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A B S T R A C T

Background: Low- and middle-income countries experience some of the highest fine particulate matter (PM2.5) 
exposures globally, with emissions from sources like residential combustion, industry, and transportation 
continuing to increase in many locations. While total PM2.5 has been linked to cognitive decline, little is known 
about the relative importance of PM2.5 from different emission sources, especially in low and middle-income 
settings.
Methods: We used cognitive performance data from the 2017–2019 and 2022–2024 waves of the Harmonized 
Diagnostic Assessment of Dementia for the Longitudinal Aging Study in India (LASI-DAD) and 5-year average 
PM2.5 concentrations of total mass and mass from 9 emission sources estimated at each participant’s residential 
location using spatiotemporal models. We then quantified associations of these exposures with cognitive per
formance and decline using generalized estimating equation models accounting for survey weights and clus
tering, as well as adjusted for age, gender, individual and community-level socioeconomic status, urbanicity, 
place-related covariates, fuel type use, and co-pollutants.
Results: Among 5,699 participants (mean age: 70±8 years), we observed total PM2.5 concentrations ranging from 
16 to 206 μg/m3. Higher concentrations of total PM2.5 were not associated with cognitive performance at 
baseline but were associated with faster declines over time (− 0.012/year per SD, 95 % CI: − 0.021, − 0.004). 
Among PM2.5 from different sources, PM2.5 from energy production, industry, and residential combustion were 
associated with steeper cognitive declines over time, whereas PM2.5 from agriculture, transportation, wildfires, 
and windblown dust were associated with slower cognitive declines.
Conclusion: Higher long-term total ambient PM2.5 concentrations and those from residential combustion sources 
were associated with accelerated cognitive declines. This suggests that intervention in residential sources might 
reduce or delay the onset of dementia and promote healthier aging in low and middle-income settings.
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1. Introduction

Dementia, defined as cognitive decline severe enough to cause lim
itations in independent daily function, brings heavy emotional and 
economic burdens to older adults, their families, and society (Hebert 
et al., 2013; Matthews et al., 2019). Currently, there are over 55 million 
people worldwide suffering from dementia (Organization, 2021), with 
approximately 60 % living in developing countries (Guerchet and 
Prince, 2015). By 2050, this burden is projected to increase to nearly 139 
million, with the proportion of those affected in low and middle-income 
countries (LMICs) rising to 71 % (Guerchet and Prince, 2015). This 
suggests a pressing need to identify modifiable risk factors for poorer 
cognitive performance in these settings to eliminate or postpone 
cognitive impairment and reduce the future burden of dementia.

Fine particulate matter air pollution (PM2.5) was identified as one of 
12 key modifiable risk factors for dementia by the 2024 Lancet Com
mission on Dementia Prevention (Weuve et al., 2021; Livingston et al., 
2024). PM2.5 may be especially important in LMIC due to higher con
centrations as a result of reliance on biomass fuel use and fewer emission 
controls as compared to higher- to middle-income countries (McDuffie 
et al., 2021; Chatterjee et al., 2023). Mechanistic research suggests that 
the smallest particles are often coated with neurotoxic chemicals and 
can directly enter the brain through the olfactory bulb or cross the 
blood–brain barrier, leading to damage to the brain (Jayaraj et al., 
2017). Larger particles of PM2.5 may impact cognitive function through 
neuroinflammation as a result of systematic inflammation and oxidative 
stress initially triggered in the respiratory system (Santos et al., 2021).

While the evidence for the impact of air pollution on cognitive 
impairment and dementia has expanded rapidly in recent years (Weuve 
et al., 2021), most existing research has focused on PM2.5 as an overall 
category. However, PM2.5 originates from many sources in the envi
ronment, such as residential combustion, industry, transportation, and 
energy production. Given that different sources can emit PM2.5 with 
distinct physical and chemical characteristics, it is likely that not all 
sources have similar impacts on the brain. In fact, variations in emission 
sources by place are hypothesized to contribute to the difference in as
sociations across studies of PM2.5 and cognitive health 
(Kioumourtzoglou et al., 2015). LMICs offer a particularly unique op
portunity to study the impacts of PM2.5 from different sources on the 
brain since they share many common sources with high-income coun
tries; like transportation, energy production, and windblown dust, while 
also experiencing large burdens from the emissions of biomass fuel 
burning for residential heating and cooking (Chowdhury et al., 2023).

To address these knowledge gaps, we estimated the associations 
between long-term exposures to ambient PM2.5 and cognitive decline, 
considering both the total mass of PM2.5 and mass from nine unique 
emission sources using two waves of a nationally representative cohort 
in India.

2. Methods

2.1. Study population

The Harmonized Diagnostic Assessment of Dementia for the Longi
tudinal Aging Study in India (LASI-DAD) is the first and only nationally 
representative study on late-life cognition and dementia in India (Lee 
and Dey, 2020). Between 2017 and 2019, LASI-DAD first recruited 4,096 
older adults aged 60 years and older from the LASI study, a prospective, 
population-based survey of more than 73,000 adults aged 45 years and 
older in India. The second wave of LASI-DAD was conducted between 
2022 and 2024 (Khobragade et al., 2024). In addition to follow-up 
surveys of participants in the first wave, this wave also included a 
refresher sample of 2,070 participants sampled from the main LASI 
survey. For this analysis, we restricted the population to participants 
with at least one cognitive performance score and complete data on 
exposures and key covariates (Supplemental Fig. S1).

All participants provided consent (written or thumb impression) to 
participate. If participants were cognitively impaired, consent was ob
tained from a legal representative, authorized to sign on their behalf. 
Informed consent and interviews were collected and conducted in the 
participant’s language, and all interview materials, as well as consent 
documents, were translated into 12 Indian languages. Ethics approval to 
conduct this study was obtained from Institutional Review Boards at the 
Indian Council of Medical Research and all collaborating institutions 
including the University of Southern California and All India Institute of 
Medical Sciences, New Delhi.

2.2. Study surveys

All participants completed detailed surveys of the individual and 
their household. The individual survey characterized participant char
acteristics, including demographics, health and health behaviors, social 
interactions, and occupation. When participants were incapable of 
responding to the full interview, the surveys were completed by a close 
family member or friend as a proxy (Perianayagam et al., 2022). The 
household survey included information on income, consumption, fuel 
use, home location, and housing features and was completed by the most 
knowledgeable household member. All residential addresses of LASI- 
DAD participants were collected and updated during follow-up.

2.3. Cognitive performance

To characterize cognitive function, we used a general cognitive 
performance score summarizing cognitive performance, assessing 
orientation, memory, executive function, language/fluency, and visuo
spatial performance. Specifically, well-trained interviewers visited with 
the participants in a clinic or at their home to administer a cognitive test 
battery developed specifically for the Indian setting that included object 
naming, the Consortium to Establish a Registry for Alzheimer’s Disease 
word recall, backward digit span, logical memory, constructional praxis, 
retrieval fluency, serial 7 s, Community Screening Instrument for De
mentia (CSI-D), and Raven’s test (Perianayagam et al., 2022; Lee et al., 
2019). For Wave 1, we also leveraged information from proxies to 
ensure data capture from individuals with severe cognitive impairment 
to impute missing information when necessary, using demographic, 
health, and other cognitive performance variables (Chien et al., 2019). 
We estimated the latent cognitive functioning, which captures the 
common covariance between cognitive test items, as a way of quanti
fying the underlying latent trait (Toland, 2014). We then scaled the 
general factor score to have a mean of zero and a variance of one among 
the LASI-DAD participants at Wave 1.

2.4. Exposure assessment

We estimated total PM2.5 concentrations in ambient air at the par
ticipants’ residential addresses using the Data Integration Model for Air 
Quality (DIMAQ), which was initially developed for the World Health 
Organization for the global assessment of disease and used by the 
Institute of Health Metric Evaluation’s Global Burden of Disease study. 
DIMAQ was refined for LASI, to produce higher-resolution estimates and 
applied to an extended time period (from 2010 to 2019) (Shaddick et al., 
2018). DIMAQ integrates information from multiple sources, including 
(i) ground-level measurements; (ii) estimates (based upon aerosol op
tical depth) from remote sensing satellites, (iii) simulations from a 
chemical transport model; and (iv) land use, population, and topo
graphic data. Estimates were generated at 1 km2 resolution with high 
values observed for cross-validation (R2 = 0.81).

We derived source-specific concentrations of PM2.5 from 15 sources, 
including agriculture, road transportation, non-road transportation, 
energy production from coal combustion, other energy, industry coal 
combustion, other industry, wildfires, windblown dust, anthropogenic 
dust, residential biofuel combustion, residential coal combustion, other 
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residential combustion, agriculture waste burning, and waste 
(Supplementary Appendix 1), by multiplying the total PM2.5 concen
trations at each address by local fractions of PM2.5 attributable to each 
source. These fractions were generated at a resolution of 0.5◦ × 0.625◦

(about 55.5 km × 64.4 km) by McDuffie and colleagues who serially ran 
an atmospheric chemistry-transport model (GEOS-Chem) with all 
sources but one to isolate the unique contribution of that source to the 
total PM2.5 (McDuffie et al., 2021). Though this model used emission 
data in 2017, we assumed that the resulting predictions apply to the time 
period of the LASI-DAD survey. In our main analyses, we aggregated 
similar sources within each sector to define nine primary source-specific 
exposures. These included: combined agriculture (agriculture and agri
cultural waste burning), transportation (road and non-road trans
portation), energy production (coal combustion and other energy 
sources), industry (industrial coal combustion and other industrial 
sources), wildfires, windblown dust, anthropogenic dust, residential 
combustion (biofuel, coal, and other residential combustion), and waste. 
We assigned concentrations of all air pollutants during the 5-year period 
before the baseline interview using participants’ residential addresses to 
reflect their long-term exposures. To adjust for potential confounding by 
co-pollutants, we also estimated average concentrations of nitrogen di
oxide (NO2) and ozone (O3) at participant homes by applying existing 
spatiotemporal prediction models derived from ground measurements, 
chemical transport models, land use information, and satellite data 
(Anenberg et al., 2022; Becker, 2021).

2.5. Statistical analyses

We examined the association of residential concentrations of total 
and source-specific PM2.5 with the general cognitive performance score 
and its rate of decline over time using generalized estimating equation 
(GEE) models to accommodate correlations between repeated measures. 
To assess associations with cognitive performance, we included a term 
for PM2.5, whereas for associations with the rate of cognitive decline, we 
included a term for the cross-product of time (years) since the baseline 
interview and PM2.5.

We identified potential confounders a priori using theory informed by 
prior literature and our previous analyses in LASI that illustrated the 
distribution of exposures and health in this population. We included all 
factors as main effects and with terms for the cross-products between 
each covariate and time to account for confounding of the baseline 
cognitive level and declines over time. Specifically, we adjusted our 
models for individual-level age, sex (male, female), marital status 
(married/partnered or not), education (less than upper secondary, upper 
secondary & vocational training, tertiary), literacy (can read or write, 
cannot read or write), caste (scheduled caste, scheduled tribe, other 
backwards caste, none or other castes), per capita consumption, per 
capita wealth, and use of highly polluting fuel (i.e., kerosene, charcoal/ 
coal/lignite, crop residue, wood/shrub, or dung cake) vs. clean fuels (i. 
e., liquefied petroleum gas, biogas, and electric fuel). We also adjusted 
for interview calendar year to account for possible temporal confound
ing and area-level urbanicity (urban, rural), climate zones (Arid, Humid 
Subtropical, Montane, Semi-Arid, Tropical Wet, Tropical Wet+Dry), and 
region (Northern, Central, Eastern, Western, Southern, Northeastern) to 
account for the spatial differences that may introduce confounding by 
place. Although this study occurred during the COVID-19 pandemic, our 
exposure estimates were calculated at baseline so cannot be influenced 
(i.e., not confounded) by the pandemic. Similarly, we adjusted for broad 
trends over time but not individual-level infection since air pollution is 
hypothesized to increase COVID infections, which may in turn influence 
cognition, thus making it an intermediate rather than a confounder. 
Similarly, we did not adjust for chronic diseases or lifestyle factors like 
exercise or smoking, as these are more likely to be potential conse
quences of exposure than confounders after adjustment for de
mographics and region. Finally, we incorporated person-level sampling 
weights and clustering to account for the complex survey design in LASI- 

DAD, as well as inverse probability weights to adjust for attrition in all 
models, including death from COVID or other causes (Khobragade et al., 
2024; Lee et al., 2019).

Our analyses first focused on the single-pollutant model (Model 1) to 
estimate the difference in general cognitive performance and the dif
ference in the rates of cognitive decline over time per standard deviation 
(SD) higher concentration of each pollutant. Then, we further adjusted 
for the sum of PM2.5 from all other sources for source-specific PM2.5 
(Model 2) and other co-pollutants in the multi-pollutant model (Model 
3) to account for correlations across pollutants. We next examined 
whether our observed association varied by age group (60–69, 70–79, 
≥80 years), sex, urbanicity, and region by conducting stratified analyses 
in the multi-pollutant models. Specifically, we analyzed the association 
of PM2.5 with cognitive performance and decline separately within each 
category of these potential effect modifiers as independent strata.

In sensitivity analyses, we further adjusted multi-pollutant models 
for predicted indoor PM2.5 concentrations based on a published algo
rithm partly determined by ambient PM2.5 levels (Balakrishnan et al., 
2013), and different combinations of place-related covariates, including 
regions, climate zones, and a flexible set of unpenalized thin-plate 
regression splines with 10 df (Keller and Szpiro, 2020). We also exam
ined the associations of 15 source-specific PM2.5 before aggregation with 
both cognitive performance and cognitive decline. Finally, to assess the 
potential impact of “healthy survivor” bias, we compared the charac
teristics of participants included in Wave 1 with those who remained in 
the study for follow-up in Wave 2. We also used a joint model that 
simultaneously estimated the model for the cognitive data and survival 
models for mortality data. By simultaneously estimating the associations 
of PM2.5 with rates of cognitive decline and the hazard of mortality, this 
approach attempted to account for potential survival bias from infor
mative attrition during the follow-up, particularly during the pandemic 
period (Rustand et al., 2024).

3. Results

Of the 6,166 LASI-DAD participants, 5,699 (94 %) had at least one 
general cognitive performance score and complete information on our 
exposures and key covariates (Supplementary Fig. S1). With a mean age 
of 70 (±8) years at baseline, participants were 55 % female, 62 % 
illiterate, 19 % from a scheduled caste, 6 % from a scheduled tribe, and 
67 % resided in rural areas. Approximately 2,177 (38 %) completed 
follow-up interviews with a mean follow-up time of 4.7 (±0.7) years. 
Compared to participants with higher general cognitive performance 
scores at baseline, those with lower scores were older, more likely to be 
female, unmarried/without a partner, less educated, of lower socio
economic position, and lived in rural areas, in the humid subtropical 
climate zones, and in the Northern part of India (Table 1).

The average PM2.5 concentration before baseline was 55 (±27) μg/ 
m3 with a range of 16 to 206 μg/m3. Total PM2.5 concentrations had a 
clear regional distribution with the highest levels in northern India, with 
similar patterns for PM2.5 from agriculture, road transportation, in
dustry, and residential combustion (Fig. 1). PM2.5 from non-road 
transportation, energy production, anthropogenic dust, and waste had 
a wider distribution across the nation, while PM2.5 from wildfires and 
windblown dust was mainly concentrated in the north/northeast and 
northwest areas, respectively. Relatively high correlations were 
observed among PM2.5 from agriculture, road transportation, non-road 
transportation, and waste. Similarly, strong correlations were 
observed between sources within the same category, such as industry- 
related coal combustion and other industrial sources, as well as be
tween residential biofuel and coal combustion. These sources, which 
have been aggregated in the main analyses, show Pearson correlation 
coefficients greater than 0.8 (Supplementary Fig. S2). Exposure to PM2.5 
was also distributed differentially across the population. Compared to 
participants with lower PM2.5 concentrations, those with higher PM2.5 
were more likely to be of higher socioeconomic status, live in urban 
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areas, live in the humid subtropical climate zones, and in the Northern 
part of India (Table 1).

In all models (Fig. 2 and Supplementary Table S1), we observed no 
association of general cognitive performance with the average concen
trations of total and source-specific PM2.5 during the 5 years before 
baseline, with the exception of an association between higher concen
trations of PM2.5 from windblown dust and better general cognitive 
performance.

For cognitive decline (Fig. 2 and Supplementary Table S1), we 
observed that an SD higher in total PM2.5 concentration was associated 
with a − 0.012 (95 %CI: − 0.021, − 0.004) standard unit faster decline in 
the general cognitive performance per year. These differences were 
similar to the difference in rates of change we observed between par
ticipants who received upper secondary or vocational training and those 

who had less than an upper secondary education. Among PM2.5 from 
different emission sources, we observed generally imprecise results for 
the multi-pollutant as compared to the single-pollutant models. Higher 
exposure to PM2.5 from residential combustion was associated with a 
faster decline in general cognitive performance, with a − 0.035 (95 %CI: 
− 0.061, − 0.008) standard unit accelerated annual rates per SD increase 
in the source-specific PM2.5. We also observed associations with faster 
decline for PM2.5 emitted from energy production (− 0.011, 95 % CI: 
− 0.025, 0.003), industry (− 0.015, 95 % CI: − 0.033, 0.003), and 
anthropogenic dust (− 0.008, 95 % CI: − 0.018, 0.002), though these 
were imprecise and could not be distinguished from no association. In 
contrast, we observed that higher PM2.5 concentrations from trans
portation, wildfires, and windblown dust were associated with slower 
annual rates of cognitive decline that ranged from 0.015 (95 % CI: 

Table 1 
Characteristics of study participants, overall and by general cognitive performance and PM2.5 concentrations at baseline in LASI-DAD (mean (SD) or %(N)).

General Cognitive Performance Total PM2.5

Total Sample 
(n = 5,699)

Low 
(<0, 
n = 3,117)

High 
(≥0, 
n = 2,582)

Low 
(<49.6 μg/m3, 
n = 2,846)

High 
(≥49.6 μg/m3, 
n = 2,853)

Age, years 70.0 (7.7) 71.6 (8.3) 68.0 (6.2) 70.1 (7.8) 69.9 (7.6)
Female, %(n) 55 (3,162) 68 (2,109) 41 (1,053) 56 (1,600) 55 (1,562)
Education ​ ​ ​ ​ ​

Less than upper secondary 78 (4,458) 97 (3,029) 55 (1,429) 79 (2,257) 77 (2,201)
Upper secondary & vocational training 18 (1,009) 3 (80) 36 (929) 17 (498) 18 (511)
Tertiary 4 (232) 0 (8) 9 (224) 3 (91) 5 (141)

Marital/Partnered, %(n) 62 (3,546) 53 (1,662) 73 (1,884) 60 (1,705) 65 (1,841)
Illiterate %(n) 62 (3,507) 88 (2,758) 29 (749) 59 (1,690) 64 (1,817)
Caste ​ ​ ​ ​ ​

Scheduled 19 (1,111) 23 (731) 15 (380) 17 (477) 22 (634)
Scheduled Tribe 6 (332) 8 (250) 3 (82) 7 (199) 5 (133)
Other Backward Caste 43 (2,463) 44 (1,362) 43 (1,101) 52 (1,472) 35 (991)
No Caste 31 (1,793) 25 (774) 39 (1,019) 25 (698) 38 (1,095)

Per Capita Household Consumption (Rupee) 51,510 
(202,637)

41,774 
(70,686)

63,264 
(290,458)

50,358 
(81,525)

52,660 
(274,598)

Household Income 
(Rupee)

3,176,154 
(14,802,822)

2,198,883 
(6,985,954)

4,355,920 
(20,549,629)

2,293,289 (6,135,516) 4,056,854 (19,966,978)

Rural, %(n) 67 (3,795) 78 (2,438) 53 (1,357) 72 (2,041) 61 (1,754)
Climate Zones ​ ​ ​ ​ ​
Arid 6 (331) 8 (243) 3 (88) 0 12 (331)
Humid Subtropical 28 (1,573) 32 (987) 23 (586) 14 (396) 41 (1,177)
Montane 3 (171) 4 (119) 2 (52) 0 (11) 6 (160)
Semi-arid 14 (802) 14 (443) 14 (359) 12 (341) 16 (461)
Tropical Wet 8 (433) 4 (138) 11 (295) 15 (433) 0
Tropical Wet + Dry 42 (2,389) 38 (1,187) 47 (1,202) 59 (1,665) 25 (724)
Region ​ ​ ​ ​ ​

Northern 24 (1,349) 25 (785) 22 (564) 1 (15) 41 (1,179)
Central 10 (596) 13 (390) 8 (206) 5 (147) 22 (633)
Eastern 19 (1,069) 19 (591) 19 (478) 15 (419) 23 (657)
Western 14 (801) 14 (427) 14 (374) 18 (527) 10 (296)
Southern 29 (1,651) 25 (776) 34 (875) 47 (1,366) 4 (127)
Northeastern 4 (233) 5 (148) 3 (85) 14 (410) 0 (14)

General Cognition − 0.06 (0.91) − 0.74 (0.51) 0.76 (0.56) − 0.07 (0.92) − 0.05 (0.91)
Air Pollution ​ ​ ​ ​ ​
PM2.5 (μg/m3) 54.9 (26.7) 54.6 (24.8) 55.2 (28.8) 34.9 (8.8) 74.8 (23.5)
Source-specific PM2.5 (μg/m3) ​ ​ ​ ​ ​

Agriculture 4.8 (2.8) 4.9 (2.7) 4.7 (2.9) 2.8 (1.6) 6.8 (2.2)
Road Transportation 3.2 (2.1) 3.2 (2.0) 3.1 (2.2) 1.7 (0.6) 4.6 (2.0)
Non-Road Transportation 0.6 (0.3) 0.6 (0.3) 0.5 (0.3) 0.4 (0.2) 0.7 (0.3)
Energy Coal 3.2 (1.7) 3.1 (1.6) 3.2 (1.8) 2.1 (1.0) 4.2 (1.6)
Energy Other 3.7 (1.7) 3.7 (1.7) 3.7 (1.8) 2.7 (1.1) 4.6 (1.7)
Industry Coal 4.6 (2.4) 4.5 (2.3) 4.7 (2.6) 2.9 (0.9) 6.3 (2.2)
Industry Other 3.8 (2.4) 3.6 (2.2) 4.0 (2.5) 2.4 (1.0) 5.1 (2.6)
Wildfires 0.5 (0.3) 0.5 (0.4) 0.5 (0.3) 0.4 (0.3) 0.6 (0.4)
Windblown Dust 2.1 (1.9) 2.2 (2.0) 2.0 (1.7) 1.3 (1.1) 2.9 (2.1)
Anthropogenic Dust 6.8 (3.4) 6.6 (3.2) 6.9 (3.7) 4.7 (1.7) 8.8 (3.5)
Residential Biofuel 11.8 (6.8) 11.7 (6.4) 11.8 (7.2) 6.9 (1.9) 16.6 (6.4)
Residential Coal 0.7 (0.4) 0.7 (0.4) 0.7 (0.4) 0.5 (0.1) 1.0 (0.4)
Residential Other 0.9 (0.6) 1.0 (0.6) 0.9 (0.6) 0.5 (0.2) 1.4 (0.6)
Agriculture Waste Burning 0.6 (0.6) 0.6 (0.5) 0.6 (0.6) 0.3 (0.2) 0.9 (0.7)
Waste 2.3 (0.9) 2.3 (0.9) 2.3 (1.0) 1.6 (0.4) 3.0 (0.8)

NO2 (ppb) 7.0 (4.7) 6.2 (4.1) 8.0 (5.2) 5.6 (3.4) 8.5 (5.2)
O3 (ppb) 58.8 (6.5) 59.3 (6.3) 58.3 (6.6) 55.8 (6.3) 61.9 (5.1)
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0.005, 0.025) standard unit slower in cognitive decline per year for 
windblown dust to 0.051 (95 %CI: 0.025, 0.077) for transportation.

When examining potential effect modification, we found no evidence 
of effect modification by age and only very weak evidence suggesting 
steeper cognitive declines with greater PM2.5 concentrations among 
those residing in rural areas. When stratified by gender, the associations 
of PM2.5 varied across different emission sources. Specifically, steeper 
declines in cognitive function with PM2.5 from energy production were 

observed only among males, whereas stronger deficits and steeper de
clines associated with PM2.5 from residential combustion were only 
detect among females. When stratified by regions, we generally found 
poorer cognitive function with higher PM2.5 among those living in the 
Western and Southern regions, while faster declines with greater PM2.5 
were observed among those in the Northern and Eastern regions 
(Supplementary Tables S2-S5).

In sensitivity analyses, our findings remained relatively robust to 

Fig. 1. Spatial distribution of long-term concentrations of total and source-specific PM2.5 across India.
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additional adjustments for indoor air pollution indicators 
(Supplementary Table S6). Although there was some variability in 
findings for cognitive performance with differing levels of adjustment 
for place, the qualitative findings were generally consistent 
(Supplementary Table S7). For associations with cognitive declines, 
associations of PM2.5 from agriculture, industry, transportation, resi
dential combustion, and wildfires remained most robust across models 
with different place-related covariates. When examining associations 
with 15 detailed source-specific PM2.5 components, we observed that the 
association observed for residential combustion sources was primarily 
attributable to PM2.5 from residential biofuel burning (Supplementary 
Table S8). We found little evidence of large differences in the population 
who were retained in Wave 2 (Supplementary Table S9). Findings were 
largely unchanged in the joint models that accounted for mortality over 
the follow-up period, though some of the observed associations were 
strengthened (Supplementary Table S10).

4. Discussion

In this nationally representative cohort study of older adults in India, 
we found that higher long-term exposure to total PM2.5 was associated 
with faster rates of cognitive decline even after accounting for 
individual-level risk factors and gaseous co-pollutants. When investi
gating associations with PM2.5 by emission source, however, the results 
were less clear. Steeper cognitive declines over time were associated 
with PM2.5 from energy production, industry, and residential combus
tion sources. In contrast, PM2.5 from transportation, wildfires, and 
windblown dust were associated with improved cognitive performance 
over time. This research suggests that more attention on specific sources 
of air pollution may be helpful to improve cognitive performance and 
prevent cognitive decline in LMICs, though more research is needed to 
confirm these findings.

When considering total PM2.5, our findings are in general alignment 
with the accumulating evidence that higher levels of exposure are 
associated with greater cognitive decline among middle-aged and older 

adults (Weuve et al., 2021; Weuve et al., 2012; Duchesne et al., 2022; 
Grande et al., 2021; Kulick et al., 2020). However, we did not find the 
same cross-sectional association of poorer cognitive function with total 
PM2.5 that has been observed in many previous studies (Ailshire and 
Crimmins, 2014; Ailshire and Clarke, 2015; Cullen et al., 2018; Salinas- 
Rodríguez et al., 2018/08/01/ 2018,; Schikowski et al., 2015/10/01/ 
2015,; Zhang et al., 2018). Differences in study design might be one of 
the reasons for this inconsistency. While most previous studies were 
restricted to cross-sectional information, our study employed a longi
tudinal study design that evaluated the effect of long-term exposures on 
cognitive performance simultaneously with the rate of change in 
cognitive performance over time. Since cognitive level and declines are 
connected constructs, it may be that it is difficult to disentangle the two 
with cross-sectional studies fully attributing any declines over time to 
the current level and longitudinal models attributing some of the current 
level to declines. Another potential explanation relates to the fact that 
India has one of the highest annual average PM2.5 concentrations in the 
world (Hammer et al., 2020) and lower life expectancies than many of 
the high-income countries that have been studied previously (Grande 
et al., 2021; Ailshire and Crimmins, 2014; Ailshire and Clarke, 2015; 
Power et al., 2011). Therefore, it could also be that there is a “healthy 
survivor” effect among older adults living with such high pollution 
levels, such that air pollution is not as strongly predictive of cognition in 
this population. We suspect that this may be a possible explanation for 
the limited associations with cognitive performance at baseline, 
although air pollution remains more related to cognitive declines.

In fact, one unique contribution of this work is its extension of the 
literature on air pollution and cognition by newly examining associa
tions of cognitive performance and rate of cognitive decline with PM2.5 
from key emission sources. In India, we found that PM2.5 from resi
dential combustion was most strongly and robustly associated with 
poorer cognitive performance and faster rates of cognitive decline. This 
may represent an important finding given that residential combustion 
was the leading contributor to PM2.5 in India and the surrounding region 
in 2019, accounting for 28 % of the annual population-weighted mean 

Fig. 2. Differences in cognitive performance and the annual rate of cognitive decline associated with per SD increase in the level of total and source-specific PM2.5 in 
multi-pollutant models in LASI-DAD. Notes: Models adjusted for age, sex, marital status, education, literacy, caste, per capita consumption, per capita wealth, 
interview calendar year, urbanicity, climate zones, region, fuel type use, the sum of PM2.5 from all other sources for source-specific PM2.5, NO2, and O3. Sources are 
defined as: Agriculture: agriculture and agriculture waste burning; Transportation: road transportation and non-road transportation; Energy: energy coal and other 
energy; Industry: industry coal and other industry; Residential: residential biofuel, residential coal, and other residential; Wildfires: wildfires; WDust: windblown 
dust; AFCID: anthropogenic dust; Waste: waste.
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concentrations (Chatterjee et al., 2023). Globally, approximately 3 
billion people still rely on highly polluting fuels like biofuel and coal for 
residential heating and cooking, especially in the rural areas of LMICs 
(Who, 2018), which results in higher exposure levels both within 
households and in the ambient air. Given existing interventions, our 
findings suggest that a transition to cleaner fuel may help improve 
cognitive performance and prevent cognitive decline in LMICs.

When comparing to the limited literature on air pollution and 
cognition in LMICs, there is support for our findings in papers of 
cognition and household air pollution (Jana et al., 2022; Dakua et al., 
2022; Saenz et al., 2021). For example, indicators for the use of polluting 
cooking fuels have been linked to poorer cognitive function in the main 
LASI and its sister studies in Mexico and China (Jana et al., 2022; Dakua 
et al., 2022; Saenz et al., 2021). Interestingly, existing studies identified 
organic matter (OM) and black carbon (BC) as the largest contributors to 
PM2.5 from residential combustion (McDuffie et al., 2021; Chatterjee 
et al., 2023) and as the primary PM2.5 components contributing to 
cognitive impairment (Qi et al., 2024; Liu et al., 2023). This provides 
additional support for our findings since the neurotoxicity of PM2.5 
emitted from residential combustion has been partly attributed to OM 
and BC. Due to the high surface-area-to-volume ratio of small particles 
from household combustion; these particles can also mix with other 
chemicals in the air and serve as a transporter for highly toxic com
pounds into the brain; where they can activate oxygen species in 
microglia and inhibit the brain antioxidant scavenging system (Saunders 
et al., 2006).

In contrast to the residential combustion source, we found counter- 
to-hypothesis evidence of changes in cognition over time with several 
other sources, including agriculture and wildfire emissions. This finding 
notably differs from what we observed in the United States, where PM2.5 
from agriculture and wildfires was robustly associated with an increased 
risk of dementia (Zhang et al., 2023). One possible explanation for the 
agriculture result is that after accounting for education, agricultural 
communities work longer and thus have less cognitive decline over time. 
Another possible explanation for the conflicting evidence is that the 
association may vary across different concentration ranges. Notably, the 
average concentration of PM2.5 in India (54.9 μg/m3) is much higher 
than that in the US (11.2 μg/m3). However, due to the limited sample 
size, we were unable to obtain stable results when restricting our ana
lyses to those with PM2.5 levels typically found in high-income countries.

4.1. Strengths and limitations

To our knowledge, this is the first study to investigate the association 
between PM2.5 in ambient air and cognitive function in India and one of 
the few papers on the relationships with cognitive decline in an LMIC. 
This work also fills a gap in the existing literature regarding the asso
ciation of source-specific PM2.5 with cognitive function and the rate of 
cognitive decline more generally. Instead of using chemical components 
as tracers for sources, we used estimates of source-specific PM2.5 
generated by sequentially removing each source individually from a 
chemical-transport dispersion model. As a result, we are able to account 
for both primary and secondary pollutants generated from specific 
sources, and investigate the counter-factual question of how would 
health change if the emissions from each source was removed from the 
atmosphere. Other strengths of this work include the high-quality in
formation from LASI-DAD with detailed information on confounders 
based on personal and community-level information as well as precise 
estimates of general cognitive functioning from an hour-long cognitive 
test battery.

Despite the many strengths of this work, limitations exist. Given the 
sensitivity to the adjustment of place-related covariates, it remains 
possible that there is residential confounding by region in our analyses. 
Although this is a large study with intensive data collection, India is a 
complex nation and it may be that we are underpowered to tease apart 
differences by place. Relatedly, correlations among different sources 

may interfere with our ability to confidently disentangle the effects of 
single sources. Leveraging future waves of information and repeated 
measures may be helpful for a more stable trend of cognitive decline 
over a longer follow-up time. Other important limitations relate to the 
relatively crude resolution of the emissions data for the derivation of 
fractional source contributions over space and time. First, the emission 
source data reflects larger spatial scales, so it will fail to capture the 
impacts of highly localized sources like transportation. As a result, the 
findings of this work reflect the contributions of sources at a more 
regional than local level and should be interpreted with some caution. 
Relatedly, the emission data relies on estimates from 2017 alone, so we 
must assume that this year is reflective of longer durations. This may be 
an issue, especially for the residential combustion exposures since the 
Indian government invested in campaign to replace biofuel stoves with 
liquid petroleum gas stoves, especially those in poor households. If these 
errors resulted in the systematic patterning in the under- or over- 
estimation of exposures that is not captured by our adjustments for 
time and place, bias could potentially result. In addition, our results 
could be underestimated by “healthy survivor” bias because those with 
comorbidities associated with both PM2.5 and impaired cognition may 
be more likely to be lost to follow-up. However, we found little evidence 
of large differences in the population who were followed in Wave 2 
(Supplemental Table S9), and the use of sampling and attrition weights 
should minimize this bias. Also, our results remained largely robust to 
adjustment for deaths during follow-up in our longitudinal analyses 
(Supplementary Table S10). We also found little evidence of effect 
modification by age or differences in the population that was observed 
for two rounds of sampling from the baseline population. Finally, 
although we used a nationally representative sample from LASI-DAD, 
which provides valuable insights into the associations between PM2.5 
and cognitive performance, the limited sample size may not fully cap
ture the vast geographic, socioeconomic, and cultural heterogeneity of 
the Indian population.

5. Conclusion

With rapid growth in the older population and the dramatically 
rising burden of dementia in LMICs, slowing cognitive decline has 
become increasingly important. Our study suggests that reducing PM2.5 
and perhaps selectively targeting residential combustion sources might 
be effective strategies for reducing or delaying the onset of dementia in 
India. Future studies would benefit from higher spatial resolution of 
emission data, larger sample sizes, and more repeated measures of 
cognitive performance to provide more robust and generalizable 
evidence.
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