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ABSTRACT
A new model for the simulation of fluid flow through rough cracks is presented. The model combines a probabilistic cut finite
element method (PCutFEM) to capture the unfitted boundary condition at the fluid interface, with a stochastic random field
generator to represent the crack asperities. A key feature of the model is the consideration of the crack roughness and tortuosity,
which are calculated from the crack asperities. This approach avoids the need for empirical reduction factors, whilst allowing
for the heterogeneity of the flow processes. In addition to this, the model considers the spatially varying crack width associated
with material loss during the fracture process, which is represented using a smoothed Gaussian noise. To determine the statistical
parameters that describe the crack asperities, a Bayesian statistical inference is employed. The statistical inference considers the
uncertainty in measured values, observations of crack permeabilities and the stochastic nature of the random field model. The
performance of the model is assessed via comparison with new experimental data of the flow of tap water (TW) and a ground-
granulated blast furnace slag (GGBS) suspension through concrete cracks. In addition, a statistical analysis is employed to quantify
the level of uncertainty in the predictions. The results of the validation show that the model is able to accurately reproduce the
observed experimental behaviour and that a confidence level in the results of 95% is achieved in eight simulations.

1 Introduction

Understanding fluid flow behaviour through cracks is of key
importance for a range of applications, including (but not limited
to) underground energy storage and utilisation [1, 2], geological
sequestration of CO2 [3, 4] and construction [5–7]. For example,
consideration of fluid flow through fractures is vital in the
design of some concrete structures. The presence of concrete
cracks exacerbates durability issues such as the corrosion of steel
reinforcement [7] and carbonation [5] due to increased rates of

ingress of moisture and deleterious chemical species such as
chlorides. One approach to mitigate such issues is to design the
concrete to be self-healing, such that cracks are healed as they
form [8]. Several self-healing techniques rely on an encapsulated
healing agent that is transported to the damage site through the
cementitious matrix and cracks [9, 10]. Thus, healing efficacy is
linked to the fracture flow behaviour [11, 12].

The permeability of cracks is most frequently derived from
Poiseuille’s law, assuming smooth parallel plates [13]. Real
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cracks, however, are rough and tortuous, and exhibit effective
permeabilities that can be orders of magnitude lower than those
predicted by Poiseuille’s law. To account for this, empirical
reduction factors, which can vary significantly and are not linked
to the crack geometry, are often employed [13]. To improve
the estimation of the permeability, a number of researchers
instead modify the permeability term using crack roughness and
tortuosity factors, both of which can be explicitly calculated from
the crack geometry [13–15].

Crack geometry may be obtained either through direct measure-
ment of physical samples, using, for example, laser profilometry,
or through the generation of representative virtual or synthetic
fractures. For the latter, a number of approaches have been taken
[16]. Garcia and Stoll [17] employed an uncorrelated Gaussian
distribution of random numbers, to which Gaussian smoothing
was applied to obtain a correlated profile to represent rough
surfaces. Brown [18] employed a Fourier space-based technique
for the generation of synthetic fractures that accounted for fractal
dimension, roughness and mismatch length scale. The mismatch
length scale was later improved upon by Glover et al. [19] and
Ogilvie et al. [20] who allowed for a smooth transition between
completely correlated to uncorrelated fracture surfaces (in the
approach of Brown [18], the transition could be viewed as a step
function). Guiltinan et al. [16] presented a python library for
generating synthetic fractures, pySimFrac, based on the SynFrac
model presented in Ogilvie et al. [20]. To demonstrate the use
of the generated fractures with a flow model, examples were
presented in which pySimFrac was combined with open-source
Lattice–Boltzmann method (LBM) based models (e.g., MP-LBM
[21] andMF-LBM[22]). The results showed that the heterogeneity
of the crack geometry has a significant effect on velocity and
phase saturation profiles.

Spatial variability impacts many hydrological processes associ-
ated with fluid flow and should be accounted for in numerical
models. One approach to achieve this uses random fields with
the stochastic finite element method (SFEM) [23]. The SFEM
extends the finite element method (FEM) to consider variability,
whether it be in the initial conditions, problem geometry or
material properties. Field generation techniques vary widely,
including Karhunen–Loève’s expansion and local averaging sub-
division methods [24, 25]. The most common method, however,
is through computationally expensive covariance matrix decom-
position [26–28], which is unsuitable for large-scale problems
[28]. An alternative approach is to generate Gaussian random
fields through the solution of a stochastic PDE related to the
Matérn autocorrelation function (ACF) [29], which is used in
the present work to represent variations in crack asperities. In
addition to the uncertainty associated with the stochastic nature
of such random field models, the statistical parameters that
describe the crack geometry also have an associated uncertainty.
To calibrate the statistical parameters, as well as account for
uncertainties in their values, a Bayesian model calibration can be
employed [30]. Bayesian model calibration alleviates the issues
associated with conventional, trial and error-based calibration,
whilst considering the uncertainty associated with the model
and observed data [30–32]. In addition, Bayesian approaches
allow for quantification of the uncertainty in model parameters
and results through credible intervals [30, 32]. For a complete

description of the application of Bayesian calibration to numer-
ical models, the interested reader is referred to Kennedy and
O’Hagan [33].

Finite element models that consider uncertainty have been
developed for a wide range of problems, including structural
mechanics [34, 35], multi-scale modelling and homogenisation
[36, 37] and transport through porous media [38, 39]. According
to Stefanou [40], uncertainty is often incorporated into these
models (usually termed stochastic or probabilistic FEMs, SFEM
and PFEM, respectively) using either Monte Carlo simulation
(MCS) [35], the perturbation method [34, 41] or the spectral
SFEM (SSFEM) [42]. A key advantage of such approaches is
the ability to quantify the probability of model outcomes, such
as structural failure [23]. Figiel and Kamiński [35] used MCS
to investigate the sensitivity of fatigue delamination of a two-
layer composite to a number of uncertain model parameters. The
authors employed correlation coefficients and probabilistic sensi-
tivity measures to estimate both the sensitivity of model outputs
to input parameters and the relative significance of each input
variable.Uncertainty in the finite element discretisation errorwas
considered by Poot et al. [43]. The authors followed a Bayesian
approach that updates a Gaussian process prior with observations
of a right-hand side vector from a finite element discretisation.
Girolami et al. [44] proposed a statistical finite element method
(statFEM) to incorporate observed data into finite element mod-
els. statFEM employs a Bayesian approach that accounts for
uncertainty stemming from the PFEM, measurement noise and
model misspecification.

A number of models for the simulation of flow through rough
fractures have been employed, many of which are based on LBM
[45, 46] or continuum-based approaches such as the FEMor finite
volume method (FVM) [47, 48]. The simulation of two-phase
flows within rough fractures requires consideration of fluid–fluid
interface conditions. Continuum-based approaches account for
this with interface capturing/tracking techniques such as the
volume of fluid or level-set method [47, 48]. Chen et al. [48]
investigated the role of viscous and capillary forces on the flow
behaviour using a volume of fluid method combined with the
Navier–Stokes equations. The model was able to obtain good
qualitative agreement with experimental observations concern-
ing the invasion morphologies at the crack scale. Dai et al. [47]
used an FEM combined with the level-set method to investigate
the effect of roughness and wettability on the two-phase flow (of
water and crude oil) through rough fractures. Themodel assumed
that the fluid properties smoothly varied across the interface,
whilst the interfacial force was applied as a function of the level-
set. For two-phase flow, the interfacial force is associated with
a jump in fluid stress across the interface [49]. For single-phase
flow within an unsaturated crack, the fluid interface is associated
with an unfitted boundary when using an FEM with a fixed
mesh (which may be preferable to avoid complex re-meshing
associated with topological changes) [49]. Such discontinuities,
or unfitted boundary conditions, are not easily represented
using the standard FEM. To address this, unfitted finite element
methods (UFEMs) such as the extended and cut-finite element
methods (XFEMandCutFEM, respectively), that use enrichment
functions or overlapping elements to capture discontinuities,
may be employed. A key drawback of many UFEMs is the need
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for non-standard integration schemes on elements intersected
by discontinuities that complicate their implementation [50].
However, there are now several approaches to circumventing
this issue whilst maintaining optimal convergence properties,
among which are the ‘CutFEM without cutting the mesh’
[50], shifted boundary and shifted interface methods (SBM and
SIM respectively) [51, 52] and the cut-cell method of Pande
et al. [53].

In the present work, we employ a probabilistic cut finite element
method (termed PCutFEM) approach for simulating the flow
through rough cracks, with a stochastic PDE-based approach
for the representation of crack asperities, from which tortuosity
and roughness are calculated. The fluid interface is tracked
using the level-set method. For the representation of the spatial
variability of the crack width associated with material loss
during the fracture process, we employ a smoothed Gaussian
noise. Finally, the statistical parameters used to describe the
crack asperities are calibrated using a Bayesian model calibra-
tion that accounts for uncertainty in the measured parameters,
observations of crack permeability and the stochastic nature
of the random field model. The validation of the model is
shown through the consideration of an example problem. The
example problem concerns the flow of tap water (TW) and
a ground-granulated blast furnace slag (GGBS) suspension
through concrete fractures, for which new experimental data are
presented.

The layout for the remainder of the paper is as follows; the
theoretical formulation for the fluid flow, random field generation
andBayesianmodel calibration is presented in Section 2. Section 3
presents the numerical implementation. Section 4 presents a
verification and validation example concerning the generation of
virtual rough fractures and calculation of roughness, tortuosity
and permeability. A validation example using new experimental
data that concerns flow through concrete fractures is presented
in Section 5 before some concluding remarks are given in
Section 6.

2 Theoretical Formulation

In the present work, we consider a stochastic random field model
for the generation of virtual cracks, the parameters for which
are calibrated using a Bayesian approach that uses experimental
measurements of crack asperity correlation lengths and standard
deviation, and crack permeabilities. The generated cracks are
used to determine crack roughness and tortuosity values, which
are fed into a PCutFEM model to simulate the fluid flow
behaviour. Uncertainty in crack parameters, measured perme-
abilities and the stochastic nature of the random field model
are all accounted for, and the resulting uncertainty is quantified
through statistical analysis. An overview of the approach of the
model that illustrates how the various components fit together is
given in Figure 1.

It is noted that in the present work the focus is on simulating
fluid flow solely within rough cracks. For flow through fractured
porousmedia, the transport of fluids through the porousmedium,
as well as the transfer of fluids between the two domains would
need to be considered (see e.g. [54–58]).

2.1 Fluid Flow

2.1.1 Governing Equations

We consider two-phase flow of fluids through rough cracks and
assume that one of the phases is air. In addition, we assume that
the air pressurewithin the crack remains constant at atmospheric
pressure (following the approach of [12, 54]), and that there is a
sharp interface between the fluid and air phases. Therefore, it is
assumed that within the crack domain there are discrete phases
of fluid (fully saturated) and air, and never a mixture of these
two phases. Under these assumptions, the two-phase crack flow is
governed by the single fluid mass balance equation (i.e., the flow
of air may be neglected), which, combined with Darcy’s law for
describing the fluid flux and the pressure boundary condition at
the fluid interface, reads:

𝜕𝜌𝑤

𝜕𝑡
+∇ ⋅ (𝜌𝑤𝐮) = 0, ∀𝐱 ∈ Ω (1a)

𝐮 = −𝐾 (∇𝑃 − 𝜌𝐠) , ∀𝐱 ∈ Ω (1b)

𝑃 = 𝑃𝑑 = 𝑃𝑐 (1 − 𝛽𝑠) − 2
𝛽𝑚

𝑤
𝐮 ⋅ 𝐧, ∀𝐱 ∈ Γ𝑓 (1c)

in which Ω is the problem/fluid domain (defined as the domain
of the crack that is saturated with fluid), Γ𝑓 is the fluid interface,
𝜌 is the fluid density, 𝑤 is the crack width, 𝐮 is the vector
of fluid velocities, 𝑃 is the fluid pressure, 𝐠 is the acceleration
due to gravity, 𝐧 is the unit normal vector and 𝛽𝑠 and 𝛽𝑚 are
factors accounting for stick-slip and frictional dissipation at the
meniscus, respectively.

The crack permeability, 𝐾, is given as:

𝐾 = 𝑤2

𝜇
+

𝑤𝛽𝑤

2
(2)

in which 𝜇 is the fluid viscosity and 𝛽𝑤 is a wall slip factor.

The capillary pressure at the fluid interface is given by the Young–
Laplace equation:

𝑃𝑐 (𝜃𝑑) =
2𝛾cos (𝜃𝑑)

𝑤
(3)

where 𝛾 is the surface tension and 𝜃𝑑 is the dynamic contact angle
that is related to the static contact angle (𝜃𝑠) via the relationship
of Jiang et al. [59]:

𝜃𝑑 = 𝑎cos (cos (𝜃𝑠) − tanℎ (𝑐1𝐶𝑎
𝑐2 ) (cos (𝜃𝑠) + 1)) (4)

where 𝐶𝑎 = 𝐮 ⋅ 𝐧𝜇∕𝛾 is the capillary number and 𝑐1 and 𝑐2 are
constants.

2.1.2 Crack Tortuosity and Roughness

2.1.2.1 Calculation From Crack Asperities. Equation (2)
for the crack permeability is valid only for smooth plates and does
not account for the morphological characteristics of real cracks.
To account for the reduction in permeability arising from the
crack morphology, the crack permeability is often scaled by an
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FIGURE 1 Overview of model approach.

empirical reduction factor. However, as highlighted by Akhavan
et al. [13], such values are often uncertain, can vary by orders of
magnitude and are not correlated to the crack geometry.

A wide range of approaches have been taken to quantify mor-
phological characteristics, such as magnitude, angularity and
periodicity, of crack surfaces [60]. To this end, a number of rough-
ness parameters have been defined [15]. The proposed roughness
parameters include the joint roughness coefficient (JRC), mean
asperity height (𝑅𝑎), surface roughness (𝑅𝑠), tortuosity (𝜏), root-
mean-square of the first derivative of the profile (𝑍2) and the
fractal dimension (𝐷𝑓), all of which have been incorporated in
modifying the hydraulic conductivity of rough fractures [15].

Noting that a single roughness parameter may not be sufficient in
quantifying the effect of the crack morphology on fluid flow [15,
60], the present work follows the approach of Akhavan et al. [13]
and accounts for the effects of the crackmorphology through both
the mean asperity height (crack roughness) and crack tortuosity.
Roughness and tortuosity are accounted for independently and
are calculated directly from the crack geometry, where the latter
is obtained from a random field generator used to represent the
crack asperities.

Crack tortuosity is related to the deviation of the crack profile
from a straight-line path, due to the crack asperities, leading to
an effective crack length, 𝐿𝑒, and therefore flow path, that is larger
than the nominal crack length, 𝐿nom [13]. The crack tortuosity is
defined as the ratio:

𝜏 =
(
𝐿nom

𝐿𝑒

)2

(5)

In the present work, the crack roughness is defined as the mean
height of the crack asperities with respect to a reference line.

The reference line is obtained by dividing the crack profile into
segments of length, 𝐿seg, and connecting the beginning and end
points where the segment intersects the crack profile [13]. The
height of a crack asperity with respect to the reference line is
defined as:

𝑅𝑎 = ‖𝑍asp − 𝑍ref‖ (6)

where 𝑍asp and 𝑍ref are the height of the surface asperity and
reference line respectively and ‖‖ denotes the Euclidean distance.
An illustration of these concepts can be seen in Figure 2.

The calculation of crack roughness and tortuosity is described
in the following: the first step is to discretise the crack into a
mesh comprising𝑛𝑒 elements of lengthℎ, and 𝑛𝑑 nodes. Once the
discretisation is established, the crack asperity height is obtained
either from an image, if using experimental data, or from the
random field generator.

Following this, the crack tortuosity (𝜏) can be calculated for each
node as follows:

𝜏𝑖 =
1

nj

nj∑
𝑗=1

(
ℎ

𝐿𝑒

)2

= 1

nj

nj∑
𝑗=1

(
ℎ‖𝐱asp,𝑖 − 𝐱asp,𝑗‖

)2

(7)

where 𝑖 and 𝑗 denote two neighbouring nodes, 𝑛𝑗 is the number
of nodes adjacent to 𝑖 and 𝐱asp,𝑖 = (𝑥, 𝑦, 𝑍asp,𝑖) indicates the
coordinates of the crack asperity peak (in which 𝑥 and 𝑦 denote
the cartesian coordinates of node 𝑖 and 𝑍asp,𝑖 the asperity height).

To calculate the crack roughness (Equation 6), a macro-element
technique is employed analogous to the method employed to
distribute boundary fluxes in Ricketts et al. [39, 61]. In the
present work, the macro-elements are defined such that element
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FIGURE 2 Illustration of crack profile showing (a) nominal and effective lengths, and a reference line for a segment of the crack profile, (b)
roughness calculation in 1D, (c) 2D crack mesh showing asperities and (d) calculation of roughness in 2D.

FIGURE 3 Illustration of the macro-elements used for roughness calculation.

boundaries align with the underlying finite element mesh. A
depiction of the finite element mesh, and examples of macro-
elements used to calculate the roughness for internal and
boundary nodes, can be seen in Figure 3.

For each macro-element, the crack roughness (𝑅𝑎) for node 𝑖 can
be calculated as follows:

𝑅𝑎,𝑖 = ‖𝑁𝑖𝑍asp,𝑖 − 𝑍ref ,𝑖‖ = ‖𝑍asp,𝑖 −𝐍𝑇
𝑚𝐙asp,𝑚‖ (8)

where 𝑁𝑖 is the shape function associated with node 𝑖 (equal to
1 as 𝑅𝑎,𝑖 is evaluated at the nodal position), 𝑍ref ,𝑖 is the reference
asperity height at the position of node 𝑖,𝐍𝑚 is the vector of shape
functions defined on the macro-element and 𝐙asp,𝑚 is the vector
of macro-element nodal asperity heights.
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2.1.2.2 Effect on Crack Permeability. Once the values of
crack roughness and tortuosity are known, the crack permeability
can be calculated according to [12, 13]:

𝐾 =
(

𝜏

1 + 𝑐3𝑅
1.5
𝑟

)(
𝑤2

𝜇
+

𝑤𝛽𝑤

2

)
(9)

where 𝑅𝑟 = 𝑅𝑎∕2𝑤 is the relative surface roughness and 𝑐3 is a
constant typically taken equal to 8.8 [13, 15].

A key feature of the present approach is that we allow both
roughness and tortuosity to vary across the domain, rather than
employ a single global mean value. This, along with the use of a
spatially varying crackwidth, enables the approach to capture the
heterogeneity in the flow processes.

2.1.2.3 Scale Dependence. Experimental evidence has
shown that cracks exhibit a fractal behaviour [13], in which the
effective length, 𝐿𝑒, (and hence tortuosity), as well as roughness,
depends upon the scale at which they are measured via the
following relations:

𝐿𝑒 = 𝐹𝐿𝑒
𝜆1−𝐷 (10)

𝑅𝑎 = 𝐹𝑅𝑎
𝜆2−𝐷 (11)

where 𝜆 is the scale of measurement, 𝐷 is the fractal dimension
and 𝐹𝐿𝑒

and 𝐹𝑅𝑎
are constants.

In addition, noting that 𝜏 = (𝐿nom∕𝐿𝑒)
2 [13], the fractal relation for

the tortuosity can be derived from Equation (10) as:

𝜏 =
(
𝐿nom

𝐹𝐿𝑒

)2

𝜆−2(1−𝐷) (12)

where 𝐿nom is the nominal (non-tortuous) crack length.

2.2 Random Field Generator

2.2.1 Gaussian Random Field Representation of
Concrete Crack Asperities

In the following, the theory of random field generation based on
the solution of a stochastic PDE is presented [29, 62].

Let 𝐗 ∈ ℝ𝑑 be a Gaussian random field where its contents
are parameterised collections of Gaussian random variables
{𝐗(𝐱)}𝐱∈ℝ𝑑 . Here, the covariance of the field is assumed to be
a function of spatial distance alone, so a standard ACF form is
suitable for representing the correlation structure. The Matérn
ACF is chosen, such that:

ACFX (𝐱) = 21−𝜈

Γ (𝜈)

(‖𝐱‖
𝑙

)𝜈

𝐾𝜈

(‖𝐱‖
𝑙

)
(13)

for 𝐱 ∈ ℝ𝑑, where 𝜈 > 0 is the smoothness parameter, Γ is the
gamma function and 𝐾𝜈 is the Bessel function of the second kind
of order 𝜈 [63]. The length-scale parameter 𝑙 > 0 controls the
correlation length of the resulting field, whereby 𝛿 = 𝑙

√
8𝜈 is a

range parameter defined as the distance at which correlations are
near 0.1 for all 𝜈 [62].

Following the approach of Roininen et al. [29], Equation (13) is
approximated by posing the function as the stochastic PDE:

(
1 − 𝑙2Δ

) (𝜈+𝑑∕2)
2 𝐗 =

√
𝛼𝑙𝑑𝐖 (14)

where 𝑑 = 1, 2, 3,𝐖 is white noise onℝ𝑑 and 𝛼 is a constant such
that:

𝛼 ∶= 𝜎2
2𝑑𝜋𝑑∕2Γ (𝜈 + 𝑑∕2)

Γ (𝜈)
(15)

where 𝜎 is the standard deviation. The smoothness parameter 𝜈
is fixed as 𝜈 = 2 − 𝑑∕2 rendering the Equation (14) elliptic, such
that: (

𝐈 − 𝑙2Δ
)
𝐗 =

√
𝛼𝑙𝑑𝐖 (16)

where 𝐈 is the standard identity matrix.

For a fuller description of the stochastic PDE theory and solution
process, the interested reader is referred to Ricketts et al. [39].

Remark. A number of different ACFs could be used to generate
the random field, including (but not limited to) the triangular
and exponential type [64]. In the present work, the Matérn ACF
was preferred due to its computational efficiency when combined
with the approach of Roininen et al. [29]. The efficacy of the
Matérn ACF at representing (quantifiably) realistic concrete
cracks is both verified, using alternative software, and validated,
using experimental data, in Section 4.

2.2.2 Smoothed Gaussian Noise Representation of
Spatially Varying CrackWidth

During the fracture process, some material will be lost from
each of the crack faces. As a result of this, the crack width will
exhibit a spatial variation even for specimens with a nominally
constant crack width. To represent the deviation of the crack
width from the nominal value a zero mean Gaussian noise is
generated. Following this, to match experimental observations of
the crackwidth variation, aGaussian smoothing is applied, before
the field is scaled to the match the observed standard deviation.
The scaling is based on measured values of crack width from the
samples, as detailed in Appendix A.

2.3 Bayesian Model Calibration

Experimental evidence shows that the correlation length and
standard deviation of the crack asperities show significant vari-
ation between samples. To account for this uncertainty, as well
as the uncertainty associated with experimental measurements
of crack permeability (see [13]), we employ a Bayesian statistical
inference to determine the probability density function (PDF) of
the random field model parameters (𝜽 = [𝑙, 𝜎]) [30]:

𝜋post (𝜽|𝐃) =
𝜋like (𝐃|𝜽) 𝜋prior (𝜽)

𝜋evid (𝐃)
(17)

where 𝜋post(𝜽|𝐃) is the posterior PDF that defines the Bayesian
update of the prior information (𝜋prior(𝜽)) with the observed data
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(𝐃) and 𝜋evid(𝐃) = ∫ 𝜋like(𝐃|𝜽)𝜋prior(𝜽)𝑑𝜽 is the evidence that
plays the role of a normalisation factor.

In the present work the prior information relates to measure-
ments of the correlation length and standard deviation from
cracked specimens (detailed in Appendix A). The prior informa-
tion is assumed to be log-normally distributed to ensure that the
parameters are strictly positive.

The likelihood function found in Equation (17) is the probability
of the observed data given the model output (𝐝). Due to the
stochastic nature of the random field model, the model output
is non-deterministic for the same set of model parameters.
The model output associated with a stochastic model can be
represented as 𝐝(𝜽, 𝜔), in which 𝜔 denotes a particular model
outcome from the set of all possible outcomes (see [30]). The
likelihood is determined by assigning a distribution to the error
between the observed data and model outcomes (𝜺). Assuming
the noise is additive, the error is given as 𝜺 = 𝜼 + 𝝃 = 𝐃 − 𝐝(𝜽, 𝜔),
inwhich 𝜼 ∼  (0, 𝚪−1

data
) and 𝝃 ∼  (0, 𝚪−1

model
) are the uncertainty

in the observed data and model outputs, respectively. 𝚪data

and 𝚪model represent the covariance matrices that are assumed
diagonal.

Following the approach of [30], the likelihood function is given
as:

𝜋like (𝐃|𝜽) = (
(2𝜋)

2 |𝚺|)−0.5
exp

(
−1

2
(𝝁𝐷 − 𝝁𝑑)

𝑇
𝚺−1 (𝝁𝐷 − 𝝁𝑑)

)
(18)

where 𝚺 = 𝚪data +𝚪model is the total covariance matrix and 𝝁𝐷

and 𝝁𝑑 are the vectors of means of the observed data and model
outputs respectively given as:

𝝁𝐷 = 1

𝑁𝐷

𝑁𝐷∑
𝑖=1

𝐷𝑖 (19)

𝝁𝑑 = 1

𝑁𝑑

𝑁𝑑∑
𝑖=1

𝐝 (𝜽, 𝜔𝑖) (20)

where 𝑁𝐷 and 𝑁𝑑 are the number of observations and model
evaluations (for a given 𝜽), respectively.

3 Numerical Implementation

3.1 Fluid Flow

3.1.1 Variational Formulation

Combining the mass balance and Darcy equations given in
Equation (1), we obtain a Poisson problem for the pressure which
is given in variational form as:

Find 𝐏 ∈ 𝐻1(Ω) such that:

∫
Ω

𝐯 ⋅ (∇ ⋅ (−𝜌𝑤K∇𝐏))

= ∫
Ω

𝐯 ⋅

(
∇ ⋅ 𝜌𝑤𝜌𝐠 −

𝜕𝜌𝑤

𝜕𝑡

)
, ∀𝐯 ∈ 𝐻1 (Ω) (21)

where 𝐏 is the solution vector and 𝐯 are the test functions.

3.1.2 Cut Finite Element Without Cutting the Mesh

In the present work, a PCutFEMmodel is employed in which the
mesh does not conform with the physical domain. The specific
method employed is the ‘CutFEMwithout cutting the mesh cells’
proposed by Lozinski [50] and is based on the UFEM of Hansbo
and Hansbo [65]. In this approach, a simple background mesh is
defined (𝑇0

ℎ
), into which the physical domain is embedded. The

computational mesh (𝑇ℎ) is obtained through the removal of all
elements with zero intersection with the physical domain:

𝑇ℎ =
{
𝑇 ∈ 𝑇0

ℎ
|𝑇 ∩ Ω ≠ ∅

}
(22)

where𝑇 indicates an element in themesh, and the computational
domain is defined as:

Ωℎ =
(
∪𝑇∈𝑇ℎ

𝑇
)◦

(23)

A depiction of the background mesh, physical domain and
corresponding computational mesh can be seen in Figure 4.

It is clear from the definition of the computational mesh that
it is simply the physical domain plus some small extension (ℴ)
such thatΩℎ = Ω∪ ℴ. The main idea of the approach of Lozinski
[50] is the assumption that the problem defined in Equation (21)
can extended from the physical mesh to the computational mesh,
with the boundary conditions still imposed on the physical
boundary. It is noted that a similar assumption is made in Pande
et al. [53] and Freeman and Jefferson [12] for a cut-cell and
multi-point constraint UFEM [66], respectively. In the shifted
boundarymethod [51], the problem is extended, and the boundary
conditions imposed on a surrogate boundary. The advantage of
such approaches is the avoidance of integration over cut elements,
and the associated conditioning issues associated with ‘bad’ cuts.

Discretising Equation (21), integrating by parts over the compu-
tational mesh and employing a nonsymmetric Nitsche’s method
for weakly enforcing boundary conditions lead to:

Find 𝐏 ∈ 𝐻1(Ω) such that:

∫
Ωℎ

∇𝐯 ⋅ 𝜌𝑤K∇𝐏 − ∫
Γℎ

𝐯 ⋅ 𝜌𝑤K
𝜕𝐏

𝜕𝐧
+ ∫

Γ𝑓

𝜕𝐯

𝜕𝐧
⋅ 𝜌𝑤K𝐏

+ 𝜗

ℎ∫
Γ𝑓

𝐯 ⋅ 𝐏 + 𝜖ℎ
∑
𝐸∈𝐸𝑔

∫
𝐸

⟦
𝜕𝐯

𝜕𝐧

⟧
⋅

⟦
𝜕𝐏

𝜕𝐧

⟧

= ∫
Ωℎ

∇𝐯 ⋅ 𝜌𝑤𝜌𝐠 − ∫
Ωℎ

𝐯 ⋅
𝜕𝜌𝑤

𝜕𝑡
+ ∫

Γ𝑓

𝜕𝐯

𝜕𝐧
⋅ 𝜌𝑤K𝐏𝑑

+ 𝜗

ℎ∫
Γ𝑓

𝐯 ⋅ 𝐏𝑑, ∀𝐯 ∈ 𝐻1 (Ω) (24)

where ⟦𝐱⟧ = 𝐱|𝑇+ − 𝐱|𝑇− is the jump operator, 𝐧 is the outward
facing normal, 𝜗 ≥ 0 is a Nitsche penalty parameter, 𝜖 ≥ 0 is a
ghost penalty parameter and ℎ is a measure of the element size.
The final term in the left-hand side of Equation (24) is a ghost
penalty included to both stabilise the bilinear form and extend the
solution from the computational mesh to the background mesh
[12, 50], which is important for the level-set method introduced
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FIGURE 4 Simple background mesh into which the domain is embedded (a), and corresponding computational mesh (b) (reproduced from
Freeman [66] with permission).

in the Section 3.1.3. The ghost penalty is applied to the internal
edges of the computational mesh, defined as:

𝐸𝑔 = {𝐸 ∈ 𝜕𝑇ℎ |𝐸 ∩ 𝜕Ω𝑏 = ∅ } (25)

where 𝐸 denotes an element edge, 𝜕𝑇ℎ is the global set of element
edges, Ω𝑏 is the background mesh domain (or crack plane) and
𝜕Ω𝑏 its boundary.

It is noted that the consistency term (the second term in the left-
hand side of Equation 24) is applied over the outer boundary of
the computational mesh (Γℎ), whilst the terms associated with
Nitsche’s method are applied over the physical boundary (Γ𝑓).

The fluid flowdomain, aswell as the physical boundary, and outer
boundary of the computationalmesh, employed in Equation (24),
are determined from the level set. Mathematically, the compu-
tational domain, outer boundary and physical boundary are all
functions of the level set, that is,Ωℎ(Ω(𝜑)), Γℎ(Ωℎ(𝜑)) and Γ𝑓(𝜑).

The fluid flow and level set are solved in a staggered solution
procedure. The full solution algorithm can be seen in Section 3.5.

3.1.3 Interface TrackingWith Level-Set Method

The movement of the fluid interface is tracked by the level-set
method that is given as:

𝜕𝜑

𝜕𝑡
+ 𝐮 ⋅ ∇𝜑 = 0 (26)

where 𝜑 is the level-set that is a signed distance function with the
following properties:

𝜑 > 0 ∀𝐱 ∈ Ω𝑓, 𝜑 < 0 ∀𝐱 ∉ Ω𝑓, 𝜑 = 0 ∀𝐱 ∈ Γ𝑓 (27)

where Ω𝑓 indicates the fluid domain.

In the present work, we employ the assumed gradient level-set
(i.e., we assume that |∇𝜑| = 1, in which |𝑥| indicates the absolute
value of 𝑥) following the approach of [67], such that Equation (26)

can be rearranged to give:

𝜕𝜑

𝜕𝑡
+ 𝑢𝑛 |∇𝜑| = 0 →

𝜕𝜑

𝜕𝑡
+ 𝑢𝑛 = 0 (28)

where 𝑢𝑛 = 𝐮 ⋅ ∇𝜑∕|∇𝜑| is the velocity normal to the interface.
The weak form reads:

Find 𝝋 ∈ 𝐻1(Ω) such that:

∫
Ω𝑏

𝐯 ⋅
𝜕𝝋

𝜕𝑡
= −∫

Ω𝑏

𝐯 ⋅ 𝐮 ⋅
∇𝜑|∇𝜑| , ∀𝐯 ∈ 𝐻1 (Ω) (29)

The time discretisation employs a backward difference method,
whilst amodified fast-marchingmethod is employed for the level-
set reinitialisation [68], which is important for maintaining the
level-set as a signed distance function. Finally, the time step
size was limited according to a Courant–Friedrichs–Lewy (CFL)
condition given as: 𝑢Δ𝑡∕ℎ ≤ 𝐶.

3.2 Random Field Generator

Here, the solution to Equation (16) is approximated with the
FEM. This is a non-unique solution and defined over ℝ𝑑, and as
such, boundary conditions are supplied such that the problem
is well posed. The reduction of a solution in ℝ𝑑 to a finite
domain introduces spurious values in the near-boundary region,
resulting in a correlation structure that differs from the rest of
the domain [69]. This behaviour can be controlled though the
choice of boundary condition that is applied. Although the well-
known Dirichlet and Neumann conditions can be specified, here
the approach of Ricketts et al. [69] is taken, supplying a weighted
Dirichlet–Neumann boundary condition

𝛼𝐗 + (1 − 𝛼) 𝑙
𝜕𝐗

𝜕𝐧
= 0 on 𝜕Ω𝑏 (30)

where 𝛼 ∈ [0, 1] is theweighting parameter that controls the ratio
of the Dirichlet and Neumann components. This is nothing more
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than a cosmetic change to the Robin condition:(
𝐗 + 𝜆

𝜕𝐗

𝜕𝐧

) |𝜕Ω𝑏
= 0 (31)

where the Robin coefficient 𝜆 can be formulated from Equa-
tion (30) as

𝜆 = 𝜆 (𝛼, 𝑙) = 1 − 𝛼

𝛼
𝑙. (32)

Discretising Equation (16) and integrating by parts over the
background mesh leads to the following weak form:

Find 𝐗 ∈ 𝐻1(Ω) such that:

∫
Ω𝑏

𝐯 ⋅ 𝐗 + 𝑙2∫
Ω𝑏

∇𝐯 ⋅ ∇𝐗 + 𝑙2

𝜆 ∫
𝜕Ω𝑏

𝐯 ⋅ 𝐗

=
√

𝛼𝑙2∫
Ω𝑏

𝐯 ⋅ 𝐖, ∀𝐯 ∈ 𝐻1 (Ω) (33)

As the generated field is merely a solution of the SPDE in ℝ2,
this allows it to represent any model parameter which should be
spatially varying. Here, it is assigned to represent the geometry
of the crack face, as this will have direct impact on the effective
permeability of the crack, resulting in non-uniform fluid motion.

3.3 Bayesian Model Calibration

To establish the posterior distribution (Equation 17), we employ
a sequence of 𝑚 Markov Chain Monte Carlo (MCMC) sim-
ulations. The simulations are determined using the Random
Walk Metropolis–Hastings (MH) algorithm. The MH algorithm
forms a Markov Chain (MC) by proposing a jump in variables
from the current values through sampling candidates from a
proposal distribution. The proposed jump is then accepted or
rejected according to an acceptance probability. The starting point
for the chain is determined by sampling variables values from
an appropriate uniform distribution. For further details of the
approach, the interested reader is referred to [70].

To determine the convergence of the algorithm, we follow the
approach of Brooks and Gelman [71]. The method involves
simulating 𝑚 MCs for 2𝑛 iterations and discarding the first 𝑛 to
account for the burn-in period. The estimated target (posterior)
mean (𝝁) and variance (𝝈2) are then calculated as:

𝝁 = 1

mn

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝜽ij (34a)

𝝈2 = 𝑛 − 1

𝑛
𝐖𝒗 +

𝐁

𝑛
(34b)

in which the between- and within-chain variances (𝐁∕𝑛 and𝐖𝒗,
respectively) are given as:

𝐁∕𝑛 = 1

𝑚 − 1

𝑚∑
𝑖=1

(
𝜽𝑗 − 𝝁

)2

(35a)

𝐖𝒗 = 1

𝑚 (𝑛 − 1)

𝑚∑
𝑖=1

𝑛∑
𝑗=1

(
𝜽ij − 𝜽𝑗

)2

(35b)

in which the overbar denotes the mean value.

Finally, using the above, the potential scale reduction factor (𝐑̂)
can be calculated as:

𝐑̂ = 𝑚 + 1

𝑚

𝝈2

𝐖𝒗

− 𝑛 − 1

mn (36)

A value of 𝐑̂ near to one gives an indication that each of the sim-
ulated MCs had converged to the target (posterior) distribution
[71].

3.4 Random Number Generators

In the present work, the white noise vector utilised in the
random field model, as well as the zero mean Gaussian noise
used in the representation of the spatially varying crack width,
was generated using the DLARNV subroutine from the FOR-
TRAN linear algebra package, LAPACK. The seeds sampled
for the random field model, as well as the samples used in
the MH algorithm (e.g., from the proposal distribution), were
generated using the numpy.random module from the NumPy
Python package. The performance of numerical algorithms as
well as the convergence of statistical properties can be signifi-
cantly affected by the quality random number generators [72].
Although a number of methodologies for the assessment of the
quality of random number generators have been proposed (see,
e.g. [73, 74]), such an assessment is beyond the scope of this
study.

3.5 Algorithm

The solution scheme can be seen in Box 1 that shows how the
model components fit together.

4 Generation of Virtual Rough Fractures

Before applying the model to an example problem, the per-
formance of the random field model for generating virtual
rough fractures is demonstrated. To this end, a series of cracks
generated using an alternative software package, as well as exper-
imental measurements on crack profiles and permeability are
considered.

4.1 Virtual Fractures From Synfrac

In the present example, we consider the series of cracks presented
inYin et al. [75]. The cracks consideredwere 100mm inwidth and
100 mm in length and were generated using the well-established,
and validated, software package Synfrac [20]. In their study, Yin
et al. [75] varied the fractal dimension (𝐷𝑓) and standard deviation
to generate cracks with different roughness characteristics. To
allow a direct comparison of the results of the present model
with those presented in Yin et al. [75], we consider the 𝑍2 factor
proposed by Myers [76] and used by Yin et al. [75] to quantify the
crack roughness of the generated fractures.
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Box 1 Solution algorithm

Calculate 𝜋post(𝛉|𝐃) Calculate posterior distribution
using Metropolis–Hasting’s
algorithm and random field
model (Section 3.3)

For 𝑖real = 1 to 𝑛real Start loop over number of
realisations

Let 𝑌1..4 ∼ 𝑈 such that
𝑌4 is odd

Sample seed numbers for
random field model and
smoothed Gaussian noise from
a uniform distribution

Let 𝜃1..2 ∼ 𝜋post(𝛉|𝐃) Sample random field model
parameters from posterior
distribution

Solve for 𝐗 Solve the random field model
for crack asperities
(Equation 33)

Calculate 𝐑𝑎 and 𝛕 Calculate roughness and
tortuosity from crack geometry
(Equations 7 and 8)

Scale 𝐑𝑎 and 𝛕 using
fractal relationship

Calculate roughness and
tortuosity at considered length
scale (Equations 11 and 12)

𝑡 = 𝑡0 , 𝛗 = 𝛗0 Initialise cumulative variables
(time and level-set)

For 𝑖time = 1 to 𝑛time Start time step loop
𝑡𝑖time = 𝑡𝑖time−1 + Δ𝑡 Set time variable
Solve for 𝐏 Solve flow problem

(Equation 24)
Calculate 𝒖 Calculate velocity from

pressure field (Equation 1b)
Solve for 𝛗 Solve level-set movement

(Equation 29)
End for 𝑖time End time step loop

End for 𝑖real End loop over realisations
Calculate 𝐶𝐼 and 𝐶𝐿 of
results

Calculate mean rise heights,
confidence intervals and
confidence level of results

TABLE 1 Correlation lengths employed in the random field model.

Fractal dimension 𝑫𝒇 (–) Correlation length 𝒍 (mm)

1.2 29.1
1.6 25.8
2.0 11.7
2.4 3.6

The 𝑍2 factor is given by:

𝑍2 =

√√√√√ 1

𝑁𝑥Δ𝑥𝑁𝑦Δ𝑦

𝑁𝑥∑
𝑗=1

𝑁𝑦−1∑
𝑖=1

(
𝑧𝑗,𝑖+1 − 𝑧𝑗,𝑖

)2
(37)

FIGURE 5 Crack asperities for a single realisation and correlation
lengths of 3.6 mm (a), 11.7 mm (b), 25.8 mm (c) and 29.1 mm (d) and
standard deviation of 1 mm (1) and 2 mm (2).

where 𝑁𝑥 and 𝑁𝑦 are the number of divisions in 𝑥 and 𝑦,
respectively, Δ𝑥 and Δ𝑦 are the distance between adjacent points
in 𝑥 and 𝑦, respectively and 𝑧𝑗,𝑖 is the asperity height of the point
(𝑗, 𝑖).

For the random field model, it was assumed that the crack faces
were complementary such that a single random field generation
of crack asperities could be employed to represent both crack
faces. For each set of random field parameters (𝜽), five different
realisations were generated. The mean asperity height was set to
15 mm, it is noted that the roughness and tortuosity that affect
the fluid flow are a function of the relative asperity heights (see
Equations 7 and 8) and, as such, are unaffected by the absolute
value. The correlation lengthswere calibrated tomatch the results
of Yin et al. [75].
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FIGURE 6 Comparison of numerical results and those presented in [75] for standard deviations of 1 mm (a) and 2 mm (b) in which the numerical
results show the mean and 95% confidence intervals.

TABLE 2 Comparison of crack profile characteristics.

Mix Parameter Exp. mean Exp. STD Num. mean Num. STD

NC 𝜏 (–) 0.8995 0.0249 0.9067 0.0220
𝑅𝑠 (–) 1.1534 0.0596 1.0999 0.0260

PPRC4 𝜏 (–) 0.8707 0.0348 0.8764 0.0239
𝑅𝑠 (–) 1.1979 0.0484 1.1374 0.0305

PPRC6 𝜏 (–) 0.8536 0.0213 0.8467 0.0264
𝑅𝑠 (–) 1.2172 0.0428 1.1775 0.0363

FIGURE 7 Comparison of predicted permeability with experimen-
tal data presented in [77].

FIGURE 8 Effect of crack shift on predicted permeability.

The correlation lengths used in the present model for each of the
fractal dimensions can be seen in Table 1. It is noted that both
the present model and Synfrac use the standard deviation, and as
such, the values given in Yin et al. [75] could be used directly.

The generated cracks for a single realisation can be seen in
Figure 5. The effect of correlation length and variability can
clearly be seen in the generated fields. Those associated with
higher correlation lengths and lower SDs exhibit a smoothly
varying crack face; whilst those associated with lower correlation
lengths and higher SDs show significant variations in crack
asperity height and a roughly varying crack face.

A comparison of the roughness characteristics of the generated
cracks, and those presented in Yin et al. [75], can be seen in
Figure 6. The numerical results shown correspond to the mean
and 95% confidence intervals (CIs), calculated using the using the
t-distribution due to the small sample size. It can be seen from
the figure that there is good agreement between the results of the
present model, and those presented in Yin et al. [75].

4.2 Experimental Measurements of Concrete
Fractures

In this example, which validates the random field model, and
roughness and tortuosity calculations, we consider the exper-
imental data presented in Li and Liu [77] that consisted of
both measurements of crack roughness and tortuosity, and
crack permeability of normal and polypropylene fibre reinforced
concrete.

4.2.1 Crack Profiles

A number of samples of a normal concrete (NC) mix and
two polypropylene fibre reinforced concrete mixes (PPRC4 and
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TABLE 3 Mix proportions for concrete specimens.

Designation
Cementa
(kg/m3)

Fine aggregateb
(kg/m3)

Coarse aggregatec
(kg/m3)

Water
(kg/m3)

Compressive strength
(CoV) (N/mm2) (%)

C50 416.7 808.3 1008.3 166.7 44.6 (2.9)
aCEM IV/B-V 32,5R.
b4 mmmax marine dredged sand.
cMax aggregate size 10 mm crushed limestone.

FIGURE 9 Specimen manufacture from concrete prisms.

FIGURE 10 Natural crack profiles for tap water (TW) specimens
(a) and ground-granulated blast furnace slag (GGBS) in suspension
specimens (b).

PPRC6) were analysed by Li and Liu [77], for which the tortuosity
and surface roughness factors were calculated. The surface
roughness (𝑅𝑠) was defined as the ratio of actual crack area (𝐴crk)
to the projected crack area (i.e., the nominal area of the crack,
𝐴nom = 𝐿𝑥𝐿𝑦 in which 𝐿𝑥 and 𝐿𝑦 indicate the length of the crack
in the 𝑥 and 𝑦 direction, respectively).

Cracks of 75 mm in width and 75 mm in length were generated.
For the random field model, it was assumed that the crack faces
were complementary such that a single random field generation
of crack asperities could be employed to represent both crack
faces. For each set of random field parameters (𝜽), five different
realisationswere generated. The correlation lengths and standard
deviations were calibrated for each mix to match the results of Li
and Liu [77].

TABLE 4 Statistical parameters of prior and observed data distribu-
tions.

Distribution Parameter (units) Mean SD

Prior ln(𝑙)(ln(𝑚)) −4.054 0.508
ln(𝜎)(ln(𝑚)) −6.719 0.258

Observed data ln(𝑅𝑎)(ln(𝑚)) −18.110 2.840
ln(𝜏)(−) −1.574 0.595

The results of the comparison are given in Table 2. It can be seen
from the table that themean surface roughness and tortuosity are
accurately reproduced by the numerical model. In addition, there
is good agreement between the standard deviation of the tortuos-
ity predicted by the model to that of the experimental data, whilst
the surface roughness standard deviation is underpredicted.

The correlation lengths used for eachmixwere 8.8, 6.2 and 4.8mm
for the NC, PPRC4 and PPRC6, respectively, whilst a standard
deviation of 2 mm was used for all mixes.

4.2.2 Crack Permeability

In addition tomeasurements of crack profiles, Li and Liu [77] also
presented measurements of crack permeability for each concrete
mix. To compare the predictions of the numerical model with the
experimental data, themean tortuosity and roughness (calculated
at a length scale of 1000 µm) from the numerical results for each
concrete mix were used to calculate the intrinsic permeability
(𝐾int = 𝜏𝑤2∕(1 + 8.8𝑅1.5

𝑟 )) of the concrete cracks for a range of
crack widths.

The results of the comparison are given in Figure 7. It can be
seen from the figure that the numerical predictions are in good
agreement with the experimental results, though the difference
between the concrete mixes is less pronounced.

4.2.3 Shifted Cracks – The Advantage of the
Consideration of Heterogeneity and Crack Asperities

This example was also used to demonstrate one of the key
advantages of the consideration of the heterogeneity of the
flow processes and crack asperities, namely, capturing the effect
of crack sliding. In concrete structures, cracks are subject to
shear displacements in addition to the normal crack opening
displacements. For rough and non-planar cracks, this leads to
local deviations from the nominal crack opening. Such local
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FIGURE 11 Prior and posterior distributions for (a) ln(𝑙) and (b) ln(𝜎).

TABLE 5 Statistical parameters of posterior distributions.

Distribution Parameter (units) Mean SD

Posterior ln(𝑙)(ln(𝑚)) −5.217 0.428
ln(𝜎)(ln(𝑚)) −6.624 0.266

TABLE 6 Fluid flow model parameters.

Model parameter
(units) TW

GGBS
suspension

𝜌 (kg/m3) 1000.0a 1358.0a

𝜇 (Ns/m2) 0.00142a 0.0032a

𝛾 (N/m) 0.0722a 0.0499a

𝜃𝑠 (rad) 0.4328a 0.4904a

𝛽𝑠 (–) 0.0b 0.0b

𝛽𝑚 (Ns/m2) 0.0b 0.0b

𝛽𝑤 (m3/Ns) 0.0125b 0.0125b

𝑐1 (–) 1.325b 1.325b

𝑐2 (–) 0.35b 0.35b

𝑐3 (–) 8.8c 8.8c

𝜗 (–) 1d 1d

𝜖 (–) 0.001d 0.001d

aTaken from [84].
bTaken from or in-line with values in [54].
cTaken from [13].
dTaken from [50].

deviations in crack width can lead to channel flow that has
been shown to be characterised by effective crack permeabilities
that deviate from parallel plate theory [78]. To demonstrate this
effect, we consider the effect of shear displacements on the
effective permeability predicted by the model for the concrete
mixes presented in Li and Liu [77]. The effective permeability
(𝐾eff ) is given by:

𝐾eff = 𝑢av𝜇∕𝑃grad (38)

where 𝑃grad is the applied pressure gradient and 𝑢av is the average
velocity predicted by the numerical model (Equation 24).

The results of the investigation can be seen in Figure 8. The
results show that the effect of shear displacements on the effective
permeability is significant (up to 20.94% difference) and that the
effect is more significant for more tortuous and rough cracks (see
values for each mix in Table 2).

5 Flow Through Concrete Fracture

In this section, to validate the proposed model, the flow through
a concrete fracture is considered. The example concerns the
flow of both TW and a GGBS suspension that was first tested
experimentally. In addition to comparing the results of the
experiments and numerical simulations, a statistical analysis is
undertaken of the model results. The statistical analysis allows
the quantification of the confidence level in the numerical
results.

5.1 Experimental Procedure

The capillary rise of healing agents in discrete cracks has pre-
viously been reported by Gardner et al. [79, 80]. In the current
study, the capillary rise of TW and water carrying GGBS powder
in suspension was measured in natural discrete cracks formed in
a series of concrete specimens. Concrete prisms of dimensions
75 mm × 75 mm × 255 mm were cast using the mix proportions
andmaterials presented in Table 3. After 7 days of curing inwater,
the prisms were notched to a depth of 5 mm and tested until
failure in three-point bending. Three pairs of test specimens were
extracted from each prism by first making a cut 25 mm either side
of the notch, parallel to the crack (Cut #1) and subsequent cuts
perpendicular to the crack at 25 mm intervals (Cut #2), as shown
schematically in Figure 9.

Pressurised air was blown over the crack surfaces to remove
any loose debris. Images of the natural cracks, shown Figure 10,
were then taken to establish crack length and identify surface
asperities. Specimens were then soaked in water for 24 h before
testing to achieve a ‘saturated’ state.

Three crack widths of 0.1, 0.2 and 0.3 mmwere created by placing
metal spacers of thickness equal to the desirable crack width
along the length of the natural crack and clamping the two halves
of the specimens together. Five measurements of crack width
were taken along the length of the crack on the front face and
rear face of the specimens to confirm the final crack width. The
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FIGURE 12 Experimental and numerical results concerning flow of tap water (TW) (1) and ground-granulated blast furnace slag (GGBS)
suspension (2) through concrete cracks of width 0.1mm (a), 0.2mm (b) and 0.3mm (c) inwhich the numerical results show themean and 95% confidence
intervals.

clamped assembly was then fixed to a frame, such that it was
suspended 10 mm above a Petri dish placed on a small hydraulic
platform.

The capillary rise was captured with an AOS technologies high
speed MOTIONeer camera, placed 300 mm in front of the
specimens and with a recording speed of 250 frames per second.
A metal scale was adhered to one side of the crack on the
front face of the specimens. On commencement of recording,
50 mL of water (W) at room temperature (21◦C) was poured
into the Petri dish and the Petri dish raised until the bottom
0.5 mm of the specimens were submerged. This insured that
contact of the base of the crackwith thewater occurred uniformly
and at the same time across the width and breadth of the
crack. Experiments ceased typically within 180 s, after no further
capillary rise was observed or the capillary rise reached the
full height of the specimens. The final rise height at 180 s was
recorded visually, and the high-speed camera video files were
then examined to track the movement of the meniscus with
time.

For the capillary rise experiments with GGBS, a suspension of
60:40 water:GGBS powder (by mass) was formed and shaken for
60 s to ensure good dispersion of the powder in the water. Fifty
milliliters of this suspension was added to the Petri dish, and
the same procedure as noted previously was used to record the
capillary rise response.

The determination of the correlation lengths of the cracked
specimens, as well as the fractal parameters required for the
roughness and tortuosity, is detailed in Appendix A.

5.2 Bayesian Calibration of Gaussian Random
Field Model

5.2.1 Prior Distribution and Observed Data

To calibrate the parameters of the random field model, we
employ a Bayesian approach as described in Section 2.3. The
prior distribution was determined based on measurements of the
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FIGURE 13 Contours of level-set (a), pressure (b) and velocity field (c) at times t = 0.1 s (1), t = 0.5 s (2), and t = 1 s (3) for case 0.1 tap water (TW)
for a single realisation.

field correlation length and standard deviation taken on cracked
cementitious specimens as shown in Appendix A. It was assumed
that the parameters were log-normally distributed such that the
values were strictly positive.

The initial correlation length and standard deviation were
sampled from the uniform distributions 𝑈[−6.9,−2.3] and
𝑈[−9.2,−4.6], respectively (that correspond to parameter values
of 𝑙 ∈ [1, 100) and 𝜎 ∈ [0.1, 10) in mm). The standard deviation
of the proposal distribution was calibrated such that the average
acceptance rate of the algorithm was close to the theoretical
optimal rate [81]. The calibration resulted in a standard deviation
of 1.5 times the standard deviation of the prior distribution. The
number of MCs considered was 9, each of which comprised 5000
samples, a burn in of 50% (following the approach of [71]) and
a 0 lag (noting that according to [82] thinning of MCs is often
unnecessary).

The observed data (D) was related to experimentalmeasurements
of crack permeability from [13]. To relate these measurements to

observations of roughness and tortuosity, the following stepswere
taken: (i) the fractal dimension and constants in Equations (10)
and (12) were determined based on image analysis of the cracked
cementitious specimens (Appendix A) and (ii) using Equa-
tions (9), (11) and (12), the length-scale – and in-turn the rough-
ness and tortuosity – was calibrated such that the predicted per-
meabilities matched the experimental values. The distribution of
observed data was assumed to be log-normal such that the values
were strictly positive. The statistical parameters of the prior distri-
bution and observed data can be seen in Table 4. The length-scale
used to fit the crack permeability measurements was 0.591 µm.

5.2.2 Posterior Distribution and Credible Intervals

A plot of the prior and calculated posterior distributions for each
of the parameters can be seen in Figure 11, whilst the statistical
parameters can be seen in Table 5. The overall acceptance rate of
the sampling procedure of the MH algorithm was 0.251, which is
near to the theoretically optimal rate of 0.234 [81].
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FIGURE 14 Contours of level-set at time t = 0.5 s for Realisations 1–9, shown left to right, top to bottom, of crack asperities for case 0.1 tap water
(TW).

It can be seen from Figure 11 that the posterior distribution is
significantly different from that of the prior for the correlation
length. The standard deviation, in contrast, shows very little
difference between the posterior and prior distributions. This
indicates that the initial distribution of standard deviations also
provides a good fit for the observed data. In addition, the figure
shows that there is greater uncertainty in the correlation length
than the standard deviation of the field.

The 95% credible intervals were calculated as 2.34mm ≤ 𝑙 ≤
12.55mm and 0.79mm ≤ 𝜎 ≤ 2.24mm.

The 𝑅̂ scores for the correlation length and standard deviation
were 1.01 and 1.00, respectively, as such, the algorithm could be
considered converged [71].

5.3 Numerical Simulation

The numerical simulation consisted of nine realisations of con-
crete cracks. For each realisation, the random field parameters

(namely the correlation length and standard deviation) were
obtained by sampling the posterior distribution. The length-
scale considered for the calculation of the crack tortuosity and
roughness was 0.591 µm, which was the average value obtained
from fitting to the experimental data [13] and that which was
employed in the Bayesian model calibration. This length scale is
closely related to the scale of the concrete pores [83]. The fractal
dimensionwas taken as 1.095, asmeasured from the experimental
data. For the spatially varying crack width, a bandwidth of
0.9375 mm was employed in the Gaussian smoothing algorithm.
The standard deviation was determined from image analysis on
the cracked cementitious specimens to be 27.15% of the nominal
crack width.

The tortuosity and roughness used in the calculations were
determined as follows: (i) the roughness and tortuosity values
were calculated according to Equations (7) and (8), (ii) for each
node in the finite element mesh, Equations (11) and (12) were
re-arranged to give the constants 𝐹𝐿𝑒

and 𝐹𝑅𝑎
and (iii) using

the constants, Equations (11) and (12) were used to calculate the
roughness and tortuosity values at the considered length-scale.
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FIGURE 15 Confidence level for mean rise height with increasing number of realisations for tap water (TW) (a) and ground-granulated blast
furnace slag (GGBS) (b).

Depictions of the generated crack asperities, spatially varying
crack width, and calculated roughness and tortuosity’s can be
seen in Appendix B.

The finite element mesh employed consisted of elements of
size ℎ = 1.875mm, chosen following a mesh convergence study,
whilst the time step size was chosen to satisfy the CFL condition
as detailed in Section 3. The model parameters can be seen in
Table 6.

In addition to comparing the numerical results with the experi-
mental data and noting that the numerical results depend upon
the random realisation of the crack asperities and crack width
variation, the confidence level in the numerical results can be
established. Assuming that the mean rise heights are normally
distributed and using the t-distribution due to the small sample
size, the CI can be calculated (see, e.g. [38, 39]). In order to
calculate realistic CIs, samples in which the rise heights deviated
significantly from the mean, defined here as samples for which
the median absolute deviation (MAD) was greater than 4, were
discarded (see [85] for details). To avoid bias, it was ensured that
the number of samples discarded from the upper and lower ends
of the range was equal [85]. The mean rise height and CIs were
calculated using the 𝑘 = 𝑛 Winsorized mean and Winsorized
variance [85], where 𝑘 corresponds to the number of samples
removed from the upper and lower ends of the sample (see [85]).

5.4 Results and Discussion

5.4.1 Experimental and Numerical Results

The results of the experiments and numerical simulations can
be seen in Figure 12. The numerical results shown correspond to
the 𝑘 = 2Winzorised mean and 95% CIs as it was found that two
samples exhibited an MAD greater than 4.

The figure shows that both the crack width and fluid properties
have a significant effect on the capillary rise response. In addition,
there is significant variability in the results, particularly in the
case of TW. The numerical simulations are in good agreement
with the experimental measurements in terms of both the mean
rise height response, and the variability. As with the experimental

measurements, the TW results show greater variability that the
GGBS suspension results.

An indication of the transient behaviour represented by themodel
can be seen in Figure 13, which shows the evolution of the level-
set (representing the fluid interface), pressure and velocity field
for times t = 0.1–1 s for a single realisation. The figure shows
that the flow front exhibits heterogeneity that evolves as the front
advances through the crack. It can be seen from the figure that the
velocity field shows a much greater degree of heterogeneity than
the pressure field. The figure also shows that the pressure gradient
and, in turn, the magnitude of the velocity is reducing with time
as the body forces of the fluid begin to balance the capillary
pressure at the fluid front. It is noted that the results presented
include the extension of the solution from the fluid domain to
the background mesh and that the fluid pressure within the fluid
domain is bounded by the capillary pressure (i.e., it does not reach
values of −4500 MPa as the scale in Figure 13 may suggest).

The rise height for the crack realisations at time t = 0.5 s can
be seen in Figure 14. It can be seen from the figure that there is
a significant difference in rise heights between the realisations,
with the smoother cracks (i.e., those that are less rough and
tortuous) generally exhibiting greater rise heights than their
rough counterparts. In addition, the figure shows that the rise
heights show significant heterogeneity for each realisation, with
the rougher cracks exhibiting greater heterogeneity than their
smooth counterparts. The consideration of this heterogeneity is
of key importance for a range of problems including self-healing
concrete, in which the mechanical healing at a point within the
crack is proportional to a local filling fraction [6, 11, 12].

5.4.2 Statistical Analysis

To quantify the uncertainty in the results, a statistical analysis
was undertaken, following the approach of Ricketts et al. [39].
The confidence level in the numerical predictions of the mean
rise height using all the samples, can be seen in Figure 15. The
figure shows that a confidence level of 95% is achieved within just
eight simulations and that the overall trend is similar for both TW
and GGBS, and the different crack widths considered. This study
suggests that the number of samples required to reach a certain
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confidence level can be determined by conducting successive
analyses until the confidence level is achieved [39].

6 Concluding Remarks

In this study, a PCutFEMwith a stochastic random field generator
for the simulation of flow through rough cracks has been
presented. The method employs a Gaussian random field repre-
sentation of crack asperities from which the crack roughness and
tortuosity – both of which significantly affect the flow behaviour –
are calculated. In addition, to account for material loss during the
fracture process, a smoothedGaussian noise representation of the
spatially varying crack width was employed. Such an approach
avoids the need for empirical reduction factors and relies solely on
the statistical parameters that describe the crack geometry. The
statistical parameters were determined via a Bayesian statistical
inference that accounted for the uncertainty in the measured
values, experimental observations of crack permeability and the
stochastic nature of the random field model. In addition to
the distributions of the correlation length and standard devia-
tion that describe the crack geometry, credible intervals were
provided.

To demonstrate the performance of the model, new experimental
data concerning the flow of TW and a GGBS suspension through
concrete fractures were considered. The results show that the
model was able to accurately reproduce the observed mean flow
behaviour, as well as the uncertainty in the predicted rise heights.
Finally, a statistical analysis was performed that quantified the
confidence level in the results of the numerical simulations. The
results showed that a confidence level of 95%was achievedwithin
eight simulations.
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Appendix A: Determination of Statistical Parameters of Crack
Asperities and CrackWidth Variation

When generating a field in themodel, wemust supply a correlation length
to determine the correlation structure, and a mean value and standard
deviation by which the field will be scaled.

To this end, images of crack profiles were taken from the experimental
samples. The images were taken using a DSLR camera whilst lighting
the sample against a black backdrop, clearly highlighting the crack
profile along the edges of the sample. An image analysis script was then
written in Python to determine the relative height of asperities. Figure A1
shows the raw image and its transformation due to suitable thresholding
and morphological transformations. Once the relative heights of the
asperities were attained, a variogram was calculated based on the data
to estimate the correlation length of the crack. The mean value and
standard deviation of the heights were also computed based on the
measured profile, ready for model input to scale the random field
realisations. In order to determine the fractal dimension, as well as the
constants found in the fractal relationships (Equations 11 and 12), the
calculation was repeated for different measurement lengths (or length-
scales).

FIGURE A1 Image processing for two faces of the fracture sample.
From left to right in both (a) and (b), we have the raw image, threshold
image and after the applying morphological operations.

FIGURE A2 Image processing for the determination of crack width
variation, where (a) is the water sample and (b) is the ground-granulated
blast furnace slag (GGBS) sample.

The final term to be determined was the variation in crack width,
as represented in the model by smoothed Gaussian noise. The image
processing was conducted similarly to the above, where the crack was
isolated from its associated image (see Figure A2).

From this, the crack width was evaluated based on pixel density for
each row of pixels, where the mean and standard deviation could then
be established. These were then used to scale the smoothed noise that
represents the crack width. It is assumed in both cases that the crack
profiles along the edge are representative of the topography across the full
crack interfaces.

Appendix B: Random Realisations of Concrete Cracks

The mean asperity height employed in the simulations was 10 mm, and
as noted in Section 4, it is the relative asperity heights that determine
the fluid flow properties rather than the absolute value. The random
realisations of crack asperities can be seen in Figure B1, whilst the
calculated roughness and tortuosity can be seen in Figures B2 and B3.
Finally, the smoothed Gaussian noise representation of the crack width
variation due to material loss for each of the realisations can be seen in
Figure B4.
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FIGURE B1 Crack asperities for Realisations 1–9 shown left to right, top to bottom.

FIGURE B2 Calculated roughness for Realisations 1–9 shown left to right, top to bottom.
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FIGURE B3 Calculated tortuosity for Realisations 1–9 shown left to right, top to bottom.

FIGURE B4 Spatially varying crack widths for Realisations 1–9 shown left to right, top to bottom.
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