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Abstract The NASA Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument—launched in
August 2023—measures diurnal patterns of column NO2 at unprecedented spatial resolution. Given its nascent
status, it is unknown how TEMPO V03 column NO2 compares to surface‐level monitoring across long‐term
timescales. In this study, we explore how temporally averaged hourly TEMPO column NO2 observations
compare to surface‐level concentrations from monitors in the US EPA Air Quality System (AQS). Monthly
averaged hourly TEMPO vertical column densities (VCDs) correlate to surface‐level NO2 moderately
(R2= 0.42); however, there is notably stronger correlation for monitors that are not defined as “near road” across
hourly annual‐average equivalent timescales (R2= 0.61). During the TROPOMI overpass (approximately 13:30
LT), annual‐average TEMPO slant column densities (SCDs) at “not near road” sites are better correlated with
surface‐level NO2 (R

2 = 0.72) than tropospheric VCDs from TROPOMI (R2 = 0.65) and TEMPO (R2 = 0.66)
due to added uncertainty with a priori inputs in the AMF. In the future, a more accurate AMF could improve
TEMPOVCDs correlation to the level of the TEMPO SCDs. TEMPO column NO2 are most poorly correlated in
the early morning at 6:00 (R2 = 0.23) and 7:00 (R2 = 0.35) LT when TEMPO is less sensitive to near‐surface
pollution due to a longer sunlight path through the atmosphere and the subsequent increased sensitivity to
retrieval assumptions. Ultimately, this analysis identifies conditions and characteristics that affect the
correlation between TEMPO and ground‐level monitoring that has implications for applying TEMPO remote
sensing data to derive or interpret surface‐level NO2.

Plain Language Summary The NASA Tropospheric Emissions: Monitoring of Pollution (TEMPO)
satellite instrument measures hourly levels of NO2—a pollutant that is associated with fossil fuel burning—at
great spatial detail. Given that TEMPO was recently launched, it is not clear how well it compares to NO2

monitors on the ground. In this study, we compare satellite measurements of NO2 from TEMPO with monitors
from the US EPA. We find that there is generally good agreement between the two, especially when comparing
across longer timeframes and for monitors that are not directly near major highways. We also consider how
different weather conditions could influence the comparison and find that the boundary layer height influences
this relationship. Ultimately, we identify some of the characteristics that influence the relationship between
satellite and ground level measurement of NO2 that have implications for future modeling and health studies.

1. Introduction
Nitrogen dioxide (NO2) is a trace gas that is a byproduct of both anthropogenic activities and natural processes
(Zhang et al., 2003). The extreme temperatures reached in fossil fuel combustion, atmospheric lightning, and
wildfires present a conducive environment for fuel‐bound or ambient nitrogen (N2) to spontaneously react with
oxygen (O2) to form NO2 (Jacob et al., 1996); microbial activity is also responsible for its emission (Lerdau
et al., 2000). Given its adverse effects on health, NO2 is classified as an air pollutant by the World Health Or-
ganization (WHO, 2025) and the United States (US) Environmental Protection Agency (EPA) (US EPA, 2014).
Exposure to NO2 is associated with pediatric asthma (Achakulwisut et al., 2019; Anenberg et al., 2022; Khreis
et al., 2017) and premature death (Chen et al., 2024). A key feature of NO2 is its short atmospheric lifetime that
generally varies between 2 and 8 hr during the daytime (Laughner & Cohen, 2019) and is dependent on seasonally
varying meteorology, ozone titration, and emission patterns. Owing to this relatively rapid removal from the
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atmosphere, NO2 has sharp concentration gradients with elevated levels that are both spatially and temporally
proximate to its emission (Richmond‐Bryant et al., 2018). From understanding the temporal and spatial patterns
of tropospheric NO2, we can better inform action to ameliorate the health burdens associated with NO2.

The US EPA maintains a network of ambient air pollution monitors known as the Air Quality System (AQS)
(https://www.epa.gov/aqs); these monitors measure hourly concentrations of criteria air pollutants including
NO2. AQS monitors measure surface‐level concentrations with high fidelity that are important for regulatory
purposes; however, they have known limitations. First, monitors are spatially constrained to a fixed point in space
and thus they are unable to capture patterns in concentrations across large spatial areas (Cordioli et al., 2017).
Additionally, a majority of AQS monitors are located in population dense areas in the East Coast and California.
This spatial overrepresentation presents a challenge for characterizing NO2 levels in regions with limited ground‐
level monitoring. Lastly, there is a known high bias in NO2 observations that is attributable to the chemilumi-
nescent monitors that are used throughout the AQS (Dickerson et al., 2019; Lamsal et al., 2008) in which monitors
attribute concentrations of other reactive nitrogen species to NO2. With these limitations in mind, previous an-
alyses of monitoring and modeling have characterized NO2 across different conditions. For example, previous
work found seasonally consistent local minima in the midday and maxima in the morning and evening (Appel
et al., 2017) that vertical column densities (VCDs) lag surface‐level concentrations in the morning (Harkey &
Holloway, 2024) and that ozone conditions influence downwind concentrations of NO2 near road systems
(Kimbrough et al., 2017).

Satellite remote sensing of NO2 has become a widely adopted tool over the last few decades to provide spatially
comprehensive observations that effectively fill monitoring network gaps. Remote sensing instruments such as
the ozone monitoring instrument (OMI) and the TROPOspheric Monitoring Instrument (TROPOMI) observe
atmospheric columns of trace gases including NO2 (Levelt et al., 2018; Veefkind et al., 2012). They measure
reflected solar radiation in an NO2 absorption wavelength region (405–465 nm) and use spectrometry algorithms
to estimate NO2 slant column densities. These slant columns are further converted to tropospheric vertical column
densities through the application of an air mass factor (AMF) (Lorente et al., 2017a; Palmer et al., 2001), which
require prior assumptions such as surface reflectivity, cloud height and coverage, and the vertical distribution of
the retrieved trace gas. These remote sensing column observations are not equivalent to surface‐level observa-
tions; however, they have been found to be positively correlated with monitor observations especially across
longer timescales (Goldberg et al., 2021; Lamsal et al., 2014). Previous correlations were derived from early
afternoon patterns—given the limited overpass times of these instruments—and thus the agreement between
surface‐level and remote sensing observations diurnally still remains poorly understood. Through the application
of deterministic (e.g., Cooper et al., 2020) and statistical modeling (e.g., Larkin et al., 2023) surface‐level NO2 can
be inferred from these remote sensing observations to enhance correlation; however, inclusion of diurnal patterns
in these modeling approaches still needs to be tested.

There are distinct sampling strategy differences between remote sensing from low Earth orbiting (LEO) satellites
versus Geostationary (GEO) orbiting satellites. LEO instruments only observe NO2 once per day—for the case of
OMI and TROPOMI this is in the early afternoon local time—and have globally complete coverage (Judd
et al., 2018; Levelt et al., 2018; Veefkind et al., 2012). In contrast, GEO instruments such as those that are a part of
the GEO‐Ring for Air Quality: the Geostationary Environment Monitoring Spectrometer (GEMS), the NASA
Tropospheric Emissions: Monitoring of POllution (TEMPO), and the European Space Agency Sentinel‐4 mission
are fixed in space relative to the Earth and are able to observe NO2 with greater temporal detail (i.e., ∼hourly,
during daytime hours of approximately 8:00–17:00 LT) over a more limited spatial coverage (Yang et al., 2024a;
Zoogman et al., 2017). As the GEMS satellite has been operational since February 2020, there have been a
number of studies comparing GEMS column NO2 to surface‐level concentrations. One study found that across
four regions in China (Li et al., 2023), GEMS column NO2 had a correlation of 0.57 with surface‐level NO2

whereas analyses over Korea identified a stronger spatial correlation than temporal (Lee et al., 2024). Another
study (Yang et al., 2024b) investigated the drivers of diurnal NO2 in Beijing and Seoul and attributed increasing
NO2 throughout the day in the winter due to elevated daytime emissions and entrainment of O3 and a minimum in
the early afternoon driven by transport and chemical loss.

TEMPO began observing hourly NO2 in North America in August 2023; it observes column NO2 at unprece-
dented spatial and temporal resolution with relevance for uncovering diurnal and seasonal patterns in NO2

(Zoogman et al., 2017) in the US. TEMPO tropospheric vertical column densities are calculated by applying an
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AMF to the slant column densities. This AMF is derived using meteorological variables and trace gas vertical
profiles from the GEOS Composition Forecasting (GEOS‐CF) model (Keller et al., 2021) with a horizontal
resolution of 0.25° × 0.25°, a geometry‐dependent Lambertian equivalent reflectance (GLER) albedo, and cloud
coverage information from the TEMPO CLDO4 product (González Abad et al., 2024b; Nowlan et al., 2025).
Given the planned launches of other GEO instruments such as Sentinel‐4 over Europe (Courrèges‐Lacoste
et al., 2017) and the NOAA GeoXO ACX instrument over the US (Lindsey et al., 2024), considering how GEO
satellite remote sensing retrievals compare to surface‐level monitoring is especially valuable for better under-
standing air quality.

In this study, we explore how temporally averaged estimates of NO2 columns from TEMPO compare to surface‐
level observations from the US EPA AQS; this subject remains understudied given the novelty of TEMPO and
geostationary measurements of this type. We leverage these TEMPO data, ground‐level monitoring, and ERA5
meteorology reanalysis data (Hersbach et al., 2020), from August 2023 to August 2024 along with land use
information. Specifically, we investigate how TEMPO NO2 columns are correlated with surface‐level monitor
observations and consider how different characteristics—that is, diurnal patterns, seasonality, meteorology, and
road proximity—affect these results. By considering these data, we identify the specific conditions under which
TEMPO remote sensing is well and poorly aligned with surface monitoring. Lastly, we provide recommendations
for modeling or estimating surface‐level NO2 with consequences for health analyses that are informed from the
findings of our comparative analysis.

2. Methodology
In this study, we explore the relationship between long‐term averaged hourly TEMPO tropospheric NO2 columns
and surface‐level NO2 concentrations from the EPA AQS for the August 2023 through August 2024 timeframe.
We download hourly L2 TEMPO V03 overpasses across the US and spatially and temporally average them to
capture hourly monthly averaged NO2 at fine resolution (0.01° × 0.01°) across the continental US (CONUS). We
additionally download hourly surface‐level NO2 from US EPA AQS monitors and average them to match the
temporal resolution of the TEMPO observations. These data are compared directly for different times of the day,
seasons, and based on their proximity to major roadways. Lastly, meteorological data are sourced from the ERA5
reanalysis product to explore how comparisons between column and surface‐level NO2 evolve across different
meteorological conditions. The methods involved in these analyses are discussed in greater detail over the next
sections.

2.1. US EPA AQS Surface‐Level NO2

The US EPAAQS network contains monitors that measure ambient concentrations of the six criteria air pollutants
including the focus of this study, NO2, at fixed locations near the surface. The temporal resolution and coverage of
NO2 observations vary across the network; however, in this study, we consider hourly concentrations of NO2. The
US EPA validates and groups hourly concentrations of NO2 from all AQS monitors as part of their pregenerated
files (U.S. Environmental Protection Agency, 2025).We download these data for the time period of August 2023–
August 2024 and use these for our analysis.

Ultimately, we consider 44,529 unique monthly average hourly NO2 concentrations for 454 monitors across the
US from the EPA AQS hourly data. We note that there are distinct classes of monitoring instruments in the AQS
(i.e., chemiluminescent monitors and Cavity Attenuated Phase Shift or “CAPS” monitors); in our analysis, all of
our results are calculated by combining observations from both types of monitors; however, we separately
calculate statistics for the chemiluminescent and CAPS monitors as discussed in Section 3.1. When separating by
monitor type, we find stronger correlation between ground‐level observations and column NO2 in the chemi-
luminescent monitors (R2 = 0.45) than the CAPS instruments (R2 = 0.27) despite comparable dynamic ranges of
40.7 and 40.6 ppb, respectively. This is surprising given that the chemiluminescent monitors have a known high
bias from counting other reactive nitrogen species as NO2 (Dickerson et al., 2019; Lamsal et al., 2008); however,
we note that there are fewer CAPSmonitors overall and that there are relatively more CAPS in the eastern US than
chemiluminescent monitors and proportionally more near major roads (Figure S1 in Supporting Information S1)
that could be responsible for this weaker correlation. Additionally, we compared nine collocated CAPS and
chemiluminescent monitors and found generally strong correlation ranging from R2 = 0.91 to 1.00, and no
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systematic bias with slopes ranging from 0.82 to 1.00 and intercepts ranging from − 1.00 to 0.71 ppb. These values
indicate that the weaker correlation in CAPS is likely not attributable to the instrumentation specifically.

Monitors in the AQS can be sited in unique environments that are not necessarily representative of community
surface‐level NO2 that should be considered when interpreting their results. A subset (15%) of these monitors are
part of the “near‐road monitoring network” (US EPA, 2020) and they are often located within 20 m of 6+ lane
highways. Given that near‐road monitors measure unique diurnal and seasonal patterns in NO2 concentrations, we
incorporate the EPA designation of “near‐road” monitors in our analysis and then match TEMPO observations to
these data. We note that there are regions that have been previously identified as over‐ and under‐represented in
this data set (Nawaz et al., 2025); specifically, monitors are predominantly located in the eastern US and Cali-
fornia and in urban areas.

2.2. NASA TEMPO Column NO2

The NASA Tropospheric Emissions Measuring of Pollution (TEMPO) instrument is a UV‐visible spectrometer
that observes atmospheric trace gases, including NO2, from space. It is positioned on a commercial satellite in a
geostationary orbit that enables measurements over much of North America (68°W–13°W and 14°N–73°N)
approximately once every hour. Depending on the viewing zenith angle, TEMPO has a spatial resolution that
varies from around 8 km2 over Mexico City to 21 km2 over parts of Canada with a footprint of ∼2 × 4.75 km2 at
the center of the field of regard (Nowlan et al., 2025). The TEMPO observed spectra are fit to a modeled radiance
through a least squares minimization to retrieve slant column densities (SCDs) of NO2. Columns are separated
into stratospheric and tropospheric components as discussed in previous work (Geddes et al., 2018). These SCDs
are then converted to tropospheric vertical column densities (VCDs) following previous methods derived for the
ozone monitoring instrument (OMI) (G. González Abad et al., 2015). Hourly observations of NO2 SCDs and
VCDs are available during daylight hours at an unprecedented combined spatial resolution (i.e., ∼2 × 4.75 km2)
and coverage (i.e., the CONUS) (Nowlan et al., 2025).

We download hourly TEMPO NO2 SCDs and VCDs from the V03 algorithm during 2 August 2023–31 August
2024 (NASA/LARC/SD/ASDC, n.d.). These data are filtered to remove data affected by cloud coverage by only
considering observations taken during an effective cloud fraction of less than 0.15 and the main data quality flags
are equal to 0. After filtering, the data are regridded or “oversampled” to a 0.01° × 0.01° resolution to create
“Level‐3” data following previous work (Goldberg et al., 2021). The oversampling approach is also illustrated in
a diagram in the supplement (Figure S2 in Supporting Information S1). Single pixel TEMPO NO2 uncertainties
have been estimated to be in the range of 15%–20% in polluted areas (Glissenaar et al., 2025). Oversampling the
NO2 observations, as we do in this work, sacrifices information on the daily variability of NO2 to reduce un-
certainty and generate longer‐timescale estimates at finer spatial resolution. However, in this analysis, we pre-
serve the hourly variation while losing the day‐to‐day variance to generate monthly average hourly TEMPO data.
We conduct our analysis for monthly and annually averaged TEMPO data, as opposed to daily data, because of
the stronger epidemiological link between longer‐term NO2 exposure and chronic health conditions, such as
asthma (GBD 2021 Risk Factor Collaborators, 2024) and to reduce variability. Throughout this study, our
TEMPO results are presented for the VCDs, as opposed to the SCDs, unless otherwise specified and when
discussing VCDs, we are specifically referring to the tropospheric VCDs—not the total columns.

2.3. ERA5 Meteorological Reanalysis Data

The European Centre for Medium‐Range Weather Forecasts (ECMWF) maintains the ERA5 reanalysis data set
that assimilates atmospheric observations using a 4D‐Var assimilation approach to provide hourly estimates of
different atmospheric characteristics (Hersbach et al., 2020). These meteorological data are presented for 137
vertical levels interpolated to key specific heights at a 0.25° × 0.25° horizontal spatial resolution; temporally,
these data are generated in near‐real time at an hourly resolution. They are aggregated to different temporal
averages including a monthly average by hour of the day that is comparable to the monthly averaged hourly NO2

columns and concentrations that we calculate for TEMPO and AQS observations.

Given its relatively short atmospheric lifetime, surface, and column NO2 are especially dependent on near‐surface
meteorological characteristics such as the boundary layer height (BLH) and advection; we incorporate ERA5 data
to consider how NO2—and correlations between the surface and column—vary across different meteorological
conditions. We begin by downloading the monthly average by hour of day data for BLH and 10‐m wind speeds
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from August 2023‐August 2024, inclusive. We align our TEMPO data with the ERA5 meteorological data by
location, hour‐of‐the‐day, and month of the year; however, given that we are conducting our analysis at the
monthly timescale, we do not capture daily variability. Thus, our meteorological analyses are more representative
of longer‐term seasonal changes as opposed to distinct responses to short‐term events. For each observation, we
identify the month and hour in GMT and the ERA5 grid cell in which the monitor is located to match the
meteorological characteristics to specific NO2 observations. In doing so, we correspond the monthly average
hourly BLH and wind speeds to the associated NO2 observation.

2.4. Urban Boundary and Road‐Proximity Land‐Use Data

In our analysis, we leverage land‐use data to identify monitor location characteristics that could influence NO2

levels and comparisons between surface and column NO2. To characterize urban areas, we use urban boundary
information from the 2023 Global Human Settlement Grid (GHS‐SMOD) for approximately 11,000 cities
globally (“European Commission,” 2025). The GHS‐SMOD product identifies urban centers by considering
contiguous grid cells with high population density that have greater than 50,000 inhabitants; it leverages remote
sensing data to characterize these urban centers at fine resolution (i.e., 1 × 1 km2) that is aligned with our TEMPO
data. We calculate urban city centers for our meteorology analysis (refer to Section 2.3) by applying the built‐in
centroid function from the GeoPandas python package (GeoPandas Development Team, 2025) to the GHS‐
SMOD shapefile for individual urban boundaries. Additionally, monitors were classified by their proximity to
roadways using distance buffers applied to the combined state‐level Census Bureau 2021 Tiger/Line Primary and
Secondary Roads shapefiles for the entire CONUS. We created four distance buffers: less than 50 m, 50–300 m,
300 m to 1 mile, and greater than 1 mile. Monitor locations were then spatially merged with these buffers to assign
each monitor to the appropriate distance category. We note that this road proximity classification is distinct from
the US EPA classification and is only considered in Section 3.2.

2.5. Comparative Analysis

After downloading the AQS and TEMPO data—and processing them independently as discussed above—we
perform our comparative analysis. First, we identify each monitor through its distinct AQS ID by combining
the state code, county code, and instrument ID to avoid combining observations frommultiple instruments located
at the same latitude and longitude. Occasionally, multiple observations were taken at a single site for the same
hour and date; in these cases, we calculate the mean 1‐hr average value. In order for it to be appropriate to average
these collocated monitors, their observations should be highly correlated. To explore this, we calculated corre-
lation between the hourly observations at the nine locations with multiple monitors (Figure S3 in Supporting
Information S1) and found that across all sites, observations were well correlated (ranging from R2 = 0.91 to
R2 = 1.00). We identify the day, month, and year an observation was taken based on the GMT date and average
across all the days for each unique month and year pair to calculate monthly averaged hourly surface‐level
concentrations; observations from monitors that had 15 or fewer observations for a given month‐hour pair
were removed. Additionally, we remove monthly average observations for which TEMPO data are unavailable.
After processing the hourly TEMPO data to the monthly averaged hourly timeframe and the variable spatial
resolution to the fixed 0.01° × 0.01° grid, these TEMPO column NO2 observations are matched to the surface‐
level AQS NO2 observations. First, TEMPO and AQS NO2 are grouped for each combination of month and hour
—in GMT. After temporally matching these two data sets, for each monitor, we identify the 0.01° × 0.01°
TEMPO grid cell in which the monitor is located. We use the corresponding TEMPO data from that grid cell to
identify the column NO2 for the specific month, hour, and monitor location for comparative purposes. In doing so,
we match monthly averaged TEMPO column NO2 and AQS surface‐level NO2 for the same approximate tem-
poral and spatial point and conduct our comparative analysis.

Oversampling NO2 observations, as we do in this work, sacrifices information on the daily variability of NO2 to
improve precision and generate longer‐timescale estimates at finer spatial resolution. However, in this analysis,
we preserve the hourly variation while losing the day‐to‐day variance to generate monthly average hourly
TEMPO data. We explore the relationship between AQS surface‐level and TEMPO column NO2 through a series
of sub‐setting, aggregating, and processing steps. For all the results presented in this study, we identify the hour of
the day using LT not GMT. Seasonally, we perform calculations for the Winter (December, January, and
February), Spring (March, April, and May), Summer (June, July, and August), and Fall (September, October, and
November).
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We aggregate the data to compare AQS surface NO2 to TEMPO column NO2 for different averaging periods. The
baseline level of aggregation is the monthly average hourly NO2 (MAH) in which we calculate a monthly average
NO2 value for each hour of the day for every month between August 2023 and August 2024, inclusive. We also
average across all months to calculate annual average hourly NO2 (AAH), average across all hours to calculate the
monthly daytime average (MDA), and average across all months and hours to calculate annual daytime average
NO2 (ADA). Lastly, we calculate monthly average hourly NO2 in which we average across all monitors in the US
(MAH US) removing spatial variability in our comparisons. These aggregations are calculated as follows:

zAAHh,I =
∑mz

MAH
m,h,I

Nh,I
(1)

zMDA
m,I =

∑hz
MAH
m,h,I

Nm,I
(2)

zADAI =
∑m,hz

MAH
m,h,I

NI
(3)

zMAH US
h,m =

∑Iz
MAH
m,h,I

Nm,h
(4)

Where zMAH
m,h,I refers to the monthly average hourly NO2 at a monitor (I) and for an hour (h) and month (m) and N

refers to the number of observations considering specific conditions (e.g., Nh,I is the number of observations for a
single monitor and hour).

For several steps in our analysis, we apply a standardization to ensure that TEMPO and AQS data are normalized
in a manner that is independent of their units. To calculate these standardized NO2 values, we first scale the
TEMPO data by a factor of 1015, as tropospheric column NO2 typically fall within this order of magnitude. Then,
for both the AQS and TEMPO data, we calculate the mean and standard deviation, and for all data, we subtract off
the mean and divide by the standard deviation. In our analysis, we characterize the slope and correlation between
surface‐level and column NO2 by calculating a least‐squares linear regression. We use this standardized NO2 to
identify correlations between TEMPO and AQS across different meteorological conditions; however, dynamic
ranges of all monthly averaged data are calculated for the unstandardized levels as follows:

Dynamic Range = max(z) − min(z) (5)

Where z refers to the NO2 levels—that is, TEMPO columns or AQS concentrations—for which we are calculating
the dynamic range. A small dynamic range will often be linked with poor correlation; for these smaller ranges,
TEMPO pixel and AQS instrument uncertainty have a greater influence on our comparative analysis that leads to
degraded correlation. Therefore, this calculation is helpful in correlation comparisons to ensure conclusions
drawn are only for locations and times that measure considerably above the observational uncertainty—that is, an
upper bound of around 1 × 1015 molecules cm− 2 for TEMPO (Nowlan et al., 2025).

When considering how meteorology and road proximity influence the relationship between NO2 and surface to
column correlation, we bin the NO2 data. To do so, we group NO2 concentrations based on the specific parameter
(e.g., BLH) into different bins based on the parameter values. For the BLH and wind data, we determined the data
binning into equal‐frequency deciles based on the following criteria: we selected the largest number of bins for
which the correlation did not vary substantially between adjacent bins. For more than 10 bins there began to be
large shifts in correlation between adjacent bins for these two meteorological conditions; however, a fewer
number of bins would lose some degree of detail in the distribution. For the road proximity analysis, the data were
already categorized into road distance groups, and so, we chose these for the binning. After binning the data, we
generate box‐whisker plots that present the mean and the inner quartiles of data with whiskers extending to the
ends of the distribution ignoring data points identified as outliers (i.e., values that are further than 1.5 IQR of Q3
and Q1).
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3. Results
3.1. Spatial, Diurnal, and Seasonal Correlations Between TEMPO and Surface‐Level NO2

Column measurements from TEMPO reveal daytime NO2 at an unprecedented combined spatial coverage and
temporal resolution across the CONUS. TEMPO annual average equivalent columns fromAugust 2023 to August
2024 characterize NO2 levels both in areas with extensive AQS coverage and in gaps in the monitoring network
(Figure 1a). Monitors from the AQS are predominantly located in the northeastern US and California (Figure 1b).
Additionally, 49% and 27% of these monitors were located within cities and outside of cities but within 50 km,
respectively, of one of the 189 unique US urban areas identified using GHS‐SMOD urban boundaries (“European
Commission,” 2025). TEMPO observations reveal NO2 hotspots in areas that lack sufficient AQS surface‐level
monitors: for example, the Permian Basin in western Texas and the city of Omaha, Nebraska.

Column measurements from TEMPO not only provide enhanced spatial detail of NO2 levels in the CONUS but
also enable the exploration of diurnal patterns in NO2 columns (Figure 1c). TEMPO columns—spatially and
monthly averaged—decrease from 5.2 × 1015 molecules cm− 2 at 8:00 to stabilize at 3.6 × 1015 molecules cm− 2

between 15:00 and 17:00 LT ultimately decreasing by 31%. This morning to afternoon decrease is sharper in the
Fall (37%) and Winter (29%) than the Summer (24%) and Spring (24%). Diurnal patterns in AQS surface‐level
NO2 (Figure 1d) deviate from TEMPO: overall for the same hours, AQS concentrations decrease by 49% at the
annual scale and by 53%, 50%, 42%, and 42% for the Fall, Winter, Summer, and Spring, respectively. Addi-
tionally, from 8:00 to 9:00 LT, AQS surface‐level NO2 decreases both at near road sites (− 10.0%) and not near
road sites (− 17.3%); however, the decrease in TEMPO column NO2 is more gradual between these 2 hours at
− 3.4%, which could potentially be driven by BLH dynamics. We anticipated this difference between the temporal

Figure 1. (a) Distribution of annual‐average equivalent (August 2023–August 2024) daytime TEMPO Column NO2 across
the CONUS. (b) EPA AQS monitor NO2 annual average concentrations for not near road (top) and near road (bottom)
monitors. Monitors are distinguished by marker shape as being “near road” or “not near road” based on the EPA near road
classification with squares and circles, respectively. (c) Diurnal profiles of annual averaged TEMPO column NO2 for data
coincident with AQSmonitors annually and for specific seasons averaged across all monitors. (d) AQS surface‐level NO2 for
not near road monitors (top) and near road monitors (bottom).
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patterns in the column and surface NO2 as they respond differently to changing BLH dynamics; previous work
(Yang et al., 2024b) has noted that diurnal patterns in surface‐level NO2 are generally more responsive to
variability in mixing depths than column NO2.

This deviation in behavior may be attributable to BLH dynamics: as the BLH increases in the morning, surface
level air is vertically mixed to higher altitudes and thus column NO2 does not reflect changes in surface level
concentrations. Although we restrict the AQS data to those aligned with TEMPO overpasses here, full diurnal
profiles for all hours of the day are included in the supplement (Figure S4 in Supporting Information S1).

Toward the end of daylight hours (i.e., 17:00), surface‐level NO2 concentrations at near road sites demonstrate
divergent behavior compared to not near road sites. Specifically, AQS surface‐level NO2 are relatively stable at
near road sites and increase slightly by 0.4%; in contrast, they decrease by 7.9% at not near road sites. We note,
however, that there is a greater representation of observations at 17:00 from the spring and summertime when
NO2 levels are lower. Thus, potential diurnal increases in NO2 driven by increased traffic‐related NOx emissions
and a decreased BLH is counteracted by a larger fraction of the 17:00 NO2 coming from the spring and summer
(Figures S5 and S6 in Supporting Information S1). To explore this, we additionally calculate the average NO2

levels for all 24‐hr of AQS data and do not filter by those that are coincident with TEMPO (Figure S4 in Sup-
porting Information S1). In doing so, we see sharp increases in ground‐level NO2 between 16:00 and 17:00
annually and weaker increases in the spring and summer. To further unpack the influence of traffic patterns on
NO2, it would be beneficial to explore weekday and weekend differences as we have done previously (Nawaz
et al., 2024) in Houston; however, given that we exclusively focus on monthly average NO2 in this analysis, as
discussed in the methods, this is beyond the scope of this current work.

TEMPO and AQS monitors observe NO2 from distinct perspectives that have implications for diurnal and spatial
patterns that vary across different cities (Figure 2). We explore how spatial and diurnal patterns differ between
TEMPO column NO2 and AQS surface‐level NO2 within five of the largest metropolitan areas in the US—New
York, Washington, Chicago, Houston, and Los Angeles. In the morning (i.e., from 8:00 and 12:00 LT), AQS
surface‐level NO2 decreases sharply for each of the five cities: by 34.9% (New York), 44.6% (Washington),
35.8% (Chicago), 45.9% (Houston), and 36.0% (Los Angeles). In contrast, for this same period, TEMPO column
NO2 decreases more gradually for the five cities: by 6.0% (New York), 31.0% (Washington), 6.5% (Chicago),
20.1% (Houston), and 27.4% (Los Angeles). Thus, there is a clear decrease in AQS surface‐level NO2 in the
morning for these five cities that is likely induced by increasing BLH. This increasing BLH allows NO2 to more
easily mix vertically with no associated change in the column amount by this cause alone. This is not universally
true; for cities such as Los Angeles, diurnal patterns in column NO2 match surface‐level patterns relatively well.
However, caution should be taken in applying TEMPO to infer diurnal patterns at the surface without considering
the meteorological conditions (e.g., BLH and advection)—and the relationship of these with proximities to the
urban sources that affect column and surface‐level NO2 differently.

In these five cities, diurnal patterns in TEMPO column and AQS surface‐level NO2 have the most similar patterns
in the late morning and early afternoon (i.e., between 11:00 and 15:00 LT). Toward the end of the day (i.e.,
between 15:00 and 17:00 LT), however, TEMPO and AQS observe city‐specific changes in NO2 levels. Spe-
cifically, in this late afternoon period, AQS surface‐level NO2 changes by − 3.7% (New York), +4.4% (Wash-
ington), +2.2% (Chicago), − 9.5% (Houston), and − 19.0% (Los Angeles). In contrast, for this same time period,
TEMPO diurnal patterns vary by − 22.9% (New York), − 4.5% (Washington), − 4.9% (Chicago), +13.7%
(Houston), and +6.2% (Los Angeles). These divergent patterns in NO2 levels toward the end of the day suggest
that TEMPO tropospheric vertical columns are unable to consistently capture surface‐level shifts in NO2 levels in
the late afternoon for specific cities; however, we note that these differences could partially be exacerbated from
our inclusion of near road monitoring data in this analysis. For a similar set of cities, a prior study (Penn &
Holloway, 2020) found generally consistent behavior in that surface‐level NO2 decreased more sharply from the
morning to the afternoon (between 1.5 and 3 times higher in the morning) than remote sensing (1.2–1.8).

We explore the relationship between TEMPO column and AQS surface‐level NO2 concentrations further by
standardizing the two data sets and calculating a least‐squares linear regression to derive the coefficient of
determination (R2) and slopes between the two (for details refer to Section 2.5). We note that since surface‐level
and column NO2 are two distinct methods of observation—that is, tropospheric column NO2 represents the in-
tegrated amount of NO2 from the surface to the tropopause whereas the surface NO2 measures the local con-
centration near ground‐level—there is an upper limit to how well correlated they can be. This standardization is
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done both overall and for specific times of the day, seasons, and near road classifications (Figure 3). Across all
monthly averaged hourly (MAH) NO2 data, TEMPO columns are moderately correlated (R2 = 0.42) with AQS
surface‐level concentrations. Column and surface‐level MAH NO2 are better correlated in the morning
(R2 = 0.45) and correlations degrade through the early (R2 = 0.37) and late (R2 = 0.28) afternoon as the BLH
increases and vertical mixing is enhanced. This is driven in part by smaller dynamic ranges in the TEMPO data in
the early afternoon (27.2 × 1015 molecules cm− 2) and late afternoon (27.3) compared to the morning (40.7). In
contrast, AQS monitors have ranges that are stable varying from 38.4 ppb in the morning to 39.2 in the late
afternoon. The agreement between TEMPO and AQS also varies by season. TEMPO column and AQS surface‐
level MAH NO2 are better correlated in the Fall (R2 = 0.46) and Winter (R2 = 0.41) than the Spring (R2 = 0.37)
and Summer (R2= 0.38) but notably, TEMPO data have a greater range in the Fall (34.4 × 1015 molecules cm− 2)
and Winter (40.7) than the Spring (25.5) and Summer (31.2). Here, we present results that include observations
from both chemiluminescent and CAPS instruments; however, we note that agreement deviates for these two
types of monitors (Figures S7 and S8 in Supporting Information S1). Specifically, TEMPO is better correlated
with chemiluminescent observations (R2= 0.45) than CAPS (R2= 0.27); however, there are more monitors of the
prior type (N = 363) than the latter (N = 94).

Figure 2. (a) Annual‐average equivalent (August 2023–August 2024) daytime EPA AQS surface‐level concentrations (left)
and TEMPOColumnNO2 (right) across five major metropolitan areas—NewYork,Washington, Chicago, Houston, and Los
Angeles. Monitors are distinguished by marker shape as being “near road” or “not near road” based on the EPA near road
classification as squares and circles, respectively. (b) Diurnal profile of annual average TEMPO column NO2 (orange) and
AQS surface‐level NO2 (purple) in the same five cities across all monitor locations for each city included in (a) with the
hourly percent changes in AQS (purple) and TEMPO (orange) included for each city.
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Correlations between surface‐level and column NO2 vary dependent on the degrees of averaging applied to the
concentrations. When monthly variability is removed in the calculation of the annual average hourly NO2 (AAH),
correlation between TEMPO and AQS NO2 improves (R2= 0.51) compared to the MAH (R2= 0.42) and also the
monthly daytime average (MDA) (R2 = 0.48) in which hourly variation is removed despite having a lower dy-
namic range (21.1 × 1015 molecules cm− 2) than the MAH (40.7) and MDA (25.0) for TEMPO. This suggests that
averaging over seasonal variation enhances correlation between column and surface‐level NO2 more than
averaging over diurnal variation, which is consistent with expectations as column and surface NO2 exhibit distinct
diurnal patterns. When both monthly and seasonal variation are removed in the annual daytime average (ADA),
correlation again improves further (R2 = 0.53). Lastly, we consider the implications of removing spatial variation
by averaging across all monitors in the US to quantify monthly average hourly NO2 across the US (MAH US).
When spatial variability is removed and only seasonal and diurnal variation are considered, TEMPO and AQS
NO2 are well correlated (R2 = 0.80).

The prior paragraphs focused on correlations across all monitors; however, we find divergent patterns in cor-
relation when distinguishing the monitors that are near major roads from those that are not. At not near road
monitors, TEMPO column and AQS surface‐level MAH NO2 are better correlated (R

2 = 0.49) than those that are

Figure 3. (top) Correlation coefficients across different diurnal and seasonal subgroups (rows) and for different averaging groups (columns). Correlations are calculated
separately for all monitors (top left), near road monitors (top middle), and monitors not near road (top right) based on the EPA classification. (middle) The dynamic
range of TEMPO and (bottom) AQS. Here, morning refers to 8:00–11:00 LT, early afternoon refers to 12:00–14:00 LT, and late afternoon refers to 15:00–17:00 LT.
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near road (R2= 0.22) despite comparable dynamic ranges in the prior (40.7 × 1015 molecules cm− 2) and the latter
(40.5) for TEMPO. This suggests that TEMPO columns likely are more reliable at representing surface‐level NO2

concentrations at locations that are not directly adjacent to major roads and their associated sharp gradients in NO2

levels. Although near road and not near road monitors exhibit similar patterns in TEMPO and AQS correlation at
different times of day and across different seasons, there are some notable exceptions. Correlations drop more
dramatically throughout the course of the day at near road monitors from the morning (R2 = 0.23) to the early
afternoon (R2 = 0.14) and bottoming out in the late afternoon (R2 = 0.08). In contrast, at the not near road
monitors, correlations are stable in the morning (R2= 0.5) and early afternoon (R2= 0.48) before worsening in the
late afternoon (R2 = 0.38). Considering seasonality, near road monitors have the strongest correlations in the Fall
(R2= 0.23) and Spring (R2= 0.19) in contrast to the not near road monitors for which correlations are strongest in
the Fall (R2 = 0.54) and Summer (R2 = 0.54). Applying different averaging to the NO2 columns and concen-
trations also affects correlation at near road and not near road monitors distinctly. Most notably, when averaging
out seasonal and diurnal variation in the ADA, correlation between surface and column NO2 is much stronger at
the not near road monitors (R2 = 0.66) than the near road monitors (R2 = 0.23). This is anticipated as the not near
road monitors represent less variable NO2 levels that are more aligned with the diffuse gridded TEMPO data than
the near road monitors.

As a sensitivity analysis, we calculate the correlations between TEMPO column and AQS surface‐level NO2 at a
1‐hr positive and negative lag (Figures S9 and S10 in Supporting Information S1) to compare to previous work
(Harkey & Holloway, 2024) that found that VCDs lag surface‐level concentrations by around 1 hr in the morning.
When a 1‐hr negative lag is applied to the TEMPO column NO2 (e.g., TEMPO observations at 9:00 LT are
assigned to 8:00 LT), correlations between column and surface‐level NO2 overall are similar and slightly increase
in the morning while worsening in the afternoon. This is consistent with prior work (Harkey & Holloway, 2024)
that found that morning VCDs lag surface concentrations by 1 hr on average. When a 1‐hr positive lag is applied
to TEMPO, column to surface‐level correlations are notably worse throughout. Additionally, we characterize
correlations separately for those within urban boundaries and not within urban boundaries (Figure S11 in Sup-
porting Information S1) and note that near‐road correlations are especially degraded for monitors located within
urban boundaries.

Patterns in the correlation between TEMPO column and AQS surface‐level NO2 are further examined by
comparing them across individual hours, months, and monitors (Figure 4). Considering correlation at individual
monitors, values varied from R2 = 0.00 (30‐083‐0002; Andes, MT) to R2 = 0.91 (49‐013‐7011; Uinta Basin, UT)
(Figure 4a); however, we note that poor correlation at the Andes, MT site is likely driven by its small dynamic
range (4.4 ppb and 2.2 × 1015 molecules cm− 2 for AQS and TEMPO, respectively). Restricting monitors to those
with high dynamic ranges (classified as >20 ppb AQS NO2), the poorest correlation of R2 = 0.00 is found near
Durango, CO (08‐067‐7003), which could implicate error associated with surface pressure, mountain breeze, or
transient wildfire plumes. All but one of the eight states with the highest median correlations were located on the
US East Coast ranging from R2 = 0.46 in North Carolina to R2 = 0.55 in Virginia (Table S1 in Supporting In-
formation S1). In contrast, the worst performing states were mostly upper latitude states in the Pacific Northwest,
Mountain West, and Midwest ranging from R2 = 0.01 in Montana, North Dakota, and Colorado to R2 = 0.13 in
Idaho; however, these poor correlations are driven in part by low dynamic ranges for monitors in these states.
Considering the least‐squares regression slope values for TEMPO and AQS (Figure 4b), there are higher values in
the East Coast US and California. We note that, given the difference in units and measurements between TEMPO
column and AQS surface‐level NO2, a slope of one does not necessarily represent the best agreement; instead, the
slopes reflect how TEMPO data change with respect to changes in AQS data. For example, a higher slope in-
dicates that TEMPO changes more dramatically per change in AQS.

Correlations and slopes between TEMPO column and AQS surface‐level NO2 are diurnally dependent
(Figure 4d). In the early morning hours of 6:00 and 7:00 LT, correlations between TEMPO and AQS are weakest
at R2= 0.23 and R2= 0.35, respectively. This could be due to fewer coincidences during these hours than others—
there are 64% (06:00 LT) and 32% (07:00) fewer TEMPO observations than the average between 8:00 and 16:00
(Figure S6 in Supporting Information S1). Given that there are fewer observations taken during the early morning
and evening, we note that the correlations at these times are likely less representative than during the rest of the
day in which there are more observations. There are also geophysical reasons why uncertainty in the TEMPO
retrievals may be higher during this time of day (González Abad et al., 2024a; Nowlan et al., 2025). Specifically,
there is less sensitivity of the TEMPO instrument to near‐surface pollution due to a longer sunlight path through
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the atmosphere and the subsequent increased sensitivity to retrieval assumptions. Additionally, observations at
6:00 LT are almost exclusively from the summer and spring months during which NO2 levels are lower and
correlations are weaker. Observations at 7:00 LT almost entirely exclude the wintertime and its associated
elevated NO2 levels (Figure S6 in Supporting Information S1). By 8:00 LT, and throughout the rest of the
morning, correlations range from 0.40 to 0.46.

Correlations peak at around 10:00 LT and continue to decline throughout the afternoon until bottoming out at
R2= 0.17 at 18:00 LT when the dynamic range of both TEMPO and AQS is minimized. When we decompose this
analysis by season, we find that similar diurnal patterns occur in the Fall, Summer, and Spring; however, the
wintertime exhibits a distinct diurnal profile in which correlations continue to increase throughout the morning
and early afternoon until peaking at around 14:00 LT and subsequently dropping sharply (Figure S12 in Sup-
porting Information S1). The diurnal profile of slopes between TEMPO and AQS follow the profile of corre-
lations in the morning; however, slopes do not decrease as severely in the late afternoon hours. Ultimately,
TEMPO NO2 appears to be poorly correlated with surface‐level NO2 in the early morning and late afternoon and
during these periods, we urge greater caution when attempting to derive information on surface‐level patterns
from these column observations. The seasonal dependence of the TEMPO and AQS NO2 comparison is generally
weaker (Figures 4e and 4f).

Throughout this study, when comparing TEMPO column to AQS surface‐level NO2, we have exclusively
considered the TEMPO tropospheric vertical column densities (VCDs); however, previous work has found that
the application of AMFs to slant column densities (SCDs) to derive VCDs is the largest source of uncertainty in
the algorithm (Lorente et al., 2017a) and little work has been done to characterize this uncertainty for

Figure 4. (a) Coefficient of Determination (R2) (top) and slope (bottom) between the monthly average hourly TEMPO and AQS data for all individual monitors in the
continental US. Coefficient of Determination (R2) (green) and slope (pink) grouped by hour of day (b) and month (c). (d) Dynamic range in AQS and TEMPO for the
AQS monitors. Dynamic range for AQS (purple) and TEMPO (orange) grouped by hour (e) and month (f).
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geostationary observations. To investigate how the AMF application could affect column to surface agreement,
we characterize the correlations between TEMPONO2 VCDs and SCDs, compared to AQS surface‐level NO2, as
a function of hour of the day (Figure 5). Throughout most of the day, SCDs are better correlated with surface‐level
NO2. Starting in the early morning, SCDs have +41% and +34% higher R2 at 6:00 and 7:00 LT than VCDs. For
much of the rest of the day, SCDs have between +9% and +16% higher correlations (8:00 and 15:00 LT). After
16:00 LT, the correlations of SCDs and VCDs converge to similar values in which the SCDs are actually more
poorly correlated (− 7% and − 27% at 17:00 and 18:00 LT) with AQS observations than the VCDs. Ultimately,
throughout much of the day, SCDs are better correlated with surface‐level NO2 than VCDs; however, in the late
afternoon and early evening, VCDs begin to have comparable, and even slightly stronger, correlation with
surface‐level NO2. As discussed in the previous paragraph, these diurnal patterns in correlation exhibit seasonal
variability.

We note that SCDs are sensitive to the solar zenith angle and viewing zenith angle; to understand how these affect
the correlation of SCDs with ground‐level NO2, we performed an additional analysis for a single month in which
we apply a geometric AMF to the SCDs (Figure S13 in Supporting Information S1). The application of the
geometric AMF slightly degraded correlation for this month, but this was a relatively minor impact and the SCDs
with the geometric AMF applied still substantially outperformed the VCDs.

We further characterize the agreement of the SCDs with AQS observations by comparing TEMPO SCDs,
TEMPO VCDs, and TROPOMI VCDs at the approximate time of TROPOMI overpass (∼13:00 LT) (Figure 6)
for monthly and annually averaged data across the four distinct seasons. Generally, all three instruments perform
comparably; however, the TEMPO SCDs are slightly better correlated (R2 = 0.55) with surface‐level NO2 than
the TROPOMI (R2 = 0.50) and TEMPO (R2 = 0.48) VCDs. At the annual timescale, TEMPO VCDs (R2 = 0.53)
slightly outperform TROPOMI VCDs (R2 = 0.51) while still underperforming TEMPO SCDs (R2 = 0.57). The
performance of the TEMPO VCDs is especially poor at the near road monitors (R2 = 0.24) compared to TRO-
POMI VCDs (R2 = 0.36) and TEMPO SCDs (R2 = 0.44), indicating that the application of the AMF for TEMPO
especially degrades correlation at these sites. Future evaluations of new retrieval versions from TEMPO could
consider comparing results of SCDs versus VCDs relative to reference measurements as a metric for how much
uncertainty in the products can be attributed to the AMF.

3.2. Meteorological and Road Proximity Effects on Correlation Between TEMPO Column NO2 and AQS
Surface‐Level NO2

Meteorological conditions affect column and surface NO2 differently with implications for correlation between
TEMPO and AQS observations. We explore the influence of meteorology on NO2 by characterizing how TEMPO
column and AQS surface‐level NO2 vary across different BLHs (Hersbach et al., 2020) and quantify how this
variation impacts correlation (Figure 7). Previous work (Choi et al., 2020; Flynn et al., 2014) characterized the
diurnal variation in the vertical distribution of NO2 in the boundary layer; they found that NO2 levels generally
decrease with increasing altitude. They find that NO2 can accumulate at around approximately a third of the
boundary layer height depending on the season and location. We consider the influence of meteorology distinctly
for monitors within and on the periphery of urban environments as meteorological conditions can influence NO2

Figure 5. (a) Least‐squares linear regression R2 correlation between AQS observations and TEMPO slant column densities
(orange) and vertical column densities (green) for each daytime hour. The percent to which slant column densities are higher
or lower than vertical column densities is included at the top of the figure above each pair of points.
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differently dependent on proximity to sources within city centers. For the 222 monitors located within one of the
urban boundaries (Figure 7a), correlation is generally strongest for hours when BLH below 839m, where it ranges
from R2 = 0.27 to R2 = 0.31. For higher BLH, correlation steadily degrades down to R2 = 0.12. This degradation
in correlation is accompanied by reduced range: whereas the range is highest for AQS for low BLHs before
stabilizing above 737 m, the range in TEMPO data decreases as BLHs increase, which corresponds to the early
morning when TEMPO is at its peak (Figure 1). For the 125 monitors located on the periphery of cities (i.e., not
within the urban boundaries but within 50 km of the city center), correlation is more strongly influenced by BLH:
correlation is highest below 627m (R2 = 0.41 to R2 = 0.46) and afterward continuously decreases down to
R2 = 0.03 for hr with the highest BLH decile. For these periphery sites, AQS NO2 distributions decrease with
higher BLH; however, TEMPO column NO2 distributions (i.e., boxplots) are generally unaffected except for
higher BLHs (1,135 m and greater), although dynamic ranges consistently decrease with higher BLHs.

Ultimately, these results suggest that TEMPO column observations are generally better correlated with surface
NO2 for periods during which there are shallower BLH; this is likely attributable to the fact that when BLHs are
deeper, surface‐level NO2 can be vertically mixed upwards to higher altitudes and the column NO2 values are less
representative of what is happening at the surface. However, we note that the ERA5 data are spatially coarse—
introducing uncertainty into our results—and thus, it would be beneficial for future studies to explore this
relationship by considering locations with collocated BLH observations with monitors and TEMPO, such as with
the Unified Ceilometer Network (https://ucn‐portal.org/) or field campaign data collected from airborne lidars

Figure 6. Correlation between AQS surface‐level monitors and TROPOMI VCDs (top), TEMPO VCDs (middle), and
TEMPO SCDs (bottom) for all monitors (left), near road monitors (middle), and not near road monitors (right).
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(e.g., Scarino et al., 2014) such as those from the Synergistic TEMPO Air Quality Science mission (STAQS;
https://www‐air.larc.nasa.gov/missions/staqs/index.html). We additionally explore the relationship between
column and surface NO2 and BLHs across different seasons (Figure S14 in Supporting Information S1) and
regions of the US (Figure S15 in Supporting Information S1). Although the trends identified across all data are
generally consistent for individual seasons and regions, we note that in the Spring and Summer, the surface‐level
response to NO2 at lower BLH values is suppressed and it is enhanced in cooler months with less active
photochemistry. Regionally, the relationship between column and surface‐level NO2 and BLH is consistent.

We further explore the relationship between meteorology and NO2 by considering monthly averaged hourly
advection. We distinguish monitors within urban areas (Figure 8a) from those on the periphery of urban areas
(Figure 8b)—that is, monitors not within urban boundaries but within 50 km of a city center. Within cities,

Figure 7. (a) Boxplot comparison between TEMPO column NO2 (orange) and AQS surface‐level NO2 (purple) binned into
equal size groups based on ERA5 boundary layer height for monitors located within one of the GHS‐SMOD urban
boundaries. The R2 values and dynamic ranges for each bin are included in separate subplots to the right. (b) Same as but for
monitors located on the periphery of cities, that is, monitors outside of urban boundaries but within 50 km of city centers.
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correlation is relatively stable across the less windy conditions above 1.9 m/s, R2 ranges from 0.23 to 0.27;
however, they are highest during low wind conditions of below 1.9 m/s with an R2 = 0.36. This suggests that
within these urban areas, correlations are poor (partially due to a higher number of near road monitors) and this
could be attributable to heterogeneity in spatial distribution of NO2 as the proximity to sources varies across
different urban environments (Judd et al., 2018, 2019); however, correlations are strongest during stagnant
conditions.

For monitors on the periphery of cities (Figure 8b), correlations peak at an intermediate wind speed of between 2.9
and 3.1 m/s (R2 = 0.45); there is poorer correlation for periphery sites during low (between 0.9 and 1.9 m/s) and

Figure 8. (a) Boxplot comparison between TEMPO column NO2 (orange) and AQS surface‐level NO2 (purple) binned into
deciles based on ERA5 wind speed for monitors located within a GHS SMOD urban boundary. R2 and dynamic range values
are included in separate plots to the right for the same wind bins. (b) Same as (a) but for monitors located outside of an urban
boundary but within 50 km of a city center.
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high (between 4.4 and 7.1 m/s) of R2 = 0.25. Overall, despite there being fewer monitors of this type than urban
sites, agreement is slightly better. This suggests that for monitors within the periphery of urban areas, higher wind
speeds will likely have less of an effect on correlation than for other monitors.

Beyond meteorological conditions, the proximity of a monitor to major roadways has implications for both
TEMPO and AQS correlation and concentrations. We bin TEMPO and AQS NO2 observations based on their
distance from the nearest major roadway (refer to Section 2.4 for details) to compare the two. We again
distinguish monitors within urban areas (Figure 9a) from those on the periphery (Figure 9b). For the prior group,
monitors that are directly adjacent to roads (<50 m) observe 1.8 times higher NO2 than other monitors; however,
TEMPO column NO2 are only 1.1 times higher at these monitors. For this group of monitors that is closest to
major roadways, correlation between surface‐level and column NO2 is the lowest (R

2 = 0.28). As monitors are
located further from major roadways, correlations improve from R2 = 0.38 (between 50 and 300 m), to R2 = 0.42
(between 300m and 1 mile), and finally to R2 = 0.43 (greater than 1 mile). Relatedly, both TEMPO column and

Figure 9. (a) Boxplot comparison between TEMPO column NO2 (orange) and AQS surface‐level NO2 (purple) binned into
four groups based on proximity to major roads derived from land‐use data. R2 and dynamic range values are included in
separate plots to the right for the same wind bins. (b) Same as (a) but for monitors located outside of an urban boundary but
within 50 km of a city center.

Journal of Geophysical Research: Atmospheres 10.1029/2025JD043923

NAWAZ ET AL. 17 of 22



AQS surface‐level NO2 levels decrease as monitor distance from the nearest road increases. Within cities, column
and surface‐level NO2 exhibit clear differences in behavior relative to major roadways; TEMPO column NO2 is
better correlated and more representative of surface‐level observations for monitor locations that are greater than
1 mile from roadways.

The behavior of correlation—relative to road proximity—is flipped for monitors on the periphery of cities
(Figure 9b). Correlations are highest for the monitors closest to roadways or R2 = 0.38 (<50 m) and are similarly
lower for other distances R2= 0.28 (between 50 and 300 m), R2= 0.31 (between 300 m and 1 mile), and R2= 0.28
(greater than 1 mile). For these city periphery monitors, the near road increase in average NO2 is more notable
than the within city sites. Those that are directly adjacent to roads (<50 m) observe 2.6 times higher NO2 than
other monitors; however, TEMPO column NO2 are only 1.3 times higher at these sites. These results suggest that
for these periphery sites, TEMPO agrees better with AQSmonitors and observes elevated levels near major roads;
however, given that they are on the edges of cities, this agreement may be due to a lesser variety of sources other
than roads.

4. Discussion
TEMPO remote‐sensing provides exciting enhancements to characterize tropospheric NO2; however, there are
specific seasonal, meteorological, and monitor characteristics that affect its correlation with surface‐level NO2.
Although column NO2 observed from TEMPO often exhibits similar diurnal patterns to surface‐level NO2 in a
general sense, there are weaker hour‐to‐hour decrease between 8:00 and 9:00 LT that are likely driven by dif-
ferences in the two distinct measurements such as how responsive they are to BLH dynamics. This suggests that as
the boundary‐layer height increases in the morning, there are sharper changes in NO2 levels observed at the
surface than what is observed in the column. In the later afternoon and early evening, both TEMPO and the AQS
observe slight increases in NO2 levels at the near road monitors but decreases at those monitors that are not near
road, which may be signals attributable to increased traffic NOx; however, this cannot be definitively determined
without the implementation of source apportionment analyses.

Considering correlation, we find that TEMPO column and AQS surface‐level NO2 are especially well correlated
at the not near road sites (R2= 0.49) compared to the near road sites (R2 = 0.22). It is likely that the 2 × 4.75 km2

resolution of TEMPO—and the additional NO2 captured at levels above the surface—limit the ability of current
satellite derived remote sensing to capture the sharp gradients in NO2 within 20 m of major road systems. This is a
fundamental difference between the spatial representativeness of TEMPO and AQS observations; TEMPO ob-
serves the average column across grid cells whereas the AQS monitors observe concentrations at a specific point
in space. Thus, throughout our analyses, differences between the two may be attributable to the distinct spatial
representations that are captured in their sampling. Previous work has partially explored this through the com-
parison of surface‐level monitoring with Pandora spectrometry. One study found that although Pandora and in situ
NO2 were generally well correlated, they could vary substantially by location and season (Knepp et al., 2015) and
more recent studies have confirm this finding that although the relationship between Pandora column and in situ
surface NO2 are often fairly linear, they have distinct spatial and diurnal variability (Chang et al., 2022; Tao
et al., 2025).

Across all monitors, TEMPO column and AQS surface‐level NO2 were most poorly correlated in the early
morning (6:00–7:00 LT) and the strongest correlated in the mid to late morning (8:00–11:00 LT) before slowly
decreasing throughout the day; however, this pattern did not occur in the wintertime in which correlations
continued to rise throughout the morning and early afternoon peaking at 14:00 LT before decreasing sharply. In
the early morning hours, uncertainty in the TEMPO retrievals may be higher as sensitivity of the instrument to
near‐surface pollution is degraded from a longer sunlight path through the atmosphere. Directly after this, the
boundary layer height is still generally low compared to later in the day; this shallower boundary layer height is
likely responsible for greater correlation between column and surface‐level NO2 as vertical mixing is more
restricted during these hours. As the boundary layer height increases in the late morning and early afternoon,
surface‐level NO2 is more vertically mixed, and correlations degrade. This is reflected in the dynamic ranges of
TEMPO data in which ranges are highest in the early morning and lowest in the late afternoon; relatedly, some of
the poorer correlation in the afternoon could be attributable to lower dynamic ranges.

Seasonally, column to surface correlations were lowest in the spring (R2 = 0.37) and summer (R2 = 0.38) and
highest in winter (R2 = 0.41) and fall (R2 = 0.46). In the US, generally, there is more active photochemistry
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associated with NO2 in the spring and summer months and thus lower concentrations and a smaller dynamic
range. Given these lower concentrations, NO2 concentrations are closer to instrument noise levels during these
periods that could weaken the correlations. In the winter months, when NO2 levels are higher due to less active
photochemistry, noise likely has less of an effect on correlation. Spatially, correlations are generally stronger in
East Coast US states and weaker in states at higher latitudes, most notably, in the Midwest and Mountain West.
For these high latitude states, monitors generally have smaller dynamic ranges that likely are partially responsible
for these weaker correlations. We also find that SCDs outperform the VCDs throughout much of the day outside
of the mid to late afternoon during which SCDs and VCDs are comparably correlated with surface‐level NO2.
These results support prior findings that the AMF is the largest contributor to uncertainty in the algorithm
(Lorente et al., 2017b); this previous work specifically implicate differences in the a priori trace gases, surface
albedo, and cloud parameters as the greatest contributors to AMF uncertainty. Thus, locations and times of day
with any cloud coverage could be especially sensitive to this uncertainty along with regions with high surface
albedo including those with high snow coverage and urban environments.

Meteorological conditions affect column to surface correlation. TEMPO observations taken during shallowest
BLHs are much stronger correlated (R2 = 0.27) with the surface than those at the highest (R2 = 0.12) for urban
monitors but even to a greater extent for monitors on the periphery of cities (R2 = 0.44 to R2 = 0.03). When the
BLH is shallower—and the column NO2 is more closely aligned with surface‐level NO2—TEMPO may reveal
more accurate information about what NO2 looks like at the surface. Notably, surface‐level NO2 is much more
responsive to BLH than column NO2; in the bottom five deciles, as BLH decreases surface‐level NO2 increases,
whereas column NO2 remains relatively stable. Dynamic ranges for both the AQS and TEMPO are smallest in the
deepest BLH conditions, thus this degradation in correlation associated with BLH could partially be associated
with lower ranges. For monitors in the periphery of cities (outside of the urban extent but within 50 km of the city
center), correlations were stronger during lower wind speeds (<1.4 m/s) and worsen for increased wind speeds.
The proximity of monitors to road systems also affects correlation; for monitors in cities, TEMPO observations
are better correlated with surface‐level NO2 taken at monitors furthest away from major roads (R2 = 0.43) than at
monitors within 20 m of major roads (R2= 0.28). This relationship does not hold for monitors on the periphery of
cities. For these monitors, correlation is maximized near roads (R2= 0.38) and generally stable for other locations
(ranges from R2 = 0.28 to R2 = 0.31).

There are many sources of uncertainty and assumptions that could affect our findings in comparing TEMPO
column to AQS surface‐level NO2. Our results are only representative for the current TEMPO vertical column
density retrieval algorithm; as the algorithm is updated, the relationships between column NO2 and surface‐level
NO2 across different conditions will likely be affected and hopefully improved. Additionally, there is a well‐
documented high bias in chemiluminescent NO2 monitors that we do not correct for; if there are areas in
which reactive nitrogen species are higher or lower—relative to NO2—this could affect the overall correlations.
All of our analysis is conducted using monthly averaged NO2 to reduce variability and for more relevance to the
longer‐term data that is relevant for health exposures; however, we note that there is a great degree of daily
variability in the data that is removed through this averaging. This is especially possible for meteorological
conditions (i.e., the BLH and wind speeds) or transient burning events that are averaged out that have a high
degree of daily variability that is not captured in monthly averages. Thus, our findings should not be extended to
consider relationships between column and surface‐level NO2 at daily timescales and should only be considered
for monthly, seasonal, or annual timescales. Lastly, the meteorological data that we use from ERA5 are spatially
coarse (0.25° × 0.25°). Thus, they do not capture finer‐scale variability in meteorological conditions, such as sea
breezes, that would have implications for comparisons between TEMPO column and AQS surface‐level NO2.

With these uncertainties in mind, this work has implications for applications of TEMPO data. Generally, TEMPO
matches the diurnal patterns of surface‐level NO2 between the late morning and early afternoon; however, our
results suggest that patterns differ at the edges of the day when TEMPO data are more dependent on a priori
information due to a longer sunlight path through the atmosphere. Given this, we suggest that V03 TEMPO NO2

data should only be applied to infer surface‐level concentrations during the late morning to early afternoon period
8:00 to 14:00 LT. Additionally, we find that for particular seasons and spatiotemporal averages, TEMPO
struggles to capture fine‐scale NO2 gradients near major roads. Currently, SCDs are better correlated with
surface‐level NO2 than VCDs; thus, through the SCD and VCD comparisons conducted in this work, uncertainty
introduced by the AMF could be better quantified and in turn, the VCDs may improve in the future. This could
benefit applications for estimating surface NO2 as generally the VCDs are most interpretable. In the interim,
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SCDs could be used as a predictor variable for surface level estimates. This could benefit applications for esti-
mating surface NO2 as generally the VCDs are included as a predictor variable for surface level estimates. There
are still outstanding questions such as how well the patterns in monthly averaged NO2, characterized in this study,
carry over to finer temporal resolution (i.e., daily) and how well the results found for this study period (August
2023‐August 2024) would hold for other years or multiyear averages. Ultimately, our analysis characterizes the
conditions and characteristics under which TEMPO column NO2 agrees with surface‐level NO2. These char-
acterizations have implications for future efforts to infer surface‐level estimates of NO2 through the application of
deterministic, statistical, or machine‐learning approaches, which are crucial in identifying the health effects
associated with NO2 pollution.

Conflict of Interest
The authors declare no conflicts of interest relevant to this study.

Data Availability Statement
All TEMPO NO2 data are available from NASA EARTHDATA Atmospheric Science Data Center as the
TEMPO_NO2_L2_V03 product (NASA/LARC/SD/ASDC, n.d.). Pregenerated US EPA AQS data are publicly
available (U.S. Environmental Protection Agency, 2025). ERA5 data are available from the Copernicus Climate
Data Store (Copernicus Climate Change Service, 2023). Road proximity data are from (Acker et al., 2025).

References
Achakulwisut, P., Brauer, M., Hystad, P., & Anenberg, S. C. (2019). Global, national, and urban burdens of paediatric asthma incidence

attributable to ambient NO2 pollution: Estimates from global datasets. The Lancet Planetary Health, 3(4), e166–e178. https://doi.org/10.1016/
S2542‐5196(19)30046‐4

Acker, S. J., Holloway, T., & Harkey, M. K. (2025). Satellite detection of NO2 distributions and comparison with ground‐based concentrations
(pp. 1–39). EGUsphere. https://doi.org/10.5194/egusphere‐2025‐226

Anenberg, S. C., Mohegh, A., Goldberg, D. L., Kerr, G. H., Brauer, M., Burkart, K., et al. (2022). Long‐term trends in urban NO2 concentrations
and associated paediatric asthma incidence: Estimates from global datasets. The Lancet Planetary Health, 6(1), e49–e58. https://doi.org/10.
1016/S2542‐5196(21)00255‐2

Appel, K. W., Napelenok, S. L., Foley, K. M., Pye, H. O. T., Hogrefe, C., Luecken, D. J., et al. (2017). Description and evaluation of the
Community Multiscale Air Quality (CMAQ) modeling system version 5.1. Geoscientific Model Development, 10(4), 1703–1732. https://doi.
org/10.5194/gmd‐10‐1703‐2017

Chang, L.‐S., Kim, D., Hong, H., Kim, D.‐R., Yu, J.‐A., Lee, K., et al. (2022). Evaluation of correlated Pandora column NO2 and in situ surface
NO2 measurements during GMAP campaign. Atmospheric Chemistry and Physics, 22(16), 10703–10720. https://doi.org/10.5194/acp‐22‐
10703‐2022

Chen, X., Qi, L., Li, S., & Duan, X. (2024). Long‐term NO2 exposure and mortality: A comprehensive meta‐analysis. Environmental Pollution,
341, 122971. https://doi.org/10.1016/j.envpol.2023.122971

Choi, S., Lamsal, L. N., Follette‐Cook, M., Joiner, J., Krotkov, N. A., Swartz, W. H., et al. (2020). Assessment of NO2 observations during
DISCOVER‐AQ and KORUS‐AQ field campaigns. Atmospheric Measurement Techniques, 13,2523–2546. https://doi.org/10.5194/amt‐13‐
2523‐2020

Cooper, M. J., Martin, R. V., McLinden, C. A., & Brook, J. R. (2020). Inferring ground‐level nitrogen dioxide concentrations at fine spatial
resolution applied to the TROPOMI satellite instrument. Environmental Research Letters, 15(10), 104013. https://doi.org/10.1088/1748‐9326/
aba3a5

Copernicus Climate Change Service. (2023). ERA5 hourly data on single levels from 1940 to present [Dataset]. https://doi.org/10.24381/cds.
adbb2d47

Cordioli, M., Pironi, C., De Munari, E., Marmiroli, N., Lauriola, P., & Ranzi, A. (2017). Combining land use regression models and fixed site
monitoring to reconstruct spatiotemporal variability of NO2 concentrations over a wide geographical area. Science of the Total Environment,
574, 1075–1084. https://doi.org/10.1016/j.scitotenv.2016.09.089

Courrèges‐Lacoste, G. B., Sallusti, M., Bulsa, G., Bagnasco, G., Veihelmann, B., Riedl, S., et al. (2017). The Copernicus Sentinel 4 mission: A
geostationary imaging UVN spectrometer for air quality monitoring. In Sensors, Systems, and Next‐Generation Satellites XXI (Vol. 10423, pp.
62–70). https://doi.org/10.1117/12.2282158

Dickerson, R. R., Anderson, D. C., & Ren, X. (2019). On the use of data from commercial NOx analyzers for air pollution studies. Atmospheric
Environment, 214, 116873. https://doi.org/10.1016/j.atmosenv.2019.116873

European Commission. (2025). Retrieved from https://human‐settlement.emergency.copernicus.eu/ghs_smod2023.php
Flynn, C. M., Pickering, K. E., Crawford, J. H., Lamsal, L., Krotkov, N., Herman, J., et al. (2014). Relationship between column‐density and

surface mixing ratio: Statistical analysis of O3 and NO2 data from the July 2011Maryland DISCOVER‐AQmission. Atmospheric Environment,
92, 429–441. https://doi.org/10.1016/j.atmosenv.2014.04.041

GBD 2021 Risk Factor Collaborators. (2024). Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational
locations, 1990–2021: A systematic analysis for the global burden of disease study 2021. The Lancet, 403(10440), 2162–2203. Retrieved from
https://www.thelancet.com/journals/lancet/article/PIIS0140‐6736(24)00933‐4/fulltext

Geddes, J. A., Martin, R. V., Bucsela, E. J., McLinden, C. A., & Cunningham, D. J. M. (2018). Stratosphere–troposphere separation of nitrogen
dioxide columns from the TEMPO geostationary satellite instrument. Atmospheric Measurement Techniques, 11(11), 6271–6287. https://doi.
org/10.5194/amt‐11‐6271‐2018

Acknowledgments
We gratefully acknowledge the computing
resources provided on the high
performance computing cluster operated
by Research Technology Services at the
George Washington University.
Additionally, we acknowledge funding
from NASA Earth Science Division grants
80NSSC23K1002, 80NSSC21K0511,
80NSSC21K0427, and 80NSSC24K0503.

Journal of Geophysical Research: Atmospheres 10.1029/2025JD043923

NAWAZ ET AL. 20 of 22

https://doi.org/10.1016/S2542-5196(19)30046-4
https://doi.org/10.1016/S2542-5196(19)30046-4
https://doi.org/10.5194/egusphere-2025-226
https://doi.org/10.1016/S2542-5196(21)00255-2
https://doi.org/10.1016/S2542-5196(21)00255-2
https://doi.org/10.5194/gmd-10-1703-2017
https://doi.org/10.5194/gmd-10-1703-2017
https://doi.org/10.5194/acp-22-10703-2022
https://doi.org/10.5194/acp-22-10703-2022
https://doi.org/10.1016/j.envpol.2023.122971
https://doi.org/10.5194/amt-13-2523-2020
https://doi.org/10.5194/amt-13-2523-2020
https://doi.org/10.1088/1748-9326/aba3a5
https://doi.org/10.1088/1748-9326/aba3a5
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.1016/j.scitotenv.2016.09.089
https://doi.org/10.1117/12.2282158
https://doi.org/10.1016/j.atmosenv.2019.116873
https://human-settlement.emergency.copernicus.eu/ghs_smod2023.php
https://doi.org/10.1016/j.atmosenv.2014.04.041
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(24)00933-4/fulltext
https://doi.org/10.5194/amt-11-6271-2018
https://doi.org/10.5194/amt-11-6271-2018


GeoPandas Development Team. (2025). GeoPandas. (1.0.1) [Computer software]. Open Source Geospatial Foundation. Retrieved from https://
geopandas.org/

Glissenaar, I., Boersma, K. F., Anglou, I., Rijsdijk, P., Verhoelst, T., Compernolle, S., et al. (2025). TROPOMI level 3 tropospheric NO2 Dataset
with Advanced Uncertainty Analysis from the ESA CCI+ ECV Precursor Project. Earth System Science Data Discussions, 1–36. https://doi.
org/10.5194/essd‐2024‐616

Goldberg, D. L., Anenberg, S. C., Kerr, G. H., Mohegh, A., Lu, Z., & Streets, D. G. (2021). TROPOMI NO2 in the United States: A detailed look
at the annual averages, weekly cycles, effects of temperature, and correlation with surface NO2 concentrations. Earth's Future, 9(4),
e2020EF001665. https://doi.org/10.1029/2020EF001665

González Abad, G., Nowlan, C. R., Wang, H., Chong, H., Houck, J., Liu, X., & Chance, K. (2024b). Tropospheric Emissions: Monitoring of
Pollution (TEMPO) project trace gas and cloud level 2 and 3 data products: User guide (user's guide no. version 1.2). Havrard & Smithsonian.
Retrieved from https://asdc.larc.nasa.gov/documents/tempo/guide/TEMPO_Level‐2‐3_trace_gas_clouds_user_guide_V1.2.pdf

González Abad, G., Liu, X., Chance, K., Wang, H., Kurosu, T. P., & Suleiman, R. (2015). Updated Smithsonian Astrophysical Observatory Ozone
Monitoring Instrument (SAO OMI) formaldehyde retrieval. Atmospheric Measurement Techniques, 8(1), 19–32. https://doi.org/10.5194/amt‐
8‐19‐2015

González Abad, G., Nowlan, C. R., Wang, H., Chong, H., Houck, J., Liu, X., & Chance, K. (2024a). TEMPO trace gas and cloud level 2 and 3 data
products: User guide. Retrieved from https://asdc.larc.nasa.gov/documents/tempo/guide/TEMPO_Level‐2‐3_trace_gas_clouds_user_guide_
V1.2.pdf

Harkey, M., & Holloway, T. (2024). Simulated surface‐column NO2 connections for satellite applications. Journal of Geophysical Research:
Atmospheres, 129(21), e2024JD041912. https://doi.org/10.1029/2024JD041912

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., et al. (2020). The ERA5 global reanalysis. Quarterly Journal
of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803

Jacob, D. J., Heikes, E. G., Fan, S.‐M., Logan, J. A., Mauzerall, D. L., Bradshaw, J. D., et al. (1996). Origin of ozone and NOx in the tropical
troposphere: A photochemical analysis of aircraft observations over the South Atlantic basin. Journal of Geophysical Research, 101(D19),
24235–24250. https://doi.org/10.1029/96JD00336

Judd, L. M., Al‐Saadi, J. A., Janz, S. J., Kowalewski, M. G., Pierce, R. B., Szykman, J. J., et al. (2019). Evaluating the impact of spatial resolution
on tropospheric NO2 column comparisons within urban areas using high‐resolution airborne data. Atmospheric Measurement Techniques,
12(11), 6091–6111. https://doi.org/10.5194/amt‐12‐6091‐2019

Judd, L. M., Al‐Saadi, J. A., Valin, L. C., Pierce, R. B., Yang, K., Janz, S. J., et al. (2018). The dawn of geostationary air quality monitoring: Case
studies from Seoul and Los Angeles. Frontiers in Environmental Science, 6, 85. https://doi.org/10.3389/fenvs.2018.00085

Keller, C. A., Knowland, K. E., Duncan, B. N., Liu, J., Anderson, D. C., Das, S., et al. (2021). Description of the NASA GEOS composition
forecast modeling system GEOS‐CF v1.0. Journal of Advances in Modeling Earth Systems, 13(4), e2020MS002413. https://doi.org/10.1029/
2020MS002413

Khreis, H., Kelly, C., Tate, J., Parslow, R., Lucas, K., & Nieuwenhuijsen, M. (2017). Exposure to traffic‐related air pollution and risk of
development of childhood asthma: A systematic review and meta‐analysis. Environment International, 100, 1–31. https://doi.org/10.1016/j.
envint.2016.11.012

Kimbrough, S., Chris Owen, R., Snyder, M., & Richmond‐Bryant, J. (2017). NO to NO2 conversion rate analysis and implications for dispersion
model chemistry methods using Las Vegas, Nevada near‐road field measurements. Atmospheric Environment, 165, 23–34. https://doi.org/10.
1016/j.atmosenv.2017.06.027

Knepp, T., Pippin, M., Crawford, J., Chen, G., Szykman, J., Long, R., et al. (2015). Estimating surface NO2 and SO2 mixing ratios from fast‐
response total column observations and potential application to geostationary missions. Journal of Atmospheric Chemistry, 72(3), 261–286.
https://doi.org/10.1007/s10874‐013‐9257‐6

Lamsal, L. N., Krotkov, N. A., Celarier, E. A., Swartz, W. H., Pickering, K. E., Bucsela, E. J., et al. (2014). Evaluation of OMI operational
standard NO2 column retrievals using in situ and surface‐based NO2 observations. Atmospheric Chemistry and Physics, 14(21), 11587–11609.
https://doi.org/10.5194/acp‐14‐11587‐2014

Lamsal, L. N., Martin, R. V., van Donkelaar, A., Steinbacher, M., Celarier, E. A., Bucsela, E., et al. (2008). Ground‐level nitrogen dioxide
concentrations inferred from the satellite‐borne Ozone Monitoring Instrument. Journal of Geophysical Research, 113(D16). https://doi.org/10.
1029/2007JD009235

Larkin, A., Anenberg, S., Goldberg, D. L., Mohegh, A., Brauer, M., & Hystad, P. (2023). A global spatial‐temporal land use regression model for
nitrogen dioxide air pollution. Frontiers in Environmental Science, 11, 1125979. https://doi.org/10.3389/fenvs.2023.1125979

Laughner, J. L., & Cohen, R. C. (2019). Direct observation of changing NOx lifetime in North American cities. Science, 366(6466), 723–727.
https://doi.org/10.1126/science.aax6832

Lee, H. J., Kim, N. R., & Shin, M. Y. (2024). Capabilities of satellite Geostationary Environment Monitoring Spectrometer (GEMS) NO2 data for
hourly ambient NO2 exposure modeling. Environmental Research, 261, 119633. https://doi.org/10.1016/j.envres.2024.119633

Lerdau, M. T., Munger, J. W., & Jacob, D. J. (2000). The NO2 flux conundrum. Science, 289(5488), 2291–2293. https://doi.org/10.1126/science.
289.5488.2291

Levelt, P. F., Joiner, J., Tamminen, J., Veefkind, J. P., Bhartia, P. K., Stein Zweers, D. C., et al. (2018). The ozone monitoring instrument:
Overview of 14 years in space. Atmospheric Chemistry and Physics, 18(8), 5699–5745. https://doi.org/10.5194/acp‐18‐5699‐2018

Li, Y., Xing, C., Peng, H., Song, Y., Zhang, C., Xue, J., et al. (2023). Long‐term observations of NO2 using GEMS in China: Validations and
regional transport. Science of the Total Environment, 904, 166762. https://doi.org/10.1016/j.scitotenv.2023.166762

Lindsey, D. T., Heidinger, A. K., Sullivan, P. C., McCorkel, J., Schmit, T. J., Tomlinson, M., et al. (2024). GeoXO: NOAA's future geostationary
satellite system. Bulletin of the American Meteorological Society, 105(3), E660–E679. https://doi.org/10.1175/BAMS‐D‐23‐0048.1

Lorente, A., Folkert Boersma, K., Yu, H., Dörner, S., Hilboll, A., Richter, A., et al. (2017a). Structural uncertainty in air mass factor calculation for
NO2 and HCHO satellite retrievals. Atmospheric Measurement Techniques, 10(3), 759–782. https://doi.org/10.5194/amt‐10‐759‐2017

Lorente, A., Folkert Boersma, K., Yu, H., Dörner, S., Hilboll, A., Richter, A., et al. (2017b). Structural uncertainty in air mass factor calculation for
NO2 and HCHO satellite retrievals. Atmospheric Measurement Techniques, 10(3), 759–782. https://doi.org/10.5194/amt‐10‐759‐2017

NASA/LARC/SD/ASDC. (n.d.). TEMPO NO2 tropospheric and stratospheric columns V03 (PROVISIONAL) [Dataset]. NASA Langley At-
mospheric Science Data Center DAAC. Retrieved from https://doi.org/10.5067/IS‐40e/TEMPO/NO2_L2.003

Nawaz, M. O., Goldberg, D. L., Kerr, G. H., & Anenberg, S. C. (2025). TROPOMI satellite data reshape NO2 air pollution land‐use regression
modeling capabilities in the United States. ACS ES&T Air, 2(2), 187–200. https://doi.org/10.1021/acsestair.4c00153

Nawaz, M. O., Johnson, J., Yarwood, G., de Foy, B., Judd, L., & Goldberg, D. L. (2024). An intercomparison of satellite, airborne, and ground‐
level observations with WRF–CAMx simulations of NO2 columns over Houston, Texas, during the September 2021 TRACER‐AQ campaign.
Atmospheric Chemistry and Physics, 24(11), 6719–6741. https://doi.org/10.5194/acp‐24‐6719‐2024

Journal of Geophysical Research: Atmospheres 10.1029/2025JD043923

NAWAZ ET AL. 21 of 22

https://geopandas.org/
https://geopandas.org/
https://doi.org/10.5194/essd-2024-616
https://doi.org/10.5194/essd-2024-616
https://doi.org/10.1029/2020EF001665
https://asdc.larc.nasa.gov/documents/tempo/guide/TEMPO_Level-2-3_trace_gas_clouds_user_guide_V1.2.pdf
https://doi.org/10.5194/amt-8-19-2015
https://doi.org/10.5194/amt-8-19-2015
https://asdc.larc.nasa.gov/documents/tempo/guide/TEMPO_Level-2-3_trace_gas_clouds_user_guide_V1.2.pdf
https://asdc.larc.nasa.gov/documents/tempo/guide/TEMPO_Level-2-3_trace_gas_clouds_user_guide_V1.2.pdf
https://doi.org/10.1029/2024JD041912
https://doi.org/10.1002/qj.3803
https://doi.org/10.1029/96JD00336
https://doi.org/10.5194/amt-12-6091-2019
https://doi.org/10.3389/fenvs.2018.00085
https://doi.org/10.1029/2020MS002413
https://doi.org/10.1029/2020MS002413
https://doi.org/10.1016/j.envint.2016.11.012
https://doi.org/10.1016/j.envint.2016.11.012
https://doi.org/10.1016/j.atmosenv.2017.06.027
https://doi.org/10.1016/j.atmosenv.2017.06.027
https://doi.org/10.1007/s10874-013-9257-6
https://doi.org/10.5194/acp-14-11587-2014
https://doi.org/10.1029/2007JD009235
https://doi.org/10.1029/2007JD009235
https://doi.org/10.3389/fenvs.2023.1125979
https://doi.org/10.1126/science.aax6832
https://doi.org/10.1016/j.envres.2024.119633
https://doi.org/10.1126/science.289.5488.2291
https://doi.org/10.1126/science.289.5488.2291
https://doi.org/10.5194/acp-18-5699-2018
https://doi.org/10.1016/j.scitotenv.2023.166762
https://doi.org/10.1175/BAMS-D-23-0048.1
https://doi.org/10.5194/amt-10-759-2017
https://doi.org/10.5194/amt-10-759-2017
https://doi.org/10.5067/IS-40e/TEMPO/NO2_L2.003
https://doi.org/10.1021/acsestair.4c00153
https://doi.org/10.5194/acp-24-6719-2024


Nowlan, C. R., Abad, G. G., Liu, X., Wang, H., & Chance, K. (2025). TEMPO nitrogen dioxide retrieval algorithm theoretical basis document.
Palmer, P. I., Jacob, D. J., Chance, K., Martin, R. V., Spurr, R. J. D., Kurosu, T. P., et al. (2001). Air mass factor formulation for spectroscopic

measurements from satellites: Application to formaldehyde retrievals from the global ozone monitoring experiment. Journal of Geophysical
Research, 106(D13), 14539–14550. https://doi.org/10.1029/2000JD900772

Penn, E., & Holloway, T. (2020). Evaluating current satellite capability to observe diurnal change in nitrogen oxides in preparation for geo-
stationary satellite missions. Environmental Research Letters, 15(3), 034038. https://doi.org/10.1088/1748‐9326/ab6b36

Richmond‐Bryant, J., Snyder, M. G., Owen, R. C., & Kimbrough, S. (2018). Factors associated with NO2 and NOX concentration gradients near a
highway. Atmospheric Environment, 174, 214–226. https://doi.org/10.1016/j.atmosenv.2017.11.026

Scarino, A. J., Obland, M. D., Fast, J. D., Burton, S. P., Ferrare, R. A., Hostetler, C. A., et al. (2014). Comparison of mixed layer heights from
airborne high spectral resolution lidar, ground‐based measurements, and the WRF‐Chem model during CalNex and CARES. Atmospheric
Chemistry and Physics, 14(11), 5547–5560. https://doi.org/10.5194/acp‐14‐5547‐2014

Tao,M., Fiore, A.M., Karambelas, A., Miller, P. J., Valin, L. C., Judd, L.M., et al. (2025). Insights into summertime surface ozone formation from
diurnal variations in formaldehyde and nitrogen dioxide along a transect through New York City. Journal of Geophysical Research: Atmo-
spheres, 130(9), e2024JD040922. https://doi.org/10.1029/2024JD040922

U.S. Environmental Protection Agency. (2025). Air quality system data mart [Dataset]. Retrieved from https://www.epa.gov/outdoor‐air‐quality‐
data

US EPA, O. (2014). NAAQS table [other policies and guidance]. Retrieved from https://www.epa.gov/criteria‐air‐pollutants/naaqs‐table
US EPA, O. (2020). Near road monitoring [data and tools]. Retrieved from https://www.epa.gov/amtic/near‐road‐monitoring
Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., et al. (2012). TROPOMI on the ESA Sentinel‐5 precursor: A GMES

mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sensing of
Environment, 120, 70–83. https://doi.org/10.1016/j.rse.2011.09.027

WHO. (2025). WHO. Retrieved from https://www.who.int/health‐topics/air‐pollution
Yang, L. H., Jacob, D. J., Dang, R., Oak, Y. J., Lin, H., Kim, J., et al. (2024a). Interpreting Geostationary Environment Monitoring Spectrometer

(GEMS) geostationary satellite observations of the diurnal variation in nitrogen dioxide (NO2) over East Asia. Atmospheric Chemistry and
Physics, 24(12), 7027–7039. https://doi.org/10.5194/acp‐24‐7027‐2024

Yang, L. H., Jacob, D. J., Dang, R., Oak, Y. J., Lin, H., Kim, J., et al. (2024b). Interpreting Geostationary Environment Monitoring Spectrometer
(GEMS) geostationary satellite observations of the diurnal variation in nitrogen dioxide (NO2) over East Asia. Atmospheric Chemistry and
Physics, 24(12), 7027–7039. https://doi.org/10.5194/acp‐24‐7027‐2024

Zhang, R., Tie, X., & Bond, D. W. (2003). Impacts of anthropogenic and natural NOx sources over the U.S. on tropospheric chemistry. Pro-
ceedings of the National Academy of Sciences, 100(4), 1505–1509. https://doi.org/10.1073/pnas.252763799

Zoogman, P., Liu, X., Suleiman, R. M., Pennington, W. F., Flittner, D. E., Al‐Saadi, J. A., et al. (2017). Tropospheric emissions: Monitoring of
pollution (TEMPO). Journal of Quantitative Spectroscopy and Radiative Transfer, 186, 17–39. https://doi.org/10.1016/j.jqsrt.2016.05.008

Journal of Geophysical Research: Atmospheres 10.1029/2025JD043923

NAWAZ ET AL. 22 of 22

https://doi.org/10.1029/2000JD900772
https://doi.org/10.1088/1748-9326/ab6b36
https://doi.org/10.1016/j.atmosenv.2017.11.026
https://doi.org/10.5194/acp-14-5547-2014
https://doi.org/10.1029/2024JD040922
https://www.epa.gov/outdoor-air-quality-data
https://www.epa.gov/outdoor-air-quality-data
https://www.epa.gov/criteria-air-pollutants/naaqs-table
https://www.epa.gov/amtic/near-road-monitoring
https://doi.org/10.1016/j.rse.2011.09.027
https://www.who.int/health-topics/air-pollution
https://doi.org/10.5194/acp-24-7027-2024
https://doi.org/10.5194/acp-24-7027-2024
https://doi.org/10.1073/pnas.252763799
https://doi.org/10.1016/j.jqsrt.2016.05.008

	description
	A Comparative Analysis of TEMPO NO2 Remote Sensing With Surface‐Level Monitoring Through Diurnal and Seasonal Trends, Meteo ...
	1. Introduction
	2. Methodology
	2.1. US EPA AQS Surface‐Level NO2
	2.2. NASA TEMPO Column NO2
	2.3. ERA5 Meteorological Reanalysis Data
	2.4. Urban Boundary and Road‐Proximity Land‐Use Data
	2.5. Comparative Analysis

	3. Results
	3.1. Spatial, Diurnal, and Seasonal Correlations Between TEMPO and Surface‐Level NO2
	3.2. Meteorological and Road Proximity Effects on Correlation Between TEMPO Column NO2 and AQS Surface‐Level NO2

	4. Discussion
	Conflict of Interest
	Data Availability Statement



