Molecular PSYCh iatry www.nature.com/mp

ARTICLE W) Check for updates
Classification of major depressive disorder using vertex-wise
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shallow learning model

Roberto Goya-Maldonado ('™, Tracy Erwin-Grabner’, Ling-Li Zeng®?, Christopher R. K. Ching >, Andre Aleman?, Alyssa R. Amod (®°,
Zeynep Basgoze (®°®, Francesco Benedetti(®’, Bianca Besteher (2, Katharina Brosch (°, Robin Biilow @ '®, Romain Colle®'""?,
Colm G. Connolly'®, Emmanuelle Corruble'"'?, Baptiste Couvy-Duchesne @ '*'®, Kathryn Cullen@?, Udo Dannlowski@® ',
Christopher G. Davey @ '’, Annemiek Dols'®'®, Jan Ernsting @ '®, Jennifer W. Evans @ 2°, Lukas Fisch'®, Paola Fuentes-Claramonte (®?',
Ali Saffet Gonul 22, lan H. Gotlib 23, Hans J. Grabe®*, Nynke A. Groenewold (3)°, Dominik Grotegerd', Tim Hahn® "¢,

J. Paul Hamilton?®, Laura K. M. Han?%?’, Ben J. Harrison'’, Tiffany C. Ho*®*?°, Neda Jahanshad?, Alec J. Jamieson® ',

Andriana Karuk®?', Tilo Kircher @?, Bonnie Klimes-Dougan (3>°, Sheri-Michelle Koopowitz®, Thomas Lancaster @3'3?,

Ramona Leenings'®, Meng Li(®?2 David E. J. Linden ®3"32333% Frank P. MacMaster®, David M. A. Mehler @) '631-3236,

Susanne Meinert@ '%’, Elisa Melloni’, Bryon A. Mueller 6 Benson Mwangias, Igor Nenadi¢ ° Amar Ojha 3940

Yasumasa Okamoto®', Mardien L. Oudega'®*?, Brenda W. J. H. Penninx'®, Sara Poletti @7, Edith Pomarol-Clotet?’,

Maria J. Portella (»****, Joaquim Radua (*°, Elena Rodriguez-Cano?®', Matthew D. Sacchet*®, Raymond Salvador®’, Anouk Schrantee®’,
Kang Sim*®4°2%, Jair C. Soares %, Aleix Solanes ?*, Dan J. Stein >, Frederike Stein®?°, Aleks Stolicyn®>’,

Sophia I. Thomopoulos @?3, Yara J. Toenders 2275233, Aslihan Uyar-Demir®??, Eduard Vieta@®?>*, Yolanda Vives-Gilabert>>,
Henry Volzke®®, Martin Walter (2, Heather C. Whalley >, Sarah Whittle®'?, Nils Winter 6, Katharina Wittfeld 2%,
Margaret J. Wright 5758 Mon-Ju Wu@®?38, Tony T. Yangzs, Carlos Zarate®®, Dick J. Veltman'®, Lianne Schmaal (2?7,

Paul M. Thompson @? and on behalf of the ENIGMA Major Depressive Disorder working group*

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2025

Major depressive disorder (MDD) is a complex psychiatric disorder that affects the lives of hundreds of millions of individuals
around the globe. Even today, researchers debate if morphological alterations in the brain are linked to MDD, likely due to the
heterogeneity of this disorder. The application of deep learning tools to neuroimaging data, capable of capturing complex non-
linear patterns, has the potential to provide diagnostic and predictive biomarkers for MDD. However, previous attempts to
demarcate MDD patients and healthy controls (HC) based on segmented cortical features via linear machine learning approaches
have reported low accuracies. In this study, we used globally representative data from the ENIGMA-MDD working group containing
7012 participants from 31 sites (N =2772 MDD and N = 4240 HC), which allows a comprehensive analysis with generalizable
results. Based on the hypothesis that integration of vertex-wise cortical features can improve classification performance, we
evaluated the classification of a DenseNet and a Support Vector Machine (SVM), with the expectation that the former would
outperform the latter. As we analyzed a multi-site sample, we additionally applied the ComBat harmonization tool to remove
potential nuisance effects of site. We found that both classifiers exhibited close to chance performance (balanced accuracy
DenseNet: 51%; SVM: 53%), when estimated on unseen sites. Slightly higher classification performance (balanced accuracy
DenseNet: 58%; SVM: 55%) was found when the cross-validation folds contained subjects from all sites, indicating site effect. In
conclusion, the integration of vertex-wise morphometric features and the use of the non-linear classifier did not lead to the
differentiability between MDD and HC. Our results support the notion that MDD classification on this combination of features and
classifiers is unfeasible. Future studies are needed to determine whether more sophisticated integration of information from other
MRI modalities such as fMRI and DWI will lead to a higher performance in this diagnostic task.

Molecular Psychiatry; https://doi.org/10.1038/s41380-025-03273-w

INTRODUCTION allocation of the proper treatment are critical. Unfortunately, the
Major depressive disorder (MDD) dramatically impacts the daily current treatment strategies present a response rate and
functioning of patients and is currently the leading cause of remission as low as of 36.8% after a first treatment [2-4]. Thus,
disability worldwide [1]. Therefore, early diagnosis and optimal as proposed in the realms of systems medicine, we expect that by
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identifying brain patterns that classify patients at the individual
level, we may open new biomarker-based avenues for the
development of more personalized and effective treatments.

Neuroimaging techniques, such as magnetic resonance imaging
(MRI), enable a non-invasive macro-scale view of human brain
structure at the millimeter level of resolution. Initial neuroimaging
studies used univariate approaches to reveal structural brain
differences in MDD compared to healthy controls (HC) [5-7],
identifying reduced hippocampal and frontal lobe volume.
However, these studies had limited sample sizes and the more
recent large sample studies have reported small effect sizes
[8-11], highlighting the absence of a single neuro-anatomical
biomarker associated with MDD. The search for more complex
biomarkers, which may include the interaction between different
neuro-anatomical features, can be conducted via machine
learning (ML) algorithms - especially deep learning (DL) algorithms
- applied to the MDD vs HC classification task.

Like univariate approaches, ML and DL studies reported varying
classification accuracies from 53-91% [12, 13]. The high variability
of classification performances and the lack of consistent
biomarkers can partly be explained by the small sample sizes, as
it was demonstrated by Flint and colleagues [14]. Supplementing
this, a study based on cortical and subcortical morphological
features, reported high accuracy of 75% in the small sample,
which was not replicated in an independent large UK Biobank
dataset, achieving only 54% [15].

Another factor that may inflate classification accuracies are
related to study-site effects. The site-effect corresponds to site-
specific characteristics other than diagnosis — such as scanner
type, acquisition protocol, demographic differences, and inclusion
and exclusion criteria — which may bias classification accuracies. A
study demonstrated how site effect may contribute to both
inflated and deflated classification accuracies [16]. Hence,
numerous ways to tackle site-effect and improve model general-
izability exist, from linear and non-linear ComBat harmonization
tools [17, 18] to embedding site confounders directly to the model
[19]. However, to overcome the difficult point of the heterogeneity
of MDD and the lack of replicability and generalization of the
models, the investigation of very large samples of participants
with global representation is fundamental.

Using a large-scale dataset from the ENIGMA-MDD consortium,
we compared the classification performance of commonly used
ML models to predict diagnosis based on cortical and subcortical
parcellations of morphological features (surface areas, thicknesses,
volumes) [20]. Overall, results showed a trend that may highlight
the contribution of site-effects to classification performance.
Specifically, there was a clear difference in classification perfor-
mance dependent on the cross-validation splitting techniques
used in training. Site-splitting generally performed at close to
chance level for all classifiers, while mixing sites across splits
achieved up to 62% balanced accuracy with an SVM. Of note, data
harmonization using ComBat removed the site effect and resulted
in a balanced accuracy of 52% with SVM. Based on these findings,
we concluded that most commonly used ML classification
algorithms could not successfully discriminate MDD from HC
individuals based on morphological features organized in pre-
defined Desikan-Killiany atlas parcellations. However, it remains
unclear whether more fine-grained information of morphometric
features, displayed in a vertex-wise organization, could outper-
form the classification based on parcellation atlas-distributed
information.

There are some directions in improving classification based on
morphological information. First, previous ML studies considered
surface area, thickness, and volume characteristics only, while the
information on the cortical shape, such as gyral and sulcal shape
patterns, was not integrated into analyses. Cortical gyrification
modalities are affected by genetic and non-genetic factors
[21, 22], alterations of which were associated with MDD [23, 24].
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Multimodal morphological feature analysis, including myelination,
gray matter, and curvature, revealed a correlation between cortical
differences and MDD-associated genes [25]. Therefore, the
addition of shape modalities, such as cortical curvature and sulcal
depth, to cortical thickness could enhance the classification
performance, as demonstrated for sex and autism classification
[26].

Cortical morphological features such as sulcal depth and
gyrification, measured via local gyrification index (LGI) or
curvature, have been investigated as potential biomarkers for
MDD, although the literature remains limited and somewhat
inconsistent. Some earlier studies have suggested that sulcal
depth may be decreased in individuals with suicidality-associated
MDD [25]. Even so, this study included only 39 healthy controls, 40
depressed patients without suicidality (patient controls), and 39
with suicidality (suicidal groups) were analyzed based on SBM to
estimate the fractal dimension, gyrification index, sulcal depth,
and cortical thickness; the small sample size and range of features
assessed make it prone to both type | and type Il error, relative to
the studies we have performed in thousands of patients. In terms
of gyrification, multiple studies have reported both hypo- and
hyper-gyrification in various cortical regions, including the frontal,
cingulate, insular, parietal, and temporal lobes [24, 27-31].
However, these findings are often region-constrained, based on
small sample sizes, and lack consistent replication across cohorts
and studies. These constraints highlight the need for coordinated
multi-site analyses using harmonized data and advanced morpho-
metric modeling approaches.

Hence, one promising direction is the use of more advanced
classification algorithms. DL methods have gained popularity in
the neuroimaging field as a promising tool for cortical surface
reconstruction [32], image preprocessing [33], and cortical
parcellation [34]. Furthermore, DL is widely evaluated as a
predictive tool in psychiatry, showing higher or at least the same
classification performance compared to linear models [26, 35-39].
The analysis of cortical morphometric features can be conducted
via convolutional neural network (CNN) [40], designed to reveal
complex patterns in 2D images. In order to apply such 2D CNN in
the classification, it requires 3D cortical features to be initially
projected into 2D image space. Nevertheless, this step may
inevitably create distortion in spatial properties such as shape,
area, distance, and direction. Several approaches were implemen-
ted before, such as latitude/longitude projection [41] and optimal
mass transport (OMT) projection [26, 42], which preserves area.
However, the impact of these projection methods on classification
performance were never directly compared in the
neuroimaging field.

The main goal of this study was to distinguish MDD from HC
individuals based on integrated cortical morphological features,
including sulcal depth, curvature, and thickness. These features
were analyzed via SVM with linear kernel and CNN architecture of
pre-trained DenseNet [43], which demonstrated its superiority
over simpler models in autism vs HC classification task [26]. SVM
was chosen as it is a robust shallow ML model, frequently used in
neuroimaging settings [44-46]. We investigated classification
performance of these two methods to understand the role of
complex non-linear patterns in MDD manifestation. We used
balanced accuracy, sensitivity, specificity and AUC as the
classification performance metrics. Higher classification perfor-
mance of the DenseNet model presume the presence of spatially
complex patterns in brain morphology, which are relevant for
classification. Furthermore, we aimed to estimate the relevance of
integrating cortical thickness and shape characteristics (sulcal
depth, curvature and thickness) into the analysis by training the
models with all features combined and by considering them
separately. Similar to our previous study [20], different cross-
validation (CV) approaches were evaluated: Splitting the data by
balancing age and sex distribution across all CV folds (Splitting by
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Age/Sex), and performing leave-sites-out CV in order to estimate
the performance on the unseen during the training sites (Splitting
by Site). This approach allowed us to estimate whether the
model’s performance is influenced by demographic or site-related
factors. The difference between results in both splitting strategies
presumes the presence of the site effect we addressed by
harmonizing the data in both splitting strategies via ComBat. In
summary, we hypothesized that: (1) Integration of cortical
thickness and shape characteristics would contribute positively
to the classification performance, and (2) DenseNet could
differentiate MDD from HC based on the provided features.
Additionally, we compared two projection methods, latitude/
longitude and OMT projections by performing auxiliary single-site
sex classification based on three of the largest cohorts to explore
whether classification performance may vary according to 2D
projection method. We had no a priori hypothesis for the
projection results.

MATERIAL AND METHODS

Study participants and study design

We analyzed a large-scale multi-site sample provided by the ENIGMA-MDD
working group, comprising 2772 MDD and 4240 HC individuals, from 30
cohorts worldwide. Details on inclusion/exclusion criteria and sample
characteristics can be found in Supplementary Table 1. Subjects with
missing information on demographic data or any of cortical surface mesh
files (I(r).sulc, I(r).curv, I(r).thickness) were excluded from the analysis (476
and 6% excluded).

Image processing and analysis

Each site acquired structural T1-weighted MRI scans of participants and
preprocessed them according to ENIGMA Consortium protocol (http:/
enigma.ini.usc.edu/protocols/imaging-protocols/). This pipeline includes
the segmentation of T1-weighted MRI volumes, tessellation, topology
correction, and spherical inflation of the white matter surface. Detailed
information on the acquisition protocols and scanner model in each cohort
can be found in Supplementary Table 2. Cortical meshes were generated
during FreeSurfer preprocessing in every site. Cerebral cortex meshes were
then extracted from the FreeSurfer unsmoothed fsaverage6 template,
effectively removing intracranial volume (ICV) differences (Supplementary
Fig. 1) and yielding 37,747 and 37,766 vertices for the left and right
hemispheres, respectively. The preprocessing pipeline applied in this study
is consistent across all subjects, regardless of age, as the core procedures
do not differ fundamentally between adolescents and adults. We analyzed
vertex-wise features, such as sulcal depth, curvature, and thickness, both as
integrated features and separately (Fig. 1).

Considering the absence of well-established pre-trained on cortical
meshes CNN models, we projected 3D cortical surfaces into 2D images and
applied DenseNet, which was pre-trained on natural images. There are few
studies applying different projection methods such as latitude/longitude
project and area-preserving maps [e.g., 26, 41]. Of note, the latitude/
longitude method, in which cortical mesh is first re-sampled to the sphere
and consequently mapped to the 2D grid, creates strong area distortions in
the edges and near the medial wall close to subcortical regions [41]. Both
methods may (differentially) influence subsequent classification perfor-
mances, but to the best of our knowledge, no studies to date have directly
compared this in one study using the same samples. Thus, we applied both
2D projection methods to the cortical meshes, resulting in 224 x 224 pixels
images for each hemisphere. The images were normalized to present
mean of 0 and standard deviation of 1.

Data splitting

To assess potential biases in the model’s decision-making, we performed
10-fold cross-validation (CV) by splitting the data according to (1)
demographic covariates, in which age and sex distribution were
balanced and subjects from each site are equally distributed across all
CV folds (Splitting by Age/Sex), and (2) site affiliation, where each site was
contained only in one CV fold (Splitting by Site). In both strategies, 9 CV
folds were used for training, while one remaining CV fold was used as a
test set. This procedure was repeated iteratively until every CV fold was
used as a test set. In the Splitting by Age/Sex strategy, effect of
demographic factors on the classification performance is reduced, as the
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model is trained and tested on the same demographics. Nevertheless,
the site-related differences may bias the decision-making of the
classification models [20], which is directly addressed in Splitting by
Site. This strategy demonstrates how well the model trained on one set
of sites can be applied to the data from unseen sites. As the number of
sites exceeds the number of folds, we distributed the sites across the
folds to balance the number of subjects in every fold as close as possible
by iteratively distributing the largest sites across all 10 folds. Smallest
folds were added subsequently to further even the number of subjects
in every fold. Overall, the difference in the classification results between
these two splitting strategies may indicate the existence of the site
effect. More detailed description of both splitting strategies can be
found elsewhere [20].

MDD vs HC classification

After the data-splitting step, the primary analysis was carried out.
Firstly, we residualized all features normatively, removing linear age and
sex dependencies. To avoid data leakage, age and sex regressors were
estimated on the healthy subjects from the training set (9 CV folds) and
then applied to the training and test set (1 CV fold) for patients and HC.
Next, the classification algorithms were trained on the training folds,
and classification performance was estimated on the test fold. As
demonstrated by Dinga and colleagues, accuracy alone should be
avoided as it does not account for class frequencies [47]. Thus, the
algorithms were evaluated according to categorical measures, including
balanced accuracy, sensitivity, specificity, and rank-based measure -
AUC, allowing for a broad overview of performance. For model-level
assessment [48], we performed the classification using all features
combined and then using features separately to assess the final
classification performance. We evaluated the classification performance
of a robust shallow model - SVM with linear kernel, and DL model -
DenseNet pre-trained on natural images from ImageNet dataset [49],
which has been shown to be a robust convolutional neural network for
image classification in both natural images and neuroimaging contexts
[26, 43]. When DenseNet was trained on a single data domain, left and
right hemisphere images were propagated through corresponding left
and right DenseNets, the fully connected layers of which were
concatenated. The resulting feature vectors were then fed to the
output layer. For the whole-brain all-features analysis, we combined the
features extracted from every feature and hemisphere, concatenate
them, and fed them to the output layer. For SVM, all considered images
were flattened and then concatenated into a single array. In this study,
we intentionally chose not to apply dimensionality reduction techni-
ques (e.g., PCA or feature selection) prior to model training. This
decision was driven by the goal of preserving the full anatomical
interpretability of vertex-wise cortical features and directly evaluating
the classification potential of the complete morphometric representa-
tion. To mitigate the risk of overfitting in this high-dimensional setting,
we implemented nested 10-fold cross-validation for robust perfor-
mance estimation and hyperparameter tuning. Specifically, for the SVM,
nine values of the regularization parameter (C) were explored, resulting
in 90 model evaluations across outer folds. For DenseNet, the grid
search spanned 54 unique hyperparameter combinations, yielding 540
model evaluations (hyperparameters in Supplementary Table 3). The
concept and implementation of analysis are illustrated in Fig. 1. To
mitigate site-related differences, which may potentially bias the
classification results, we additionally performed the analysis by
harmonizing all features via ComBat. Variance explained by age and
sex was preserved during this harmonization step. Next, we residualized
features normatively, as described above, and trained/tested the
models. Application of ComBat differed for both splitting strategies.
In short, ComBat parameters estimated on the training set were applied
to the test set directly for the Age/Sex splitting strategy. In splitting by
Site, ComBat was applied twice: first, we used ComBat to harmonize the
training sites; second, we applied ComBat to adjust the test sites to the
harmonized training sites, i.e., using the training sites as the reference
batch [50]. A more detailed description of the ComBat application can
be found in our previous work [20].

Auxiliary analysis in projection methods

To explore and evaluate the potential impact of 2D projection methods on
the classification performance, we compared both methods in their ability
to classify healthy males from healthy females in 3 of the largest cohorts
separately. The single-site classification was estimated via 10-fold CV on

SPRINGER NATURE


http://enigma.ini.usc.edu/protocols/imaging-protocols/
http://enigma.ini.usc.edu/protocols/imaging-protocols/

R. Goya-Maldonado et al.

Feature level

Single feature

Combining features

Harmonization level

Before ComBat After ComBat

uuuuuuuuuu

:
Subject number

CNN

FC Layer

Fig. 1

OMT projection

-

~

R esidualization step

CNN

FC Layer

Proposed conceptualization levels and implementation of classification procedure. Left: Higher classification performance in MDD

vs HC classification task can be achieved by implementing deep ML models, such as DenseNet, in comparison to a shallow ML model, for
example, SVM. Furthermore, the analysis of integrated morphometric features can provide a more detailed description of cortical organization
than separated features, leading to better differentiability of MDD from HC. The application of ComBat may improve the generalizability of
results as site-related differences are removed. Right: Cortical sulcal depth, curvature, and thickness are first projected into the 2D grid and
then transformed into 2D images using OMT projection. We split the data into 10 CV folds according to age and sex (Splitting by Age/Sex) and
according to the site belonging (Splitting by Site). After the residualization step, where the age and sex effect are regressed out linearly, we

train and test SVM and DenseNet on the diagnosis classification.

411, 723, and 397 subjects, respectively. As usual, 9 CV folds were used for
training, while one remaining CV fold was used as a test set. This procedure
was repeated iteratively until every CV fold is used as a test set. To provide
an initial perspective on the potential classification advantages of the pre-
trained DenseNet, we presented the balanced accuracies obtained by two
classifiers: an SVM with a linear kernel and the DenseNet [43]. Furthermore,
using the hyperparameters found via the sex classification task (Supple-
mentary Table 3), we presented the classification performance of both
models.

RESULTS

Participants and data splitting

We detected substantial differences in age (78% of pairwise
comparisons between cohorts were significant, t-test, p < 0.05)
and sex (47%, t-test, p < 0.05) across cohorts. The demographic
and clinical profile is presented in Table 1. As expected, Splitting
by Age/Sex resulted in more balanced CV folds with respect to
number of subjects, age and sex distributions, while folds created
by Splitting by Site were more uneven on these characteristics
(Table 2).

SPRINGER NATURE

MDD vs HC classification
First, we compared the performance of SVM and DenseNet for
different splitting strategies (Fig. 2). In Splitting by Age/Sex, SVM
achieved 0.551+0.021 in balanced accuracy, while DenseNet
yielded 0.578 + 0.022. In Splitting by Site, both SVM and DenseNet
models performed worse, yielding 0.528 + 0.039 and 0.512 £ 0.019,
respectively. The minor difference in classification performances
for different splitting strategies indicated a potential site effect,
which we addressed by applying ComBat. In Splitting by Age/Sex,
the balanced accuracy of SVM with ComBat dropped to
0.478 £0.019, while the performance of DenseNet did not change
and yielded 0.561 +0.015. In splitting by Site with ComBat, the
performance of both models was similar and close to random
chance, balanced accuracy yielded 0.520 + 0.019 and 0.508 + 0.020
for SYM and DenseNet respectively. Thus, we did not observe an
improvement of models’ performances after data harmonization
by ComBat. A full panel of results, including all classification
metrics, can be found in Supplementary Table 4.

Next, we explored if any of the considered feature modalities
yields greater classification performance (Fig. 2). In Splitting by
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Table 1.

Cohort

AFFDIS
Barcelona-StPau
CARDIFF

CSAN

Calgary

DCHS

FIDMAG
FOR2107Marburg

FOR2107Munster
Hiroshima
Houston

MODECT
MOODS
Melbourne
Minnesota
Moraldilemma
Munster

NESDA
QTIM

UCSF
SanRaffaele
SHIP_START

SHIP_TREND

Sexpect
Singapore
Socat_dep
StanfFAA
StanfT1wAggr
TAD

TIGER

Jena (TiPs)
Cohort

AFFDIS
Barcelona-StPau
CARDIFF

CSAN

Calgary

DCHS

FIDMAG
FOR2107Marburg
FOR2107Munster
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Participating sites.

N HC N MDD
44 33
32 62
0 39
49 60
52 56
70 22
34 36
411 327
221 174
169 150
186 108
0 27
32 64
9 22
40 70
46 24
723 282
65 154
286 100
90 77
0 128
443 136
937 312
20 20
17 23
29 79
18 14
59 56
0 39
11 49
76 28
Antidepressant free
/ users MDD
1/76

4/58

0/39

31/29

38/18

NA

4/31

124/203
72/102

Age HC
(mean + SD)

39.98 + 14.63
46.03 +8.13
NA
33.2+12.19
15.81+5.08
31.46 + 6.88
45.94 £ 11.67
3476 £12.78

28.34+10.32
39.88+12.39
26.75+15.97

NA
35.12+129
20.67 +3.54
15.68 +2
185+ 1.77
3536+12.14

40.29 +9.74
21.99+3.37

15.29+1.29
NA
5544 +12.82

50.64 + 14.28

33.75+7.2
38.53 +4.64
36.55+13.65
30.44+10.25
37.24+10.52
NA

15.18 +£1.08
47.7 £16.14

Age MDD
(mean % SD)

39.58 +15.42
46.98 +£7.75
46.67 +12.02
35.92+13.49
18.15+2.53
28.77 £6.34
48.61+12.94
356+12.82

35.87+£12.92
44.25+11.99
32.31+16.46

74.11 £9.81
34.25+12.45
19.64+£3.11
1536+ 1.84
19.42+2.19
37.68+12.03

37.19+10.49
22.09+3.17

15.61+1.37
49.84 +£10.97
53.59+11.72

49.20+12.15

3825+ 11.63
393+834
39.66 +12.89
35.63+8.44
37.11+£10.18
16.03+1.15
1573+1.4
4336+ 12.04

N females
in HC (%)

20 (45.5%)
23 (71.9%)
NA

34 (69.4%)
29 (55.8%)
70 (100%)
22 (64.7%)

257
(62.5%)

140
(63.3%)

104
(61.5%)

104
(55.6%)

NA

21 (65.6%)
3 (33.3%)
26 (65%)
46 (100%)

413
(57.1%)

42 (64.6%)

184
(64.3%)

43 (47.8%)
NA

198
(44.7%)

409
(43.6%)

3 (15%)

9 (52.9%)
89 (89.9%)
18 (100%)
36 (61%)
NA

5 (45.5%)
35 (46.1%)

N females
in MDD
(%)

14 (42.4%)
49 (79%)

26 (66.7%)
40 (66.7%)
32 (57.1%)
22 (100%)
22 (61.1%)

208
(63.6%)

109
(62.6%)

71 (47.3%)

66 (61.1%)

18 (66.7%)
44 (68.8%)
17 (77.3%)
53 (75.7%)
24 (100%)

164
(58.2%)

103
(66.9%)

74 (74%)

51 (66.2%)
84 (65.6%)
96 (70.6%)

203
(65.1%)

8 (40%)
10 (43.5%)
71 (89.9%)
14 (100%)
33 (58.9%)
29 (74.4%)
33 (67.3%)
14 (50%)

Ethnicity
White/Black/
Asian/Other/
NA HC

NA
16/0/0/0/16
NA

NA
22/0/5/4/7
0/66/0/0/4
34/0/0/0/0
411/0/0/0/0

221/0/0/0/0
0/0/169/0/0
76/11/5/93/2

NA
25/1/2/0/0
0/0/0/0/9
25/1/3/11/0
20/2/14/2/8
723/0/0/0/0

63/0/0/0/2
286/0/0/0/0

26/2/7/54/1
NA
443/0/0/0/0

937/0/0/0/0

NA
0/0/17/0/0
99/0/0/0/0
6/2/1/3/6
NA

NA

NA

NA

First /
recurrent
episode MDD

NA
22/40
0/34
14/46
19/37
NA
11/23
93/200
63/108

Remitted /
acute episode
MDD

0/77
23/39
0/39
0/60
0/56
NA
1/35
76/251
59/115

BDI total score
MDD
(mean = SD)

19.22 + 14.07
NA

36.16 +9.33
NA

26.67 +11.53
NA

NA

18.67 +10.82
16.85+11.72

HDRS total score
MDD
(mean = SD)

9.88 +7.06
13.66 +8.18
19.58 +4.76
NA

19.16 £ 6.66
NA

2469 +5.78
8.06 +6.42
9.72+7.35

Ethnicity
White/Black/
Asian/Other/
NA MDD

NA
62/0/0/0/0
NA

NA
23/1/0/1/19
0/21/0/0/1
36/0/0/0/0
327/0/0/0/0

174/0/0/0/0
0/0/150/0/0
63/7/0/37/1

0/0/0/0/27
45/11/4/0/0
2/0/0/0/20
49/7/1/13/0
18/0/4/2/0
282/0/0/0/0

139/0/0/0/15
100/0/0/0/0

15/6/2/54/0
128/0/0/0/0
136/0/0/0/0

312/0/0/0/0

NA
0/0/23/0/0
79/0/0/0/0
8/2/2/0/2
NA
24/2/7/5/1
NA

NA

Age of onset
MDD
(mean = SD)

NA
33.16+11.43
28.94+ 14
NA
1433£3.2
NA

37.06 +13.57
27.38+13.42
2475+ 11.15
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Table 1. continued
Cohort Antidepressant free First / Remitted / BDI total score HDRS total score Age of onset
/ users MDD recurrent acute episode MDD MDD MDD
episode MDD MDD (mean = SD) (mean * SD) (mean % SD)
Hiroshima 10/138 74/74 0/150 29.79+9.39 18.67 +5.58 38.16£13.25
Houston 105/1 21/43 39/37 16.5+£15.12 9.87 £7.93 21.57+£10.7
MODECT 19/8 0/22 0/27 NA NA NA
MOODS 64/0 32/32 0/64 NA 26.56 +5.37 28.25+11.54
Melbourne 19/3 7/15 0/22 NA NA 15.71 +£3.85
Minnesota 52/16 16/22 6/0 25.85+12.12 NA 12.39+2.39
Moraldilemma 24/0 8/16 0/24 NA NA NA
Munster 27/231 64/216 23/258 25.63+10.18 18.96 +4.3 2935+ 11.78
NESDA 98/56 67/87 0/154 NA NA 24.17 £10.96
QTIM 70/30 NA NA NA NA 1842 +34
UCSF 77/0 32/36 7/61 26.68+11.78 NA 13.25+2.24
SanRaffaele 7/120 12/116 17/111 14.88 + 8.05 20.26 £ 6.76 35.61+12.32
SHIP_START 113/23 77/59 NA 11.56 £ 10.30 NA 38.01 +13.05
SHIP_TREND 258/54 113/199 NA 1245 +8.11 NA 36.19 + 14.27
Sexpect 0/20 4/16 0/20 20.86+124 129+£5.11 30.87+11.24
Singapore 5/18 8/15 NA NA 6.3+6.23 32.73+9.51
Socat_dep 41/38 19/60 33/46 24.01+12.14 13.29+7.55 31.63 +16.67
StanfFAA 11/3 0/14 0/14 28.29+9.98 18.86 +4.22 16.29 + 6.83
StanfT1wAggr 27/20 6/48 0/56 25.76 +£9.99 14.38+5.84 19.52+9.24
TAD 24/15 24/9 0/39 NA NA 12+2.52
TIGER 29/20 29/20 0/49 NA NA 12.12+2.49
Jena 10/18 5/23 NA 21.26 £ 11.71 NA NA

The demographic and clinical information of participants across sites is presented.
BDI beck depression inventory, HC healthy controls, HDRS hamilton depression rating scale, MDD major depressive disorder, SD standard deviation, N number

of participants.

Table 2. Data splitting strategies.

Splitting By Age/Sex
Fold Number of

Mean age (SD) Number of Females

subjects (%)
0 708 38.34 (16.41) 434 (61)
1 685 38.41 (16.51) 395 (58)
2 692 38.59 (16.25) 441 (64)
3 709 37.99 (16.07) 428 (60)
4 704 38.74 (15.93) 417 (59)
5 708 38.90 (16.28) 415 (58)
6 693 38.09 (16.27) 423 (61)
7 716 38.3 (16.35) 431 (60)
8 689 38.55 (16.12) 396 (57)
9 708 38.14 (16.57) 406 (57)

Splitting by Site

Fold Number of Mean age (SD) Number of Females

subjects (%)
0 1249 50.28 (13.78) 612 (49)
1 1005 36.01 (12.14) 577 (57)
2 738 36.30 (13.39) 465 (63)
3 579 55.00 (12.57) 294 (51)
4 563 33.06 (15.73) 374 (66)
5 596 26.42 (11.25) 370 (62)
6 559 36.89 (13.71) 372 (67)
7 589 35.71 (16.52) 356 (60)
8 546 28.70 (13.59) 359 (66)
9 588 33.99 (16.12) 407 (69)

Differences manifested in age/sex distribution and number of subjects between corresponding folds per splitting strategy.

Age/Sex, all data modalities yielded similar range of accuracies:
thickness (SVM: 0.549 + 0.020; DenseNet: 0.576 + 0.019) compared
to sulcal depth (SVM: 0.543 + 0.022; DenseNet: 0.562 + 0.019), and
curvature (SVM: 0.531 +0.015; DenseNet: 0.567 + 0.019), observed
for both classification models. In Splitting by Site, sulcal depth
(SVM: 0.523 £0.016; DenseNet: 0.515+0.020), curvature (SVM:
0.513+£0.033; DenseNet: 0.516+0.025) and thickness (SVM:

SPRINGER NATURE

0.522 +0.038; DenseNet: 0.515+0.022) also exhibited similar
range of classification accuracies. Both models performed similarly
for all feature types. These results demonstrate that integration of
shape modalities with cortical thickness did not benefit the
classification models. Results from the exploratory analyses for
each hemisphere and for each feature modality per hemisphere
showed no improvements in performance of the models
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Splitting by Age/Sex
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Fig. 2 MDD vs HC classification performance of SVM and DenseNet applied to vertex-wise cortical features. Balanced accuracy for both
classification models when trained on all features integrated with and without ComBat harmonization for both splitting strategies and when

trained on single features. Error bars represent standard deviation.

(Supplementary Table 5, Supplementary Fig. 3). In addition, we
applied the main demographic and clinical stratifications used in
the ENIGMA-MDD working group to assess post-hoc whether
groups that are more homogeneous would achieve better
classification metrics (Supplementary Table 6).

Auxiliary sex prediction task

As an initial step, we also conducted a sex classification to explore
which projection method (latitude/longitude, OMT) yields higher
classification performance for both SYM and DenseNet (Supple-
mentary Fig. 2). There was no clear difference between projection
methods; however, we observed a consistently higher classifica-
tion performance of DenseNet compared to SVM for all types of
features and hemispheres. Considering previous success of OMT
projection as a projection method applied on cortical surface and
its property to preserve distances between vertices [26], we
conducted our main analysis with OMT projection.

Molecular Psychiatry

DISCUSSION

In this work, we evaluated the diagnostic classification perfor-
mance of DenseNet and SVM models, trained on cortical maps
projected via OMT, including sulcal depth, curvature, and
thickness, from a multi-site global dataset. Our analysis included
7012 participants from 31 sites worldwide, allowing for a
comprehensive and realistic overview of classification perfor-
mances. Both models were evaluated in parallel using two
different CV splitting strategies. In Splitting by Age/Sex, we
obtained CV folds with comparable demographics; thus, the
performance of the models should not be affected by these
demographic variables. In Splitting by Site, sites were distributed
across folds. Therefore, models were trained and tested on
different sets of sites. This strategy is closer to application of
diagnostic classification models in clinical practice, and allowed for
realistic estimation of classification performance on unseen sites.
Overall, the classification performances of both models were
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similar: In Splitting by Age/Sex, DenseNet achieved 58 vs 55% for
SVM; in Splitting by Site, the difference was even more negligible,
DenseNet achieved 51 vs 52% for SVM. Both models performed
better in Splitting by Age/Sex, implying the presence of a
confounding site effect, most likely arising from differences in
scanner vendors or image acquisition parameters. In this sense,
ComBat approximated the classification results of the two splitting
strategies, but did not improve the accuracy of the models.
Ultimately, the classification performances of both models for all
integrated morphometric features, both in Splitting by Age/Sex
and in Splitting by Site, revealed similar classification levels of
single-features.

Cortical morphological maps as diagnostic biomarkers

for MDD

To the best of our knowledge, this is the first study to combine
cortical thickness, sulcal depth, and curvature features in order to
classify MDD vs HC. Furthermore, previous ML studies with large
samples only incorporated low-resolution atlas-based thickness
characteristics. In our approach, we analyzed vertex-wise informa-
tion, providing a richer and more detailed description of brain
characteristics than atlas-derived regional measures. Even so, the
integration of complementary cortical characteristics did not lead
to higher classification performances compared to the accuracies
obtained from the single cortical features, regardless of the data
splitting strategy and the classification model. In Splitting by Site,
no feature yielded an accuracy substantially higher than random
chance accuracy, indicating the failure of both models to capture
MDD-specific alterations. Furthermore, the analysis of finer-
grained cortical maps, even for thickness alone, did not result in
higher classification performance, compared to ML performance
levels observed in our previous study [20]. Thus, the assumption
that higher resolution would lead to greater classification
performance did not hold in this study, as all results were close
to the chance level, in line with previous attempts in classifying
MDD [14, 15, 20]. Furthermore, stratification of the sample
according to demographic (sex) and clinical characteristics (age
of onset, antidepressant use, and number of depressive episodes)
did not yield better differentiability between HC and MDD, in line
with our previous study [20]. This new evidence suggests the
absence of prominent gray matter alterations that alone may
serve as diagnostic tool in patients with MDD. Combining features
such as sulcal depth, curvature, and thickness in vertex-wise,
unfolded cortical maps, and including them within a deep
learning framework, is highly original. It advances prior work
[24, 25, 27-29, 31] by integrating these complementary morpho-
metric dimensions in a way few studies have, potentially clarifying
whether these combined metrics can yield robust, clinically
actionable biomarkers.

Although we combined complementary characteristics in the
analysis, the interaction between thickness and shape was not
addressed here. According to recent evidence, local cortical shape
may correlate with thickness [51]. So, combined thickness-shape
patterns should be further explored for the classification of MDD.
Furthermore, reduced myelination was associated with MDD
[52-54], which could lead to structural reorganization of cortical
features, making it a potential classification aspect to be
investigated. In addition, subcortical morphological characteristics
may improve the classification by taking into account structural
modifications in cortico-subcortical loops associated with MDD [8].

Integration of morphological characteristics with cytoarchitec-
tonic and functional information may allow better contextualiza-
tion of MDD-related alterations, as demonstrated in
transdiagnostic study [55], with the potential to achieve higher
classification performance [56, 57]. Brain topology can be
described via the connectome - a whole-brain connectivity
architecture of the brain. As nodes of brain connectome exhibited
elevated susceptibility to brain disorders [58], graph analytical
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approaches could also lead to stronger differentiability between
MDD and HC. Moreover, subject-specific parcellation schemes
could be applied to compute structural and functional con-
nectomes [59], and further analyzed by suitable sophisticated
classification models taking into account the neural architecture
e.g., with graph neural network [60].

Data splitting and site effect

Several multi-site psychiatric neuroimaging studies directly
demonstrated how different splitting strategies might introduce
unwanted biases in inflated classification performances
[20, 36, 61]. In Splitting by Age/Sex, trained models are unbiased
regarding demographic factors; while in Splitting by Site the site
affiliation is controlled, therefore we addressed the generalizability
of the models applied to unseen sites. Similar to the results from
our previous study [20], the classification performance of both
SVM and DenseNet was higher in Splitting by Age/Sex, up to 58%,
compared to Splitting by Site, close to random chance. This
discrepancy indicates the existence of hidden site-related biases
influencing classification performance. As this nuisance-based
phenomenon appears in multi-site mega-analyses [36, 62] for its
better comprehension, we strongly encourage the application of
different splitting strategies in future multi-site ML studies.

The low accuracy of both models in Splitting by Site strategy is
either due to the presence of a strong site-effect, hindering the
ability of the models to capture diagnosis-related differences, or
due to the general inability of both models to find meaningful
alterations associated with MDD. Therefore, we addressed site-
effect via ComBat. Thus, the possibility remains that subject-level
prediction based on cortical features is unfeasible. As Combat has
never been applied to vertex-wise cortical projections, we visually
inspected its effect on a single pixel for every feature type
(Supplementary Fig. 4). The application of ComBat resulted in
more homogenous value distribution across cohorts, in line with
previous studies analyzing the effects on atlas-based features
[17, 20]. Nevertheless, this harmonization step did not lead to
improvement in accuracies. While demographic covariates were
preserved, ComBat may over-correct the data [63], causing a part
of MDD-related associations to be removed along with the site-
effect. Against this, more careful consideration of the site-effect is
required in the future studies.

In Splitting by Age/Sex, the balanced accuracy of both models
dropped (SVM: 55-48%; DenseNet: 58-56%) when ComBat was
applied. The decrease of model’s performances near the levels in
Splitting by Site indicates that initial higher classifications are most
likely driven by site-related biases. To further validate this
assumption, we performed the classification with balanced ratio
between HC and MDD in every site in Splitting by Age/Sex, which
resulted in close to random chance accuracies in DenseNet and
SVM. Noticeably, DenseNet was less affected by the application of
ComBat in the original analysis, reflecting potential non-linear site-
related differences that remained in the dataset after harmoniza-
tion, which is in line with previous findings [64]. Therefore, we
recommend ComBat only be applied when combining more linear
models, such as SVM, while more sophisticated models alone
should directly incorporate site information as an additional input.

SVM vs DenseNet

Previous ML mega-analyses based on structural MDD vs HC
classifications considered only shallow linear and non-linear ML
models, such as SVM, penalized logistic regression and decision
tree [14, 15, 20]. In this study, we extended the diagnostic
classification approach by comparing the performance of shallow
linear model - SVM with a linear kernel to a highly non-linear deep
DenseNet classifier applied to vertex-wise cortical information. The
explorative results of sex classification applied to HC revealed
higher classification performance of the DenseNet compared to
the SVM (Supplementary Fig. 2) for all data modalities. The higher
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accuracy suggests that DenseNet was able to capture non-linear
sex dependencies that were present in the cortical maps. The
superiority of DenseNet over SVM in the sex classification task was
in line with previous study conducted on the same vertex-wise
cortical maps [26]. Conversely, another large sample study
revealed no advantage of using any deep architectures over
simpler models in predicting demographic factors [37]; therefore,
further tests in even bigger samples are required. Nevertheless, in
this study both models exhibited a similar range of accuracies,
close to random chance, for the main task of MDD versus HC
classification. Therefore, the application of DenseNet did not yield
the expected improvement for detecting combined (nor sepa-
rated) structural cortical features that discriminate patients from
controls.

Similar performance of the linear SVM and non-linear DenseNet
model may be due to the absence of non-linear interactions
between different cortical regions, significant for the MDD
detection. Furthermore, the analyzed sample is highly hetero-
geneous in terms of demographic and clinical covariates,
potentially interfering with the main task and lowering the
classification performance. In this vein, there are several possible
directions for improving DenseNet performance. First, the
considered model was pre-trained only on natural images from
ImageNet. The model could be subsequently pre-trained on
cortical projections from an independent large sample using
immediate task, for example predicting sex as it was performed in
Gao’s study [26]. Furthermore, one could use more than one
intermediate task to optimize the weights of the neural network,
for example, predicting demographic or clinical covariates. This
approach is broadly known as multi-task learning [65], the
usefulness of which in the neuroimaging domain was already
demonstrated [19, 35].

Secondly, the multi-task approach could be used to “unlearn”
undesired biases. In our analysis, site-related differences were
removed via ComBat. One could train the network to perform the
main task while unlearning the scanner parameters, as was
successfully demonstrated by Dinsdale and colleagues [66].
Furthermore, one could replace the residualization step in the
same manner by making the network unlearn age and sex
dependencies. In line with our previous analysis, we linearly
regressed out age and sex dependencies from the cortical features
using normative approach [20]. Considering the greater perfor-
mance of the DenseNet model in predicting sex, we can speculate
the presence of non-linear male-female differences in cortical
morphology. Thus, unlearning age- and sex-related dependencies
could improve classification performance.

Further strengths and limitations

Here we were interested in using a pre-trained deep learning
model—specifically, DenseNet—to see if it could effectively
classify major depressive disorder (MDD) from healthy brains
using finer-grained, unfolded cortical surface maps, and whether
such information, when combined, could offer complementary
classificatory value compared to previously examined features.
This approach extends the methodology of our prior study [20],
where we employed more conventional structural MRI-derived
features such as cortical thickness, surface area, and subcortical
volumes from whole-brain regions-of-interest (ROIs). Our current
approach is original and methodologically relevant, particularly in
light of increasing interest in surface-based neuroimaging
analyses that go far beyond standard ROl measures. And by
employing more detailed cortical maps from different sources—
such as sulcal depth and curvature—and projecting them in
unfolded 2D space, we sought to assess whether such refinements
in cortical representation could provide additional or differentially
informative patterns for diagnostic classification. While the
classification performance did not surpass that of previous studies,
this negative finding is itself valuable, helping to delineate the
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boundaries of what these finer-grained representations currently
offer in this domain.

Although we did not apply dimensionality reduction in the
present analysis, we acknowledge that this remains a promising
avenue for future research. Prior work has employed PCA,
spherical harmonic decomposition [67], surface eigenmodes
[68], cortical gradients [69], and deep generative models such
as variational autoencoders [70] to reduce feature dimension-
ality while preserving meaningful structure. The potential
impact of these dimensionality reduction approaches on
classification performance should be explored in dedicated
follow-up studies.

A potential limitation of this study is the absence of modeling
based on MDD subtypes. While studies have proposed various
subtyping schemes to address the clinical and biological
heterogeneity of MDD, there is a wide range of subtyping
approaches and most were derived from small samples (e.g., [71]),
with limited replication or independent validation. For this reason,
we intentionally chose not to include a subtyping step. This
decision avoids reliance on uncertain stratification and reflects a
key strength of the approach: classification performance could
have direct clinical applicability, independent of MDD subtype
definitions. Nonetheless, we acknowledge that the presence of
unmodeled heterogeneity within the MDD group may have
contributed to the lack of discriminative performance observed.
Another important limitation is the lack of detailed ethnic and
genetic information across the full sample. Sociocultural and
genetic diversity are known to influence both brain morphology
and disease expression, and their absence may affect the
generalizability of the findings. These remain open challenges
for future research aiming to enhance the specificity and
robustness of neuroimaging-based classifiers for MDD. In parti-
cular, large-scale studies incorporating diverse populations and
robust subtyping frameworks may offer insights with broader
international applicability.

CONCLUSION

In this study, we tested if more advanced classification algorithms
applied to high-resolution morphometric shape characteristics can
improve MDD vs HC classification. Splitting the data according to
demographic variables and according to site allowed a compre-
hensive analysis of model’s performances and biases. We detected
site effects, which we addressed at least partially with the ComBat
harmonization tool, but did not increase classification metrics.
Both shallow and deep ML models exhibited low, close to chance
accuracies. Most importantly, the integration of high-resolution
cortical thickness and shape features from vertices did not lead to
greater classification performance over previously analyzed atlas-
based cortical features. According to our results, it seems unlikely
that structural MRI alone will provide diagnostic biomarkers of
MDD. Thus, further investigation is required into the classification
performance applied to the fusion of other MRI modalities,
including fMRI and DWI.
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