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Abstract

In recent years, the field of knowledge graph
completion has focused on increasingly sophis-
ticated models, which perform well on link pre-
diction tasks, but are less scalable than earlier
methods and are not suitable for learning en-
tity embeddings. As a result, shallow models
such as TransE and ComplEx remain the most
popular choice in many settings. However, the
strengths and limitations of such models remain
poorly understood. In this paper, we present
a unifying framework and systematically an-
alyze a number of variants and extensions of
existing shallow models, empirically showing
that MuRE and its extension, ExpressivE, are
highly competitive. Motivated by the strong
empirical results of MuRE, we also theoreti-
cally analyze the expressivity of its associated
scoring function, surprisingly finding that it can
capture the same class of rule bases as state-of-
the-art region-based embedding models.

1 Introduction

Knowledge graphs (KGs) encode knowledge in the
form of subject-predicate-object triples, such as
(Paris, capital-of,France). Within NLP, such re-
sources can help to address some of the limitations
of Large Language Models (LLMs), for instance
by providing knowledge about rare entities, which
LLMs are known to struggle with (Mallen et al.,
2023; Kandpal et al., 2023; Huang et al., 2024),
and by providing domain-specific and up-to-date
knowledge more generally. However, KGs are noto-
riously incomplete, which has prompted a plethora
of methods for predicting plausible missing triples.
Early work on this topic was dominated by shallow
KG embedding models, where plausibility scores
are simple and efficient to compute, typically hav-
ing a linear or bilinear form (Bordes et al., 2013;
Yang et al., 2015; Trouillon et al., 2017; Balaze-
vic et al., 2019a). In recent years, alternative ap-
proaches have emerged, based on Graph Neural

Networks (Zhu et al., 2021), pre-trained language
models (Yao et al., 2019; Lv et al., 2022) and LLMs
(Zhang et al., 2024; Wei et al., 2023). These meth-
ods generally lead to more accurate link prediction
results, but at the cost of reduced scalability. Yet,
in downstream tasks, including alignment with lan-
guage models (Zhang et al., 2019b; Wang et al.,
2021), entity retrieval for retrieval-augmented gen-
eration (Matsumoto et al., 2024; Doan et al., 2024)
and recommendations (Wang et al., 2019), scalabil-
ity is often more crucial than accuracy.

Shallow KG embedding models are efficient,
easy to implement, and often perform sufficiently
well, but their relative strengths and weaknesses
remain poorly understood. Existing models tend to
differ in more than one aspect, making it unclear
how different design choices affect their perfor-
mance. In this paper, we aim to further our un-
derstanding of shallow KG embedding models by
making two contributions. First, we theoretically
analyze a variant of MuRE (Balazevic et al., 2019a).
MuRE can essentially be seen as a natural general-
ization of two of the most popular models, namely
TransE (Bordes et al., 2013) and DistMult (Yang
et al., 2015), and thus serves as a natural starting
point for studying shallow embeddings. We show
that MuRE overcomes the theoretical limitations
of TransE and DistMult. In fact, we find that its
theoretical expressivity, surprisingly, matches what
is known for more complex KG embedding models,
which have been specifically designed with expres-
sivity in mind (Abboud et al., 2020; Pavlovic and
Sallinger, 2023; Charpenay and Schockaert, 2024).

Second, we carry out a systematic empirical
analysis, to better understand how different design
choices affect the performance of shallow embed-
ding models. We find that MuRE is highly compet-
itive among existing shallow embedding models.
However, for some benchmarks and some evalua-
tion metrics, its performance can be improved by
incorporating design choices from other models,



such as the addition of cross-coordinate compar-
isons, which we borrow from ComplEx (Trouillon
et al., 2017) and BoxE (Abboud et al., 2020).

2 Related Work

In this paper, we establish connections between
different KG embedding models, a task which has
already received considerable attention. For exam-
ple, RESCAL (Nickel et al., 2011a) was proven
to be a special case of the concurrent Neural Ten-
sor Network model (Nickel et al., 2016a). HolE
(Nickel et al., 2016b), a model with real-valued
embeddings, was shown to be equivalent to Com-
plEx (Trouillon et al., 2017), a generalization of
DistMult in complex space (Trouillon and Nickel,
2017; Liu et al., 2017). Interestingly, the two mod-
els nonetheless behave differently during training,
favouring ComplEx in practice. TuckER (Balaze-
vic et al., 2019b) has been designed as a gener-
alization of DistMult and ComplEx. Conversely,
SimplE (Kazemi and Poole, 2018) was designed
as a simplification of ComplEx. Despite these con-
vergence attempts, shallow KG embeddings mod-
els continue to be seen as belonging to two sepa-
rate families: bilinear models—thought of as ten-
sor factorization approaches—and linear models—
also called distance-based models. In fact, MuRE
bridges the gap between these two families, but
recent surveys of KG embedding models (Hogan
et al., 2021; Ali et al., 2022) still maintain this
divide. In the next section, we will build on the
insight that MuRE generalizes both linear and bi-
linear models to provide a unifying framework for
studying shallow KG embedding models.

Several attempts at revisiting KG embedding
baselines have already been made. Kadlec et al.
(2017) showed that the performance of DistMult
could be improved by using a more sophisticated
loss function. Later, Ruffinelli et al. (2020) reeval-
uated five models in various settings, highlighting
the strong performance of RESCAL. A similar ef-
fort with 21 models showed that MuRE, RotatE
and, to a lesser extent, TransE were more robust
than other models (Ali et al., 2022). The two latter
studies are based on the idea that a single model
can be trained under many different configurations,
which often leads to improvements over the best
known results for that model. In this paper, instead
of exploring novel training configurations, we look
at novel scoring functions, based on a core set of
features that existing models have in common.

Our study unifies some of the best-known KG
embedding models. However, we do not aim to
capture all possible shallow models. For instance,
in our main analysis, we exclude QuatE, which
generalizes ComplEx with quaternion embeddings
(Zhang et al., 2019a), RotatE (Sun et al., 2019),
which models relations as rotations in Euler planes,
and hyperbolic models such as MuRP (Balaze-
vic et al., 2019a) and AttH (Chami et al., 2020).
Because of the great diversity of shallow models
found in the literature, other classifications have
emerged (Cao et al., 2024), and there have been
other attempts to unify classes of shallow mod-
els (Yang and Liu, 2021). Our proposal based on
MuRE has been driven both by empirical experi-
ence and theoretical expressivity results.

3 Shallow Embedding Models

Preliminaries Let E be a set of entities and R
a set of relations. A KG is a set of triples of the
form G ⊆ E ×R×E . Intuitively, the triple (e, r, f)
encodes the fact that entity e (head entity) is related
to entity f (tail entity) through relation r. In shal-
low KG embeddings, both entities and relations
are represented as vectors. A shallow embedding
model is parameterized by an entity embedding,
which maps each entity e ∈ E to a corresponding
vector e ∈ Rn, and a relation embedding, which
maps each relation r ∈ R to a corresponding vec-
tor r ∈ Rm. We refer to n as the dimensionality of
the KG embedding. In many approaches, we have
n = m, but some models use higher-dimensional
relation embeddings. Embedding models define a
scoring function ϕ : Rn×Rm×Rn → R, which in-
dicates the plausiblity of the triple (e, r, f). Specif-
ically, models are trained such that ϕ(e, r, f) is
higher for triples (e, r, f) that appear in a given
KG than for triples which do not.

The scoring function of many popular shallow
models can expressed as ϕ(e, r, f) = h(gr(e), f)
where gr is a relation-specific transformation of e
and h is a comparison function between two vec-
tors. The main comparison functions for shallow
models are of the following form:

h1(gr(e), f) = −d(gr(e), f) + λ

h2(gr(e), f) = gr(e) · f

where d : Rn × Rn → [0,+∞) is a dissimilarity
function, which is often taken to be the Euclidean
distance or the squared Euclidian distance, and



λ > 0 is a bias term. Models of this form are, re-
spectively, referred to as linear and bilinear models.
TransE (Bordes et al., 2013) is a prominent exam-
ple of a linear model, with gr(e) = e+r. DistMult
(Yang et al., 2015) is a prominent example of a bi-
linear model, with gr(e) = e⊙ r, where we write
⊙ for the component-wise (i.e. Hadamard) product.
The bias term λ was not included in the original for-
mulation of TransE but it plays an important role in
recent implementations of linear models (Sun et al.,
2019), as it enables training such models using bi-
nary cross-entropy. We then interpret σ(ϕ(e, r, f))
as the probability that the triple (e, r, f) is valid,
where we write σ for the sigmoid function. Without
the bias term, for linear models we would always
have ϕ(e, r, f) ≤ 0 and thus σ(ϕ(e, r, f)) ≤ 0.5.

The comparison functions h1 and h2 are in fact
closely related. Indeed, we have:

2× h2(gr(e), f) = −d(gr(e), f) + be,r,f (1)

where d is ∥ ·∥2 and be,r,f = ∥gr(e)∥2+∥f∥2. The
main difference between h1 and h2 is then that the
bias term of h1 is constant, whereas the bias term
of h2 depends on the scored triple.

MuRE MuRE (Balazevic et al., 2019a) bridges
the gap between linear and bilinear models by using
a scoring function of the following form:

−∥(e⊙ s+u)− f∥2 + be + bf (2)

where relation vectors consist of two components:
a scaling vector s and a translation u; we have
e, f , s,u ∈ Rn, and be, bf ∈ R are entity-specific
biases. MuRE generalizes both TransE and Dist-
Mult. We recover TransE, for the case where d
is the squared Euclidean distance, if s = (1, ..., 1)
and be = bf = λ

2 are fixed. We also recover the
DistMult scoring function, up to a constant factor
2, by fixing u = (0, ..., 0), except that the bias
term ∥e⊙ s∥2 depends on both the entity e and the
relation r, whereas be only depends on e.

The question of how bias terms should be de-
fined has not yet received much attention. The
entity-specific biases used by MuRE make it pos-
sible to encode a statistical prior. Entities that of-
ten appear as the tail entity in a triple are then
more likely to be predicted than entities which only
rarely appear in such positions. However, as we
will see in the experiments, the impact of these
entity-specific biases tends to be small in practice.

Region-Based Embeddings Region-based em-
beddings (Gutiérrez-Basulto and Schockaert, 2018;
Abboud et al., 2020; Pavlovic and Sallinger, 2023;
Charpenay and Schockaert, 2024) are a family of
KG embedding models which have been designed
such that rules can be captured in a principled way.
In such models, relations are modelled as geometric
regions (although these regions are still parameter-
ized using vectors). Let Xr ⊆ R2n be a region
representing the relation r, with n the dimension-
ality of the entity embeddings. We then say that
the triple (e, r, f) is captured iff e;f ∈ Xr, where
we write ; for vector concatenation. The fact that a
strict criterion exists to determine whether a triple
is captured or not makes it possible to formally
study which kinds of rules can be modelled, which
we will come back to in the next section.

Region-based approaches differ in how the re-
gion Xr are defined. For instance, in the case of Ex-
pressivE (Pavlovic and Sallinger, 2023), Xr is de-
fined in terms of two-dimensional parallelograms.
Specifically, relation r is then defined using paralel-
lograms Xr

1 , ..., X
r
n and we say that (e, r, f) is cap-

tured if (e1, f1) ∈ Xr
1 , ..., (en, fn) ∈ Xr

n, where
we assume e = (e1, ..., en) and f = (f1, ..., fn).
Charpenay and Schockaert (2024) proposed a
model of the same form, where octagons are used
instead of parallelograms. We can also consider
region-based variants of standard shallow embed-
ding models, such as MuRE. We can e.g. use re-
gions of the following form:

Xr
i = {(x, y) |u− ≤ λy − x ≤ u+} (3)

Note how this corresponds to adding a learnable
width parameter (w = u+−u−) to MuRE. Region-
based formulations of standard models are com-
monly obtained by simply changing the dissimilar-
ity function to a piecewise-linear transformation
of Euclidean distance dw, which incorporates this
width. For instance, the scoring function of Expres-
sivE has the following form:

−dw([e; f ]⊙ s+ u, [f ; e]) + λ

Note that ExpressivE paralellograms are obtained
via the same components as MuRE, i.e. a scal-
ing vector s and a translation u. If we set w =
(0, . . . , 0), we obtain a functional variant of the
region-based model, with empty volume.

Cross-coordinate Comparisons Standard linear
and bilinear models compare entity embeddings



coordinate-wise. To compute a score for entity
embeddings e = (e1, ..., en) and f = (f1, ..., fn),
these models essentially compare each coordinate
ei with the corresponding coordinate fi. The same
is also true for the aforementioned region-based
embeddings, which are defined in terms of two-
dimensional regions. However, some models in-
stead compare pairs of coordinates (ei, ej) with
pairs of coordinates (fj , fi). This is the case for
ComplEx (Trouillon et al., 2017), which uses a
scoring function of the following form:

h2([e;e;e
′;e′]⊙ [s;s′;s;−s′], [f ;f ′;f ′;f ]) (4)

Note that the embedding of the entity e consists of
two blocks, e and e′, and similar for the embed-
ding of the entity f and for the relation embedding.
The name ComplEx refers to the fact that these
two blocks can be interpreted as the real and imagi-
nary parts of a vector of complex numbers. Note
that the ComplEx scoring function involves com-
paring e with f and e′ with f ′, which we refer to
as coordinate-wise comparisons, as well as com-
paring e with f ′ and e′ with f , which we refer to
as cross-coordinate comparisons. SimplE (Kazemi
and Poole, 2018) is a special case of ComplEx
which only involves cross-coordinate comparisons.

BoxE (Abboud et al., 2020) also involves cross-
coordinate comparisons only, using a scoring func-
tion of the following form:

−dw([e; e
′] + u, [f ′; f ]) + λ

where dw is a piecewise linear transformation of
the Euclidean distance, in line with BoxE’s formu-
lation as a region-based model.

A Unified View Based on the previous discus-
sion, we consider the following scoring function:

−d([e;e′;e;e′]⊙ s+u, [f ;f ′;f ′;f ]) + be,r,f

where d is either the squared Euclidean distance,
or a transformation of the Euclidean distance, and
be,r,f > 0 is a trainable bias, which in general
may be entity-specific and/or relation-specific. We
have [e; e′], [f ; f ′] ∈ Rn and s,u ∈ R2n. As
special cases, we can obtain variants of most of
the aforementioned models. Indeed, TransE and
DistMult correspond to variants where the terms
with cross-coordinate comparisons are omitted,
where the (squared) Euclidean distance is used as
the dissimilarity function, and where respectively

s = (1, ..., 1) and u = (0, ..., 0) are fixed. Com-
plEx corresponds to a variant where u = (0, ..., 0)
is fixed, s is of the form [s1; s2; s1;−s2] and d
is the squared Euclidean distance. BoxE corre-
sponds to a variant in which the coordinate-wise
comparisons are omitted and s = (1, ..., 1). The
region-based variant of MuRE corresponds to the
case where the cross-coordinate comparisons are
dropped and d is chosen as dw.

The region-based variant of MuRE is similar to
ExpressivE, if inverse relations are added to the
KG, since parallelograms correspond to the inter-
section of two MuRE regions of the form (3). This
data augmentation technique, first introduced by
Lacroix et al. (2018), is commonly used when learn-
ing KG embeddings. However, we will show in the
experiments that ExpressivE, which can be seen as
a straightforward extension of MuRE, outperforms
MuRE and all other evaluated models. Notably,
ExpressivE applies a transformation to both e and
f , whereas gr applies only to e in our formulation,
which gives it more flexibility for modeling N-N
relations.

4 Expressivity Results

Region-based models allow us to study precisely
what kind of knowledge a given model can capture.
In this section, we study this for the region-based
formulation of MuRE, which was introduced in (3)
and which we now formally define.

Definition 1 (MuRE region embedding). An (n-
dimensional) MuRE region embedding is a triple
(Z, γ, τ), with Z ⊆ Rn, γ : E → Z and τ : R →
R2 × ...× R2, such that for each r ∈ R, we have
τ(r) = (Xr

1 , ...., X
r
n) with Xr

i a two-dimensional
region of the form (3). We call γ a (MuRE) entity
embedding and τ a (MuRE) relation embedding.

In this definition, we assume that all entity em-
beddings belong to the set Z. In previous work
(Abboud et al., 2020; Pavlovic and Sallinger, 2023;
Charpenay and Schockaert, 2024), Z = Rn is im-
plicitly assumed. However, as will become clear,
the ability to restrict Z to a subset of Rn matters in
the case of MuRE regions. When Z is clear from
the context, we will usually write MuRE embed-
dings as pairs (γ, τ). We write γi(e) for the ith

coordinate of γ(e), and τi(r) for the corresponding
two-dimensional region, i.e. we we have γ(e) =
(γ1(e), ..., γn(e)) and τ(r) = (τ1(r), ..., τn(r)).
For e = (e1, ..., en), f = (f1, ..., fn), r ∈ R, and
τ a relation embedding, we write τ |= r(e, f) to



denote that (ei, fi) ∈ τi(r) for each i ∈ {1, ..., n}.

Definition 2 (Capturing triples). We say that a
triple (e, r, f) ∈ E × R × E is captured by the
embedding (γ, τ) iff τ |= r(γ(e), γ(f)). In this
case, we write (γ, τ) |= r(e, f).

We first show that MuRE regions can capture any
KG over E and R.

Proposition 1 (Full expressivity). Let G ⊆ E ×
R × E . There exists a MuRE region embedding
(γ, τ) such that (γ, τ) |= r(e, f) iff (e, r, f) ∈ G.

We also want KG embeddings to capture rules, to
ensure that relation embeddings reflect the regu-
larities that exist in the domain. Given a closed
path rule r1(X1, X2) ∧ ... ∧ rp(Xp, Xp+1) →
s(X1, Xp+1), we intuitively want to ensure that
whenever the triples (e1, r1, e2), ..., (ep, rp, ep+1)
are captured by the embedding, for some entities
e1, ..., ep+1, then the triple (e1, s, ep+1) is also cap-
tured. However, Gutiérrez-Basulto and Schockaert
(2018) proposed a more general definition, which
does not refer to particular entity embeddings. This
is because we want the relation embeddings to guar-
antee that the rule remains satisfied, even if entities
are later added to the KG, which is important in
the setting of inductive KG completion (Teru et al.,
2020). This is made precise as follows.

Definition 3 (Capturing rules). Let Z ⊆ Rn be
the considered domain of the entity embeddings.
We say that a closed path rule r1(X1, X2) ∧ ... ∧
rp(Xp, Xp+1) → s(X1, Xp+1) is captured by a
relation embedding τ iff for all e1, ...ep+1 ∈ Z
such that τ |= r1(e1, e2), ..., τ |= rp(ep, ep+1), it
also holds that τ |= s(e1, ep+1).

We write τ |= ρ to denote that τ captures the closed
path rule ρ. Ideally, we would want a region-based
embedding model to be such that for every set of
closed path rules K, we can find a relation embed-
ding that captures the rules that are entailed by K,
and only those rules. Unfortunately, this is not pos-
sible for existing region based models. However,
Charpenay and Schockaert (2024) showed that this
property can be satisfied by their octagon embed-
dings, as long as every rule that is entailed by K sat-
isfies the following condition of regularity (except
for trivial rules of the form r(X,Y ) ⊆ r(X,Y )).

Definition 4. A closed path rule r1(X1, X2)∧ ...∧
rp(Xp, Xp+1) → s(X1, Xp+1) is called regular if
r1, ...rp, s are all distinct relations.

We may wonder whether, similar to octagon embed-
dings, MuRE region embeddings can also capture

sets of regular rules. Unfortunately, for Z = Rn,
this is not the case (as we formally show in Ap-
pendix A.3). However, if we assume that all entity
embeddings occur in a bounded region, then MuRE
regions can capture sets of regular rules.

Proposition 2. Let Z = [z−1 , z
+
1 ]× ...× [z−n , z

+
n ],

with z−i < z+i for all i ∈ {1, ..., n}. Let K
be a set of closed path rules. Assume that any
closed path rule entailed by K (in terms of classi-
cal logic entailment) is either a trivial rule of the
form r(X,Y ) → r(X,Y ) or a regular rule. There
exists a relation embedding τ which captures all
rules entailed by K, and only those rules.

Thus far, octagon embeddings were the only
coordinate-wise region-based embeddings known
to be capable of capturing sets of regular rules. The
fact that MuRE regions can do the same is remark-
able, given that these regions are much simpler,
being defined by 3 parameters rather than 8. In
fact, the proof of Proposition 2 involves a restricted
family of MuRE regions, which are characterized
by only 2 parameters. Existing embedding models
(Abboud et al., 2020; Pavlovic and Sallinger, 2023;
Charpenay and Schockaert, 2024) are also capable
of capturing the following types of rules:

Hierarchy: r1(X,Y ) → r2(X,Y )

Intersection: r1(X,Y ) ∧ r2(X,Y ) → r3(X,Y )

Symmetry: r1(X,Y ) → r1(Y,X)

Inversion: r1(X,Y ) → r2(Y,X)

where the notion of capturing such rules is de-
fined entirely analogously as for closed path rules.
MuRE regions can also capture arbitrary sets of
such rules, even for Z = Rn, and even when all
scale factors are 1. Specifically, let us refer to a
MuRE region X = {(x, y) |u− ≤ λy − x ≤ u+}
as a TransE region if λ = 1.

Proposition 3. Let Z = [z−1 , z
+
1 ]× ...× [z−n , z

+
n ],

with z−i < z+i for all i ∈ {1, ..., n}, or Z = Rn.
Let K be a set of hierarchy, intersection, symmetry
and inversion rules. There exists a relation embed-
ding τ which captures all rules entailed by K, and
only those rules, such that τi(r) is a TransE region
for every r ∈ R and i ∈ {1, ..., n}.

However, MuRE regions are limited when it comes
to combining symmetry rules and closed path rules.
Transitivity rules of the form r(X,Y )∧r(Y, Z) →
r(X,Z) also play an important role in many do-
mains. However, such rules can only be captured
in an approximate way when using MuRE regions.



Further discussion about these limitations is pre-
sented in Appendix A.6.

5 Experiments and Analysis

In Section 3, we identified five orthogonal design
choices for defining shallow KG embedding mod-
els: (i) the choice of the dissimilarity function d;
(ii) whether and which kinds of trainable biases are
used; (iii) whether the head entity is transformed us-
ing scaling, translation, or both; (iv) whether cross-
coordinate comparisons are used; and (v) whether
a region-based formulation with a trainable width
is used. An exhaustive evaluation of all combina-
tions on benchmarks such as WN18RR and FB15k-
237 is not feasible. We therefore first carry out an
extensive evaluation on three popular small-scale
datasets (Countries, Kinships and UMLS), which
we complement with an evaluation on synthetic
datasets. We then evaluate the best performing
variants on the larger WN18RR and FB15k-237
datasets. We report the most common metrics
for link prediction: Hits@k and Mean Recipro-
cal Rank (MRR). All models were implemented
in PyKEEN (Ali et al., 2021). Our implementa-
tion, along with instructions for reproducibility, is
available online.1

5.1 Small-scale Knowledge Graphs

Countries is a KG about countries and continents
with only two relations: is-inside, relating coun-
tries with continents, and is-neighbour, relating
countries with each other (Bouchard et al., 2015).
This is an artificial and simple KG, used to evaluate
whether models can capture symmetry and closed-
path rules. Kinships and UMLS, on the other hand,
have been used early on as real-world examples
of multi-relational datasets (Bordes et al., 2014).
Kinships features 26 kinship relations (as defined
by the Australian Alyawarra tribe). The dataset is
challenging due to the complex nature of the kin-
ship relationships that are considered, and due to
the presence of some noise. UMLS is an excerpt
of the Unified Medical Language System, defin-
ing relationships between diseases, symptoms and
body parts, among others (49 relations). All three
datasets have between 100 and 300 entities. In our
experiments, we fix entity embeddings to be 40-
dimensional. For models with entity embeddings
of the form [e;e′], such as ComplEx and BoxE, we
set e ∈ R20 and e′ ∈ R20. Other hyperparameters

1https://github.com/vcharpenay/shallow-kges

are also fixed. Results are summarised in Table 1.
The table is divided in five blocks, corresponding
to the five considered design choices.

Results in the first and second blocks of Table 1
suggest that linear models, which score triples with
a norm instead of a dot product, perform better
than bilinear models. Intuitively, linear models
introduce a bias term that is not dependent on en-
tity embeddings, giving more degrees of freedom.
Making this bias term trainable further improves
the performance of linear models, as already ob-
served by Balazevic et al. (2019a). We extend their
observation by considering relation-specific biases
(br) in addition to entity-specific terms (be + bf ).
We found that entity embeddings can capture a sta-
tistical prior for each entity, correlating with the
degree of entities in the KG. Such an encoding does
not help to predict links if the KG is balanced (as
in Kinships, where the correlation between entity
biases and degrees is close to 0) or if entities are
highly connected (as in UMLS). More details can
be found in Appendix B.5.

Results in the third block indicate that combining
scaling and translation is important. Translation-
only variants (featuring g1;u) have poor results. It is
worth noting that some models in the literature also
allow transformation through rotation2. RESCAL,
for instance, embeds relations as arbitrary linear
transformations, combining rotation with scaling
(Nickel et al., 2011b). Later models extended it
to affine transformations, also featuring translation
(Jiang et al., 2024; Ge et al., 2022). Despite a
significantly higher number of trainable parameters,
the performance of these models does not exceed
that of MuRE or RotatE, suggesting that scaling
and translation are sufficient.

Cross-coordinate comparisons tend to decrease
the performance of MuRE variants, as can been
seen in the fourth block. It only benefits models
on Kinships, a KG with many symmetries (where
limitations of MuRE discussed in Appendix A.6
arise). We further explore the combination of sym-
metry and closed-path rules in the next section.
Combining coordinate-wise and cross-coordinate
comparison, as in ComplEx, does not improve per-
formance either3. The last block shows results

2We refer here to rotation in Rn. Note that RotatE, despite
its name, should rather be considered as a scaling model:
rotation is not in Rn but in the two-dimensional Euler plane.

3The poor performance of ComplEx on Countries is likely
due to its regularization scheme, which is ineffective on small
datasets

https://github.com/vcharpenay/shallow-kges


Countries Kinships UMLS

h@1 h@3 h@10 MRR h@1 h@3 h@10 MRR h@1 h@3 h@10 MRR

gs;u(e) · f .404 .762 .945 .602 .418 .696 .940 .588 .674 .935 .983 .808
−∥gs;u(e)−f∥2 + ∥gs;u(e)∥2 + ∥f∥2 .341 .641 .837 .517 .434 .702 .939 .600 .703 .932 .986 .823
−∥gs;u(e)−f∥2 + λ .504 .870 .945 .688 .476 .741 .943 .632 .760 .969 .994 .865
−∥gs;u(e)−f∥+ λ .608 .962 1.0 .790 .492 .745 .937 .643 .767 .962 .989 .867

MuRE (2) .675 .979 1.0 .820 .478 .736 .945 .633 .775 .977 .996 .877
−∥gs;u(e)−f∥+ be + bf .720 .891 .937 .809 .490 .748 .944 .643 .764 .967 .994 .867
−∥gs;u(e)−f∥+ br .683 .995 .995 .828 .496 .745 .939 .645 .772 .971 .993 .873

−∥g1;u(e)− f∥+ λ (TransE) .262 .441 .520 .367 .026 .069 .190 .089 .475 .650 .798 .588
−∥gs;0(e)−f∥+ br .695 .954 .983 .825 .467 .722 .928 .621 .742 .940 .984 .846
−∥g1;u(e)−f∥+ br .729 .979 1.0 .853 .071 .146 .304 .151 .479 .812 .943 .660

gs;0([e; e
′]) · [f ′; f ] (SimplE) .104 .275 .504 .234 .343 .582 .875 .506 .555 .722 .883 .664

ComplEx (4) 0 .008 .024 .016 .633 .857 .971 .757 .774 .949 .985 .865
−∥gs;u(e;e′)−f ′;f∥+ br .650 .983 .991 .809 .633 .861 .971 .757 .763 .961 .988 .865
−∥gs;u(e;e′;e;e′)−f ;f ′;f ′;f∥+ br .620 .937 1.0 .778 .658 .880 .978 .778 .736 .936 .985 .841

−dw(g1;u(e;e
′)−f ′;f) + λ (BoxE) .804 .945 1.0 .880 .517 .782 .957 .669 .766 .958 .984 .865

−dw(gs;u(e; f)−f ; e) + λ (ExpressivE) .466 .712 .850 .609 .584 .821 .965 .718 .816 .970 .993 .895
−dw(gs;u(e)−f) + br .495 .770 .916 .644 .520 .784 .959 .673 .767 .957 .985 .863
−dw(gs;u(e;e

′)−f ′;f) + br .395 .616 .800 .537 .539 .798 .963 .686 .739 .950 .983 .848

Table 1: Link prediction performance on small-scale datasets, where gs;u(e) = e⊙ s+u, λ is a margin (fixed bias),
be, bf , br are trainable biases specific to an entity or a relation, x;y is the concatenation of x and y, and dw is the
piecewise linear function of BoxE (results are averaged across 5 runs).

CPR CPR-rt CPR-rtu

h@1 h@3 h@10 MRR h@1 h@3 h@10 MRR h@1 h@3 h@10 MRR

−∥g1;u(e)− f∥+ br .015 .121 .656 .164 .002 .053 .520 .121 .003 .354 .571 .214
−∥gs;u(e)− f∥+ br .252 .432 .613 .375 .312 .624 .871 .501 .494 .661 .786 .598
−∥gs;0(e; e′)− f ′; f∥+ br .111 .173 .271 .163 .154 .274 .440 .248 .529 .701 .834 .634
−∥gs;u(e; e′)− f ′; f∥+ br .115 .175 .247 .163 .150 .249 .394 .231 .506 .679 .803 .610
−∥gs;u(e; e′; e; e′)− f ; f ′; f ′; f∥+ br .309 .450 .648 .417 .294 .519 .763 .445 .462 .589 .711 .548

Table 2: Link prediction performance on small-scale synthetic datasets.

for region-based models, which introduce a width
parameter (w). Interestingly, the interaction of
cross-coordinate comparison and trainable widths
in BoxE has a positive effect. Overall, MuRE
variants are outperformed by ExpressivE, a region-
based extension of MuRE. Further experiments in
Appendix B.3 show that even functional Expres-
sivE (w = 0) outperforms MuRE on all datasets.

5.2 Synthetic Knowledge Graphs

When comparing coordinate-wise with cross-
coordinate approaches, the results so far are mixed:
models with cross-coordinate comparison have a
clear advantage on Kinships but they underper-
form on Countries. As already mentioned in Sec-
tion 4, MuRE is limited when it comes to learn-
ing rule bases that combine symmetry and closed-
path rules. In the following, we complement our
findings with experiments on synthetic KGs. We
generated three datasets, as follows. For the first

dataset, we randomly sample triples of the form
(a, r, b) and (a, s, b), and subsequently apply the
rule r(X,Y ) ∧ s(Y,Z) → t(X,Z) to add triples
of the form (a, t, c). Half of the generated t-triples
are shown during training, the other half is kept
for evaluation. Note that test triples can thus be
inferred from the given KG. We refer to this dataset
as CPR. The second dataset has the same triples but
r and t are made symmetric. In other words, we
add all triples that can be inferred using the rules
r(X,Y ) → r(Y,X) and t(X,Y ) → t(Y,X). The
test set consists of half of the t-triples, as in the
first dataset. We refer to this dataset as CPR-rt.
The last dataset is obtained by randomly sampling
triples r(a, b), s(a, b), t(a, b) and subsequently ap-
plying the rule r(X,Y1) ∧ s(Y1, Y2) ∧ t(Y2, Z) →
u(X,Z), and making r, t and u symmetric. On this
dataset, half of the u-triples are used for evaluation.
We refer to this last dataset as CPR-rtu.

The results in Table 2 show that cross-coordinate



WN18RR FB15k-237

h@1 h@3 h@10 MRR h@1 h@3 h@10 MRR

Functional ExpressivE .438 .503 .580 .486 .219 .355 .515 .318
ExpressivE .430 .475 .534 .464 .185 .311 .471 .279
BoxE .389 .429 .464 .417 .197 .316 .476 .288
RotatE .444 .495 .552 .480 .216 .345 .502 .311
ComplEx .391 .409 .431 .405 .130 .217 .338 .199
QuatE .426 .464 .502 .452 .159 .278 .438 .250
−∥gs;u(e)− f∥+ br .400 .455 .497 .436 .204 .326 .485 .295
−∥gs;u(e)− f∥+ br (w/ inverse) .427 .484 .553 .469 .212 .338 .503 .307
−∥gs;u(e; e′)− f ′; f∥+ br .325 .391 .439 .367 .200 .318 .473 .289
−∥gs;u(e; e′; e; e′)− f ; f ′; f ′; f∥+ br .361 .422 .460 .399 .201 .324 .483 .293
−dw(gs;u(e)− f) + br .264 .304 .345 .292 .183 .286 .432 .264

Table 3: Link prediction performance on benchmark datasets.

comparison models outperform coordinate-wise
models on CPR-rtu. On the other datasets, how-
ever, cross-coordinate comparison models under-
perform. Furthermore, MuRE captures closed-
path rules more efficiently than the translation-
only model. The model with both coordinate-wise
and cross-coordinate comparison performs well
on average. Interestingly, on CPR-rtu the cross-
coordinate variant without translation performs bet-
ter than the one with both scaling and translation.
More results can be found in Appendix B.6.

5.3 Benchmark Knowledge Graphs

We now analyze the performance of MuRE vari-
ants on WN18RR and FB15k-237. So far, we found
that linear models with trainable biases generally
outperform, and that scaling and translation are
both useful. We selected four of the previously
considered variants, all with these properties, to
compare with state-of-the-art shallow models. As
experiments on small KGs showed that (functional)
ExpressivE outperforms MuRE, we also included
a fifth configuration, obtained by systematically
adding inverse relations to the KG. This new config-
uration based on the coordinate-wise MuRE variant
is closest to functional ExpressivE.

5.3.1 Main Experiments
Results for existing models are available in the lit-
erature, but they depend on training configurations
that are not always comparable. For a fair compar-
ison, we ran our own experiments for all models,
ensuring that models are trained in the same setting
for a given dataset. We discuss this aspect in fur-
ther detail in Appendix B.7. We chose n = 100 for
WN18RR and n = 200 for FB15k-237. We use
a binary cross-entropy loss with self-adversarial
negative sampling (Sun et al., 2019) for all config-

urations.
From previous experiments, we found that the

impact of cross-coordinate comparisons and train-
able widths is mixed, partly influenced by symme-
tries. These observations generalize to WN18RR
and FB15k-237. The variants with cross-coordinate
comparisons and trainable widths each perform
poorly but BoxE, which combines the two features,
outperforms them. Interestingly, QuatE performs
significantly better than ComplEx in our setting.
Both models are bilinear but QuatE introduces
more cross-coordinate comparisons than ComplEx,
splitting embeddings in four blocks instead of two.
A linear variant of QuatE may compete with the
best-performing models but QuatE itself underper-
forms MuRE.

Functional ExpressivE is the best performing
model, followed by RotatE. The performance of
the baseline MuRE variant significantly improves
if inverse relations are added to the KG, matching
RotatE on hits@10. We conjecture that functional
ExpressivE performs better than MuRE, despite
the fact that the two models have the same number
of parameters, because it can better handle N-N
relations. It takes twice as long to train ExpressivE,
however (see training times in Appendix B.7).

5.3.2 Impact of Negative Sampling
The results we obtained for ComplEx are signif-
icantly below the best published results for this
model. For instance, in our setting, ComplEx
achieves an MRR of .199 on FB15k-237 while
Lacroix et al. (2018) report .35 for the same value
of n. This gap can be explained as follows. In
their setting, called 1-vs-all, ComplEx has been
trained with significantly more compute. The 1-vs-
all setting involves comparing every triple r(e, f)
in the graph to |E| − 1 other triples r(e, f ′), where



WN18RR

h@1 h@3 h@10 MRR

ComplEx .43 .47 .52 .46
−∥gs;u(e)− f∥+ br .45 .50 .56 .49

FB15k-237

h@1 h@3 h@10 MRR

ComplEx .26 .39 .54 .35
−∥gs;u(e)− f∥+ br .22 .35 .51 .32

Table 4: Link prediction performance on benchmark
datasets in the 1-vs-all setting; other hyperparameters
were left unchanged; results for ComplEx by Lacroix
et al. (2018).

|E| ∼ 15, 000 in FB15k-237. In contrast, we only
compare triples to 50 randomly sampled triples
(see the hyperparameters in Table 5). The average
out-degree in FB15k-237 being around 3, 1-vs-
all training thus requires scoring 100 times more
triples than our training setting (15, 000 vs. 3×50).
We chose the more efficient setting for our main
experiments because computational efficiency is an
important quality of shallow KGE models. How-
ever, given the disappointing results for ComplEx,
we now complement our main results with an anal-
ysis in the 1-vs-all setting.

Table 4 compares the performance of the base-
line MuRE model with ComplEx in the 1-vs-all
setting. The results show that MuRE also benefits
from more compute, but not equally across datasets:
it significantly outperforms ComplEx on WN18RR,
which is consistent with our observations in the
main experiments, but it underperforms ComplEx
on FB15k-237. This additional experiment high-
lights that a trade-off is to be found between per-
formance and computational efficiency. If both are
important in downstream tasks, MuRE remains a
good baseline. In the literature, RotatE, BoxE, Ex-
pressivE and QuatE were all trained with negative
sampling. We therefore limit our comparison to
ComplEx in this experiment.

6 Conclusions

We have systematically analyzed shallow embed-
ding models, taking MuRE as our base model.
Among others, we found that linear models gen-
erally outperform their bilinear counterparts. We
also found that including cross-coordinate compar-
isons is important on some datasets, but not all.
Finally, we theoretically showed that MuRE is sur-
prisingly expressive, matching what is known for

state-of-the-art region based models. We therefore
recommend to consider MuRE and its extension,
functional ExpressivE, as the new baselines for
shallow KG embeddings.
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Limitations

Our theoretical espressivity results only establish
lower bounds, i.e. we have provided examples of
types of rule bases that MuRE regions can capture,
but there may be other types of rule bases that can
be captured as well. The same is true for what
is known about existing region-based models. As
such, while we have established that MuRE regions
can match what is known about existing region
based models, in terms of expressivity, there might
still exist types of rule bases that can be captured
using, for instance, octagons or parallelograms, but
not using MuRE regions. There might also be a
difference between what can be captured in the-
ory, and which kinds of rules can be effectively
learned in practice. For instance, the construction
which shows that MuRE regions can capture sets of
regular closed-path rules involves very small con-
stants, so the representations from that particular
construction would be difficult to learn in practice.

In our empirical analysis, we have analyzed the
impact of different scoring functions, but the train-
ing configuration was kept fixed. It is possible
that different conclusions might be reached, for
instance, if some models are trained with lower
learning rates or different regularizers. Our analy-
sis is also limited by the specific choice of datasets
that were considered. While the impact of some de-
sign choices impacts the performance consistently
across all datasets, for other design choices, the
effects are dataset-specific, and further analysis is
needed to characterize more precisely when certain
design choices are useful.
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A Proof of Expressivity Results

In the following, we write Reg(u−, u+, λ) for a
region of the form (3).

A.1 Proof of Proposition 1

The proofs follows the same strategy as the full
expressivity proof for octagon embeddings (Charp-
enay and Schockaert, 2024). However, because
MuRE regions are more constrained than octagons,
we need to double the number of coordinates in the
construction. In particular, we represent each entity
e as a vector γ(e) = e of dimension n = 2·|R|·|E|.
In particular, for each relation r ∈ R and each en-
tity f ∈ E , we have two corresponding coordinates.
We will write er,f,1 and er,f,2 for the value of these
coordinates in the embedding of entity e. We show
that there exists a MuRE region embedding which
satisfies a triple (e, r, f) iff it belongs to G. We
choose the coordinates of e as follows:

er,f,1 = er,f,2 =


0 if e = f

1 if e ̸= f and (f, r, e) ∈ G
2 otherwise

Let us write M s
r,e for the MuRE region representing

relation s in the coordinate associated with entity e
and relation r, and similar for M s

r,1 and M s
r,2. For

all coordinates where s ̸= r, we choose M s
r,e,1 =

M s
r,e,2 = Reg(−2, 2, 1). The regions M r

r,e,1 and
M r

r,e,2 are chosen as follows:

• If (e, r, e) ∈ G we choose M r
r,e,1 = M r

r,e,2 =
Reg(−2, 1, 1).

• Otherwise, we choose M r
r,e,1 = Reg(−2, 1, 1)

and M r
r,e,2 = Reg(−4,−1,−1).

In the following, what matters is which of the
points (i, j), with i, j ∈ {0, 1, 2}, belong to the
considered MuRE regions. We can make the fol-
lowing observations:

• Reg(−2, 2, 1) contains all points (i, j) with
i, j ∈ {0, 1, 2}.

• Reg(−2, 1, 1) contains all points (i, j) with
i, j ∈ {0, 1, 2}, apart from (0, 2).

• Reg(−4,−1,−1) contains all points (i, j)
with i, j ∈ {0, 1, 2}, apart from (0, 0).

Suppose (e, r, f) ∈ G. We need to show that
(es,g, fs,g) ∈ M r

s,g,1 ∩M r
s,g,2 for every s ∈ R and

g ∈ E . If s ̸= r, we have M r
s,g,1 = M r

s,g,2 =
Reg(−2, 2, 1), and we have (es,g, fs,g) ∈ M r

s,g,1 ∩
M r

s,g,2 since es,g, fs,g ∈ {0, 1, 2} by construction.
Let us now consider the cases where s = r.
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• If g ̸= e, we have er,g ∈ {1, 2} and thus
(er,g, fr,g) ∈ M r

r,g,1 ∩ M r
r,g,2, regardless of

the value of fr,g ∈ {0, 1, 2}.

• Now suppose g = e with e ̸= f . Then er,g =
er,e = 0. Since (e, r, f) ∈ G, we have fr,g =
1. We thus have (er,g, fr,g) ∈ M r

r,g,1 ∩M r
r,g,2.

• Finally, suppose g = e = f . Since we as-
sumed that (e, r, f) = (e, r, e) ∈ G we have
that M r

r,g,1 = M r
r,g,2 = Reg(−2, 1, 1). We

also have er,g = fr,g = er,e = 0 and thus
(er,g, fr,g) ∈ M r

r,g,1 ∩M r
r,g,2.

Now suppose (e, r, f) /∈ G. We need to show that
there exists some g ∈ E such that (er,g, fr,g) /∈
M r

r,g,1 or (er,g, fr,g) /∈ M r
r,g,2. If e = f we

know that M r
r,e,1 = Reg(−2, 1, 1) and M r

r,e,2 =
Reg(−4,−1,−1) since we assumed (e, r, e) /∈ G.
Moreover, have er,e = 0 and thus (er,e, er,e) /∈
Reg(−4,−1,−1). Now assume e ̸= f . From
the fact that er,e = 0 and fr,e = 2, and the
fact that M r

r,e,1 = Reg(−2, 1, 1), we find that
(er,g, fr,g) /∈ M r

r,e,1 holds for g = e.

A.2 Composition of MuRE regions
We consider a composition operation for two-
dimensional regions, inspired by the definion of
relational composition (Charpenay and Schockaert,
2024):

X1⋄X2 = {(x, z) | ∃y . (x, y) ∈ X1∧(y, z) ∈ X2}

This composition operator will allow us to analyze
under what conditions a rule is captured by a MuRE
region embedding. Note that ⋄ is associative, i.e.
X1 ⋄ (X2 ⋄ X3) = (X1 ⋄ X2) ⋄ X3. For MuRE
regions, we can characterize the composition oper-
ator ⋄ as follows.

Proposition 4. Let u−1 ≤ u+1 , u−2 ≤ u+2 and
λ1, λ2 ∈ R. If λ1 > 0, it holds that:

Reg(u−1 , u
+
1 , λ1) ⋄ Reg(u−2 , u

+
2 , λ2)

= Reg(u−1 + λ1u
−
2 , u

+
1 + λ1u

+
2 , λ1λ2)

Proof. Assume that (x, z) belongs to the region
Reg(u−1 , u

+
1 , λ1) ⋄Reg(u−2 , u

+
2 , λ2). Then there is

some y such that

u−1 ≤ λ1y − x ≤ u+1 (5)

u−2 ≤ λ2z − y ≤ u+2 (6)

which implies

u−1 + λ1u
−
2 ≤ λ1λ2z − x ≤ u+1 + λ1u

+
2 (7)

Conversely, suppose (7) is satisfied. We need to
show that we can always find a y ∈ R such that (5)
and (6) are satisfied. Since we assumed λ1 > 0,
this is the case iff

y ∈ [
u−1 + x

λ1
,
u+1 + x

λ1
] ∩ [λ2z − u+2 , λ2z − u−2 ]

This intersection is non-empty iff the following two
inequalities are satisfied:

u−1 + x

λ1
≤ λ2z − u−2

λ2z − u+2 ≤ u+1 + x

λ1

Given that λ1 > 0, these inequalities are equivalent
with (7).

Proposition 5. Let u−1 ≤ u+1 , u−2 ≤ u+2 and
λ1, λ2 ∈ R. If λ1 < 0, it holds that:

Reg(u−1 , u
+
1 , λ1) ⋄ Reg(u−2 , u

+
2 , λ2)

= Reg(u−1 + λ1u
+
2 , u

+
1 + λ1u

−
2 , λ1λ2)

Proof. Assume that (x, z) belongs to the region
Reg(u−1 , u

+
1 , λ1) ⋄Reg(u−2 , u

+
2 , λ2). Then there is

some y such that

u−1 ≤ λ1y − x ≤ u+1 (8)

u−2 ≤ λ2z − y ≤ u+2 (9)

which implies

u−1 + λ1u
+
2 ≤ λ1λ2z − x ≤ u+1 + λ1u

−
2 (10)

Conversely, suppose (10) is satisfied. We need to
show that we can always find a y ∈ R such that (8)
and (9) are satisfied. Since we assumed λ1 < 0,
this is the case iff

y ∈ [
u+1 + x

λ1
,
u−1 + x

λ1
] ∩ [λ2z − u+2 , λ2z − u−2 ]

This intersection is non-empty iff the following two
inequalities are satisfied:

u+1 + x

λ1
≤ λ2z − u−2

λ2z − u+2 ≤ u−1 + x

λ1

Given that λ1 < 0, these inequalities are equivalent
with

u+1 + x ≥ λ1λ2z − λ1u
−
2

λ1λ2z − λ1u
+
2 ≥ u−1 + x

which is clearly equivalent with (10).



Proposition 6. Let u−1 ≤ u+1 , u−2 ≤ u+2 and λ2 ∈
R. It holds that:

Reg(u−1 , u
+
1 , 0) ⋄ Reg(u

−
2 , u

+
2 , λ2)

= Reg(u−1 , u
+
1 , 0)

Proof. Assume that (x, z) belongs to the region
Reg(u−1 , u

+
1 , 0) ⋄ Reg(u−2 , u

+
2 , λ2). Then there

is some y such that (x, y) ∈ Reg(u−1 , u
+
1 , 0),

which imples u−1 ≤ x ≤ u+1 and also (x, z) ∈
Reg(u−1 , u

+
1 , 0). Conversely, suppose (x, z) ∈

Reg(u−1 , u
+
1 , 0) holds, then we have u−1 ≤ x ≤ u+1 ,

which means that (x, y) ∈ Reg(u−1 , u
+
1 , 0) for any

y ∈ R. Let us choose y = λ2z − u−2 . Then we
also have (y, z) ∈ Reg(u−2 , u

+
2 , λ2). It follows that

(x, z) ∈ Reg(u−1 , u
+
1 , 0) ⋄ Reg(u

−
2 , u

+
2 , λ2).

The following result clarifies how the composition
operator ⋄ allows us to check if a given rule is
captured by a relation embedding.

Proposition 7. Let Z = Z1 × ... × Zn. Suppose
that τi(rj) ∩ Z2

i ̸= ∅ for all i ∈ {1, ..., n} and
j ∈ {1, ..., p}. The closed path rule r1(X1, X2) ∧
...∧ rp(Xp, Xp+1) → s(X1, Xp+1) is captured by
the relation embedding τ iff for every i ∈ {1, ..., n}
we have:

(τi(r1) ∩ Z2
i ) ⋄ ... ⋄ (τi(rp) ∩ Z2

i ) ⊆ τi(s)

Proof. The assertion that the rule r1(X1, X2) ∧
... ∧ rp(Xp, Xp+1) → s(X1, Xp+1) is captured by
τ is equivalent, by definition, to the following as-
sertion: for all e1, ..., ep+1 in Z such that τ |=
r1(e1, e2), ..., τ |= rp(ep, ep+1), it holds that
τ |= s(e1, ep+1). In other words, for all eij ∈ Zi,
with i ∈ {1, ..., n} and j ∈ {1, ..., p+ 1}, we have
that the following holds: if for every i ∈ {1, ..., n}
we have (ei1, ei2) ∈ τi(r1) ∧ ... ∧ (eip, ei(p+1)) ∈
τi(rp), then for every i ∈ {1, ..., n} we also have
(ei1, ei(p+1)) ∈ τi(s). This is equivalent with the
following assertion: if for every i ∈ {1, ..., n} we
have

(ei1, ei(p+1)) ∈ (τi(r1) ∩ Z2
i ) ⋄ ... ⋄ (τi(rp) ∩ Z2

i )

then for every i ∈ {1, ..., n} we also have
(ei1, ei(p+1)) ∈ τi(s). Since we assumed τi(rj) ∩
Z2
i ̸= ∅ for all i ∈ {1, ..., n} and j ∈ {1, ..., p},

we also have τi(r1) ⋄ ... ⋄ τi(rp) ̸= ∅ for every
i ∈ {1, ..., n}. The previous assertion is then equiv-
alent with the condition that (τi(r1) ∩ Z2

i ) ⋄ ... ⋄
(τi(rp)∩Z2

i ) ⊆ τi(s) for every i ∈ {1, ..., n}.

A.3 Negative Result on Composition
We show that MuRE regions cannot capture even
simple sets of rules for Z = Rn. In particular, we
have the following result.
Proposition 8. Let K consist of the following rules:

r1(X,Y ) → s(X,Y )

r2(X,Y ) → s(X,Y )

r1(X,Y ) ∧ r2(Y,Z) → s(X,Z)

Let Z = Rn. Any MuRE relation embedding
which captures the rules in K also captures the
rule r2(X,Y ) ∧ r1(Y, Z) → s(X,Z).

Proof. A key observation to prove Proposition
8 is that we can only have Reg(u−1 , u

+
1 , λ1) ⊆

Reg(u−2 , u
+
2 , λ2) if λ1 = λ2, which severely limits

how regions can be captured.
Let Z = Rn and let K consist of the following

rules:

r1(X,Y ) → s(X,Y )

r2(X,Y ) → s(X,Y )

r1(X,Y ) ∧ r2(Y,Z) → s(X,Z)

Suppose the relation embedding τ captures each of
these rules. From Proposition 7 we then know that
the following is true for every i ∈ {1, ..., n}:

τi(r1) ⊆ τi(s)

τi(r2) ⊆ τi(s)

τi(r1) ⋄ τi(r2) ⊆ τi(s)

Let τi(rj) = Reg(u−rj , u
+
rj , λrj ) and τi(s) =

Reg(u−s , u
+
s , λs). From Propositions 4–6, we

know that τi(r1) ⋄ τi(r2) = Reg(u−, u+, λr1λr2)
for some u− ≤ u+. From the first two rules we
infer that:

λr1 = λr2 = λs

Let us write this value as λ. From the last rule, we
infer:

λ2 = λ

This is only possible if λ = 1 or λ = 0. If λ =
0, we have τi(r2) ⋄ τi(r1) = Reg(u−r2 , u

+
r2 , 0) =

τi(r2) and thus we find that

τi(r2) ⋄ τi(r1) ⊆ τi(s) (11)

If λ = 1 we have τi(r2) ⋄ τi(r1) = Reg(u−r1 +
u−r2 , u

+
r1+u+r2 , 0) = τi(r1)⋄τi(r2), hence we again

find that (11) is satisfied. We thus have that (11)
must be satisfied for every i ∈ {1, ..., n}, meaning
that the rule r2(X,Y ) ∧ r1(Y,Z) → s(X,Z) is
captured by τ .



A.4 Proof of Proposition 2
For the ease of presentation, in the folowing we
will assume that Z = [0, 1]n. The following result
shows that we can make this assumption w.l.o.g.

Lemma 1. Let τ be a relation embedding, and let
Z ′ = [z−1 , z

+
1 ]×...×[z−n , z

+
n ], with z−i < z+i for all

i ∈ {1, ..., n}. There exists a relation embedding
τ ′ such that for any rule ρ we have that τ captures
ρ with entity domain [0, 1]n iff τ ′ captures ρ with
entity domain Z ′.

Proof. Let us write τi(r) = Reg(u−r,i, u
+
r,i, λr,i),

for each r ∈ R. We define τ ′ as follows:

τ ′i(r) = Reg(u−r,i(z
+
i −z−i ) + (λr,i − 1)z−i ,

u+r,i(z
+
i −z−i ) + (λr,i − 1)z−i ,

λr,i)

Noting that z+i > z−i , we have that u−r,i ≤ λr,iy−x
is equivalent to

u−r,i(z
+
i −z−i ) + (λr,i − 1)z−i

≤ λr,i(z
−
i + y(z+i −z−i ))− (z−i + x(z+i −z−i ))

and similar for the upper bond. We thus find that
(x, y) ∈ τi(r) iff (z−i + x(z+i − z−i ), z

−
i + y(z+i −

z−i )) ∈ τ ′i(r), from which the result immediately
follows.

A.4.1 Bounded MuRE Regions
To check whether a given rule is captured by a rela-
tion embedding, we will again rely on Proposition
7. However, since Z = [0, 1]n we cannot rely on
Propositions 4–6 to characterize compositions of
the form (τ(r1) ∩ Z) ⋄ (τ(r2) ∩ Z). However, as
we will see, under some conditions, the characteri-
zation from Proposition 4 can still be used. Let us
define:

BReg(u, λ) = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

λy − x ≤ u} (12)

The bounded region BReg(u, λ) corresponds to a
region of the form Reg(u, u+, λ) ∩ [0, 1]2, where
the upper bound u+ is always trivial. Note that
we only consider trivial upper bounds because they
play no role in the proof, and this simplifies the pre-
sentation. Similarly, we will only consider the case
where λ > 0, as we will only rely on regions with
positive scaling factors in the proof. We first char-
acterize regions of the form BReg(u, λ) in terms
of their vertices.

Lemma 2. Let λ > 0 and λ− 1 ≤ u ≤ 0. It holds
that BReg(u, λ) is equal to the following region

CH{(−u, 0), (−u+ λ, 1), (1, 0), (1, 1)}

where we write CH for the convex hull operator.

Proof. First note that we clearly have

CH{(−u, 0), (−u+ λ, 1), (1, 0), (1, 1)}
= {(x, y) |x ≤ 1, 0 ≤ y ≤ 1, λy − x ≤ u}

which already shows BReg(u, λ) ⊆ CH{(−u, 0),
(−u+ λ, 1), (1, 0), (1, 1)}.

Since u ≥ λ − 1 > −1 and u ≤ 0, it holds
that (−u, 0) ∈ [0, 1]2. We also trivially have
λ · 0 − (−u) ≤ u, and thus we have (−u, 0) ∈
BReg(u, λ). Similarly, we have −u + λ ≤
(1 − λ) + λ = 1 and −u + λ > −u ≥ 0,
and thus (−u + λ, 1) ∈ [0, 1]2. Furthermore,
we trivially have λ − (−u + λ) ≤ u, and thus
(−u+ λ, 1) ∈ BReg(u, λ). We also trivially have
(1, 0) ∈ BReg(u, λ), nothing that λ ·0−1 = −1 ≤
λ − 1 ≤ u, and (1, 1) ∈ BReg(u, λ), noting that
λ − 1 ≤ u. We have thus also established that
BReg(u, λ) ⊇ CH{(−u, 0), (−u + λ, 1), (1, 0),
(1, 1)}.

Proposition 9. Let λ1, λ2 > 0, λ1 − 1 ≤ u1 ≤ 0
and λ2 − 1 ≤ u2 ≤ 0. It holds that:

BReg(u1, λ1) ⋄ BReg(u2, λ2)

= BReg(u1 + λ1u2, λ1λ2)

Proof. Let (x, z) ∈ BReg(u1, λ1) ⋄BReg(u2, λ2).
Then there is some y such that

λ1y − x ≤ u1 λ2z − y ≤ u2 (13)

which implies

λ1λ2z − x ≤ u1 + λ1u2 (14)

Moreover, we also trivially have x, z ∈ [0, 1]. It
follows that (x, z) ∈ BReg(u1 + λ1u2, λ1λ2).

Conversely, suppose that (x, z) ∈ BReg(u1 +
λ1u2, λ1λ2) holds. Then we have that (14) is sat-
isfied. From Lemma 2, we furthermore know that
x ≥ −u1. We need to show that we can always
find a y ∈ [0, 1] such that the inequalities in (13)
are satisfied. Since we assumed λ1 > 0, this is the
case iff

y ∈
[
λ2z − u2,

u1 + x

λ1

]
∩ [0, 1]



Since (14) is satisfied, we know that the first inter-
val is always non-empty. To show that the intersec-
tion is non-empty, we need to show:

u1 + x

λ1
≥ 0 λ2z − u2 ≤ 1

The first inequality follows from the fact that we
have already established x ≥ −u1. The second
inequality follows from the assumption that u2 ≥
λ1 − 1 and the fact that z ≤ 1.

The closure of two regions BReg(u1, λ1) and
BReg(u2, λ2) is defined as the smallest region of
the form BReg(u3, λ3) that contains these two re-
gions. We have the following result.

Proposition 10. Let λ1 > 0, λ2 > 0, λ1 − 1 ≤
u1 ≤ 0 and λ2 − 1 ≤ u2 ≤ 0. It holds that:

cl(BReg(u1, λ1),BReg(u2, λ2)) = BReg(u3, λ3)

with

u3 = max(u1, u2)

λ3 = min(λ1−u1, λ2−u2) + max(u1, u2)

Proof. From Lemma 2 we know that:

cl(BReg(u1, λ1) = CH{(−u1, 0), (−u1 + λ1, 1),

(1, 0), (1, 1)}
cl(BReg(u2, λ2) = CH{(−u2, 0), (−u2 + λ2, 1),

(1, 0), (1, 1)}

while BReg(max(u1, u2),min(λ1−u1, λ2−u2)+
max(u1, u2)) is given by

CH{min(−u1,−u2), 0),

(min(λ1 − u1, λ2 − u2), 1),

(1, 0), (1, 1)}

from which the result immediately follows.

A.4.2 Preliminaries
We will work with regions of the following form:

Ai,m,p = BReg(−mελ−i, λp)

where i,m, p ∈ N, and ε > 0 and 0 < λ < 1
are sufficiently small constants, to ensure that
the conditions of Proposition 9 are satisfied. In
particular, in the following we will assume that
λp − 1 ≤ −mελ−i for all the values of m and p
that are considered. Further constraints on how
small ε and λ need to be will be made below.

Lemma 3. It holds that

Ai,m1,p1 ⋄Ai+p1,m2,p2 = Ai,m1+m2,p1+p2

Proof. We find using Proposition 9:

Ai,m1,p1 ⋄Ai+p1,m2,p2

= BReg(−m1ελ
−i, λp1)

⋄ BReg(−m2ελ
−i−p1 , λp2)

= BReg(−m1ελ
−i − λp1(m2ελ

−i−p1), λp1+p2)

= BReg(−(m1 +m2)ελ
−i, λp1+p2)

As a special case, we find:

A1,1,1 ⋄A2,1,1 ⋄ ... ⋄Ak,1,1 = A1,k,k

Lemma 4. It holds that

Ai,m1,p1 ⋄Aj,m2,p2

= BReg(−m1ελ
−i −m2ελ

−j+p1 , λp1+p2)

Proof. We find using Proposition 9:

Ai,m1,p1 ⋄Aj,m2,p2

= BReg(−m1ελ
−i,λp1) ⋄ BReg(−m2ελ

−j ,λp2)

= BReg(−m1ελ
−i − λp1(m2ελ

−j), λp1+p2)

= BReg(−m1ελ
−i −m2ελ

−j+p1 , λp1+p2)

Lemma 5. Let π : {j, ..., j+l−1} → {j, ..., j+l−
1} be a permutation, such that π(j + u) ̸= j + u
for at least one u ∈ {0, ..., l − 1}. It holds that
Aπ(j),1,1 ⋄ ... ⋄Aπ(j+l−1),1,1 = BReg(u∗, λ∗) with
u∗ ≤ −ελ−j−1.

Proof. Let u be the smallest index for which π(j +
u) ̸= j + u. If u = 0 then we have Aπ(j),1,1 =
Aj′,1,1 for some j′ > j. We then have

u∗ ≤ −ελ−j′ ≤ −ελ−j−1

If u > 0 we find

Aj,1,1 ⋄ ... ⋄Aj+u−1,1 ⋄Aj+u,1,1

= Aj,u,u ⋄Aj+u′,1,1

= BReg(u′, λ′)

with u′ > u. By Lemma 4 we have

u′ = −uελ−j − ελ−j−u′+u

≤ −ελ−j−u′+u

≤ −ελ−j−1



A.4.3 Capturing Rule Bases
For the ease of presentation, we write r1◦ ....◦rp ⊆
s to denote the closed path rule r1(X1, X2) ∧ ... ∧
rp(Xp, Xp+1) → s(X1, Xp+1).

Let K be a set of regular closed path rules, and
assume that any closed path rule entailed by K is
either a trivial rule of the form r ⊆ r or a regular
rule. We construct a relation embedding capturing
the rules in K as follows. Let us consider assign-
ments α from R to {0, ..., |R|}. Let A be the set
of all such assignments. We consider embeddings
with one coordinate for each of these assignments.
Let us write αi for the assignment associated with
coordinate i. We furthermore write Mr,i for the ith

coordinate of the MuRE region representing rela-
tion r, where Mr,i is of the form (12). We define
these regions as follows. First, for r ∈ R, with
αi(r) = j, we define:

Mr,i =

{
Aj,1,1 if j < |R|
CH{(0, 0), (1, 0)} otherwise

We assume that the constant ε > 0, which is used
in the definition of A1,1,λ, is small enough such
that |R|ελ−|R| + λ ≤ 1. Let us write DC(K) for
the deductive closure of K. More precisely, DC(K)
is the set of all closed path rules which can be
entailed from K and which are not trivial rules of
the form r ⊆ r. We can then consider the following
recursive definition, which we know to be well-
defined thanks to the acyclic nature of regular rule
bases (Charpenay and Schockaert, 2024):

Mr,i = cl{Mr,i∪
{Ms1,i ⋄...⋄Msk,i | (s1 ◦ ... ◦ sk ⊆ r) ∈ DC(K)}}

Let us write τK for the relation embedding defined
above. The following result immediately follows
from the construction of τK.

Lemma 6. It holds that τK captures every rule in
K.

We still need to show that τK only captures the
closed path rules which are entailed by K. We will
first show this for rules of the form r1 ◦ . . .◦rk ⊆ r
where all of the relations r1, . . . , rk, r are distinct.
Let us consider such a composition r1 ◦ . . . ◦ rk,
where k ≤ |R| − 1 and ri ̸= rj for i ̸= j. We
associate with such a composition the following
assignment αi.

αi(r) =

{
j if r = rj

|R| otherwise

For a region of the form M = BReg(u, λ) we
define:

lo(M) = −u

uo(M) = −u+ λ

sc(M) = λ

Note that these values respectively correspond to
the lower offset (i.e. the lowest x-value for which
(x, 0) ∈ M ), the upper offset (i.e. the lowest x-
value for which (x, 1) ∈ M ) and the scale factor.

Lemma 7. Assume λ < 1. It holds that one of the
following is true:

• K entails a rule of the form rπ1 ◦ ... ◦ rπv ⊆ s,
sc(Ms,i) = λv and lo(Ms,i) ≥ ελ−j with
j ≥ max{πz − z + 1 | z ∈ {1, ..., v}}.

• K entails a rule of the form rπ1 ◦ ... ◦ rπv ⊆ s
and sc(Ms,i) > λv.

• K does not entail any rules of the form rπ1 ◦
... ◦ rπv ⊆ s and Ms,i = CH{(0, 0), (1, 0)}.

Proof. We show this result by structural induction.
First, assume that there are no rules of the form
t1 ◦ ... ◦ tu ⊆ s which are entailed by K, apart
from the trivial rule s ⊆ s. If s /∈ {r1, ..., rk}
then we have that Ms,i = {(0, 0), (1, 0)}, and the
result is trivially satisfied. If s = rj for some
j ∈ {1, .., k}, we have Ms,i = Aj,1,1. We then
have lo(Ms,i) = ελ−j and sc(Ms,i) = λ, and thus
we again have that the result is valid.

To show the inductive step, suppose that for each
rule t1 ◦ ... ◦ tp ⊆ s entailed by K, the result has
already been shown for t1, ..., tp. Let t1◦...◦tp ⊆ s
be a rule from K. First suppose that for some
j ∈ {1, ..., p} it holds that K does not entail any
rules of the form rπ1◦...◦rπv ⊆ tj . Let us write Ks

3

for this set of rules. By induction, we then have that
Mtj ,i = {(0, 0), (1, 0)}. It then also follows that
Mt1,i ⋄ ... ⋄Mtp,i = {(0, 0), (1, 0)}. Now suppose
that for each j ∈ {1, ..., p}, K entails a rule of the
form rσ1,j ◦ ... ◦ rσvj,j

⊆ tj . Then, because of
the induction hypothesis, we know that there must
exist such rules such that either:

• sc(Mtj ,i) = vj and lo(Mtj ,i) ≥ ελ−l with
l ≥ max{σz,j − z + 1 | z ∈ {1, ..., vj}}; or

• sc(Mtj ,i) > vj .

By induction we have sc(Mtj , i) ≥ vj for every j,
from which it follows that sc(Mt1,i ⋄ ... ⋄Mtp,i) ≥



v1+...+vp. If the second option is satisfied for any
j ∈ {1, ..., p} then we clearly have sc(Mt1,i ⋄ ... ⋄
Mtp,i) > v1 + ...+ vp. Let us write Ks

2 for this set
of rules. Now suppose the first option is satisfied
for every j ∈ {1, ..., p}. Let us write Ks

1 for this
set of rules. Then we have sc(Mt1,i ⋄ ... ⋄Mtp,i) =
v1 + ...+ vp. Furthermore, we find:

lo(Mt1,i ⋄ ... ⋄Mtp,i)

= lo(Mt1,i) +

p∑
z=2

λv1+...+vz−1 lo(Mtz ,i)

Using the induction hypothesis, we find and
lo(Mt1,i ⋄ ... ⋄Mtp,i) ≥ lo(Mt1,i) ≥ ελ−σz,1+z−1

for z ∈ {1, ..., v1}. We also find for q ∈ {2, ..., p}
and z ∈ {1, ..., vq}:

lo(Mt1,i ⋄ ... ⋄Mtp,i)

≥ λv1+...+vq−1 lo(Mtq ,i)

≥ λv1+...+vq−1ελ−σz,q+z−1

= ελ−σz,q+z+v1+...+vq−1−1

Because this result holds for every rule of the form
t1 ◦ ... ◦ tp ⊆ s in K, it follows that sc(Ms,i) = λv

and lo(Ms,i) ≥ ελ−j with j ≥ max{πz − z +
1 | z ∈ {1, ..., v}}.

By construction, we have that Ms,i is the closure
of the regions Mt1,i ⋄ ... ⋄ Mtp,i, over all rules
t1 ◦ ... ◦ tp ⊆ s entailed by K. If Ks

1 = Ks
2 = ∅,

then it follows that Ms,i = {(0, 0), (1, 0)}, and
the stated result is clearly satisfied. Otherwise, we
have:

uo(Ms,i) = min{uo(Mt1,i ⋄ ... ⋄Mtp,i) |
t1 ◦ ... ◦ tp ⊆ s ∈ Ks

1 ∪ Ks
2}

lo(Ms,i) = min{lo(Mt1,i ⋄ ... ⋄Mtp,i) |
t1 ◦ ... ◦ tp ⊆ s ∈ Ks

1 ∪ Ks
2}

Specifically, uo(Ms,i) = uo(Mt1,i ⋄ ... ⋄Mtp,i) for
some rule ρu = t1 ◦ ... ◦ tp ⊆ s ∈ Ks

1 ∪ Ks
2 and

lo(Ms,i) = ρl = lo(Mt′1,i
⋄ ... ⋄ Mt′q ,i) for some

rule t′1 ◦ ... ◦ t′q ⊆ s ∈ Ks
1 ∪ Ks

2. We find:

• If ρu = ρl and the rule comes from Ks
1, then

we have established that the first condition
from the lemma must be satisfied.

• If ρu comes from Ks
2, then we have that the

second condition from the lemma must be
satisfied.

• If ρu ̸= ρl (and it is not possible to choose ρu
and ρl such that ρu = ρl) then we have that

the second condition from the lemma must be
satisfied. Indeed, we then have

sc(Ms,i) = uo(Ms,i)− lo(Ms,i)

= uo(Mt1,i ⋄ ... ⋄Mtp,i)

− lo(Mt′1,i
⋄ ... ⋄Mt′q ,i)

> uo(Mt1,i ⋄ ... ⋄Mtp,i)

− lo(Mt1,i ⋄ ... ⋄Mtp,i)

= sc(Mt1,i ⋄ ... ⋄Mtp,i)

where we have established that sc(Mt1,i ⋄ ... ⋄
Mtp,i) ≥ λv for some rule of the form rπ1 ◦
... ◦ rπv ⊆ s entailed by K.

In all cases, we thus find that the result is satisfied.

Lemma 8. Assume λ < 1. Let r1, . . . , rk, r ∈ R
be distinct relations and assume that K ̸|= r1◦ . . .◦
rk ⊆ r. Then Mr1,i ⋄ . . . ⋄Mrk,i ̸⊆ Mr,i for αi the
assignment defined above.

Proof. We clearly have:

Mr1,i ⋄ . . . ⋄Mrk,i ⊇ A1,1,1 ⋄ . . . ⋄Ak,1,1

where the right-hand side equals A1,k,k. In partic-
ular, we have that Mr1,i ⋄ . . . ⋄Mrk,i contains the
point (ελ−1 + λk, 1). To conclude the proof we
show that this point does not belong to Mr,i. Note
that (ελ−1 + λk, 1) ∈ Mr,i is equivalent with the
condition uo(Mr,i) ≤ ελ−1 + λk. By Lemma 7,
we know that there are only two situations where
this condition can be satisfied:

• There might be a rule of the form rπ1 ◦
... ◦ rπv ⊆ r, such that sc(Mr,i) = λv and
lo(Mr,i) ≥ ελ−j with j ≥ max{πz − z +
1 | z ∈ {1, ..., v}}. To have uo(Mr,i) ≤
ελ−1 + λk, we need v = k and j = 1. How-
ever, we can only have j = 1 if (π1, ..., πk) =
(1, ..., k). In other words, we can only have
uo(Mr,i) ≤ ελ−1+λk if K |= r1◦. . .◦rk ⊆ r,
which was assumed not to be the case.

• There might be a rule of the form rπ1 ◦ ... ◦
rπv ⊆ r such that sc(Ms,i) > λv. However,
we can then only have uo(Mr,i) ≤ ελ−1+λk

if λv < λk, meaning v > k. However,
this is not possible given that rπ1 , ..., rπv

were assumed to be distinct relations from
{r1, ..., rk}.

It follows that uo(Mr,i) > ελ−1 + λk.



Lemma 8 shows that τK does not capture any
unwanted rules of the form r1 ◦ . . . ◦ rk ⊆ r
where r1, . . . , rk, r are distinct relations. We
now show that the same is true for rules where
r1, . . . , rk, r are not necessarily distinct. Note that
when r1, . . . , rk, r are not all distinct, we always
have K ̸|= r1 ◦ . . . ◦ rk ⊆ r (except for the trivial
rule r ⊆ r), given our assumption about K.

Lemma 9. Let λ < 1. Let s1, . . . , sl ∈ R be
such that sp = sq for some p ̸= q. There is a
coordinate i such that Ms1,i ⋄ . . . ⋄Msl,i ̸⊆ Mr,i

for any relation r ∈ R.

Proof. Let r1, . . . , rk be the unique relations
among s1, . . . , sl, i.e. we have {r1, . . . , rk} =
{s1, . . . , sl} with k < l. Let us define the assign-
ment αi as follows:

αi(s) =

{
0 if s ∈ {r1, ..., rk}
|R| otherwise

Clearly we have

Ms1,i ⋄ . . . ⋄Msl,i ⊇ A0,1,1 ⋄ . . . ⋄A0,1,1 = A0,l,l

In particular (λl, 1) ∈ Ms1,i ⋄ . . . ⋄Msl,i. In con-
trast, since K only entails closed path rules which
are regular, it is easy to see that sc(Mt1,i ⋄ . . . ⋄
Mtp,i) ≥ λk for any rule t1 ◦ ... ◦ tp ⊆ r entailed
by K. Since k < l and λ < 1 it follows that
(λl, 1) /∈ Mr,i.

Lemma 10. Let s1, . . . , sl, r ∈ R be such that
r ∈ {s1, . . . , sl} and l ≥ 2. There is a coordinate i
such that Ms1,i⋄ . . .⋄Msl,i ̸⊆ Mr,i for any relation
r ∈ R.

Proof. Let r1, . . . , rk be the unique relations
among s1, . . . , sl, i.e. we have {r1, . . . , rk} =
{s1, . . . , sl} with k ≤ l. Let us consider the same
assignment αi as in the proof of Lemma 9. We then
again find that (λl, 1) ∈ Ms1,i ⋄ . . .⋄Msl,i. By con-
struction, any rule of the form rπ1 ◦ ... ◦ rπv ⊆ r
entailed by K is such that rπ1 , ..., rπv are dis-
tinct relations from {r1, ..., rk} \ r. It follows
that sc(Mt1,i ⋄ . . . ⋄ Mtp,i) ≥ λk−1 for any rule
t1 ◦ ... ◦ tp ⊆ r entailed by K, and in particular
(λl, 1) /∈ Mr,i.

Proposition 2 now directly follows from Lemmas
6, 8, 9 and 10.

A.5 Proof of Proposition 3
Let K be a set of symmetry, inversion, hierarchy
and intersection rules. We denote an intersection
rule r1(X,Y ) ∧ r2(X,Y ) → r3(X,Y ) as r1 ∩
r2 ⊆ r3. We denote an inversion rule r1(X,Y ) →
r2(Y,X) as r1 ⊆ rinv

2 and similar for hierarchy and
symmetry rules.

We construct a relation embedding τK captur-
ing these rules, without capturing any rules not
entailed by K. We consider assignments α : R →
{−2,−1, 0, 1, 2} and write A for the set of all such
assignments. We will construct embeddings with
one coordinate for each assignment, writing αi for
the assignment associated with coordinate i. Let
Mr,i be the region representing relation r in coor-
dinate i. We initialise these regions as follows:

M
(0)
r,i =


Reg(0, αi(r), 1) if αi(r) > 0

Reg(αi(r), 0, 1) if αi(r) < 0

Reg(−2, 2, 1) if αi(r) = 0

We then apply the following update rules (j ≥ 1):

M
(j)
r,i = cl{M (j−1)

r,i

∪ {M (j)
s,i | K |= s ⊆ r}

∪ {(M (j)
s,i )

inv | K |= s ⊆ r−1}

∪ {M (j)
s,i ∩M

(j)
t,i | K |= s ∩ t ⊆ r}}

where for M = Reg(u−, u+, λ), with λ ̸= 0, we
write M inv = Reg(−u+

λ ,−u−

λ , 1
λ). Clearly, in each

iteration, we have M
(j)
r,i ⊇ M

(j−1)
r,i . Furthermore,

there are only finitely many values M (j)
r,i can take.

This iterative process thus reaches a fixpoint after
a finite number of steps. Let Mr,i be the resulting
regions, and let τK be the associated region em-
bedding. The proof that τK captures the rules in
K, and only those rules, then follows in entirely
the same way as the proof for octagon embeddings
from (Charpenay and Schockaert, 2024).

A.6 Limitations of MuRE Regions
Symmetric relations can only be modelled using
regions Reg(u−, u+, λ) that satisfy either of the
following conditions:

• λ = 1 and u− = −u+;

• λ = −1

This restriction entails various limitations. To illus-
trate this, first note that using Propositions 4 and 5,



we straightforwardly find:

Reg(−u1, u1, 1) ⋄ Reg(−u2, u2, 1)

= Reg(−u1 − u2, u1 + u2, 1)

= Reg(−u2, u2, 1) ⋄ Reg(−u1, u1, 1)

Reg(−u1, u1, 1) ⋄ Reg(u−2 , u
+
2 ,−1)

= Reg(−u1 + u−2 , u1 + u+2 ,−1)

= Reg(u−2 , u
+
2 ,−1) ⋄ Reg(−u1, u1, 1)

Now suppose the relations r and s are symmetric,
while r ◦ s ̸= s ◦ r. It follows that there needs to be
at least one coordinate in which the scaling factor
is −1, for both r and s. However, for transitive rela-
tions, we clearly cannot have -1 as a scaling factor.
It follows that when r and s are symmetric and r
is transitive, whenever a rule r ◦ s ⊆ t is captured,
then we also have that s ◦ r ⊆ t is captured, and
vice versa.

B Additional Experimental Details and
Analysis

B.1 Model Combinations

The various KG embedding models we have re-
viewed can be generated from five independent
design choices:

• The dissimilarity measure which is used,
where we consider two options: Euclidean
distance and squared norm.

• Whether and which kinds of learnable bias
terms are used. Here we consider four op-
tions: norms, entity biases, relation biases and
a fixed margin.

• Whether scaling and/or translation are used,
which leads to three options: only scaling,
only translation, or both.

• Whether coordinate-wise and/or cross-
coordinate comparisons are used, where there
are three options: only coordinate-wise, only
cross-coordinate or both.

• Whether a region-based view is adopted, with
a learnable width parameter, which leads to
two options: with or without a width parame-
ter.

From these design choices, we obtain 2× 4× 3×
3× 2 = 144 model combinations.

d |B| δ |N | λ

Countries 40 256 10−2 10 3
Kinships 40 256 10−2 10 3
UMLS 40 256 10−2 10 3

CPR 40 256 10−1 10 3
CPR-rt 40 256 10−1 10 3
CPR-rtu 40 256 10−1 10 3

WN18RR 100 256 10−3 50 6
FB15k-237 200 256 10−3 50 9

Table 5: Hyperparameters used per dataset for training,
where d is the embedding dimension, |B| is the size of a
training batch, δ is the learning rate, |N | is the number
of negative examples per triple and λ is the margin (for
configurations without a learnable bias).

B.2 Hyperparameters

All results given in the paper were obtained by set-
ting the hyperparameters listed in Table 5. These
hyperparameters were identical for all models,
other model-specific configuration points were left
unchanged. The reported results for every model
are those obtained with the version of the model
that has the highest hits@10 on a validation KG
(evaluation performed every 10 epochs). The maxi-
mum number of epochs is set to 500, training stops
as soon as hits@10 on the validation KG decreases
(no patience).

B.3 Small-scale Experiments

Tables 6–8 provide the detailed results we obtained
for Countries, Kinships and UMLS. Note how
the Countries dataset, designed to be noise-free,
shows the highest variability. In the following, we
comment the influence of each of the five design
choices identified in the paper.

Dissimilarity Function As made clear in (1),
models that are based on a dot product (i.e. compar-
ison function h2) can equivalently be characterized
in terms of the Euclidean norm. We empirically
compare these two formulations in the first block
of results in Table 1. Despite their mathematical
equivalence, they behave differently during optimi-
sation, which might translate into a different empir-
ical performance. We can indeed see some small
differences between the performance of these two
formulations, although they may not be significant,
as the differences are of the same order of magni-
tude as the standard deviation across multiple runs.
What is clearer, however, is the importance of the
bias. The model that uses the squared norm and a



Countries

h@1 h@3 h@10 MRR

TransE 0.262 ± 0.177 0.441 ± 0.045 0.520 ± 0.014 0.367 ± 0.109
RotatE 0.400 ± 0.027 0.979 ± 0.020 0.995 ± 0.009 0.670 ± 0.019
BoxE 0.804 ± 0.152 0.945 ± 0.060 1.0 ± 0.0 0.880 ± 0.095
MuRE 0.675 ± 0.078 0.979 ± 0.020 1.0 ± 0.0 0.820 ± 0.052
func. ExpressivE 0.512 ± 0.050 0.945 ± 0.056 1.0 ± 0.0 0.723 ± 0.014
ExpressivE 0.466 ± 0.230 0.712 ± 0.309 0.850 ± 0.266 0.609 ± 0.251
ComplEx 0.0 ± 0.0 0.008 ± 0.011 0.024 ± 0.017 0.016 ± 0.003
SimplE 0.104 ± 0.070 0.275 ± 0.205 0.504 ± 0.315 0.234 ± 0.150
gs;u(e) · f 0.404 ± 0.034 0.762 ± 0.011 0.945 ± 0.056 0.602 ± 0.020
−∥gs;u(e)− f∥2 + ∥gs;u(e)∥2 + ∥f∥2 0.341 ± 0.119 0.641 ± 0.114 0.837 ± 0.049 0.517 ± 0.098
−∥gs;u(e)− f∥2 + λ 0.504 ± 0.063 0.870 ± 0.126 0.945 ± 0.058 0.688 ± 0.020
−∥gs;u(e)− f∥+ λ 0.608 ± 0.074 0.962 ± 0.061 1.0 ± 0.0 0.790 ± 0.044
−∥gs;u(e)− f∥+ bh + bt 0.720 ± 0.114 0.891 ± 0.101 0.937 ± 0.064 0.809 ± 0.097
−∥gs;0(e)− f∥+ br 0.695 ± 0.100 0.954 ± 0.069 0.983 ± 0.027 0.825 ± 0.070
−∥g1;u(e)− f∥+ br 0.729 ± 0.070 0.979 ± 0.029 1.0 ± 0.0 0.853 ± 0.044
−∥gs;u(e)− f∥+ br 0.683 ± 0.071 0.995 ± 0.009 0.995 ± 0.009 0.828 ± 0.030
−∥gs;0(e; e′)− f ′; f∥+ br 0.662 ± 0.053 0.920 ± 0.092 0.991 ± 0.018 0.796 ± 0.036
−∥g1;u(e; e′)− f ′; f∥+ br 0.674 ± 0.149 0.987 ± 0.027 1.0 ± 0.0 0.825 ± 0.085
−∥gs;u(e; e′)− f ′; f∥+ br 0.650 ± 0.064 0.983 ± 0.037 0.991 ± 0.018 0.809 ± 0.045
−∥gs;0(e; e′; e; e′)− f ; f ′; f ′; f∥+ br 0.633 ± 0.086 0.966 ± 0.027 0.991 ± 0.011 0.796 ± 0.042
−∥gs;u(e; e′; e; e′)− f ; f ′; f ′; f∥+ br 0.620 ± 0.099 0.937 ± 0.046 1.0 ± 0.0 0.778 ± 0.062
−dw(gs;u(e), f) + br 0.495 ± 0.082 0.770 ± 0.075 0.916 ± 0.048 0.644 ± 0.067
−dw(g1;u(e), f) + br 0.516 ± 0.082 0.945 ± 0.043 1.0 ± 0.0 0.717 ± 0.049
−dw(g1;u(e; e

′), f ′; f) + br 0.487 ± 0.089 0.883 ± 0.045 0.975 ± 0.022 0.686 ± 0.053
−dw(gs;u(e; e

′), f ′; f) + br 0.395 ± 0.084 0.616 ± 0.078 0.800 ± 0.066 0.537 ± 0.067
−dw(gs;u(e; e

′; e; e′), f ; f ′; f ′; f) + br 0.458 ± 0.159 0.691 ± 0.120 0.891 ± 0.075 0.604 ± 0.123

Table 6: Performance of link prediction on the Countries dataset (mean and standard deviation over 5 runs).

fixed bias (λ = 3) outperforms both variants, on
all runs and all datasets. MRR increases by 2-8%,
for example. Most linear models define d as the
Euclidian distance. The configuration where λ is
fixed and d is the Euclidian distance has an small
edge over other configurations. We take it as a
reference in the remainder of the section.

Trainable Biases Balazevic et al. (2019a) al-
ready observed that using trainable biases can lead
to better results. However, they only evaluated
entity-specific biases. In the second block of results
in Table 1, we compare MuRE with models where
d is the Euclidian distance and the bias term is (i) a
learned constant λ (as previously introduced); (ii) a
relation-specific term br; or (iii) an entity-specific
term be + bf . The use of relation-specific biases
(br) tends to give the best results across the three
datasets. Interestingly, on Countries, we found that
the entity-specific bias terms be and bf are strongly
correlated with the degree of entities in the KG,
being higher for entities that appear in more triples.
Biases thus help capture a statistical prior for each
entity. Such a prior does not help to predict links
if the KG is balanced (as in Kinships, where the
correlation between entity biases and degrees is
close to 0) or if entities are highly connected (as

in UMLS). More details can be found in Appendix
B.5.

Scaling and Translation Most models transform
the head entity either through scaling or translation
but not both, with MuRE and ExpressivE being
the most notable exceptions. An analysis across
the three datasets shows, however, that combining
scaling and translation is important (third block
of results in Table 1). Translation alone underper-
forms on Kinships and UMLS. Moreover, com-
bining translation and scaling improves MRR by
2-3% w.r.t. using scaling alone. On Countries, us-
ing translation along works well. However, recall
that this is a simple and artificially constructed
KG. In fact, it is sufficient to learn a single regular
closed-path rule (which translational models can
capture) to achieve strong link prediction results
for this dataset. It is worth noting that some models
in the literature also allow transformation through
rotation4. RESCAL, for instance, embeds relations
as arbitrary linear transformations, combining ro-
tation with scaling (Nickel et al., 2011b). Later
models extended it to affine transformations, also

4We refer here to rotation in Rn. Note that RotatE, despite
its name, should rather be considered as a scaling model:
rotation is not in Rn but in the two-dimensional Euler plane.



Kinships

h@1 h@3 h@10 MRR

TransE 0.026 ± 0.002 0.069 ± 0.004 0.190 ± 0.003 0.089 ± 0.003
RotatE 0.553 ± 0.015 0.810 ± 0.013 0.955 ± 0.001 0.697 ± 0.012
BoxE 0.517 ± 0.014 0.782 ± 0.015 0.957 ± 0.003 0.669 ± 0.011
MuRE 0.478 ± 0.021 0.736 ± 0.016 0.945 ± 0.004 0.633 ± 0.016
func. ExpressivE 0.521 ± 0.016 0.767 ± 0.008 0.938 ± 0.003 0.665 ± 0.010
ExpressivE 0.584 ± 0.007 0.821 ± 0.015 0.965 ± 0.002 0.718 ± 0.007
ComplEx 0.633 ± 0.017 0.857 ± 0.014 0.971 ± 0.001 0.757 ± 0.013
SimplE 0.343 ± 0.024 0.582 ± 0.014 0.875 ± 0.007 0.506 ± 0.018
gs;u(e) · f 0.418 ± 0.022 0.696 ± 0.021 0.940 ± 0.006 0.588 ± 0.018
−∥gs;u(e)− f∥2 + ∥gs;u(e)∥2 + ∥f∥2 0.434 ± 0.019 0.702 ± 0.022 0.939 ± 0.003 0.600 ± 0.017
−∥gs;u(e)− f∥2 + λ 0.476 ± 0.007 0.741 ± 0.007 0.943 ± 0.003 0.632 ± 0.005
−∥gs;u(e)− f∥+ λ 0.492 ± 0.021 0.745 ± 0.009 0.937 ± 0.003 0.643 ± 0.013
−∥gs;u(e)− f∥+ bh + bt 0.490 ± 0.017 0.748 ± 0.016 0.944 ± 0.003 0.643 ± 0.014
−∥gs;0(e)− f∥+ br 0.467 ± 0.005 0.722 ± 0.017 0.928 ± 0.003 0.621 ± 0.007
−∥g1;u(e)− f∥+ br 0.071 ± 0.035 0.146 ± 0.038 0.304 ± 0.017 0.151 ± 0.032
−∥gs;u(e)− f∥+ br 0.496 ± 0.024 0.745 ± 0.018 0.939 ± 0.011 0.645 ± 0.018
−∥gs;0(e; e′)− f ′; f∥+ br 0.631 ± 0.018 0.855 ± 0.012 0.968 ± 0.006 0.755 ± 0.013
−∥g1;u(e; e′)− f ′; f∥+ br 0.074 ± 0.009 0.153 ± 0.015 0.321 ± 0.025 0.159 ± 0.009
−∥gs;u(e; e′)− f ′; f∥+ br 0.633 ± 0.025 0.861 ± 0.013 0.971 ± 0.002 0.757 ± 0.018
−∥gs;0(e; e′; e; e′)− f ; f ′; f ′; f∥+ br 0.609 ± 0.023 0.847 ± 0.012 0.973 ± 0.004 0.741 ± 0.018
−∥gs;u(e; e′; e; e′)− f ; f ′; f ′; f∥+ br 0.658 ± 0.027 0.880 ± 0.021 0.978 ± 0.003 0.778 ± 0.020
−dw(gs;u(e), f) + br 0.520 ± 0.014 0.784 ± 0.015 0.959 ± 0.004 0.673 ± 0.012
−dw(g1;u(e), f) + br 0.291 ± 0.052 0.598 ± 0.027 0.909 ± 0.007 0.487 ± 0.036
−dw(g1;u(e; e

′), f ′; f) + br 0.531 ± 0.014 0.800 ± 0.012 0.965 ± 0.003 0.683 ± 0.011
−dw(gs;u(e; e

′), f ′; f) + br 0.539 ± 0.029 0.798 ± 0.029 0.963 ± 0.007 0.686 ± 0.024
−dw(gs;u(e; e

′; e; e′), f ; f ′; f ′; f) + br 0.596 ± 0.014 0.850 ± 0.007 0.974 ± 0.002 0.735 ± 0.010

Table 7: Performance of link prediction on the Kinships dataset (mean and standard deviation over 5 runs).

featuring translation (Jiang et al., 2024; Ge et al.,
2022). Yet, despite a significantly higher number
of trainable parameters, the performance of these
models does not exceed that of MuRE or RotatE,
suggesting that scaling and translation are sufficient
for faithful relation embeddings.

Cross-Coordinate Comparison We analyze
models with cross-coordinate comparisons in the
fourth block of results in Table 1. Having both
coordinate-wise and cross-coordinate comparisons,
as in ComplEx, slightly increases results, ex-
cept for Countries. As already mentioned, this
dataset requires learning a particular closed-path
rule, which cross-coordinate comparison models
struggle with. Conversely, for Kinships, using
only cross-coordinate comparisons significantly im-
proves results. Overall, our results highlight the
usefulness of cross-coordinate comparisons. It is
interesting to note, however, that ComplEx under-
performs its linear variant. The gap is particularly
large on Countries, which is likely due to the regu-
larization scheme of ComplEx (which is also used
by SimplE) being ineffective on small datasets.

Region-based Formulation BoxE and Expres-
sivE, as region based models, have a width param-

eter w. The last block of results in Table 1 shows
that such width-dependent scoring decreases the
performance of the cross-coordinate model. It also
decreases performance on Countries and UMLS
for the baseline model. However, BoxE performs
better than a baseline translational model on Kin-
ships. ExpressivE performs best on Kinships and
UMLS. Further experiments show that functional
ExpressivE (w = 0) outperforms MuRE on all
datasets, including Countries.

B.4 License Details

All datasets have been used fully in line with their
intended purpose. They can be found on Github5

and via PyKEEN6. Note that PyKEEN only ex-
poses the S1 version of Countries, which is the
one we used. WN18RR is a subset of WordNet7,
available under a dedicated license (the WordNet
license). FB15k-237 is a subset of Freebase, a
large KG available under a CC-BY 2.5 license8.
Countries, in its original form9, is published under

5https://github.com/ZhenfengLei/KGDatasets
6https://pykeen.readthedocs.io/en/stable/

reference/datasets.html
7https://wordnet.princeton.edu
8https://developers.google.com/freebase
9https://github.com/mledoze/countries

https://github.com/ZhenfengLei/KGDatasets
https://pykeen.readthedocs.io/en/stable/reference/datasets.html
https://pykeen.readthedocs.io/en/stable/reference/datasets.html
https://wordnet.princeton.edu
https://developers.google.com/freebase
https://github.com/mledoze/countries


UMLS

h@1 h@3 h@10 MRR

TransE 0.475 ± 0.016 0.650 ± 0.020 0.798 ± 0.004 0.588 ± 0.009
RotatE 0.668 ± 0.009 0.931 ± 0.004 0.982 ± 0.003 0.804 ± 0.005
BoxE 0.766 ± 0.019 0.958 ± 0.006 0.984 ± 0.003 0.865 ± 0.011
MuRE 0.775 ± 0.013 0.977 ± 0.006 0.996 ± 0.001 0.877 ± 0.008
func. ExpressivE 0.794 ± 0.018 0.982 ± 0.002 0.996 ± 0.000 0.888 ± 0.009
ExpressivE 0.816 ± 0.012 0.970 ± 0.004 0.993 ± 0.002 0.895 ± 0.006
ComplEx 0.774 ± 0.016 0.949 ± 0.011 0.985 ± 0.005 0.865 ± 0.011
SimplE 0.555 ± 0.028 0.722 ± 0.007 0.883 ± 0.004 0.664 ± 0.016
gs;u(e) · f 0.674 ± 0.012 0.935 ± 0.007 0.983 ± 0.003 0.808 ± 0.010
−∥gs;u(e)− f∥2 + ∥gs;u(e)∥2 + ∥f∥2 0.703 ± 0.035 0.932 ± 0.015 0.986 ± 0.001 0.823 ± 0.022
−∥gs;u(e)− f∥2 + λ 0.760 ± 0.006 0.969 ± 0.007 0.994 ± 0.000 0.865 ± 0.003
−∥gs;u(e)− f∥+ λ 0.767 ± 0.018 0.962 ± 0.013 0.989 ± 0.005 0.867 ± 0.014
−∥gs;u(e)− f∥+ bh + bt 0.764 ± 0.016 0.967 ± 0.006 0.994 ± 0.001 0.867 ± 0.010
−∥gs;0(e)− f∥+ br 0.742 ± 0.020 0.940 ± 0.005 0.984 ± 0.002 0.846 ± 0.012
−∥g1;u(e)− f∥+ br 0.479 ± 0.012 0.812 ± 0.017 0.943 ± 0.007 0.660 ± 0.007
−∥gs;u(e)− f∥+ br 0.772 ± 0.017 0.971 ± 0.001 0.993 ± 0.000 0.873 ± 0.008
−∥gs;0(e; e′)− f ′; f∥+ br 0.743 ± 0.036 0.934 ± 0.019 0.979 ± 0.006 0.844 ± 0.025
−∥g1;u(e; e′)− f ′; f∥+ br 0.684 ± 0.016 0.921 ± 0.005 0.985 ± 0.002 0.811 ± 0.009
−∥gs;u(e; e′)− f ′; f∥+ br 0.763 ± 0.016 0.961 ± 0.009 0.988 ± 0.004 0.865 ± 0.006
−∥gs;0(e; e′; e; e′)− f ; f ′; f ′; f∥+ br 0.736 ± 0.031 0.936 ± 0.017 0.985 ± 0.006 0.841 ± 0.021
−∥gs;u(e; e′; e; e′)− f ; f ′; f ′; f∥+ br 0.772 ± 0.004 0.967 ± 0.002 0.993 ± 0.001 0.872 ± 0.002
−dw(gs;u(e), f) + br 0.767 ± 0.013 0.957 ± 0.003 0.985 ± 0.002 0.863 ± 0.007
−dw(g1;u(e), f) + br 0.548 ± 0.027 0.956 ± 0.005 0.990 ± 0.001 0.753 ± 0.013
−dw(g1;u(e; e

′), f ′; f) + br 0.754 ± 0.028 0.957 ± 0.010 0.985 ± 0.003 0.859 ± 0.018
−dw(gs;u(e; e

′), f ′; f) + br 0.739 ± 0.016 0.950 ± 0.003 0.983 ± 0.005 0.848 ± 0.006
−dw(gs;u(e; e

′; e; e′), f ; f ′; f ′; f) + br 0.768 ± 0.024 0.965 ± 0.007 0.992 ± 0.003 0.869 ± 0.012

Table 8: Performance of link prediction on the UMLS dataset (mean and standard deviation over 5 runs).

an ODC Open Database license (ODbl). These li-
censes permit use, copy and modification. UMLS
is licensed by the US National Medical Library10.
Some restrictions apply on its use in general, but
not in academia. No license information is known
for the Kinships dataset. It is original work by the
anthropologist Woodrow W. Denham.

B.5 Trainable Biases
We analyze to what extent entity biases encode
the importance of entities in the KG, where we
interpret importance in terms of their in-degree.
Figures 1, 2 and 3 show how the in-degree of an
entity relates to the size of its corresponding bias.
These plots were produced with the biases learnt
with the following scoring function:

∥e⊙ s+ u− f∥+ be + bf

where e, s,u, f ∈ R40. In Countries (Figure 1),
the correlation between in-degree and learnt bias is
strong. In UMLS (Figure 3), a correlation also ex-
ists, but it is not as strong. The range of in-degrees
is also much broader in this case. Kinships is the
exception (Figure 2). All entities have roughly the
same in-degree (∼80), yet we still find bias terms

10https://www.nlm.nih.gov/databases/umls.html

Figure 1: In-degree of entities vs. learnt entity biases
for Countries.

ranging from around 1 to around 2, which appear
to be the result of overfitting.

B.6 Synthetic Experiments
Characteristics of our synthetic closed-path rule
datasets can be found in Table 9. Tables 10–12
provide the detailed results we obtained for these
datasets.

B.7 Benchmark Experiments
Experimental Settings Results found in the liter-
ature on WN18RR and FB15k-237 are not directly
comparable to each other. For instance, RotatE and
ComplEx, whose entity embeddings are defined in

https://www.nlm.nih.gov/databases/umls.html


Figure 2: In-degree of entities vs. learnt entity biases
for Kinships.

Figure 3: In-degree of entities vs. learnt entity biases
for UMLS.

Cn, have been compared to TransE and DistMult
models with embeddings in Rn while they should
in fact be compared with models in R2n. Simi-
larly, BoxE should be compared with models that
have embeddings in R2n if BoxE embeddings are
of the form [e; e′] ∈ R2n. As shown in our main
experiments (Tables 1, 2 and 3), cross-coordinate
comparisons and other interdependencies across co-
ordinates increase the expressivity of base models
even with fixed dimensions.

Table 13 provides further experimental results
on WN18RR and FB15k-237, comparing our base-
line models with state-of-the-art models, regardless
of the various mismatches we could find regard-
ing dimensionality and negative sampling. The
results for existing models are those reported by
Pavlovic and Sallinger (2023) for ExpressivE, Ab-
boud et al. (2020) for BoxE, Sun et al. (2019) for
RotatE, Lacroix et al. (2018) for ComplEx11 and
Zhang et al. (2019a) for QuatE. All results were ob-
tained with n = 500 for WN18RR and n = 1000
for FB15k-237, except for QuatE. Since no results
were available for QuatE with these dimensions, its

11full results for ComplEx are not given in the paper but they
are available at https://github.com/facebookresearch/
kbc.

|E| R| |Gtrain| |Geval|

CPR 750 3 1110 220
CPR-rt 750 3 1955 906
CPR-rtu 750 4 1959 492

Table 9: Characteristics of synthetic datasets.

results are given for n = 100 for both WN18RR
and FB15k-237. MuRE variants were all trained
with inverse relations.

Computation Time Table 14 compares the train-
ing time of different variants of the models. The
baseline models −dw(gs;u(e)− f) + br, and to a
lesser extent −∥gs;u(e)− f∥+ br, stand out as the
most efficient. ExpressivE, on the contrary, is the
least efficient. ComplEx is the second least effi-
cient. ComplEx and QuatE have the same regular-
ization scheme but the latter converges much faster
than the former. Morever, state-of-the-art results of
ComplEx come with an even higher computational
cost because they are obtained in a 1-vs-all setting.
Other models with cross-coordinate comparisons
in Table 14 roughly double the computation time
of the baseline models. RotatE is more efficient
than these models, while still less efficient than the
baseline model without inverse relations.

https://github.com/facebookresearch/kbc
https://github.com/facebookresearch/kbc


CPR

h@1 h@3 h@10 MRR

TransE 0.009 ± 0.004 0.025 ± 0.009 0.075 ± 0.014 0.036 ± 0.006
RotatE 0.743 ± 0.032 0.917 ± 0.024 0.983 ± 0.012 0.834 ± 0.020
BoxE 0.014 ± 0.007 0.042 ± 0.008 0.107 ± 0.035 0.046 ± 0.011
MuRE 0.346 ± 0.051 0.534 ± 0.052 0.751 ± 0.068 0.477 ± 0.049
ComplEx 0.021 ± 0.026 0.039 ± 0.049 0.089 ± 0.092 0.048 ± 0.048
SimplE 0.021 ± 0.012 0.064 ± 0.032 0.165 ± 0.063 0.071 ± 0.026
−∥gs;0(e)− f∥+ br 0.282 ± 0.044 0.480 ± 0.078 0.657 ± 0.082 0.411 ± 0.057
−∥g1;u(e)− f∥+ br 0.015 ± 0.005 0.121 ± 0.022 0.656 ± 0.030 0.164 ± 0.008
−∥gs;u(e)− f∥+ br 0.252 ± 0.042 0.432 ± 0.045 0.613 ± 0.052 0.375 ± 0.042
−∥gs;0(e; e′)− f ′; f∥+ br 0.111 ± 0.014 0.173 ± 0.025 0.271 ± 0.039 0.163 ± 0.017
−∥g1;u(e; e′)− f ′; f∥+ br 0.003 ± 0.005 0.037 ± 0.009 0.189 ± 0.024 0.058 ± 0.007
−∥gs;u(e; e′)− f ′; f∥+ br 0.115 ± 0.015 0.175 ± 0.018 0.247 ± 0.021 0.163 ± 0.012
−∥gs;0(e; e′; e; e′)− f ; f ′; f ′; f∥+ br 0.316 ± 0.070 0.501 ± 0.099 0.717 ± 0.120 0.446 ± 0.085
−∥gs;u(e; e′; e; e′)− f ; f ′; f ′; f∥+ br 0.309 ± 0.105 0.450 ± 0.133 0.648 ± 0.157 0.417 ± 0.118

Table 10: Performance of link prediction on the closed-path rule (CPR) synthetic dataset (mean and standard
deviation over 5 runs).

CPR-rt

h@1 h@3 h@10 MRR

TransE 0.017 ± 0.005 0.038 ± 0.006 0.087 ± 0.010 0.047 ± 0.005
RotatE 0.671 ± 0.016 0.859 ± 0.011 0.964 ± 0.004 0.777 ± 0.011
BoxE 0.011 ± 0.001 0.046 ± 0.008 0.149 ± 0.014 0.057 ± 0.004
MuRE 0.276 ± 0.015 0.524 ± 0.028 0.765 ± 0.026 0.438 ± 0.020
ComplEx 0.117 ± 0.014 0.224 ± 0.022 0.410 ± 0.035 0.211 ± 0.018
SimplE 0.088 ± 0.017 0.209 ± 0.028 0.408 ± 0.035 0.190 ± 0.022
−∥gs;0(e)− f∥+ br 0.332 ± 0.033 0.655 ± 0.049 0.899 ± 0.045 0.524 ± 0.037
−∥g1;u(e)− f∥+ br 0.002 ± 0.002 0.053 ± 0.006 0.520 ± 0.010 0.121 ± 0.003
−∥gs;u(e)− f∥+ br 0.312 ± 0.022 0.624 ± 0.037 0.871 ± 0.024 0.501 ± 0.025
−∥gs;0(e; e′)− f ′; f∥+ br 0.154 ± 0.019 0.274 ± 0.017 0.440 ± 0.031 0.248 ± 0.020
−∥g1;u(e; e′)− f ′; f∥+ br 0.005 ± 0.001 0.042 ± 0.003 0.294 ± 0.014 0.083 ± 0.001
−∥gs;u(e; e′)− f ′; f∥+ br 0.150 ± 0.026 0.249 ± 0.042 0.394 ± 0.048 0.231 ± 0.035
−∥gs;0(e; e′; e; e′)− f ; f ′; f ′; f∥+ br 0.358 ± 0.032 0.612 ± 0.024 0.846 ± 0.018 0.519 ± 0.022
−∥gs;u(e; e′; e; e′)− f ; f ′; f ′; f∥+ br 0.294 ± 0.055 0.519 ± 0.087 0.763 ± 0.070 0.445 ± 0.066

Table 11: Performance of link prediction on the closed-path rule (CPR-rt) synthetic dataset with r and t symmetric
(mean and standard deviation over 5 runs).

CPR-rtu

h@1 h@3 h@10 MRR

TransE 0.016 ± 0.004 0.041 ± 0.009 0.101 ± 0.011 0.052 ± 0.005
RotatE 0.514 ± 0.025 0.734 ± 0.017 0.895 ± 0.012 0.645 ± 0.017
BoxE 0.420 ± 0.026 0.550 ± 0.011 0.663 ± 0.017 0.506 ± 0.018
MuRE 0.455 ± 0.023 0.608 ± 0.012 0.724 ± 0.013 0.552 ± 0.013
ComplEx 0.268 ± 0.015 0.392 ± 0.025 0.509 ± 0.025 0.354 ± 0.016
SimplE 0.282 ± 0.015 0.422 ± 0.021 0.527 ± 0.017 0.372 ± 0.016
−∥gs;0(e)− f∥+ br 0.491 ± 0.018 0.658 ± 0.010 0.804 ± 0.009 0.598 ± 0.010
−∥g1;u(e)− f∥+ br 0.003 ± 0.004 0.354 ± 0.007 0.571 ± 0.009 0.214 ± 0.005
−∥gs;u(e)− f∥+ br 0.494 ± 0.013 0.661 ± 0.020 0.786 ± 0.024 0.598 ± 0.010
−∥gs;0(e; e′)− f ′; f∥+ br 0.529 ± 0.018 0.701 ± 0.022 0.834 ± 0.025 0.634 ± 0.018
−∥g1;u(e; e′)− f ′; f∥+ br 0.304 ± 0.006 0.518 ± 0.010 0.736 ± 0.013 0.447 ± 0.008
−∥gs;u(e; e′)− f ′; f∥+ br 0.506 ± 0.015 0.679 ± 0.016 0.803 ± 0.023 0.610 ± 0.011
−∥gs;0(e; e′; e; e′)− f ; f ′; f ′; f∥+ br 0.474 ± 0.016 0.602 ± 0.013 0.719 ± 0.011 0.560 ± 0.014
−∥gs;u(e; e′; e; e′)− f ; f ′; f ′; f∥+ br 0.462 ± 0.045 0.589 ± 0.025 0.711 ± 0.020 0.548 ± 0.036

Table 12: Performance of link prediction on the closed-path rule (CPR-rtu) synthetic dataset with r, t and u
symmetric (mean and standard deviation over 5 runs).



WN18RR FB15k-237

h@1 h@3 h@10 MRR h@1 h@3 h@10 MRR

Functional ExpressivE 0.407 0.519 0.619 0.482 0.256 0.387 0.535 0.350
ExpressivE 0.464 0.522 0.597 0.508 0.243 0.366 0.512 0.333
BoxE 0.400 0.472 0.541 0.451 0.238 0.374 0.538 0.337
RotatE 0.428 0.492 0.571 0.476 0.241 0.375 0.533 0.338
ComplEx 0.440 0.500 0.580 0.490 0.270 0.400 0.560 0.370
QuatE 0.436 0.499 0.572 0.482 0.271 0.401 0.556 0.366
−∥gs;u(e)− f∥+ br 0.440 0.504 0.582 0.488 0.232 0.368 0.526 0.329
−∥gs;u(e; e′)− f ′; f∥+ br 0.459 0.517 0.579 0.500 0.228 0.356 0.514 0.322
−∥gs;u(e; e′; e; e′)− f ; f ′; f ′; f∥+ br 0.429 0.500 0.579 0.480 0.226 0.360 0.523 0.324
−dw(gs;u(e)− f) + br 0.412 0.443 0.480 0.436 0.209 0.325 0.473 0.297

Table 13: Performance of link prediction on larger-scale datasets.



W
N18

RR

FB15
k-2

37

Functional ExpressivE 572 897
ExpressivE 5920 1839
BoxE 355 1060
RotatE 224 447
ComplEx 1102 865
QuatE 152 313
−∥gs;u(e)− f∥+ br 159 389
−∥gs;u(e)− f∥+ br (w/ inverse) 274 487
−∥gs;u(e; e′)− f ′; f∥+ br 407 500
−∥gs;u(e; e′; e; e′)− f ; f ′; f ′; f∥+ br 247 580
−dw(gs;u(e)− f) + br 68 269

Table 14: Training time of different models in seconds,
for the main experiments (i.e. n = 100 for WN18RR
and n = 200 for FB15k-237).
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