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Abstract

In this paper the design and implementation of a general qualitative spatial reasoning engine (SPARQS) is presented. Qualitative treatment
of information in large spatial databases is nsed to complement the quantitative approaches to managing those systems, in particular, it is used
for the automatic derivation of implicit spatial relationships and in maintaining the integrity of the database. To be of practical wse,
composition tables of spatial relationships between different types of objects need to be developed and integrated in those systems.
The automatic derivation of such tables is considered to be a major challenge to current reasoning approaches. In this paper, this issue is
addressed and a new approach to the automatic derivation of composition tables is presented. The method is founded on a sound set-
theoretical approach for the representation and reasoning over arbitrarily shaped objects in space. A reasoning engine tool, SFARQS, has
been implemented to demonstrate the validity of the approach., The enging is composed of a basic graphical interface where composition
tables between the most common types of spatial objects are built. An advanced interface is also provided, where users are able to describe
shapes of arbitrary complexity and to derive the composition of chosen spatial relationships. Examples of the application of the method using
different objects and different types of spatial relationships are presented and new composition tables are built using the reasoning engine.

@ 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Qualitative Spatial Representation and Reasoning
(QSRR) is an active field of Al research where formalisms
for encoding and manipulating qualitative spatial knowl-
edge are studied [10]. A main aim of these techniques is the
provision of tools to enhance the derivation and retrieval of
implicit knowledge in large spatial databases typically used
in applications such as, Geographic Information Systems
(GIS), medical and biological databases and Compuler
Aided Design, Manufacture and Process Planning (CADY
CAM/CAPP). Such application domains are characterised
by handling very large sets of spatial entities, relationships
and constraints and their manipulation usually involve
substantial computational costs. The ability to handle a
certain level of indeterminacy makes (SRR techniques
attractive in those domains. The goal is for such technigues
to complement and enhance the traditional, usually
computationally expensive, geometrical methods,
especially when precise information are neither available
nor needed. A simple example in a G1S is the derivation of
the fact that the location of Peterhouse College is in the UK,

* Corresponding author,

from the facts that it is located in Cambridge and Cambridge
is in the UK, without needing to execute a polygon-in-
polygon geometric computation. Applications of QSRR
include, qualitative spatial scene specification and scene
feasibility problems, checking the similarity and consist-
ency of data sets, integrating different spatial sets, and in
initial pruning of search spaces in spatial query processing.
Research is also ongoing for incorporating QSRR in the
definition and implementation of spatial query languages.
However, the qualitative approach has obvious limitations
where useful characteristics of spatial objects such as shape
and size are not used. Also, its application becomes limited
when exact positions and tolerance constraints are con-
sidered. Hence, it can be argued that both the quantitative
and qualitative approaches have complementary areas of
strength and that any system which can combine the two
paradigms in a way which uses their strength would be an
effective platform for a range of novel and conventional
applications. One approach to utilising QSRR in such
systems is by the automatic development of composition or
transitivity tables between different types of spatial objects.
Reasoning can then be transformed into a simple process of
table look-up to be invoked when needed. Several
works have addressed this problem previously, and some
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composition tables between simple objects have been
reported. These approaches are generally limited and
applicable only in simple constrained domains. The problem
is, however, recognised as a major challenge to automatic
theorem provers [3,25], and no general solution has yet been
found.

In this paper, a new approach is proposed for the
automatic reasoning of spatial relationships and the
automatic building of composition tables. The approach is
novel as composition tables between objects of any type and
complexity can be derived. The proposed method is
implemented using java in the SPARQS (SPAtial Reasoning
in Qualitative Space) reasoning engine tool. The engine is
used to validate the method and demonstrate its generality.
The paper is structured as follows. Section 2 outlines the
representation and reasoning approach in topological
spaces. The reasoning method is applied over topological
relations between different types of objects. In Section 3 the
reasoning engine is described and the process of building
composition tables is illustrated. Section 4 provides an
overview of related approaches and some conclusions are
drawn in Section 5.

2. The formalism

This section addresses the problem of qualitative
representation of objects with arbitrary spatial complexity
and their topological relationships. The reasoning formal-
ism is then presented, consisting of (a) general constraints to
govern the spatial relationships between objects in space,
and (b) general rules to propagate relationships between
those objects. Both the constraints and the rules are based on
a uniform representation of the topology of the objects, their
embedding space and the representation of the relationships
between them.

2.1. The general representation approach

Objects of interest and their embedding space are divided
into components according to a required resolution.
The connectivity of those components is explicitly
represented. Spatial relations are represented by the
intersection of object components [1] in a similar fashion
to that described in Ref. [17] but with no restriction on
object components to consist only of three parts (boundary,
interior and exterior).

The topology of the object and the embedding space can
then be described by a matrix whose elements represent the
connectivity relations between its components. This matrix
shall be denoted adjacency matrix. In the decomposition
strategy, the complement of the object in question shall be
considered to be infinite, and the suffix 0, e.g. (xy) is used to
represent this component.

Hence, the topology of a space S containing an object x is
defined using the following equation

X = Lani (D)
i=1

S, =xUux (2

where S, is used to denote the space associated with object x.
In Fig. 1 different possible decompositions of a simple
convex polygon and its embedding space is shown along
with their adjacency matrices. In (a), the object is
represented by two components, a linear component x;
and an areal component x, and the rest of the space is
represented by an infinite areal component x, representing
the surrounding area. In (d), only one areal component is
used to represent the polygon. Both representations are
valid and may be used in different contexts. Different
decomposition strategies for the objects and their embed-
ding spaces can be used according to the precision of the
relations required and the specific application considered.
The higher the resolution used (or the finer the components
of the space and the objects), the higher the precision of the
resulting set of relations in the domain considered.

The fact that two components are connected is
represented by a (1) in the adjacency matrix and by a (0)
otherwise. Since connectivity is a symmetric relation, the
resulting matrix will be symmetric around the diagonal.
Hence, only half the matrix is sufficient for the represen-
tation of the object’s topology and the matrix can be
collapsed to the structure in Fig. 1(c) and (f).

Semi-bounded areas of the embedding space can also be
represented (as virtual components) if needed. For example,

Xo
Xo = 1 0
............................. 1 | x;
X1 1 = 1
0 1 X2
X2 0 1 =
(a (b) (©
x0
Xo | X1
Xo
............................. X0 - 1
1 X
X 1 =
(d) () (f)

Fig. 1. (a,d) Possible decompositions of a simple convex polygon and its
embedding space. (b,e) Adjacency matrices corresponding to the two
shapes in (a) and (d), respectively. (c.f) Half the symmetric adjacency
matrix is sufficient to capture the object representation.
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X0
1 | x,

0 1 | x»
11110 |x;

(@) (b)

Fig. 2. (a) Using virtual components to represent semi-bounded
components in space. (b) Adjacency matrix for the shape in (a).

Fig. 2(a) shows a possible decomposition of a concave
shaped object and its embedding space. In (b) the adjacency
matrix for its components is presented. The object is
represented by two components a linear component x; and
an areal component x, and the rest of its embedding space is
represented by a finite areal component x; (representing the
virtual enclosure) and infinite areal component x, represent-
ing the surrounding area.

2.1.1. The underlying representation of spatial relations
In this section, the representation of the topological
relations through the intersection of their components is
adopted and generalized for objects of arbitrary complexity.
Distinction of topological relations is dependent on the
strategy used in the decomposition of the objects and
their related spaces. For example, in Fig. 3 different
relationships between two objects x and y are shown,
where in (a) x is outside y and in (b) x is inside y.
Object y is decomposed into two components y; and y,
and the rest of the space associated with y is decomposed
into two components: y; representing the enclosure and y,
representing the rest of the space. Note that it is the
identification of the (virtual) component y; that makes
the distinction between the two relationships in the
figure. The complete set of spatial relationships
are identified by combinatorial intersection of the
components of one space with those of the other space.
If R(x,y) is a relation of interest between objects x and y,
and X and Y are the spaces associated with the objects,
respectively, such that m is the number of components in X

Fig. 3. Different qualitative spatial relationships can be distinguished by
identifying the appropriate components of the objects and the space.

and [/ is the number of components in Y, then a spatial
relation R(x,y) can be represented by one instance of the
following equation:

m )
Rx,y)=XNY= (Ux,-) n Uy
i=1 j=1

=X Ny Xy N YL X N Y, ey X NV YY)

The intersection x; N y; can be an empty or a non-empty
intersection. The above set of intersections shall be
represented by an intersection matrix, as follows

Yo | Vi | )2

X0

R(x’ y)= X1

X2

For example, the intersection matrices corresponding to
the spatial relationships in Fig. 3 are shown in Fig. 4.
The components x; and x, have a non-empty intersection
with y, in Fig. 4(a) and with y; in Fig. 4(b). Different
combinations in the intersection matrix can represent
different qualitative relations. The set of valid or sound
spatial relationships between objects is dependent on the
particular domain studied.

2.2. The general reasoning formalism

The reasoning approach consists of: (a) general con-
straints to govern the spatial relationships between objects
in space, and (b) general rules to propagate relationships
between the objects.

2.2.1. General constraints

The intersection matrix is in fact a set of constraints whose
values identifies specific spatial relationships. The process of
spatial reasoning can be defined as the process of propagating
the constraints of two spatial relations (for example, R, (A, B)
and R,(B, ()), to derive a new set of constraints between

Yo [V | 2| 3 Yo [ Vi | 2| W3

xg | 1 1 1 1 xo | 1 1 1 1

x| 1]10]01]0 x| 010011

(@) x| 1]10]01]0 ) x| 010|011

Fig. 4. The corresponding intersection matrices for the relationships in
Fig. 3, respectively.
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objects. The derived constraints can then be mapped to a
specific spatial relation (i.e. the relation R53(A, C)).

A subset of the set of constraints defining all possible spatial
relations are general and applicable to any relationship between
any objects. These general constraints are a consequence of the
initial assumptions used in the definition of the object and space
topology. The two general constraints are:

1. Every unbounded (infinite) component of one space must
intersect with at least one unbounded (infinite) component of
the other space.

Intuitively this rule says thatit is impossible for an infinite
component in the space to only have an intersection with
finite component(s). In this case the infinite component
becomes a subset of the finite component(s) which is not
possible.

2. Every component from one space must intersect with at least
one component from the other space.

If one component of one space does not intersect with any
component of the other space, either the two spaces are not
equal or the spaces are not dense or comnnected. Both
conditions are excluded by the initial assumptions. This
implies that there cannot exist a row or a column in the
intersection matrix whose elements are all empty intersec-
tions, hence the combinatorial cases in the matrix where this
case exists can be ignored.

2.2.2. General reasoning rules

Composition of spatial relations is the process through
which the possible relationship(s) between two object x and
z is derived given two relationships: R; between x and y
and R, between y and z. Two general reasoning rules for the
propagation of intersection constraints are presented. The
rules are characterized by the ability to reason over spatial
relationships between objects of arbitrary complexity in any
space dimension. These rules allow for the automatic
derivation of the composition (transitivity) tables between
any spatial shapes.

2.2.2.1. Reasoning rules. Composition of spatial relations
using the intersection representation approach is based on
the transitive property of the subset relations. In what
follows the following subset notation is used. If ¥’ is a set of
components (set of point-sets) {x,...,x,,} in a space X, and
y; is a component in space Y, then = denotes the following
subset relationship.

o y L X denotes the subset relationship such that: Vx; €
Xy Nx # P Ay; N (X —x; — X0 — x,) = P where
i=1,...,m'. Intuitively, this symbol indicates that the
component y; intersects with every set in the collection b
and does not intersect with any set outside of x'.

If x;,y; and z; are components of objects x, y and z
respectively, then if there is a non-empty intersection
between x; and y;, and y; is a subset of z, then it can be

concluded that there is also a non-empty intersection between
x; and zi.

Ny #POAQ; Cz)— Nz # P)

This relation can be generalized in the following two
rules. The rules describe the propagation of intersections
between the components of objects and their related spaces
involved in the spatial composition.

Rule 1: propagation of non-empty intersections. Let x' =
{x1,%,,...,x,/} be a subset of the set of components of space
X whose total number of components is m and m' < m;
¥ CX. Let 7 ={z,2,...,2y} be a subset of the set of
components of space Z whose total number of components
isnand n' = n; 7 C Z.1f y; is a component of space Y, the
following is a governing rule of interaction for the three
spaces X, Y and Z.

@ IWAGED=E NI # =Nz
7é(l')V"'Vxlman#d))/\(X2021#(f)V"'VXQHZn/

EZPOA Ay N FOV - Vi, Nzy # D)

The above rule states that if the component y; in space Y
has a positive intersection with every component from the
sets x’ and 7, then each component of the set ¥’ must intersect
with at least one component of the set 7 and vice versa.

The constraintx; Nz, # ¢Vx;Nzy # -V, Nzy #
¢ can be expressed in the intersection matrix by a label, for
example, the label a, (r =1 or 2) in the following matrix
indicates x; N (zo U z4) # ¢ (x; has a positive intersection
with z,, or with z, or with both). A- in the matrix indicates that
the intersection is either positive or negative

21|%2(23|%4|" " | ”n

Ti|—l(ay|—|a2| — | —

Rule 1 represents the propagation of non-empty inter-
sections of components in space. A different version of the
rule for the propagation of empty intersections can be stated
as follows.

Rule 2: propagation of empty intersections. Let 7/ =
{z1,25,..., 2, } be asubset of the set of components of space Z
whose total number of components is n and ' < n; 7 C Z.
Lety = {y{,¥s,...,yr} be a subset of the set of components
of space ¥ whose total number of components is  and / < [;
y C Y. Let x; be a component of the space X. Then the
following is a governing rule for the spaces X, Y and Z.

GENAGVED->6iNCZ -2~z —z)=¢)

Rules 1 and 2 are the two general rules for propagating
empty and non-empty intersections of components of



B.A. El-Geresy, A.I. Abdelmoty / Knowledge-Based Systems 17 (2004) 89-102 93

spaces. Note that in both rules the intermediate object (y)
and its space components plays the main role in the
propagation of intersections. The first rule is applied a
number of times equal to the number of components of the
space of the intermediate object. Hence, the composition of
spatial relations becomes a tractable problem which can be
performed in a defined limited number of steps.

2.2.2.2. Soundness and completeness of the formalism. The
formalism can be said to be sound if any derived conclusion
using the rules follows set-theoretically, and the formalism
can be said to be complete if any conclusions which follows
semantically from the axioms of the set theory are also
derivable by the formalism.

In this section the formalism is proved to be sound and
complete using the basic axioms of transitivity and set
intersections in the set theory, in particular

e transitivity of subsets: AC BC C— A C C, and its
implication: A C C— A N (C*) = ¢, where C* is the
complement of C.

e set intersectionn ANBABCC—ANC # ¢, and,
CNBABCA—ANC# ¢. These rules can be
derived directly from the transitivity axiom as follows:
If Je(a €EAAa€EB)then (@ CA)A(aCB)ABC
C)—aCCoranNC# ¢. Hence, ANBABC C—
ANC # ¢

Soundness of the formalism. Rule 1 states that

EIPAGED=E N # =0 Ng
ZOV - VX Nzy Z P A Axy Nz
ZOV Vi, Nzy ZP)zyNxy =PV -V Nxy
AN Ay Nx 7 PV -V iy Ny # D)
ie.(xy N7 # dxy N # 7y VX # pzy N # )
Since ¥ Jy,—@Nx; #dAyNx, #dA--- A
yiNxy #¢), and, ZJy— Nz #dAy Nz #

b A---Ay;Nzy # ¢), then, Rule 1 can be expressed by
the collection of the following axioms:

xlﬂyj?ﬁ(l)/\yj‘;z'—»xlﬂzl#qﬁ
Xy ﬂy]#d)Ay]EZl—’xzﬂZ/#(b

xm’myj;'é d)/\yjl;zl_'xm’nzl#d)
21 ﬂyj?ﬁ ¢ij|;x/—>z1 ﬁx’# d)
LNy #PAy, EX = NY # ¢

zn,ﬂyj#qSij';x'ﬁzn/ﬂx'#qﬁ

Hence, Rule 1 reduces to the axiom of set intersection
and is therefore sound.
Rule 2 states that:

GENAGYED—>wNEZ-7)=¢)

Z — 7' is the complement of 7. Using the transitivity of
subsets, x; =y Ay & 7 —x; C Z, then intersection of x;
with the complement of 7 must be empty. Hence Rule 2 is
also sound.

Completeness of the formalism. As shown above, Rule 1
is an equivalent form of the set intersection axiom and hence
any conclusion which can be derived using this axiom is
also derivable using Rule 1.

From the set theory we have that: AC BC C— A C
C—ANU—C)= ¢, where U is the universal set for
space. In the formalism the underlying spaces for the objects
are equal, i.e. X =Y =Z and all are equivalent to the
Universal set for space. Hence, Vx € X(x C Z), and
similarly, Vz € Z(z C X). From Rule 2 we have that: x; &
YEZ—>x, CZ—x,N(Z—7)= ¢ where Z is the uni-
versal set for space. Then Rule 2 reduces to the subset
transitivity axiom and its implication, and any conclusion
which can be derived using these axioms are also derivable
by the formalism.

Since both rules in the formalism are equivalent to basic
axioms of the set theory, then the formalism is set-
theoretically complete with respect to the two axioms and
any axioms derived from them.

2.3. Analysis of the formalism

If m' and ' are the number of components of the sets x’
and 7, respectively, and m and n are the total number of
components of the spaces X and Z, respectively, and ¥ & X
and 7 = Z. Using Rule 1 the composition of relations can be
classified into the following.

D Ifm=1vre=1), eg ¥=1{x} or Z=1{z)} or
both) then the rule shall propagate a definite set of
intersections. For example, if y; intersects with the
only element of ¥, then this element of x' must have a
non-empty intersection with every element from the
set 7. Also, if y; intersects with the only element of 2/,
then this element of 7 must have a non-empty
intersection with every element from the set x'. If
this property holds for every component of the
intermediate space y then the composition must result
in a definite relation. An example of this case is the
composition of the inside relationship between two
simple convex regions.

D) If ' >1An>1), (e.g. if ¥={x,x,}] and
7 ={zy,%)}), for at least one Yj of the space Y, no
definite intersections are propagated (i.e. X N7 # ¢).
If after the application of the reasoning rules this
result still holds, then the composition shall produce a
set of disjunctive relations.
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AIDIf M =mAn =n), ie. XI WA EZ), no
distinguishing constraints can be propagated from
the component y;, as this case is an expression of the
second general constraint. Also, since the implication
of such constraint is that every component of one
space may intersect with all the components of the
other space no empty intersection will be propagated
(using Rule 2) for any component.

IVIEm =1An=1AX={x} A7 ={z}), ie. ¥ is
the infinite component and 7 is the infinite com-
ponent, then the rule becomes an expression of the
first general constraint, i.e. no distinguishing con-
straint will be propagated.

(V) If all the propagated intersections for the set of
components of the intermediate space are either of
type III or IV above or both then the composition
results in the universal relation (disjunction of all
possible relationships)—since the only constraints
propagated are the general ones, i.e. no specific
constraint is propagated.

2.4. Example 1: propagation of definite relations

The example in Fig. 5 is used for demonstrating the
composition of relations using non-simple spatial objects.
Fig. (a) shows the relationship between a concave polygon x
and a polygon with a hole y and (b) shows the relationship
between object y and a simple polygon z where z touches the
hole in y. The intersection matrices corresponding to the two
relationships are also shown.

The reasoning rules are used to propagate the intersec-
tions between the components of objects x and z as follows.

Zo | 21 | 22

Yo | Y1 | V2 |V3]|)a
Yo 1 0 0

Xo | 1 1 1 0110
w|l 11010

xq | 1 010010
Y2 1 O 0

x| 1 010010
y3| 11010

x3 | 1 1 1 1 1
va | 1 1 1

(c) (d)

Fig. 5. (a,b) Spatial relationships between non-simple objects x,y and z.
(c,d) Corresponding intersection matrices.

From Rule 1 we have
e y, intersections:
{x0,x1,%0, X3} T yo Ayo E{zo} =20 Nzg # dAX; Nz
FZOAX Nz F GAX3Nzg# b
e y, intersections:

{x0, X3} Iy Ay Ef{zo} = x0 Nz # A3 Ny # ¢

e y, intersections:

{x0,x3} D A E{zp} = x9Nz # dAXxs Nz # b

e ys5 intersections:

{3} DysAys E{zg) —x3Nzg # @
e y, intersections:

{3} DyaAvs Efzp 2.2} =03 Nz # dAx3s Nz

#d)/\x3 nZz?é(].')

Refining the above constraints, we get the following
intersection matrix

zZ0 | 21 | 22
xo| 1101]0
x1 | 1]107]0
x|/ 1]107]0
x3| 1] 1]1

The resulting matrix corresponds to one possible
relationship between x and z as shown in Fig. 6.

zl »

x3

Fig. 6. Resulting definite relation from the composition of the relations in
Fig. 5.
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xo| 1 [0|O0 yvo| 11110
x| 1|11 yi| 1] 1]0
x| 1|11 y21 0101

(©) (d)

Fig. 7. (a,b) Spatial relationships between vague regions x,y and z. (c,d)
Corresponding intersection matrices.

2.5. Example 2: propagation of indefinite relations

The example in Fig. 7 is used for demonstrating the
composition of relations using non-simple spatial objects,
resulting in a set of possible relationships between objects x
and z.The figure shows example relationships and the
corresponding intersection matrices, between regions with
indeterminate boundaries x and y and z as defined in
Ref. [7].The problem of representing vague regions have
been addressed in various research works previously
[28].In Ref. [28] a set of 44 possible relations is defined
between the two region with broad boundaries.
The following is an example of how the reasoning rules
are applied to derive the composition of two example
relations.

The reasoning rules are used to propagate the intersec-
tions between the components of objects x and z as follows.
From Rule 1 we have

e y, intersections:
{xi, 0} 2y Ay Ef{z,z0l =2 N (5 Uzp)
#OAx; N(zyUz) # ¢
e y, intersections:
o} dnmAnE{nl—=xxNa#dAxnNn # ¢
e y, intersections:

{x1,%2,%0} 2 yo Ayo E {z1,20} = x1 N (zy U 29)
#ZOAx, N(z1 Uzg) # dAxeN(z3 Uz
# ¢

Fig. 8. Possible configurations for the composition in Fig. 7.

Refining the above constraints, we get the following
intersection matrix

Z ) 20

xi |aye | 1| ayd
X2 | b 1 | by,d,

xo| 2 |0 1

where a; and a, represent the constraint x; N (z; V zg) = 1
and b; and b, represent the constraint x, N (z; V z9) = 1, ¢;
and ¢, represent the constraint z; N (x; Vx,) = 1 and 4,
and d, represent the constraint z ((x; V x,) = 1 and the ?
represents (1 V 0). The result matrix corresponds to one of
four possible relationships between x and z, namely numbers
21-23 and 25, as shown in Fig. 8.

3. SPARQS: the reasoning engine

To demonstrate the validity of the proposed approach, a
reasoning engine has been designed and implemented using
java. The interface to the program, named SPARQS consists
of two parts. A basic interface is provided, where the
topology of some common spatial object shapes are
predefined, as shown in Fig. 9(a). Users are able to choose
object types from a menu of available ones, namely, points,
lines, simple regions, regions with indeterminate boundaries
and concave regions. Users are then offered a selection of
possible topological spatial relationships between the
chosen object types. Sets of relationships are shown
graphically and categorised using a coarse classification
scheme under four headings, namely, disjoint, inside,
overlap and touch to enhance the usability of the interface.
The reasoning rules are applied to propagate the intersection
matrices and produce the result matrix. The constraints in
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(@) [Basic

Applet started.

(b)

Applet Viewer: Interface 1mine.clas: 8

Fig. 9. The basic interface in SPARQS. (a) Composition of relationships between lines and region. (b) Composition of relationships between regions with holes.
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the matrix are then matched to the set of possible
relationships and all the ones satisfying the constraints are
displayed in the result window, as shown in (a). The
program is flexible where the input spatial relationships can
be changed and resubmitted and the result re-calculated, as
shown in (b).

A preliminary implementation of an advanced interface
is also provided as shown in Fig. 10. Users are able to fill in
adjacency and intersection matrices, which are subsequently
used by the system to derive the resulting relationships.
Some validation checks are done on the input matrices,
e.g. to reject matrices that violate the general constraints
described earlier, where no rows or columns in the matrix
are allowed to contain only zeros. The result constraint
matrix is therefore dependent on the validity of the input
shapes and relations. Enhancement to the interface may be
possible, where a more guided approach to input, possibly
using sketch-based techniques, can be utilised to ensure
valid entries.

The engine has been used to derive new composition
tables between all the combination of objects defined in the
basic interface, e.g. between simple regions, concave
regions and regions with indeterminate boundaries, etc.

& Applet Viewer: Interfacel.class

Advanced |

Part of the composition table between regions with
indeterminate boundaries is shown in Tables 2 and 3.
The full set of 44 sound relations between those regions are
as defined in Ref. [28] and are shown in Table 1.

Note the notation of the result of the compostions in
Tables 2 and 3. An example is shown in Fig. 11, where the
matrix of dots represent the 44 relations, read from left to
right and from top to bottom. A black dot indicates that the
existence of the relation. Hence, the example in the figure
denotes that the result of the composition is R; or R, or R or
R; or Ry.

4. Comparison with related work

The main advantage of the method proposed above is
its generality. The same methodology is used for the
definition of simple, complex, composite regions, as well
as regions with indeterminate boundaries. The method is
also adaptable, where different levels of representation
can be devised by hiding or revealing the details of
objects as required. The method is therefore well adapted
for use as a basis for a spatial reasoning formalism.

Ajacency Matrix for X

Ajacency Matrix for ¥

Ajacency Matrix for Z

> |Ull|t:l

- ‘ Other...

IAppIel slarted.

Fig. 10. The advanced interface in SPARQS. Users specify the adjacency and intersection matrices. The example in the figure corresponds to the Example 1.



98 B.A. El-Geresy, A.I. Abdelmoty / Knowledge-Based Systems 17 (2004) 89—-102

Table 1

The set of 44 sound topological relations between regions with broad boundaries as defined in Ref. [7]

Representing complex regions has been addressed in
many works. Cohn et al. [10,11] extended a logic-based
formalism to handle concave regions, and regions with
holes (doughnut shapes). New axioms and theories had to be
devised to define the new shapes. The main drawback of this
approach is its complexity, as new, possibly considerable,
extensions of the formalism have to be devised with every
new shape considered.

Egenhofer et al. [17,16] used point-set topology to define
simple regions, using three components, boundary, interior
and exterior. The method proposed here deviates from their
work in one important respect, which has far-reaching
implications. The constraint on the object components has
been relaxed to be any possible set of components,
which satisfies the main assumptions behind the formalism.
The notions of boundaries, interiors and exteriors were
dropped and the notion of object and space components is
used instead. Other methods were devised in Ref. [15] to
define regions with holes, through the definition of spatial
relationships between simple regions and no extension for
the method was proposed for the definition of irregular or
concave regions.

The work of Clementini and De Felice [7] follows
closely the method of Egenhofer, and provides a definition
for regions with holes using boundaries, interiors and
exteriors. Their method inherits the same limitations of
Ref. [17]. In another work [8], Clementini et al. addressed
the issue of defining composite regions for use in spatial
query languages, by defining explicit relationships between
all the components in the object, in the same way, regions
with holes were defined in Ref. [15].

Clementini et al. [6] proposed a method of representing
unique topological relationships between two composite
regions (composed from simple regions without holes) as a
set of rules which use only binary topological relationships
at component level to decide the topological relationship
between complex objects at higher level. The work of
Nguyen et al. [23] follows a similar approach to the above,
but generalises the rules for connected composite objects
with or without holes.

Coenen and Pepijn [9] proposed an ontology for objects
and relationships in spatio-temporal domains. They assumed
the space to consist of sets of points and used set-theoretic
notions to define objects in that space. Their approach is



B.A. El-Geresy, A.I. Abdelmoty / Knowledge-Based Systems 17 (2004) 89-102

Table 2

99

Part of the composition table between two regions with broad boundaries. The relations between R; and all the 44 relations is shown

R1(y, z) | Raly, 2) | Baly, 2)

i

Ry(y, z)

@ff;

v o
'
i

Rr(y,2) | Rs(y,z) | Ro(y, 2)

Rs(y. 2) | Re(y, z)

Ri(z,y)
Ru1(y, 2)| R12(y, 2) | R1g(y, 2) | R1a(y, 2) [ Ras(y, 2) [ Rie(y. 2) | Rar (v, 2) | Has(y, 2)
iQ‘ s Sasd
1% AR k] | POOOCCEE
]Ei(m,y)w coco sS850

Raa(y. 2)

Ra1(y, z)

Ras(y, z)

Rarly, z)

4 )
AhTde

Raa(y, z) | Rao(y, z)

=¥,

Ry(x, y)\j i

Raz(y, 2)

Ra1(y, 2) | Raz2(y, 2)

R3a(y, 2)

Ras(y, )

Rao(y, )| Rao(y, z)

Ras(y, 2)

O

EREN 00K

Ra1(y. z)

©

Ras(y, z)

[?'42_(,:"‘," z)

©

Raa(y, z)

0
Rl(=r!?.')M ‘

distinctive from the above where space is considered to be
discrete, not continuous. The method was used to define a
general ‘object’ and quantitative identifiers are used to
qualify the object properties. Extending the method for
distinguishing between different types of regions was not
proposed.

Vague regions or regions with undetermined boundaries
were studied in Refs. [4,7,12,18,20,27]. Only simple convex
regions with no holes were considered and the undetermined
boundary was represented by a surrounding ring [7,12].
Approaches to spatial reasoning in the literature can
generally be classified into (a) approaches using transitive
propagation and (b) approaches using theorem proving.

o Transitive propagation. In this approach the transitive
property of some spatial relations is utilized to carry out
the required reasoning. This applies to the order
relations, such as before, after and (<,=,>)
(for example, a <bAb<c—a<c), and to subset
relations such as contain and inside (for
example, inside(A, B) A inside(B, C) — inside(A, C) and
east(A, B) A (B, C) — east(A, O)).

Transitive property of the subset relations was
employed by Egenhofer [ 14] for reasoning over topological
relationships. Transitive property of the order relations
has been utilised by Mukerjee and Joe [22], Guesgen [19],
Lee and Hsu [21] and Papadias and Sellis [24].
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Table 3
Part of the composition table between two regions with broad boundaries

Ry(y z)

Ra(y.z) | Raly.2) | Ra(y. 2)

Rs(y.2) | Rely, 2) | Rr(y.2) | Rs(y, 2) [ Ro(y, 2)

R (x, y) X

s

‘

!

r Sve A
[

b Aoy

b ’

Ry, 2) | R12(y, 2) [ Ry, 2) | Rialy, 2)| Ris(y, 2) | Rae(y, 2) | Bar(y, 2) | Ras(y, 2) [ Rao(y, 2) | Rao(y, 2)

Ra1(x, y)

R22(y, 2) [ Ra3(w, 2) | Raaly, 2) | Ras(y, 2) | Ros(y, 2) | Rav (y, 2)

Rap(z, y)

Rga(u, z)| Raa (v, z)

Raa(y, 2)| Ras (v, z)

Ras(y. z)

Rap(z,y)

Ra1(v, 2)| Raz(y, 2) | Ras(y, 2)

©

Raq(x, y)

The relations between R3; and all the 44 relations is shown. Note. Object x contains object y in the figure.

Although order relations can be utilised in reasoning

over point-shaped objects, they cannot be directly applied
when the actual object shapes and proximity of objects are
considered.
Theorem proving (elimination). Here, reasoning is carried
out by checking every relation in the full set of sound
relations in the domain to see whether it is a valid
consequence of the composition considered (theorems to
be proved) and eliminating the ones which are not
consistent with the composition [13].

Bennett [2] have proposed a propositional calculus
for the derivation of the composition of topological

relations between simple regions using this method.
However, checking each relation in the composition
table to prove or eliminate is not possible in general
cases and is considered a challenge for theorem provers
[5.26].

In general limitation of the methods in the above two
approaches can be summarised as follows.

e Spatial reasoning is studied only between objects of
similar types, e.g. between two lines or two simple areas.
Spatial relations exist between objects of any type and it
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Fig. 11. Notation for representing the result of the composition of relations
in Tables 2 and 3.

is limiting to consider the composition of only specific
object shapes.

e Spatial reasoning was carried out only between objects
with the same dimension as the space they are embedded
in, e.g. between two lines in 1D, between two regions in
2D, etc.

e Spatial reasoning is studied mainly between simple
object shapes or objects with controlled complexity,
for example, regions with holes treated as concentric
simple regions. None of the methods in the literature
have been presented for spatial reasoning between
objects with arbitrary complexity.

The method proposed here is simple and general - only
two rules are used to derive composition between objects of
arbitrary complexity and is applicable to different types of
spatial relations.

5. Conclusions

In this paper, a general approach to qualitative
representation and reasoning has been presented. The
method is simple and is based on a uniform representation
of objects and spatial relationships. Objects are decomposed
into representative components and their topology described
in an adjacency matrix. The set of sound topological
relations between objects are represented by the interaction
of the object components. The approach is general where
composition of spatial relations can be applied
between objects of arbitrary dimension and complexity.
An implementation of the method is also presented to
demonstrate its validity and generality. Using the reasoning
engine, SPARQS, several new composition tables were built
between common spatial object types, viz., points, lines,
polygons, concave polygons and regions with holes.
The engine also includes a more flexible interface where
manual input of adjacency and intersection matrices can be
used to derive the composition of other arbitrary object
shapes. The automatic derivation of composition tables
presents an important step towards the realisation of

a general qualitative reasoning engine which can be utilised

in large spatial databases.
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