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ARTICLE INFO ABSTRACT

Handling Editor: Hanna Boogaard Background: Low- and middle-income countries experience some of the highest fine particulate matter (PMay5)
exposures globally, with emissions from sources like residential combustion, industry, and transportation

Keywords: continuing to increase in many locations. While total PMj 5 has been linked to cognitive decline, little is known

Air pollution about the relative importance of PM, 5 from different emission sources, especially in low and middle-income

Emission sources
Cognitive decline
Low- and middle-income countries

settings.

Methods: We used cognitive performance data from the 2017-2019 and 2022-2024 waves of the Harmonized
Diagnostic Assessment of Dementia for the Longitudinal Aging Study in India (LASI-DAD) and 5-year average
PM; 5 concentrations of total mass and mass from 9 emission sources estimated at each participant’s residential
location using spatiotemporal models. We then quantified associations of these exposures with cognitive per-
formance and decline using generalized estimating equation models accounting for survey weights and clus-
tering, as well as adjusted for age, gender, individual and community-level socioeconomic status, urbanicity,
place-related covariates, fuel type use, and co-pollutants.

Results: Among 5,699 participants (mean age: 70+8 years), we observed total PMj 5 concentrations ranging from
16 to 206 pg/m°. Higher concentrations of total PMys were not associated with cognitive performance at
baseline but were associated with faster declines over time (—0.012/year per SD, 95 % CI: —0.021, —0.004).
Among PM; 5 from different sources, PMjy 5 from energy production, industry, and residential combustion were
associated with steeper cognitive declines over time, whereas PMj 5 from agriculture, transportation, wildfires,
and windblown dust were associated with slower cognitive declines.

Conclusion: Higher long-term total ambient PM, 5 concentrations and those from residential combustion sources
were associated with accelerated cognitive declines. This suggests that intervention in residential sources might
reduce or delay the onset of dementia and promote healthier aging in low and middle-income settings.
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1. Introduction

Dementia, defined as cognitive decline severe enough to cause lim-
itations in independent daily function, brings heavy emotional and
economic burdens to older adults, their families, and society (Hebert
et al., 2013; Matthews et al., 2019). Currently, there are over 55 million
people worldwide suffering from dementia (Organization, 2021), with
approximately 60 % living in developing countries (Guerchet and
Prince, 2015). By 2050, this burden is projected to increase to nearly 139
million, with the proportion of those affected in low and middle-income
countries (LMICs) rising to 71 % (Guerchet and Prince, 2015). This
suggests a pressing need to identify modifiable risk factors for poorer
cognitive performance in these settings to eliminate or postpone
cognitive impairment and reduce the future burden of dementia.

Fine particulate matter air pollution (PM5 5) was identified as one of
12 key modifiable risk factors for dementia by the 2024 Lancet Com-
mission on Dementia Prevention (Weuve et al., 2021; Livingston et al.,
2024). PMy 5 may be especially important in LMIC due to higher con-
centrations as a result of reliance on biomass fuel use and fewer emission
controls as compared to higher- to middle-income countries (McDuffie
et al., 2021; Chatterjee et al., 2023). Mechanistic research suggests that
the smallest particles are often coated with neurotoxic chemicals and
can directly enter the brain through the olfactory bulb or cross the
blood-brain barrier, leading to damage to the brain (Jayaraj et al.,
2017). Larger particles of PM5 5 may impact cognitive function through
neuroinflammation as a result of systematic inflammation and oxidative
stress initially triggered in the respiratory system (Santos et al., 2021).

While the evidence for the impact of air pollution on cognitive
impairment and dementia has expanded rapidly in recent years (Weuve
et al., 2021), most existing research has focused on PM5 5 as an overall
category. However, PMj 5 originates from many sources in the envi-
ronment, such as residential combustion, industry, transportation, and
energy production. Given that different sources can emit PMy s with
distinct physical and chemical characteristics, it is likely that not all
sources have similar impacts on the brain. In fact, variations in emission
sources by place are hypothesized to contribute to the difference in as-
sociations across studies of PM,s and cognitive health
(Kioumourtzoglou et al., 2015). LMICs offer a particularly unique op-
portunity to study the impacts of PMj 5 from different sources on the
brain since they share many common sources with high-income coun-
tries; like transportation, energy production, and windblown dust, while
also experiencing large burdens from the emissions of biomass fuel
burning for residential heating and cooking (Chowdhury et al., 2023).

To address these knowledge gaps, we estimated the associations
between long-term exposures to ambient PMj 5 and cognitive decline,
considering both the total mass of PMy 5 and mass from nine unique
emission sources using two waves of a nationally representative cohort
in India.

2. Methods
2.1. Study population

The Harmonized Diagnostic Assessment of Dementia for the Longi-
tudinal Aging Study in India (LASI-DAD) is the first and only nationally
representative study on late-life cognition and dementia in India (Lee
and Dey, 2020). Between 2017 and 2019, LASI-DAD first recruited 4,096
older adults aged 60 years and older from the LASI study, a prospective,
population-based survey of more than 73,000 adults aged 45 years and
older in India. The second wave of LASI-DAD was conducted between
2022 and 2024 (Khobragade et al., 2024). In addition to follow-up
surveys of participants in the first wave, this wave also included a
refresher sample of 2,070 participants sampled from the main LASI
survey. For this analysis, we restricted the population to participants
with at least one cognitive performance score and complete data on
exposures and key covariates (Supplemental Fig. S1).

Environment International 204 (2025) 109826

All participants provided consent (written or thumb impression) to
participate. If participants were cognitively impaired, consent was ob-
tained from a legal representative, authorized to sign on their behalf.
Informed consent and interviews were collected and conducted in the
participant’s language, and all interview materials, as well as consent
documents, were translated into 12 Indian languages. Ethics approval to
conduct this study was obtained from Institutional Review Boards at the
Indian Council of Medical Research and all collaborating institutions
including the University of Southern California and All India Institute of
Medical Sciences, New Delhi.

2.2. Study surveys

All participants completed detailed surveys of the individual and
their household. The individual survey characterized participant char-
acteristics, including demographics, health and health behaviors, social
interactions, and occupation. When participants were incapable of
responding to the full interview, the surveys were completed by a close
family member or friend as a proxy (Perianayagam et al., 2022). The
household survey included information on income, consumption, fuel
use, home location, and housing features and was completed by the most
knowledgeable household member. All residential addresses of LASI-
DAD participants were collected and updated during follow-up.

2.3. Cognitive performance

To characterize cognitive function, we used a general cognitive
performance score summarizing cognitive performance, assessing
orientation, memory, executive function, language/fluency, and visuo-
spatial performance. Specifically, well-trained interviewers visited with
the participants in a clinic or at their home to administer a cognitive test
battery developed specifically for the Indian setting that included object
naming, the Consortium to Establish a Registry for Alzheimer’s Disease
word recall, backward digit span, logical memory, constructional praxis,
retrieval fluency, serial 7 s, Community Screening Instrument for De-
mentia (CSI-D), and Raven’s test (Perianayagam et al., 2022; Lee et al.,
2019). For Wave 1, we also leveraged information from proxies to
ensure data capture from individuals with severe cognitive impairment
to impute missing information when necessary, using demographic,
health, and other cognitive performance variables (Chien et al., 2019).
We estimated the latent cognitive functioning, which captures the
common covariance between cognitive test items, as a way of quanti-
fying the underlying latent trait (Toland, 2014). We then scaled the
general factor score to have a mean of zero and a variance of one among
the LASI-DAD participants at Wave 1.

2.4. Exposure assessment

We estimated total PMj 5 concentrations in ambient air at the par-
ticipants’ residential addresses using the Data Integration Model for Air
Quality (DIMAQ), which was initially developed for the World Health
Organization for the global assessment of disease and used by the
Institute of Health Metric Evaluation’s Global Burden of Disease study.
DIMAQ was refined for LASI, to produce higher-resolution estimates and
applied to an extended time period (from 2010 to 2019) (Shaddick et al.,
2018). DIMAQ integrates information from multiple sources, including
(i) ground-level measurements; (ii) estimates (based upon aerosol op-
tical depth) from remote sensing satellites, (iii) simulations from a
chemical transport model; and (iv) land use, population, and topo-
graphic data. Estimates were generated at 1 km? resolution with high
values observed for cross-validation (R? = 0.81).

We derived source-specific concentrations of PM5 5 from 15 sources,
including agriculture, road transportation, non-road transportation,
energy production from coal combustion, other energy, industry coal
combustion, other industry, wildfires, windblown dust, anthropogenic
dust, residential biofuel combustion, residential coal combustion, other
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residential combustion, agriculture waste burning, and waste
(Supplementary Appendix 1), by multiplying the total PMy 5 concen-
trations at each address by local fractions of PMj 5 attributable to each
source. These fractions were generated at a resolution of 0.5° x 0.625°
(about 55.5 km x 64.4 km) by McDuffie and colleagues who serially ran
an atmospheric chemistry-transport model (GEOS-Chem) with all
sources but one to isolate the unique contribution of that source to the
total PMy 5 (McDuffie et al., 2021). Though this model used emission
data in 2017, we assumed that the resulting predictions apply to the time
period of the LASI-DAD survey. In our main analyses, we aggregated
similar sources within each sector to define nine primary source-specific
exposures. These included: combined agriculture (agriculture and agri-
cultural waste burning), transportation (road and non-road trans-
portation), energy production (coal combustion and other energy
sources), industry (industrial coal combustion and other industrial
sources), wildfires, windblown dust, anthropogenic dust, residential
combustion (biofuel, coal, and other residential combustion), and waste.
We assigned concentrations of all air pollutants during the 5-year period
before the baseline interview using participants’ residential addresses to
reflect their long-term exposures. To adjust for potential confounding by
co-pollutants, we also estimated average concentrations of nitrogen di-
oxide (NO3) and ozone (O3) at participant homes by applying existing
spatiotemporal prediction models derived from ground measurements,
chemical transport models, land use information, and satellite data
(Anenberg et al., 2022; Becker, 2021).

2.5. Statistical analyses

We examined the association of residential concentrations of total
and source-specific PM; 5 with the general cognitive performance score
and its rate of decline over time using generalized estimating equation
(GEE) models to accommodate correlations between repeated measures.
To assess associations with cognitive performance, we included a term
for PM> 5, whereas for associations with the rate of cognitive decline, we
included a term for the cross-product of time (years) since the baseline
interview and PM, s.

We identified potential confounders a priori using theory informed by
prior literature and our previous analyses in LASI that illustrated the
distribution of exposures and health in this population. We included all
factors as main effects and with terms for the cross-products between
each covariate and time to account for confounding of the baseline
cognitive level and declines over time. Specifically, we adjusted our
models for individual-level age, sex (male, female), marital status
(married/partnered or not), education (less than upper secondary, upper
secondary & vocational training, tertiary), literacy (can read or write,
cannot read or write), caste (scheduled caste, scheduled tribe, other
backwards caste, none or other castes), per capita consumption, per
capita wealth, and use of highly polluting fuel (i.e., kerosene, charcoal/
coal/lignite, crop residue, wood/shrub, or dung cake) vs. clean fuels (i.
e., liquefied petroleum gas, biogas, and electric fuel). We also adjusted
for interview calendar year to account for possible temporal confound-
ing and area-level urbanicity (urban, rural), climate zones (Arid, Humid
Subtropical, Montane, Semi-Arid, Tropical Wet, Tropical Wet+Dry), and
region (Northern, Central, Eastern, Western, Southern, Northeastern) to
account for the spatial differences that may introduce confounding by
place. Although this study occurred during the COVID-19 pandemic, our
exposure estimates were calculated at baseline so cannot be influenced
(i.e., not confounded) by the pandemic. Similarly, we adjusted for broad
trends over time but not individual-level infection since air pollution is
hypothesized to increase COVID infections, which may in turn influence
cognition, thus making it an intermediate rather than a confounder.
Similarly, we did not adjust for chronic diseases or lifestyle factors like
exercise or smoking, as these are more likely to be potential conse-
quences of exposure than confounders after adjustment for de-
mographics and region. Finally, we incorporated person-level sampling
weights and clustering to account for the complex survey design in LASI-
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DAD, as well as inverse probability weights to adjust for attrition in all
models, including death from COVID or other causes (Khobragade et al.,
2024; Lee et al., 2019).

Our analyses first focused on the single-pollutant model (Model 1) to
estimate the difference in general cognitive performance and the dif-
ference in the rates of cognitive decline over time per standard deviation
(SD) higher concentration of each pollutant. Then, we further adjusted
for the sum of PMs 5 from all other sources for source-specific PMs 5
(Model 2) and other co-pollutants in the multi-pollutant model (Model
3) to account for correlations across pollutants. We next examined
whether our observed association varied by age group (60-69, 70-79,
>80 years), sex, urbanicity, and region by conducting stratified analyses
in the multi-pollutant models. Specifically, we analyzed the association
of PMj 5 with cognitive performance and decline separately within each
category of these potential effect modifiers as independent strata.

In sensitivity analyses, we further adjusted multi-pollutant models
for predicted indoor PM; 5 concentrations based on a published algo-
rithm partly determined by ambient PM, 5 levels (Balakrishnan et al.,
2013), and different combinations of place-related covariates, including
regions, climate zones, and a flexible set of unpenalized thin-plate
regression splines with 10 df (Keller and Szpiro, 2020). We also exam-
ined the associations of 15 source-specific PMs 5 before aggregation with
both cognitive performance and cognitive decline. Finally, to assess the
potential impact of “healthy survivor” bias, we compared the charac-
teristics of participants included in Wave 1 with those who remained in
the study for follow-up in Wave 2. We also used a joint model that
simultaneously estimated the model for the cognitive data and survival
models for mortality data. By simultaneously estimating the associations
of PM, 5 with rates of cognitive decline and the hazard of mortality, this
approach attempted to account for potential survival bias from infor-
mative attrition during the follow-up, particularly during the pandemic
period (Rustand et al., 2024).

3. Results

Of the 6,166 LASI-DAD participants, 5,699 (94 %) had at least one
general cognitive performance score and complete information on our
exposures and key covariates (Supplementary Fig. S1). With a mean age
of 70 (4+8) years at baseline, participants were 55 % female, 62 %
illiterate, 19 % from a scheduled caste, 6 % from a scheduled tribe, and
67 % resided in rural areas. Approximately 2,177 (38 %) completed
follow-up interviews with a mean follow-up time of 4.7 (+0.7) years.
Compared to participants with higher general cognitive performance
scores at baseline, those with lower scores were older, more likely to be
female, unmarried/without a partner, less educated, of lower socio-
economic position, and lived in rural areas, in the humid subtropical
climate zones, and in the Northern part of India (Table 1).

The average PM; 5 concentration before baseline was 55 (+27) pg/
m® with a range of 16 to 206 pg/m3. Total PM> 5 concentrations had a
clear regional distribution with the highest levels in northern India, with
similar patterns for PMy s from agriculture, road transportation, in-
dustry, and residential combustion (Fig. 1). PMys from non-road
transportation, energy production, anthropogenic dust, and waste had
a wider distribution across the nation, while PM3 5 from wildfires and
windblown dust was mainly concentrated in the north/northeast and
northwest areas, respectively. Relatively high correlations were
observed among PMj 5 from agriculture, road transportation, non-road
transportation, and waste. Similarly, strong correlations were
observed between sources within the same category, such as industry-
related coal combustion and other industrial sources, as well as be-
tween residential biofuel and coal combustion. These sources, which
have been aggregated in the main analyses, show Pearson correlation
coefficients greater than 0.8 (Supplementary Fig. S2). Exposure to PMs 5
was also distributed differentially across the population. Compared to
participants with lower PM5 5 concentrations, those with higher PMj 5
were more likely to be of higher socioeconomic status, live in urban
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Table 1
Characteristics of study participants, overall and by general cognitive performance and PM, 5 concentrations at baseline in LASI-DAD (mean (SD) or %(N)).
General Cognitive Performance Total PM, 5
Total Sample Low High Low High
(n = 5,699) (<0, >0, (<49.6 pg/m®, (>49.6 pg/m°,
n = 3,117) n = 2,582) n = 2,846) n = 2,853)
Age, years 70.0 (7.7) 71.6 (8.3) 68.0 (6.2) 70.1 (7.8) 69.9 (7.6)
Female, %(n) 55 (3,162) 68 (2,109) 41 (1,053) 56 (1,600) 55 (1,562)
Education
Less than upper secondary 78 (4,458) 97 (3,029) 55 (1,429) 79 (2,257) 77 (2,201)
Upper secondary & vocational training 18 (1,009) 3 (80) 36 (929) 17 (498) 18 (511)
Tertiary 4 (232) 0(8) 9 (224) 3(091) 5(141)
Marital/Partnered, %(n) 62 (3,546) 53 (1,662) 73 (1,884) 60 (1,705) 65 (1,841)
Illiterate %(n) 62 (3,507) 88 (2,758) 29 (749) 59 (1,690) 64 (1,817)
Caste
Scheduled 19 (1,111) 23 (731) 15 (380) 17 (477) 22 (634)
Scheduled Tribe 6 (332) 8 (250) 3(82) 7 (199) 5(133)
Other Backward Caste 43 (2,463) 44 (1,362) 43 (1,101) 52 (1,472) 35(991)
No Caste 31 (1,793) 25 (774) 39 (1,019) 25 (698) 38 (1,095)
Per Capita Household Consumption (Rupee) 51,510 41,774 63,264 50,358 52,660
(202,637) (70,686) (290,458) (81,525) (274,598)
Household Income 3,176,154 2,198,883 4,355,920 2,293,289 (6,135,516) 4,056,854 (19,966,978)
(Rupee) (14,802,822) (6,985,954) (20,549,629)
Rural, %(n) 67 (3,795) 78 (2,438) 53 (1,357) 72 (2,041) 61 (1,754)
Climate Zones
Arid 6 (331) 8(243) 3(88) 0 12 (331)
Humid Subtropical 28 (1,573) 32 (987) 23 (586) 14 (396) 41 (1,177)
Montane 3(171) 4 (119) 2 (52) 0(11) 6 (160)
Semi-arid 14 (802) 14 (443) 14 (359) 12 (341) 16 (461)
Tropical Wet 8 (433) 4 (138) 11 (295) 15 (433) 0
Tropical Wet + Dry 42 (2,389) 38 (1,187) 47 (1,202) 59 (1,665) 25 (724)
Region
Northern 24 (1,349) 25 (785) 22 (564) 1(15) 41 (1,179)
Central 10 (596) 13 (390) 8 (206) 5(147) 22 (633)
Eastern 19 (1,069) 19 (591) 19 (478) 15 (419) 23 (657)
Western 14 (801) 14 (427) 14 (374) 18 (527) 10 (296)
Southern 29 (1,651) 25 (776) 34 (875) 47 (1,366) 4 (127)
Northeastern 4 (233) 5(148) 3(85) 14 (410) 0(14)
General Cognition —0.06 (0.91) —0.74 (0.51) 0.76 (0.56) —0.07 (0.92) —0.05 (0.91)
Air Pollution
PM, 5 (ug/m3) 54.9 (26.7) 54.6 (24.8) 55.2 (28.8) 34.9 (8.8) 74.8 (23.5)
Source-specific PMy 5 (ug/m%)
Agriculture 4.8 (2.8) 4.9 (2.7) 4.7 (2.9) 2.8 (1.6) 6.8 (2.2)
Road Transportation 3.2(2.1) 3.2 (2.0) 3.1(2.2) 1.7 (0.6) 4.6 (2.0)
Non-Road Transportation 0.6 (0.3) 0.6 (0.3) 0.5 (0.3) 0.4 (0.2) 0.7 (0.3)
Energy Coal 3.2Q1.7) 3.1@1.6) 3.2(1.8) 2.1(1.0) 4.2 (1.6)
Energy Other 3.71.7) 3.7(1.7) 3.7 (1.8) 2.7 (1.1) 4.6 (1.7)
Industry Coal 4.6 (2.4) 4.5 (2.3) 4.7 (2.6) 2.9 (0.9) 6.3 (2.2)
Industry Other 3.8(2.4) 3.6 (2.2) 4.0 (2.5) 2.4 (1.0) 5.1(2.6)
Wildfires 0.5 (0.3) 0.5 (0.4) 0.5 (0.3) 0.4 (0.3) 0.6 (0.4)
Windblown Dust 2.1 (1.9 2.2 (2.0) 2.0(1.7) 1.3 (1.1) 2.9 (2.1)
Anthropogenic Dust 6.8 (3.4) 6.6 (3.2) 6.9 (3.7) 4.7 (1.7) 8.8 (3.5)
Residential Biofuel 11.8 (6.8) 11.7 (6.4) 11.8(7.2) 6.9 (1.9) 16.6 (6.4)
Residential Coal 0.7 (0.4) 0.7 (0.4) 0.7 (0.4) 0.5(0.1) 1.0 (0.4)
Residential Other 0.9 (0.6) 1.0 (0.6) 0.9 (0.6) 0.5 (0.2) 1.4 (0.6)
Agriculture Waste Burning 0.6 (0.6) 0.6 (0.5) 0.6 (0.6) 0.3(0.2) 0.9 (0.7)
Waste 2.3(0.9) 2.3(0.9) 2.3(1.0) 1.6 (0.4) 3.0 (0.8)
NO; (ppb) 7.0 (4.7) 6.2 (4.1) 8.0 (5.2) 5.6 (3.4) 8.5(5.2)
O3 (ppb) 58.8 (6.5) 59.3 (6.3) 58.3 (6.6) 55.8 (6.3) 61.9 (5.1)

areas, live in the humid subtropical climate zones, and in the Northern
part of India (Table 1).

In all models (Fig. 2 and Supplementary Table S1), we observed no
association of general cognitive performance with the average concen-
trations of total and source-specific PMy 5 during the 5 years before
baseline, with the exception of an association between higher concen-
trations of PMy 5 from windblown dust and better general cognitive
performance.

For cognitive decline (Fig. 2 and Supplementary Table S1), we
observed that an SD higher in total PM; 5 concentration was associated
with a —0.012 (95 %CI: —0.021, —0.004) standard unit faster decline in
the general cognitive performance per year. These differences were
similar to the difference in rates of change we observed between par-
ticipants who received upper secondary or vocational training and those

who had less than an upper secondary education. Among PM; 5 from
different emission sources, we observed generally imprecise results for
the multi-pollutant as compared to the single-pollutant models. Higher
exposure to PMj 5 from residential combustion was associated with a
faster decline in general cognitive performance, with a —0.035 (95 %CI:
—0.061, —0.008) standard unit accelerated annual rates per SD increase
in the source-specific PMy 5. We also observed associations with faster
decline for PMy 5 emitted from energy production (—0.011, 95 % CI:
—0.025, 0.003), industry (—0.015, 95 % CI: —0.033, 0.003), and
anthropogenic dust (—0.008, 95 % CI: —0.018, 0.002), though these
were imprecise and could not be distinguished from no association. In
contrast, we observed that higher PMys concentrations from trans-
portation, wildfires, and windblown dust were associated with slower
annual rates of cognitive decline that ranged from 0.015 (95 % CIL:
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Fig. 1. Spatial distribution of long-term concentrations of total and source-specific PM; 5 across India.

0.005, 0.025) standard unit slower in cognitive decline per year for
windblown dust to 0.051 (95 %CI: 0.025, 0.077) for transportation.
When examining potential effect modification, we found no evidence
of effect modification by age and only very weak evidence suggesting
steeper cognitive declines with greater PMy 5 concentrations among
those residing in rural areas. When stratified by gender, the associations
of PMy 5 varied across different emission sources. Specifically, steeper
declines in cognitive function with PMj 5 from energy production were

observed only among males, whereas stronger deficits and steeper de-
clines associated with PMs 5 from residential combustion were only
detect among females. When stratified by regions, we generally found
poorer cognitive function with higher PM, 5 among those living in the
Western and Southern regions, while faster declines with greater PMj 5
were observed among those in the Northern and Eastern regions
(Supplementary Tables S2-S5).

In sensitivity analyses, our findings remained relatively robust to
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Fig. 2. Differences in cognitive performance and the annual rate of cognitive decline associated with per SD increase in the level of total and source-specific PM; s in
multi-pollutant models in LASI-DAD. Notes: Models adjusted for age, sex, marital status, education, literacy, caste, per capita consumption, per capita wealth,
interview calendar year, urbanicity, climate zones, region, fuel type use, the sum of PM; 5 from all other sources for source-specific PMy 5, NO,, and Os. Sources are
defined as: Agriculture: agriculture and agriculture waste burning; Transportation: road transportation and non-road transportation; Energy: energy coal and other
energy; Industry: industry coal and other industry; Residential: residential biofuel, residential coal, and other residential; Wildfires: wildfires; WDust: windblown

dust; AFCID: anthropogenic dust; Waste: waste.

additional adjustments for indoor air pollution indicators
(Supplementary Table S6). Although there was some variability in
findings for cognitive performance with differing levels of adjustment
for place, the qualitative findings were generally consistent
(Supplementary Table S7). For associations with cognitive declines,
associations of PMy 5 from agriculture, industry, transportation, resi-
dential combustion, and wildfires remained most robust across models
with different place-related covariates. When examining associations
with 15 detailed source-specific PMj 5 components, we observed that the
association observed for residential combustion sources was primarily
attributable to PMy 5 from residential biofuel burning (Supplementary
Table S8). We found little evidence of large differences in the population
who were retained in Wave 2 (Supplementary Table S9). Findings were
largely unchanged in the joint models that accounted for mortality over
the follow-up period, though some of the observed associations were
strengthened (Supplementary Table S10).

4. Discussion

In this nationally representative cohort study of older adults in India,
we found that higher long-term exposure to total PMs 5 was associated
with faster rates of cognitive decline even after accounting for
individual-level risk factors and gaseous co-pollutants. When investi-
gating associations with PM; 5 by emission source, however, the results
were less clear. Steeper cognitive declines over time were associated
with PMy 5 from energy production, industry, and residential combus-
tion sources. In contrast, PMys from transportation, wildfires, and
windblown dust were associated with improved cognitive performance
over time. This research suggests that more attention on specific sources
of air pollution may be helpful to improve cognitive performance and
prevent cognitive decline in LMICs, though more research is needed to
confirm these findings.

When considering total PMj s, our findings are in general alignment
with the accumulating evidence that higher levels of exposure are
associated with greater cognitive decline among middle-aged and older

adults (Weuve et al., 2021; Weuve et al., 2012; Duchesne et al., 2022;
Grande et al., 2021; Kulick et al., 2020). However, we did not find the
same cross-sectional association of poorer cognitive function with total
PM, 5 that has been observed in many previous studies (Ailshire and
Crimmins, 2014; Ailshire and Clarke, 2015; Cullen et al., 2018; Salinas-
Rodriguez et al., 2018/08/01/ 2018,; Schikowski et al., 2015/10/01/
2015,; Zhang et al., 2018). Differences in study design might be one of
the reasons for this inconsistency. While most previous studies were
restricted to cross-sectional information, our study employed a longi-
tudinal study design that evaluated the effect of long-term exposures on
cognitive performance simultaneously with the rate of change in
cognitive performance over time. Since cognitive level and declines are
connected constructs, it may be that it is difficult to disentangle the two
with cross-sectional studies fully attributing any declines over time to
the current level and longitudinal models attributing some of the current
level to declines. Another potential explanation relates to the fact that
India has one of the highest annual average PM; 5 concentrations in the
world (Hammer et al., 2020) and lower life expectancies than many of
the high-income countries that have been studied previously (Grande
et al., 2021; Ailshire and Crimmins, 2014; Ailshire and Clarke, 2015;
Power et al., 2011). Therefore, it could also be that there is a “healthy
survivor” effect among older adults living with such high pollution
levels, such that air pollution is not as strongly predictive of cognition in
this population. We suspect that this may be a possible explanation for
the limited associations with cognitive performance at baseline,
although air pollution remains more related to cognitive declines.

In fact, one unique contribution of this work is its extension of the
literature on air pollution and cognition by newly examining associa-
tions of cognitive performance and rate of cognitive decline with PMj 5
from key emission sources. In India, we found that PMy 5 from resi-
dential combustion was most strongly and robustly associated with
poorer cognitive performance and faster rates of cognitive decline. This
may represent an important finding given that residential combustion
was the leading contributor to PMy 5 in India and the surrounding region
in 2019, accounting for 28 % of the annual population-weighted mean
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concentrations (Chatterjee et al., 2023). Globally, approximately 3
billion people still rely on highly polluting fuels like biofuel and coal for
residential heating and cooking, especially in the rural areas of LMICs
(Who, 2018), which results in higher exposure levels both within
households and in the ambient air. Given existing interventions, our
findings suggest that a transition to cleaner fuel may help improve
cognitive performance and prevent cognitive decline in LMICs.

When comparing to the limited literature on air pollution and
cognition in LMICs, there is support for our findings in papers of
cognition and household air pollution (Jana et al., 2022; Dakua et al.,
2022; Saenz et al., 2021). For example, indicators for the use of polluting
cooking fuels have been linked to poorer cognitive function in the main
LASI and its sister studies in Mexico and China (Jana et al., 2022; Dakua
et al., 2022; Saenz et al., 2021). Interestingly, existing studies identified
organic matter (OM) and black carbon (BC) as the largest contributors to
PM, 5 from residential combustion (McDuffie et al., 2021; Chatterjee
et al., 2023) and as the primary PMys components contributing to
cognitive impairment (Qi et al., 2024; Liu et al., 2023). This provides
additional support for our findings since the neurotoxicity of PMj 5
emitted from residential combustion has been partly attributed to OM
and BC. Due to the high surface-area-to-volume ratio of small particles
from household combustion; these particles can also mix with other
chemicals in the air and serve as a transporter for highly toxic com-
pounds into the brain; where they can activate oxygen species in
microglia and inhibit the brain antioxidant scavenging system (Saunders
et al., 2006).

In contrast to the residential combustion source, we found counter-
to-hypothesis evidence of changes in cognition over time with several
other sources, including agriculture and wildfire emissions. This finding
notably differs from what we observed in the United States, where PM 5
from agriculture and wildfires was robustly associated with an increased
risk of dementia (Zhang et al., 2023). One possible explanation for the
agriculture result is that after accounting for education, agricultural
communities work longer and thus have less cognitive decline over time.
Another possible explanation for the conflicting evidence is that the
association may vary across different concentration ranges. Notably, the
average concentration of PMy 5 in India (54.9 pg/m>) is much higher
than that in the US (11.2 pg/m®). However, due to the limited sample
size, we were unable to obtain stable results when restricting our ana-
lyses to those with PMj 5 levels typically found in high-income countries.

4.1. Strengths and limitations

To our knowledge, this is the first study to investigate the association
between PMj 5 in ambient air and cognitive function in India and one of
the few papers on the relationships with cognitive decline in an LMIC.
This work also fills a gap in the existing literature regarding the asso-
ciation of source-specific PM3 5 with cognitive function and the rate of
cognitive decline more generally. Instead of using chemical components
as tracers for sources, we used estimates of source-specific PMj 5
generated by sequentially removing each source individually from a
chemical-transport dispersion model. As a result, we are able to account
for both primary and secondary pollutants generated from specific
sources, and investigate the counter-factual question of how would
health change if the emissions from each source was removed from the
atmosphere. Other strengths of this work include the high-quality in-
formation from LASI-DAD with detailed information on confounders
based on personal and community-level information as well as precise
estimates of general cognitive functioning from an hour-long cognitive
test battery.

Despite the many strengths of this work, limitations exist. Given the
sensitivity to the adjustment of place-related covariates, it remains
possible that there is residential confounding by region in our analyses.
Although this is a large study with intensive data collection, India is a
complex nation and it may be that we are underpowered to tease apart
differences by place. Relatedly, correlations among different sources
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may interfere with our ability to confidently disentangle the effects of
single sources. Leveraging future waves of information and repeated
measures may be helpful for a more stable trend of cognitive decline
over a longer follow-up time. Other important limitations relate to the
relatively crude resolution of the emissions data for the derivation of
fractional source contributions over space and time. First, the emission
source data reflects larger spatial scales, so it will fail to capture the
impacts of highly localized sources like transportation. As a result, the
findings of this work reflect the contributions of sources at a more
regional than local level and should be interpreted with some caution.
Relatedly, the emission data relies on estimates from 2017 alone, so we
must assume that this year is reflective of longer durations. This may be
an issue, especially for the residential combustion exposures since the
Indian government invested in campaign to replace biofuel stoves with
liquid petroleum gas stoves, especially those in poor households. If these
errors resulted in the systematic patterning in the under- or over-
estimation of exposures that is not captured by our adjustments for
time and place, bias could potentially result. In addition, our results
could be underestimated by “healthy survivor” bias because those with
comorbidities associated with both PMj 5 and impaired cognition may
be more likely to be lost to follow-up. However, we found little evidence
of large differences in the population who were followed in Wave 2
(Supplemental Table S9), and the use of sampling and attrition weights
should minimize this bias. Also, our results remained largely robust to
adjustment for deaths during follow-up in our longitudinal analyses
(Supplementary Table S10). We also found little evidence of effect
modification by age or differences in the population that was observed
for two rounds of sampling from the baseline population. Finally,
although we used a nationally representative sample from LASI-DAD,
which provides valuable insights into the associations between PMj 5
and cognitive performance, the limited sample size may not fully cap-
ture the vast geographic, socioeconomic, and cultural heterogeneity of
the Indian population.

5. Conclusion

With rapid growth in the older population and the dramatically
rising burden of dementia in LMICs, slowing cognitive decline has
become increasingly important. Our study suggests that reducing PMj 5
and perhaps selectively targeting residential combustion sources might
be effective strategies for reducing or delaying the onset of dementia in
India. Future studies would benefit from higher spatial resolution of
emission data, larger sample sizes, and more repeated measures of
cognitive performance to provide more robust and generalizable
evidence.
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