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Abstract
Boreal forests, which serve as major terrestrial carbon sinks, are experiencing rapid warming across
much of their range. Spatial synchrony in tree growth is crucial for the stability and persistence of
these forests. Despite its importance, the geographic patterns and drivers of tree growth synchrony
in boreal forests remain underexplored. This study aims to address these gaps by investigating
growth synchrony of white spruce (Picea glauca), a widespread boreal species of significant eco-
logical and economic value. Using tree-ring data from 187 sites, we quantified growth synchrony
with the synchronous growth change coefficient, a non-parametric index capturing consistency
in year-to-year variations. We then analyzed its spatial pattern and drivers using complex network
analysis and multiple regression on distance matrices (MRM). We found that white spruce growth
synchrony follows a clear biogeographical pattern, decreasing from northwest to southeast. The
relationship between growth synchrony and geographic distance was non-linear, deviating from
the typical distance-decay pattern described by Tobler’s First Law of Geography. Specifically, syn-
chrony increased as geographic distance decreased at shorter distances, but reversed at longer dis-
tances, where more distant sites showed relatively stronger synchrony. MRM analysis showed that
climate factors explained 55% of the variance in growth synchrony, with geographic proximity
contributing minimally after accounting for climate (increasing to 56%). These results suggest
that synchronization of climate, particularly temperature, was the primary driver of spatial syn-
chrony in white spruce growth, while spatial proximity-related mechanisms played a limited role.
Given that high synchrony can reduce population stability, we recommend prioritizing manage-
ment efforts that promote asynchronous growth, especially in regions exhibiting strong synchrony
(e.g. northern Northwest Territories and Yukon). These findings provide new insights into boreal
forest dynamics and inform adaptive management and conservation strategies in the face of ongo-
ing climate change.

1. Introduction

Boreal forests play a key role in the carbon cycle and climate regulation (Pan et al 2011). However, they
are warming at nearly twice the global average rate (Post et al 2019) and are expected to face the largest
temperature increases among forest biomes by the end of this century (Gauthier et al 2015). These
rapid changes have already and may further strongly affect tree growth and forest stability (McDowell
et al 2020), highlighting the need to better understand boreal forest dynamics and their underlying
mechanisms.

Spatial synchrony in tree growth, the consistent fluctuation of interannual growth among spatially
separated trees, offers a valuable perspective for such understanding. In ecological theory, synchrony
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plays a key role in shaping population dynamics, stability and persistence (Heino 1998, Liebhold et al
2004). While initially developed in the context of population abundances, these principles are equally
applicable to growth, a vital rate of population dynamics. Growth synchrony has thus been recognized
as a comprehensive indicator of environmental stress and a potential early-warning signal of declining
forest resilience (Cailleret et al 2019, Jia et al 2024). Tree-ring records provide precise annual resolution
and extensive spatial-temporal coverage needed to study growth synchrony (Zhao et al 2019). Yet despite
these advantages, the spatial patterns and underlying drivers of tree growth synchrony remain comparat-
ively understudied (Shestakova et al 2018).

Recent studies have shown that tree growth synchrony exhibits complex geographic patterns, largely
shaped by environmental variation and population dynamics (Walter et al 2017, Tejedor et al 2020).
Complex network theory offers a powerful tool for detailing such spatial complexity. By modeling cor-
relations among constituent elements, it reveals the underlying topological structure of complex sys-
tems from a global perspective (Qiao et al 2019). A key strength of this method lies in its generality and
robustness, as network nodes and links represent abstract properties independent of spatial and envir-
onmental constraints (Phillips 2019). Nevertheless, its application to tree growth synchrony is still in its
infancy, with only a few studies to date (e.g. Astigarraga et al 2025).

Complex geographies of growth synchrony are typically attributed to two types of mechanisms.
One is the Moran effect, arising from direct climatic influences on biological processes (Moran 1953).
Another involves spatial processes, such as dispersal and disturbances mediated by shared natural
enemies (Haynes et al 2013, Reuman et al 2025). These processes are often interdependent, as illustrated
by spruce budworm outbreaks, which are both climate-driven and spatially contagious (Bouchard et al
2018). Partitioning the variance in spatial synchrony into spatial and environmental sources provides a
useful framework for identifying its drivers (Hegel et al 2012). Multiple regression on distance matrices
(MRM) is particularly suitable for this task, as it quantifies the relative contributions of predictors while
accounting for dependence (Lichstein 2007). Hitherto, it has been applied mainly to spatial synchrony
in other ecological processes, such as seed production (Bogdziewicz et al 2021), population abundance
(Walter et al 2021), and forest-defoliating insect outbreaks (Haynes et al 2013). By contrast, its applica-
tion to tree growth remains scarce, which is the focus of this study.

White spruce (Picea glauca (Moench) Voss), a dominant boreal species ranging from Newfoundland
to Alaska, plays a key role in ecosystem stability by contributing to carbon storage, soil-water conserva-
tion, and habitat provision (Nienstaedt and Zasada 1990). It also holds substantial commercial value as
a timber species (Hassegawa et al 2020). However, it has experienced growth declines in many regions
since the late 20th century, mainly driven by warming and water deficits (Hynes and Hamann 2020).
Taken together, these characteristics make white spruce an ideal reference species for studying growth
synchrony in boreal forests.

To address these gaps, we compiled tree-ring records from the International Tree-Ring Data Bank
(ITRDB) (Zhao et al 2019) and Canadian Forest Service Tree-Ring Data (CFS-TRenD) (Girardin et al
2021). We applied complex network theory to map spatial variation in white spruce (Picea glauca
(Moench) Voss) growth synchrony and identify regions that contributed most to the overall synchrony
network. Moreover, we used MRM to disentangle the causes of growth synchrony and quantify their rel-
ative importance. This study advances understanding of white spruce growth dynamics and introduces a
novel framework for investigating spatial synchrony in tree growth.

2. Materials andmethods

2.1. Tree-ring data
We compiled tree-ring width records of white spruce (Picea glauca (Moench) Voss) from two major
open-access repositories (figure 1(a)): ITRDB (www.ncei.noaa.gov/pub/data/paleo/treering/; Zhao et al
2019) and CFS-TRenD (https://treesource.rncan.gc.ca/en/; Girardin et al 2021). Sites were selected based
on the following criteria: (1) the radius of each sample, calculated as the sum of annual ring widths,
ranges from 5–100 cm; (2) the average ring width is less than 1 cm, with over 95% of annual values
also below this threshold; (3) a minimum sample replication of five trees per site; (4) continuous annual
coverage from 1901 to 1996 CE. The 1996 cut-off date reflects a compromise: it captures the period of
accelerated climate change beginning in the 1980s, while ensuring sufficient data for robust analysis, as
tree-ring records declined sharply thereafter (figure 1(b)). The resulting dataset includes 187 sites (164
from ITRDB, 23 from CFS-TRenD), with 6890 tree-ring series and 661 440 measured growth rings.
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Figure 1. Spatial (a) and temporal (b) distribution of white spruce tree-ring sampling sites.

2.2. Climate data
Climate data were obtained from the CHELSAcruts dataset (Karger et al 2017; http://chelsa-climate.org/
chelsacruts/), which provides high-resolution gridded climatic variables (∼1 km). Monthly minimum
and maximum temperatures and precipitation were extracted for each tree-ring site. Seasonal mean tem-
perature and total precipitation were then calculated for each site over the period of 1901–1996, focusing
on four key periods: late winter (February–March), spring (April–May), summer (June–August), and
autumn (September–November), which are known to have significant effects on white spruce growth
(Griesbauer and Green 2012, Hynes and Hamann 2020).

2.3. Tree growth synchrony network
2.3.1. Tree growth chronologies
To quantify annual growth, we converted tree-ring width into basal area increment (BAI; cm2 yr−1),
which provides a biologically meaningful measure of wood production (LeBlanc 1993, Wu et al 2022).
BAI is increasingly applied in dendrochronological studies as it minimizes biases introduced by data
transformation and better reflects actual growth dynamics (Jiao et al 2015). Unlike ring width, BAI is
typically less influenced by stem diameter, making it a more reliable metric for long-term growth com-
parisons across different tree sizes (Dial et al 2022). Individual BAI series were calculated from ring
width measurements using the following formula, from which site-level chronologies were constructed
by averaging the BAI of all sampled trees within each site:

BAI= π
(
R2
t −R2

t−1

)
,

where R represents the tree radius at breast height (cm) for a given year, and t refers to the year in
which the tree-ring was formed. BAI for individual trees was calculated using the ‘bai.in()’ function from
R package ‘dplR’, and averaged into site-level BAI chronologies using Tukey’s Biweight Robust Mean
method (Bunn 2008).

2.3.2. Growth synchronization
Synchronous growth changes (SGC) is a non-parametric metric that quantifies growth synchrony among
trees by measuring consistency in the direction of interannual changes, regardless of magnitude (Visser
2021). Unlike parametric methods, it does not assume specific data distributions, and thus avoids
the need to normalize tree-ring series before comparison, preserving the integrity of the original data
(Hollander et al 2013). Its simplicity also facilitates interpretation and reduces computational demands.
SGC is an improved variant of the classical Gleichläufigkeit (GLK) index, addressing its inherent over-
estimation of synchrony by separating fully synchronous and semi-synchronous events (Schweingruber
1983, Buras and Wilmking 2015). This refinement makes SGC a more reliable option for applications
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such as clustering and dendro-provenance analysis, particularly in large dendrochronological datasets
(Visser 2021). SGC was calculated as the percentage of years in which the BAI of two compared growth
series showed same upward or downward trend relative to the previous year, as given by the following
formula:

SGC=
nsync
nol − 1

,

where nsync is the number of SGCs, defined as years in which both series exhibit concurrent increases
or decreases. nol denotes the number of overlapping years between series (96 years in this study). SGC
coefficients were calculated with the ‘sgc()’ function in the ‘dplR’ R package (Bunn 2008, Visser 2021).

2.3.3. Construction of the tree growth synchrony network
A complex network consists of many nodes and edges, mathematically described as a graph structure
G = (V, E, W). Here, V represents the set of nodes, corresponding to individual tree-ring sampling
sites; E is the set of edges, indicating pairwise connections between sites; and W denotes edge weights,
determined by SGC coefficients quantifying growth synchrony between pairs of sites.

To detect the spatial pattern and community structures in growth synchrony, we applied a threshold
filter to remove weak or spurious synchrony signals, retaining only statistically robust connections.
Specifically, connections with SGC values below the significance threshold τ (set at the 0.05 level) were
excluded. The resultant synchrony network structure was encoded in an adjacency matrix A, with ele-
ments defined as:

Ai,j =

{
1− δi,j,

∣∣SGCi,j

∣∣> τ
0,

∣∣SGCi,j

∣∣⩽ τ
,

where, δi,j is the Kronecker delta, defined as δi,j = 0 when i ̸= j and δi,j = 1 otherwise. Ai,j = 1 indicates
a link between site i and j, whereas Ai,j = 0 denotes the absence of a link. Synchrony network was visu-
alized by the ‘graph_from_data_frame()’ function from the package ‘igraph’ of R (Csardi and Nepusz
2006).

2.3.4. Basic synchrony network measures
Degree centrality measures the connectivity of a node by counting the number of direct links it has with
other nodes (Zhao et al 2020). In the synchrony network, higher degree centrality indicates that a site
exhibits synchronous growth with more sites. For a network comprising n sites, the degree centrality Di

for site i is calculated as:

Di =
n∑

j=1

Ai,j,

where Ai,j is the element of the adjacency matrix. Degree centrality was computed using the ‘degree()’
function from R package ‘igraph’ (Csardi and Nepusz 2006).

Community structure refers to clusters of nodes that are densely connected internally but sparsely
connected externally (Newman and Girvan 2004). Identifying these communities is essential for revealing
the internal structure and functional properties of complex network (Milo et al 2002). In this study, we
applied the Fast-Greedy algorithm, a widely used hierarchical method for community detection (Clauset
et al 2004, Newman 2006). This algorithm follows a bottom-up detection process, initially treating each
node as a singleton community and progressively merging them to optimize modularity (Kumari et al
2022). The process stops when no further aggregation can improve modularity. Community detection
was performed with the ‘cluster_fast_greedy()’ function from the R package ‘igraph’ (Clauset et al 2004,
Csardi and Nepusz 2006).

2.3.5. Statistical analysis of growth synchrony
To explore the association between growth synchrony and geographic distance, we employed the Mantel
correlogram. This non-parametric method is particularly effective in capturing complex, non-linear spa-
tial patterns and thus widely used to quantify how inter-site similarity varies with inter-site geographic
distance (Oden and Sokal 1986, Borcard and Legendre 2012). We conducted this analysis using pre-
computed pairwise growth synchrony values and corresponding geographical distances between all pairs
of sites. Geographical distances were calculated as pairwise Haversine distances based on tree-ring site
coordinates, using the ‘distm()’ function of ‘geosphere’ R package (Hijmans et al 2017). The resulting
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synchrony and distance matrices were then subjected to a Mantel test with 1000 permutations to exam-
ine the statistical significance of their correlation. This calculation was performed using the ‘mgram()’
function from the R package ‘ecodist’ (Legendre and Fortin 1989, Goslee and Urban 2007).

However, the correlogram alone cannot identify the underlying causes of growth synchrony, as it is
impossible to determine the relative contributions of climate and spatial processes (Rossi et al 1992).
To disentangle these factors, we employed MRM. It can handle diverse data types (e.g. continuous,
ordinal and categorical) and support linear, nonlinear, and nonparametric relationships (Lichstein 2007,
Legendre and Legendre 2012). MRM is well-suited for studying relationships between response matrix
and any number of explanatory matrices, with statistical significance of each predictor and model fit
assessed via permutation tests (Pandit et al 2016). Here, we built three models using MRM to assess the
contributions of climate factors and geographic distance to growth synchrony: (1) a space-only model,
using geographic proximity as the only explanatory matrix. Geographic proximity was calculated by first
computing the Haversine distance d between sites, then transforming it into a similarity measure using
1− [d/max(d)]. (2) A climate-only model, constructed from synchrony in temperature and precipita-
tion variables, which are key features that may act as climatic synchronizing agents (Haynes et al 2013).
Climate synchrony was quantified using the SGC coefficient, which reflects the directional consistency of
interannual climatic fluctuations. These variables implicitly capture all time lags for key growth stages,
thus not requiring explicit lag modeling. Therefore, climate variables include synchrony measures of both
temperature and precipitation across four seasons, yielding 8 variables. (3) A combined model, including
both climate factors and distance. All explanatory variables were standardized using the z-score method
to ensure comparability. MRM analysis was performed using the ‘MRM()’ function of ‘ecodist’ R pack-
age (Legendre et al 1994, Goslee and Urban 2007, Lichstein 2007). Given the challenge of accounting for
all relevant climatic drivers, any unmeasured factors were implicitly attributed to spatial effects (Haynes
et al 2013, Bogdziewicz et al 2021).

3. Results

3.1. Spatial pattern of tree growth synchrony
Figure 2 presents a correlogram illustrating how white spruce growth synchrony varies with increas-
ing geographic distance between sites. All instances of extremely high growth synchrony (SGC > 0.9)
occurred between site pairs less than 53 km apart. The Mantel correlation coefficients (r) declined
sharply at shorter distances and then leveled off beyond approximately 1100 km. Significant positive cor-
relations were detected for the first three distance classes (up to about 700 km; p< 0.05), indicating that
geographically proximate sites exhibited stronger synchrony in year-to-year growth variation. Beyond
this distance, Mantel r gradually became negative. Significant negative correlations emerged at larger dis-
tances (947–5276 km, with p< 0.05; 5276 km being the maximum recorded distance between tree-ring
sites in this study), albeit with very low correlation coefficients (|r|< 0.14). This indicates that, within
this distance range, geographically closer sites tended to exhibit relative weaker synchrony in tree growth
than those farther apart.

The map visualization in figure 3(a) intuitively reveals a clear biogeographical pattern in the growth
synchrony of white spruce, with synchrony generally decreasing from northwest to southeast across
its natural range. Using the Fast-Greedy algorithm, tree-ring sites were clustered into three distinct
communities based on pairwise growth synchrony (figure 3(b)). Community A, primarily in northern
Northwest Territories and Yukon, showed the highest within-community synchrony (SGC = 0.72 ± 0.08
(mean ± SD), n = 53 sites). Community B, mostly in Alaska and northwestern Northwest Territories,
exhibited moderate synchrony (0.62 ± 0.09, 74 sites). Community C, mainly in central and eastern
Canada, showed the lowest synchrony (0.53 ± 0.08, 59 sites).

Additionally, in the growth synchrony network, synchrony within communities is greater than
between communities (figure 3(c)). The link proportions are as follows: A–A = 92%, A–B = 15%, A–
C = 4%, B–B = 53%, B–C = 3%, and C–C = 17%. By plotting each community’s distribution in cli-
mate space (figure 3(d)), we found that Community A is located in areas with relatively colder and drier
growing seasons compared to the other communities. Community B is found in areas with the lowest
temperature and moderate precipitation, while Community C is located in areas with relatively warmer
and wetter growing seasons.

3.2. Potential mechanisms driving spatial synchrony in tree growth
In the space model, we found a significant positive relationship between geographic proximity and tree
growth synchrony (table 1). This model explained approximately 25% of the variance in pairwise syn-
chrony of tree growth. In comparison, the climate model explained 55% of the variance, more than
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Figure 2. Relationship between growth synchrony and geographic distance across sites. The primary y-axis shows the synchron-
ous growth changes (SGC) coefficient, and the secondary y-axis shows Mantel correlation coefficients (r). Hexagons depict the
density of pairwise site comparisons with lighter colors indicating higher frequencies. Most comparisons occur at shorter dis-
tances (<1500 km), with a mean of 1737± 1437 km. SGC values exceeding 0.6 are considered statistically significant synchrony.
The red line displays the Mantel correlogram across 20 equal-interval distance classes. Filled symbols denote significant Mantel
correlations (p< 0.05), based on 95% bootstrap confidence intervals.

twice that of the space model. The strongest predictors of growth synchrony in the climate model, in
descending order of importance, were synchrony in summer and autumn temperature, and summer pre-
cipitation. In contrast, synchrony in both autumn and spring precipitation were not significantly associ-
ated with pairwise synchrony of tree growth.

The combined model (space + climate) explained only slightly more variance in pairwise tree growth
synchrony than the climate-only model (56%; table 1). Geographic proximity was the most influential
explanatory variable. Among climatic variables, summer temperature synchrony remained the strongest
predictor, followed by synchrony in spring temperature and summer precipitation. Synchrony in autumn
temperature, and late winter, autumn and spring precipitation were not significantly related to pairwise
tree growth synchrony.

4. Discussion

4.1. What are the main drivers of spatial synchrony in growth?
The study offers valuable insights into the spatial pattern of growth synchrony in white spruce and its
underlying drivers. Notably, even without incorporating location or distance information in the com-
munity segmentation, tree-ring site communities still showed strong spatial clustering. Geographic prox-
imity was positively correlated with growth synchrony, explaining about 25% of the variance. However,
the relationship between growth synchrony and geographic distance in this study differs from Tobler’s
First Law of Geography, which states that ‘near things are more related than distant things’ (Tobler
1970). Instead, a non-linear distance-decay pattern emerged. Within about 700 km, growth synchrony
increased as geographic distance decreased. Beyond this threshold, however, the pattern reversed, with
more distant sites exhibiting relatively stronger synchrony. This complexity suggests that additional
factors beyond geographic proximity shape growth synchrony.

When climate was considered alone, the explanatory power of model increased substantially to 55%,
highlighting its dominant role in shaping growth synchrony. By contrast, the inclusion of geographic
proximity yielded only a marginal increase (to 56%). This indicates that the observed statistical effect
of proximity is largely mediated by spatially structured climate via spatial autocorrelation (Legendre
and Fortin 1989). This may explain why the spatial pattern of white spruce growth synchrony deviates
from a classic distance-decay relationship. Specifically, because climate synchrony decays with distance,
growth synchrony arising from those fluctuations should exhibit a corresponding distance decay (Moran
1953, Koenig 2002). However, at larger scales, atmospheric circulation and teleconnection patterns can
impose coherent climate anomalies across widely separated regions (Koenig 2002). When distant sites
occupy the same climate domain and exhibit similar growth–climate responses, growth can also syn-
chronize (Kug et al 2010). In addition, differences in the strength of climate signal in tree-ring chro-
nologies affect growth synchrony, further complicating the synchrony-distance pattern (Fox et al 2011,
Shestakova et al 2018).
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Figure 3. Growth synchrony network of white spruce. (a) Site level synchrony network, with points representing tree-ring
sampling sites colored by degree centrality. Edges indicate significant pairwise synchrony (p⩽ 0.05). Line color reflects the
strength of synchrony, with warmer (redder) colors indicating stronger synchrony. (b) Community structure, with node colors
representing community membership detected by the Fast-Greedy algorithm. (c) Probability of synchrony within and between
communities. (d) Distribution of the three communities in climate space, defined by multi-year mean growing season temperat-
ure (GST) and precipitation (GSP), with colors corresponding to the communities (A–C) from the panel (b).

Notably, in the combined model, geographic proximity remained significant but showed a negative
effect after accounting for climate synchrony. This result contradicts the expectation under dispersal-
driven mechanisms, which predict stronger synchrony among nearby populations due to shared biotic
pressures. Biotic processes like mast seeding and spruce budworm outbreaks are often considered as
potential dispersal-related drivers of growth synchrony (Volney and Fleming 2000, Tumajer and Lehejček
2019). However, empirical evidence shows that their spatial synchrony is more strongly linked to broad-
scale climatic variation than to dispersal per se (Peltonen et al 2002, LaMontagne et al 2020). Therefore,
although the role of dispersal cannot be entirely excluded, the available evidence indicates that it is
insufficient to explain the negative effect of proximity observed here. Geographically closer sites may
occupy contrasting environments, such as coastal/interior or upland/lowland forests, resulting in diver-
gent growth-climate coupling (Nicklen et al 2019). Similarly, stands with distinct disturbance histories
(e.g. fire or insect outbreaks) may differ in stand structure and sensitivity to climate variation (Yang
et al 2022). In such cases, populations experiencing similar environmental fluctuations may show low or
even negative growth synchrony. By contrast, distant sites may share similar constraints and disturbance
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Table 1.Multiple regression on distance matrices (MRM) tests for geographic proximity and climate synchrony affecting pairwise
growth synchrony of white spruce.

Variable Coefficient R2 Variable Coefficient R2

Space-only model 0.25∗∗∗
Space+ Climate model 0.56∗∗∗

Geographic proximity 0.25∗∗∗

Climate-only model 0.55∗∗∗ Geographic proximity −0.4∗∗∗

Late winter
Precipitation 0.1∗∗∗

Late winter
Precipitation 0.05

Temperature 0.15∗∗∗ Temperature 0.19∗∗∗

Spring
Precipitation −0.01

Spring
Precipitation 0.03

Temperature 0.19∗∗∗ Temperature 0.28∗∗∗

Summer
Precipitation 0.22∗∗∗

Summer
Precipitation 0.19∗∗∗

Temperature 0.44∗∗∗ Temperature 0.35∗∗∗

Autumn
Precipitation 0.02

Autumn
Precipitation 0.03

Temperature −0.28∗∗∗ Temperature 0.08

Note: Coefficients are standardized to allow direct comparison between variables. Late winter: February–March, spring: April–May,

summer: June-August, and autumn: September–November.

regimes, resulting in stronger synchrony (Shestakova et al 2016). As such, we speculate that the negative
distance effect most likely reflects the combined influence of unmeasured environmental heterogeneity,
disturbance legacies and dispersal-related processes.

Instead, our results highlight synchronized climate as the dominant synchronizing force across spa-
tial scales. This finding align with previous studies (e.g. Haynes et al 2013), which emphasize that a
climate synchronizing agent must fluctuate synchronously. In the 20th century, temperature was the
primary control on boreal forest growth, affecting key physiological processes through both direct mech-
anisms (e.g. photosynthesis) and indirect pathways (e.g. soil thaw timing) (Fritts 2012, Babst et al 2019).
Specifically, fluctuations in late winter temperature can affect frost hardiness and soil thaw timing, both
critical for early-season water availability and the onset of growth (Makoto et al 2014, Dial et al 2022).
Likewise, spring temperature synchrony likely promotes a more uniform onset of growth processes, such
as budburst and cambial activity, leading to synchronized growth (Casmey et al 2022, Zhang et al 2024).
Summer temperature synchrony is particularly influential, likely due to two reasons. Summer temperat-
ure strongly affects wood formation by key physiological processes, like carbon assimilation (Barber et al
2004). On the other hand, summer spans most of the growing season for white spruce, during which the
majority of wood formation occurs (Zhang et al 2020). Additionally, synchronized summer precipitation
also plays a key role in growth synchrony by mitigating drought stress and ensuring water availability
during key growth phases.

4.2. Ecological implications
The growth synchrony network graph revealed that white spruce growth synchrony decreased from
northwest to southeast. Specifically, we found that white spruce in northern Northwest Territories and
Yukon showed highly synchronized growth patterns. Previous studies have shown that asynchronous
growth within a species can enhance forest resilience to disturbances by reducing the likelihood of
widespread decline during adverse conditions (Jia et al 2024, Li and He 2025). In contrast, high syn-
chrony increases the risk of collective stress during ‘bad years’, making forests more vulnerable to cli-
matic extremes (Dakos et al 2010). As such, management efforts in regions with high growth synchrony
should prioritize fostering asynchronous growth.

Practical measures to enhance asynchrony should focus on increasing structural and compositional
diversity within white spruce forests. Uneven-aged management is one effective strategy, as it promotes
stand heterogeneity while reducing tree mortality and enhancing carbon sequestration by more efficient
light use (Lafond et al 2014). Mixed-species planting can diversify climate sensitivities and expand eco-
logical niches, thereby supporting higher biodiversity (Heidrich et al 2020). Furthermore, applying thin-
ning and pollarding to individual trees can help reduce growth synchrony by alleviating inter-individual
competition and promoting greater structural complexity (Sjölund and Jump 2013). The effectiveness of
these measures, however, will depend on local site conditions, including species composition and exist-
ing management systems. Importantly, excessive desynchronization is not ecologically beneficial. Thus,
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achieving a balance between growth synchrony and response diversity is essential for maintaining the
long-term health and functioning of forest ecosystems (Zhu et al 2025).

4.3. Limitations and future directions
We acknowledge several limitations in this study. First, tree-ring samples from the ITRDB were not
strictly follow a random selection process (Zhao et al 2019). Since tree-ring research has historically
focused on climate reconstruction and growth-climate correlations, the ITRDB samples predomin-
antly derived from large trees in ecologically marginal areas, aimed at maximizing the climatic signal
in tree-ring data (Fritts 2012). As a result, these tree-ring series may be more sensitive to climate than
randomly selected trees (Klesse et al 2018), which could affect the generalization of our results, particu-
larly when scaling local observations to broader geographical ranges. To mitigate the impact of ‘big-tree
selection’, we applied the SGC coefficient to assess growth synchrony, which quantifies the directional
consistency of interannual fluctuations, regardless of variation magnitude. Moreover, statistical analysis
showed that the age distribution of trees in this study typically exhibited a slight positive skew (mean
skewness = 0.12, median skewness = 0.14), suggesting that bias from tree size selection is unlikely to
influence our conclusions. Furthermore, the strong synchrony observed among populations from dis-
tinct climate conditions and elevations implies that sampling biases related to tree size may be much
smaller than other ecological factors. Nevertheless, it is still necessary to determine whether ITRDB data
may overestimate or underestimate spatial synchrony in growth using a larger and more comprehensive
dataset.

Another limitation is the uneven spatial distribution of sampling sites, with low density in central
and eastern Canada. (i) Under-sampled regions contribute fewer short-distance pairs, typically more syn-
chronized, which may amplify the northwest-southeast contrast without altering the declining gradient.
(ii) Synchrony at a given distance varies regionally due to climatic heterogeneity. Uneven sampling may
alter the weighting of pairs within distance bins, potentially shifting the synchrony-distance curve and its
inflection point. Nevertheless, this does not change the overall distance-dependent pattern. (iii) As cli-
mate synchrony and growth-climate coupling vary across regions (Koenig 2002, Babst et al 2019), uneven
sampling may affect climate’s contribution in models. However, incorporating geographic proximity only
slightly improves model fit, confirming the dominant role of climate despite uneven sampling. Future
studies should focus on increasing spatial saturation to reduce sampling-related artefacts.

Finally, our study focused on the spatial patterns of growth synchrony and their underlying drivers,
without addressing temporal dynamics. Assessing potential temporal changes in synchrony, especially
in recent decades of accelerated climate change, is an important research priority. Such evaluation
would require larger and more up-to-date datasets, and we consider this a valuable direction for future
research.

5. Conclusions

This study advances our understanding of growth synchrony in white spruce across Canada and Alaska
by identifying its key spatial pattern and the underlying drivers. We observed a distinct biogeographical
gradient in growth synchrony, with synchrony decreasing from northwest to southeast across its range.
The relationship between growth synchrony and geographic proximity was non-linear, with synchrony
increasing at shorter distances but reversing at larger distances, deviating from the typical distance-decay
pattern. Our results suggest that synchronized climate, particularly temperature, played a dominant role
in shaping white spruce growth synchrony, while the influence of geographic proximity became minimal
after accounting for climate effects. These results highlight the need of incorporating climatic synchron-
ization when simulating and predicting tree growth synchrony dynamics.

Our findings have significant implications for forest management. Specifically, regions with highly
synchronized growth, particularly in the northern Northwest Territories and Yukon, should be prioritized
in management efforts to maintain the long-term stability and resilience of white spruce populations. In
such regions, strategies that enhance structural and compositional diversity (e.g. uneven-aged manage-
ment, mixed-species planting, thinning, and pollarding) can help reduce growth synchrony and thereby
mitigate the risk of widespread synchronous declines. Additionally, future work should focus on expand-
ing tree-ring samples to create a more extensive dataset and incorporating more detailed environmental
and biotic observations. Such efforts will deepen our understanding of the mechanisms driving spatial
synchrony in tree growth and provide more valuable insights for developing effective forest management
strategies in response to climate change.
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