delaying aging back then, research into this idea waned. However, 
recent years have seen a resurgence in interest, leading to the coining of 
the term ferroptosis in 2012 [26]. This was demonstrated as a 
non-necrotic and non-apoptotic form of cell death that is triggered by 
uncontrolled phospholipid peroxidation, itself promoted by loss of 
glutathione peroxidase 4 (GPX4) (Fig. 2) [27]. It was postulated that 
ferroptosis had potential to be harnessed for promoting cancer cell death 
or targeted for prevention of neurodegeneration [26].

In the last 13 years, huge strides have been made in delineating many 
of the fundamental underpinning processes involved, and a new impetus 

Fig. 1. Examples of the most well-known abundant oxPL structures showing both enzymatically and non-enzymatically generated species.

V.B. O’Donnell and V. Bochkov                                                                                                                                                                                                             Redox Biochemistry and Chemistry 14 (2025) 100061 

2 



to find pharmacological agents to regulate ferroptosis has become a 
major focus for drug development. Many new proteins and small 
molecule inhibitors or activators were uncovered, both endogenous and 
pharmacological. These include small molecules such as erastin [26] 
(blocks the cystine-glutamate antiporter system xc

− ), buthionine sulfox
amine (glutathione synthesis inhibitor) [28], RSL3 and ML210 (both 
GPX4) [29] all of which can trigger ferroptosis and have been exten
sively used in model systems. These firmly establish the protective roles 
of thiol reductive pathways in preventing ferroptosis in healthy tissues. 
Separate to this, the radical trapping activities of ubiquinone and 
vitamin K, promoted by the NAD(P)H oxidizing enzyme, ferroptosis 
suppressor protein-1 (FSP1) provide a central mechanism for preventing 
mitochondrial ROS triggered lipid peroxidation [30–32]. This can be 
mimicked using pharmacological radical trapping agents, such as the 
synthetic agents ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1), both 
identified through high-throughput screening approaches [26,33], as 
well as squalene, generated through the cholesterol synthesis pathway at 
higher levels when cholesterol levels are raised [34]. Another important 
antioxidant pathway that dampens ferroptosis involves redox cycling of 
biopterin by dihydrofolate reductase (DHFR) [35,36].

According to the current model, ferroptosis is due to unrestrained PL 
peroxidation which eventually leads to membrane rupture [37,38]. 
Exactly what form of peroxidation is involved has not been extensively 
clarified and many studies use non-specific outputs such as malondial
dehyde or 4-hydroxynonenal as indicators. The application of liquid 
chromatography-tandem mass spectrometry (LC/MS/MS) to the char
acterization of the complex mixture of resulting lipid oxidation products 
has identified the most abundant PE and phosphatidylcholine (PC) to be 
targets [30,39,40], however specific positional isomers or enantiomers 
were not defined. A role for 15- or 12/15-lipoxygenase (15-LOX, Alox15) 

in triggering ferroptosis was originally proposed [27,40], however 
studies on mice lacking Alox15 ruled out a role for enzymatic oxidation, 
for example in driving embryonic lethality of GPX4 deficiency [41]. 
Furthermore, LC/MS/MS showed complex mixtures of isomers consis
tent with non-enzymatic oxidation [30]. The pattern of products may 
vary depending on the cell and tissue, related to the underlying PL 
composition with higher levels of longer chain PUFA being present in 
brain, and plasmalogens being enriched in both brain tissue and immune 
cells. Whether a ferroptosis signature exists for particular tissues is not 
yet known. Nowadays, ferroptosis is mainly considered to be a 
non-enzymatic cell death process that could in some situations be 
sensitized by the actions of LOXs [42]. However, how initiation happens 
isn’t fully clear since a seeding hydroperoxide as well as free metals 
would always be required. Considering that identifying ferroptosis and 
clearly distinguishing it from other forms of cell damage can be tech
nically difficult, a recent recommendation was published providing 
guidance for researchers in the field [43].

Many recent studies consider that ferroptosis could be therapeuti
cally harnessed, with most focusing on cancer [8,44–50], neuro
degeneration [51], and renal failure [52,53]. Relating to cancer, the 
premise is that selective activation of ferroptosis, could trigger cell death 
in the tumor without impacting the host, particularly in the case of 
persister and de-differentiated cancers. Early work conducted in sar
coma cells identified selective cell death inducers that acted through 
glutathione depletion [54] and was later recognized as ferroptosis. 
Several cancers are highly sensitive to ferroptosis inducers, including 
triple-negative breast cancers and tumors that express FSP1 which 
include non-small cell lung cancer and pancreatic ductal adenocarci
noma, making them highly relevant targets (reviewed in Ref. [55]). 
Another therapeutic possibility could be to induce the immune system to 

Fig. 2. Ferroptosis results from iron-dependent lipid peroxidation following inactivation of GPX4. This leads to membrane breakdown and cell death.
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activate immunogenic cell death, sensitized by the presence of ferrop
totic cancer cells [56], although ferroptosis-derived damage-associated 
molecular patterns (DAMP) (e.g. oxPL) don’t appear to induce an anti
tumor immune response [57]. Identifying mechanisms to selectively 
sensitize cancer cells may be needed, for example through altering 
extracellular lipid supply, to restrict their accumulation in susceptible 
PL pools, as recently shown in vitro [58]. As summarized in a recent 
extensive review [55], inducing ferroptosis presents an exciting possi
bility for cancer therapeutics, however the challenge remains selectively 
targeting the tumor itself, for example via GPX4 inhibition. Drugs that 
sense cancer specific markers, for example, PROTACs or nanoparticles 
could be used, but additional studies are needed, and clinical studies or 
trials have not yet been initiated in this area. See also this review for 
studies on the role of ferroptosis in particular cancers, e.g. lung, liver and 
hematological malignancies [59].

Several neurodegenerative diseases have been associated with iron 
elevation in the brain (summarized here [59]) suggesting common 
mechanisms that involve ferroptosis, although research into this is still 
evolving. In support of a role for iron in the pathology of Alzheimer’s 
Disease, ferritin is elevated in cerebrospinal fluid of APOE4 carriers, and 
predicts outcome [60], while knockout of presenilin 1/2, or expression 
of mutant forms, reduce GPX4 expression in vitro [61]. In Parkinson’s 
disease, a similar increase in ferritin along with reduced GSH was 
observed decades ago [62], while recent mouse studies found that 
overexpression of mutated α-synuclein leads to a Parkinsonian pheno
type that can be reduced using ferroptosis inhibitors [63]. A mechanism 
was proposed where α-synuclein expression is associated with altered 
levels of ferroptosis sensitive ether PL, although the biochemical process 
by which this occurs isn’t yet clear and further studies are needed to 

substantiate this hypothesis [64]. So far, therapeutic strategies targeting 
elevated iron have not proven to be effective [59]. Another challenge is 
that studies measuring oxPL in brain tissue post-mortem may not 
accurately reflect the situation in vivo, including where long-term 
storage may lead to elevations in oxPL levels.

In summary, research into key mechanisms of iron/oxPL-driven cell 
death in human disease has undergone a huge resurgence in interest in 
recent years. Discoveries of the many new biochemical pathways and 
processes involved are leading to novel targets being identified that 
move beyond simple radical trapping antioxidants, providing new op
portunities to selectively and specifically target this pathway. Combined 
with new generation therapeutic strategies such as CRISPR/Cas9, 
PROTAC and nanoparticle drug delivery, there is reason to be optimistic 
that activation or inhibition of ferroptosis may have wide applicability 
to preventing human diseases of aging in the future.

3. Innate and adaptive immunity: an update on formation, 
signaling and therapeutic opportunities for oxPL

Interest in delineating the role(s) of PL oxidation in immunity surged 
in the 1990’s following the identification of OxPAPC, POVPC, PGPC and 
PEIPC as pro-atherogenic components of minimally oxidized LDL, 
capable of triggering inflammation in the vascular wall [2]. Since then, a 
large body of evidence demonstrated that exogenous oxPL induce 
endothelial expression of leukocyte adhesion molecules, stimulate 
adhesion of monocytes, and induce pro-inflammatory cytokines and 
chemokines in various cell types [65]. Novel insights into the mecha
nisms of generation and signaling actions of oxPL in immunity and 
inflammation continue to be revealed, and the field is now looking 

Fig. 3. A summary of contrasting actions of oxPL in inflammation and immunity, highlighting recent therapeutic avenues.
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towards clinical translation, as outlined below (Fig. 3). We summarize 
the background in the next paragraphs, and follow this with expanded 
text on current state-of-the-art of the role of oxPL in immunity.

Enzymatically-oxidized PL (eoxPL) are generated in circulating 
blood cells via cyclooxygenase (COX) and lipoxygenase (LOX)-depen
dent generation of oxylipins, followed by their esterification by Lands 
cycle enzymes into PL [15]. In vitro and in vivo studies show that they 
can promote phosphatidylserine-dependent coagulation in blood cell 
membranes (summarized here [24]). This was recently found to be 
altered in atherosclerotic cardiovascular disease (ASCVD) and rheuma
toid arthritis (RA), directly contributing to the elevated thrombotic risk 
observed in these conditions [66,67]. In ASCVD, a significant increase in 
the most abundant platelet 12-LOX-derived eoxPL was found along with 
reduced generation of related isomers made by COX-1, due to aspirin 
supplementation [66]. This highlights a need to consider the impact of 
common drug therapies on oxPL generation and their bioactivity. In 
antigen induced arthritis (AIA) in mice, the elevation of eoxPL was 
driven by interleukin-6 signaling, and contributed to an immune 
response evidenced by higher levels of serum anti-eoxPL IgG immuno
reactivity [67]. In platelets, acylation of 12-HETE to form diacyl-PE 
eoxPL is catalyzed by lysophosphatidylcholine acyltransferase 3 
(LPCAT3), but this enzyme is not involved in formation of other eoxPL 
including those generated by COX-1 [66]. This indicates that the for
mation of eoxPL is not only regulated by oxygenases but also specific 
Lands cycle enzymes. The isoforms involved in forming other eoxPL in 
platelets or in white cells are so far not characterized.

A major step forward was recent demonstration of pathogenic roles 
for endogenously generated oxPLs. In mouse models, blocking anti
bodies directed against oxPC reduce chronic and acute inflammatory 
diseases including atherosclerosis [68], liver disease [69,70] and 
ischemia-reperfusion injury [71]. In humans, recent observations of a 
clinical association of Lp(a) with cardiovascular disease supports a 
pathogenic role for oxPL [72]. In human plasma, oxPL are primarily 
bound to Lp(a) rather than other blood lipoprotein classes making this 
their major circulating carrier [73,74]. Due to this, it has been proposed 
that the well-known pro-inflammatory and pro-thrombotic vascular 
actions of Lp(a) are mediated by oxPL thus providing a mechanistic link 
to cardiovascular disease risk [75].

Pro-inflammatory responses to oxPL are complex and context- 
dependent, being triggered by multiple receptors from different fam
ilies, including endocytotic, pattern-recognition, G-protein-coupled re
ceptors and ligand-activated ion channels [65]. Recently, oxPAPC and 
its components KOdiA-PC, POVPC, PGPC, and PEIPC were shown to 
activate both canonical and noncanonical inflammasomes producing 
IL-1β [76–78]. In contrast to inflammatory cytokines, oxPAPC generally 
signals independently from the major pro-inflammatory transcription 
factor NFκB, instead using alternative signaling pathways, such as 
unfolded protein response and electrophilic stress response [65,79,80]. 
Unlike inflammatory cytokines, pathogen-associated molecular patterns 
(PAMPs) and interleukins, which induce conventional M1 and M2 
phenotypes in macrophages, oxPAPC induces Mox differentiation 
characterized by high Nrf2-dependent gene expression. Here, the Mox 
phenotype is characterized by reduced phagocytosis and chemotaxis, as 
well as a specific gene expression pattern [81,82]. Mox macrophages 
adopt a particular metabolic state characterized by reduced respiration 
and an enhanced pentose phosphate pathway, which is required for 
cellular antioxidant defence [83]. Metabolic changes are also seen 
during pro-inflammatory activation of arterial endothelial cells by Lp 
(a)-bound oxPL which activates glycolysis, while inhibition of glycolysis 
by a small molecule PFK158 reduces inflammatory gene expression 
[75]. Here, activation of glycolysis in endothelial cells by oxPAPC may 
in part be mediated via Nrf2-dependent signaling [80]. Along with this, 
oxPL are increasingly recognized as pathologically relevant 
pro-inflammatory DAMP, molecules generated or released during stress 
and disease to alert the immune system [76]. The first use of the term in 
relation to oxPL was in 2011, when Miller et al. proposed that oxidation 

specific epitopes including oxPL should be considered DAMPs since they 
mediate a variety of relevant immune actions [84].

Our knowledge of the impact of oxPL on innate immunity has 
significantly increased in recent years, in particular, several studies have 
identified how these lipids can act cooperatively with other inflamma
tory agents to regulate leukocyte function. For example, oxPL can 
modulate metabolic profiles and inflammatory responses of macro
phages co-activated by PAMPs and cytokines. Here, co-treatment of 
lipopolysaccharide (LPS)-primed macrophages with oxPAPC or PEIPC 
stimulates glycolysis and boosts oxidative phosphorylation and ATP- 
coupled respiration, in contrast to the effect of LPS alone. In addition, 
the transition to a hypermetabolic state was accompanied by strongly 
increased interleukin-1β (IL-1β) synthesis and secretion induced by 
PEIPC, POVPC and PGPC [85]. Similarly, enhanced chemokine pro
duction was observed after co-treatment of endothelial or monocytic 
cells with oxPAPC, when combined with TNFα or IL-1β [86]. OxPL 
activate neutrophils to release neutrophil extracellular traps (NET), an 
important effector reaction for these cells. Recently POVPC, PGPC, and 
PAzPC-induced NET formation was found to be inhibited by HDL [87] 
and plant flavonoids [88]. Thus, these lipids directly activate innate 
immune cells through a variety of receptors, signaling and effector 
mechanisms, in some cases, acting in tandem with other inflammatory 
agonists.

Several recent studies extend our knowledge of the regulation of 
adaptive immunity by oxPL. For example, these lipids induce “hyper
activated” dendritic cells (DCs) that secrete IL-1β but don’t undergo 
pyroptosis. Because of their greater survival time, more IL-1β is pro
duced thus leading to stronger stimulation of T cells [76]. As a result, 
conventional DC1 cells co-treated with LPS and OxPAPC or PGPC were 
proposed to stimulate long-lasting anti-tumor immunity [89].

In contrast to their pro-inflammatory activities, oxPL were recently 
reported to be immunosuppressive. As one example, intra-tumor accu
mulation of oxidized phosphatidylcholines impaired the functions of 
CD8+ tumor-infiltrating lymphocytes [90]. Here, functionality of cells 
was rescued by knockdown of CD36, a scavenger receptor known to bind 
oxPL on the surface of endocytosed oxLDL suggesting that accumulation 
of the lipids in adaptive immune cells in lipid-rich tumor microenvi
ronments is immunosuppressive. As further evidence of immunosup
pression, accumulation of oxidized lipids during ferroptosis inhibits T 
cell function and promotes tumor growth; an effect that could be 
reproduced by hydroperoxides of phosphatidylcholine and phosphati
dylethanolamine [8]. In addition, OxPAPC, POVPC or PGPC induced by 
antitumor treatment can recruit myeloid derived suppressor cells, 
inhibiting immune responses and supporting tumor growth [91]. OxPL 
also impair Treg phenotype and function. Here, treatment with exoge
nous oxPAPC induced a Th1 shift in Treg and reduced their functional 
capacity to counteract atherosclerosis after adoptive transfer [92].

Accumulating evidence for the pathological pro-inflammatory ac
tivity of oxPLs make these lipids a promising drug target. Several ap
proaches are currently being trialed as outlined below. The most 
advanced is based on lowering blood levels of Lp(a), which removes 
circulating oxPLs bound to this lipoprotein [73]. Drugs reducing Lp(a) 
have been recently discussed here [93]. At the time of writing, several 
siRNA based drugs that target Lp(a) formation, including zerlasiran 
(NCT05537571) and muvalaplin (NCT05778864) have successfully 
finished phase II, while pelacarsen (NCT04023552) and olpasiran 
(NCT05581303) are in clinical phase III studies on cardiovascular events 
as listed on ClinicalTrials.gov. Results from these trials should be 
available from 2026. A second approach is based on antibodies that bind 
and neutralize oxPL. This has been found to be effective in mouse studies 
but has not yet been tested in humans [68–71]. In addition to passive 
immunization or transgenic overexpression of antibodies, vaccination 
with Streptococcus pneumonia, which raises antibodies that cross-react 
with oxPC, was shown many years ago to inhibit the proatherogenic 
effects of oxPL, reducing atherosclerosis in mice [94]. Taking this 
further, studies on the effect of a pneumococcal vaccine are currently 
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being undertaken in humans [95]. A third strategy to reduce or 
neutralize oxPL is based on administration of amphipathic peptides, for 
example, ApoA-I mimetic peptides which are known to inhibit their 
effects. In this regard, peptide 6F produced in transgenic tomatoes was 
recently shown to reduce accumulation of oxPL in mouse jejunum, 
following feeding with western diet [96]. Last, pro-inflammatory 
signaling mechanisms induced by oxPL could be targeted. This has 
been recently tested using an amphipathic helical peptide L37pA that 
targets scavenger receptors B and CD36 and was shown to inhibit in
flammatory signaling and normalize endothelial permeability induced 
by truncated oxPL [97]. In addition, the induction of pro-inflammatory 
chemokines by oxPL can be inhibited by drugs supporting proteostasis, 
such as inducers of heat shock proteins and chemical chaperones [98].

4. Concluding statements

As summarized in this review, research into the biology and patho
physiology of oxPL continues at pace, with recent studies revealing new 
mechanisms of their formation, biological mechanisms of action and 
novel potential therapeutic approaches for vascular disease, cancer and 
neurodegeneration. As some oxPL are generated by regulated enzymatic 
pathways and required for homeostatic functions including hemostasis 
and innate immunity, a challenge will be to ensure that preventing their 
bioactivities doesn’t lead to unintended consequences such as bleeding 
or infection risk. Beyond this, there are several areas needing further 
research. First, the origin of many oxPL in various disease states is still 
unclear, including in ferroptosis and atherosclerosis. Understanding this 
is key to identifying small molecules or other approaches that prevent 
their formation. Exactly how oxPL are removed from membranes has not 
yet been determined, but is likely to involve Lands cycle enzymes, and 
represents another area that could be therapeutically relevant. Last, how 
formation of eoxPL regulates oxylipin bioactivity is not well understood, 
but could involve either removal of oxylipins through esterification to 
form oxPL, or release of oxylipins from oxPL using phospholipases 
triggering signaling. Answering these questions in the coming years will 
generate a far deeper understanding of the biology and biochemistry of 
these intriguing lipids and hopefully lead to novel therapeutic strategies 
for common human diseases, including inflammation and cancer.
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Generation and biological activities of oxidized phospholipids, Antioxidants Redox 
Signal. 12 (2010) 1009–1059, https://doi.org/10.1089/ars.2009.2597.

[66] M.B. Protty, V.J. Tyrrell, A.A. Hajeyah, B. Morgan, D. Costa, Y. Li, A. Choudhury, 
R. Mitra, D. Bosanquet, A. Reed, I.K. Denisenko, K. Nagata, H. Shindou, B. 
F. Cravatt, A.W. Poole, T. Shimizu, Z. Yousef, P.W. Collins, V.B. O’Donnell, Aspirin 
modulates generation of procoagulant phospholipids in cardiovascular disease, by 
regulating LPCAT3, J. Lipid Res. 66 (2025) 100727, https://doi.org/10.1016/j. 
jlr.2024.100727.

[67] D.O. Costa, S.T.O. Hughes, R.H. Jenkins, A.C. Figueras, M.B. Protty, V.J. Tyrrell, A. 
A. Hajeyah, G.W. Jones, J.J. Burston, B. Morgan, F. Monaco, D. Hill, A.S. Morrin, 
C. Guy, A. Bacon, M. Giera, R.E.M. Toes, P.V. Jenkins, P.W. Collins, E. Choy, S. 
A. Jones, V.B. O’Donnell, Interleukin-6 elevates thrombosis via pro-coagulant 
phospholipids from platelet 12-lipoxygenase in rheumatoid arthritis, bioRxiv 
(2025) 645440, https://doi.org/10.1101/2025.03.26.645440, 2025.2003.2026.

[68] X. Que, M.Y. Hung, C. Yeang, A. Gonen, T.A. Prohaska, X. Sun, C. Diehl, A. Määttä, 
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