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Abstract

This study investigates methodological variability across various expert labo-
ratories worldwide, with regards to characterizing the mechanical properties
of biological tissues. Two testing rounds were conducted on the specific use
case of uniaxial tensile testing of porcine aorta. In the first round, 24 labs
were invited to apply their established methods to assess inter-laboratory
variability. This revealed significant methodological diversity and associated
variability in the stress-stretch results, underscoring the necessity for a stan-
dardized approach.

In the second round, a consensus protocol was collaboratively developed
and adopted by 19 labs in an attempt to minimize variability. This involved
standardized sample preparation and uniformity in testing protocol, includ-
ing the use of a common cutting and thickness measurement tool. Despite
protocol harmonization, significant variability persisted across labs, which
could not be solely attributed to inherent biological differences in tissue sam-
ples.

These results illustrate the challenges in unifying testing methods across
different research settings, underlining the necessity for further refinement
of testing practices. Enhancing consistency in biomechanical experiments
is pivotal when comparing results across studies, as well as when using the
resulting material properties for in silico simulations in medical research.

Keywords: Biomechanical characterization, Standardization,
Methodological variability, Uncertainty
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1. Introduction

Characterization of the mechanical properties of biological tissue serves
many purposes. Firstly, it can help to improve our fundamental understand-
ing of physiological function, due to a strong structure-function relationship
for many organs and tissue systems. Secondly and as a consequence of the
former, ageing as well as various diseases are known to alter the mechanical
properties of the involved tissues, such that quantification of these alterations
can aid diagnosis and monitoring. Thirdly, in the field of tissue engineering
and regenerative medicine, it is imperative that the engineered tissues repli-
cate the mechanical behaviour of native tissues to ensure proper functioning.
Likewise mechanical data informs the design of implants, prosthetics, and
surgical tools to ensure compatibility with tissue mechanics and minimize
adverse reactions. Indirectly, mechanical properties can be used to inform
constitutive models which can in turn be used in computational models, for
various applications in the field of in silico medicine (Motiwale & Sacks,
2025). However, although the scientific literature therefore abounds with
articles experimentally characterizing the mechanical properties of biologi-
cal tissues, there are still no widely recognized testing standards for these
experiments. This shortcoming has consequences for the interpretability of
the results, especially when comparing across studies. Moreover, when this
experimental data is used to derive material properties used as input param-
eters to in silico models, the associated error and uncertainty propagates into
these simulations.

Simulation-driven medical device development and in silico trials are gain-
ing importance (Pappalardo et al., 2022; |Viceconti & Emili, 2024)). Clearly,
the quality of these simulations is of utmost importance if in silico medicine
is to take its rightful place in medical research and development. Conse-
quently and analogously to the well-known concepts of ‘good medical prac-
tice’ and ‘good laboratory practice’ (Robertson & Williams, 2009; [Stevens,
2003)), there is a growing emphasis on the development of guidelines for ‘good
simulation practice’. In 2018, the American Society of Mechanical Engineers
introduced a standard known as ‘ASME V&V 40 - Assessing Credibility of
Computational Modeling through Verification and Validation: Application
to Medical Devices’ (ASME] 2018)), and in 2023, the FDA issued a guidance
document entitled ‘Assessing the Credibility of Computational Modeling and
Simulation in Medical Device Submissions’ (FDA| 2023). For example, a re-
porting checklist for verification and validation of finite element analysis was
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made more specifically for orthopaedic and trauma biomechanics (Oefner
et al., 2021)).

Such guidelines span various aspects related to model development, verifi-
cation, calibration and validation, and focus their attention on the quantifica-
tion of the uncertainty that accumulates in each of these aspects. Apart from
modeling assumptions and discretization errors, it is intuitive that model in-
put data, whether used to calibrate model parameters or validate the model
outcomes, are an important source of uncertainty. Indeed, credible numeri-
cal simulations require input parameters and underlying acquisition methods
that are both traceable and reliable (ASME| 2018). However, where numer-
ical analysts are usually well-equipped to test the validity of their modeling
assumptions or to minimize discretization errors, not every numerical ana-
lyst has the expertise and/or facilities to assess the quality and uncertainty of
their model input data, especially when it involves data related to biological
tissue properties.

Ideally, the required material properties and their uncertainty should
come from shared, trusted databases. However, various challenges are faced
when attempting to create such a database. Firstly, depending on the con-
text of use of a simulation (Viceconti et al., [2021)), different types of material
properties might be required (mechanical, thermal, electrical, etc.). Even
when focusing on mechanical properties alone, a simulation might require
properties related to a specific material constitutive law and its characteris-
tics, such as the tensile elasticity, viscoelasticity, anisotropy, compressibility,
nonlinearity, ultimate tensile strength, pre-stress state etc. Each of these
properties can, in turn, be acquired by various test setups and methods,
such as uniaxial or biaxial tensile tests, compression tests, shear tests, in-
dentation tests, dynamic mechanical analysis, and creep tests. The selection
of the appropriate testing method depends on the tissue type, its anatomi-
cal location, and the desired application/objective to which the simulation
responds. Moreover, apart from the actual testing method, the sample col-
lection, preservation and preparation method will also influence the resulting
properties, even if such effects are still under debate (Blaker et al., 2024; |Os-
wald et al., [2017; (Chow & Zhang, [2011; Stemper et al., 2007).

The second challenge relates to the population- and subject-related vari-
ability. Indeed, material properties of biological tissues exhibit significant
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variability due to physiological and demographic factors. Sex-related vari-
ations and ethnic diversity contribute to changes in tissue composition and
structure, leading to differences in material properties for a given tissue type
(Smoljki¢ et al., 2023; |Astrand et al., 2011). Age-related changes, such as
decreased elasticity and increased brittleness in tissues like skin and bone, or
other pathological conditions, induce further variability (Kirilova-Doneva &
Pashkoulevay, [2022; Mirzaali et al. 2016)). Even within a subject, properties
will vary depending on the location within the body (Krueger et all 2011).
Ideally, a material properties database would encompass this broad repre-
sentation, which would require the collection of an extremely large range
of experimental data. Moreover, in certain research communities, there ap-
pears to be an unsubstantiated trust in the ‘known values’ taken from the
literature. As/Hammer & Klima/ (2019) also noted in their review, the imple-
mentation of further region-specific studies is partially inhibited, as reliance
is placed on a supposedly existing broad database, instead of carrying out
new studies adapted to the research question. Using numerical studies of
the biomechanics of the sacro-iliac joint as an example, they point out the
frequent nested literature references and the often accompanying decrease in
relevance of the basic source for the intended loading scenario.

With that in mind, perhaps the most important challenge related to build-
ing up such a database is related to methodological variability. Indeed, even
when comparing literature results of the same tissue type of a similar an-
imal strain or patient group, tested according to - reportedly - the same
method, results vary widely. As mentioned, there are currently no estab-
lished standards for measuring the material properties of biological tissue,
nor is there a unified approach for sample preparation and storage, or for
reporting and assessing the obtained results. Some groups have proposed
guidelines for specific aspects or applications, e.g. [Kurz et al.| (2023) have re-
cently suggested a standardized approach for characterization of the human
lumbopelvic system, Wale et al. (2021)) have investigated sample preparation
and optimal sample shape to induce reproducible failure for tensile testing of
musculoskeletal soft tissues, Scholze et al. (2020) have proposed a clamping
system for simple and reproducible sample clamping. Though valuable, these
studies are limited to a single research group, and it remains to be seen if and
how they will be adopted by the scientific community. |Lin et al.| (2024]) have
recently performed a systematic review of uniaxial tensile testing of human
soft tissues across research groups. They found large variations in sample

6
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shape and especially underreporting of various aspects of the protocol, in-
cluding the clamping mechanism. Similarly, Fehervary (2018) investigated
variations in planar biaxial testing of arterial tissue, both in experimental
setup and data processing, and formulated guidelines for testing and report-
ing thereof. Although this lack of standardization and high variability is
commonly known, to the best of our knowledge, a quantitative analysis of
the current degree of methodological variability has not yet been attempted.
It is therefore an essential first step towards standardization, ultimately lead-
ing to reliable material properties, including their uncertainty, which can be
used in computational analyses for in silico medicine.

In 2019, the Virtual Physiological Human institute together with the Avi-
cenna Alliance launched a task force on tissue characterization, out of which
the C'Bio (C'Biol [2025)) initiative was born, an acronym for ‘Community
Challenge towards Consensus on Characterization of Biological Tissue’. Con-
sidering the wide range of properties, tissue types and testing methods, the
decision was made to direct the initial focus to ‘simple’ uniaxial tensile testing
(i.e. the method most commonly found in literature) of porcine aorta. This
paper first describes the methods employed to compare the results obtained
by 24 expert laboratories from around the globe who characterized biological
tissues and synthetic samples during two test rounds. In a first testing round,
laboratories were instructed to use their own established method, to allow
an unbiased evaluation of existing methodologies. In a second testing round,
participants worked together to create a ‘consensus methodology’ and were
then instructed to perform their tests accordingly.

2. Materials & methods

2.1. Participant recruitment € overall methodology

The initiative was announced in the fall of 2020 through various com-
munication channels. All research groups with experience in material char-
acterization of biological tissue were invited to join, provided the following
prerequisites:

e the availability of infrastructure suitable for uniaxial tensile testing of
samples within a length range of 10-60 mm and a linearized Young’s
modulus range of 0-5 MPa,

e the clearance to test biological tissue in the laboratory,

7



183

184

185

186

187

188

189

190

191

192

193

194

196

197

198

199

200

201

202

203

204

205

206

207

210

211

212

213

214

215

216

217

e a demonstrated experience in mechanical experiments on biological tis-
sue through scientific references,

e the willingness to publicly share the experimental results.

In round 1, 24 laboratories from all over the world participated (see Fig-
ure S1 in the supplementary material, section , for a map), and
19 of them further participated in round 2. The participants that were no
longer able to participate indicated that this was due to a lack of budget
and /or person power.

For both testing rounds, all samples were procured and prepared cen-
trally and shipped as described in Section 2.2l In round 1, 24 laborato-
ries performed mechanical testing and analysis according to their preferred
methodology, with only a limited number of instructions given (see Section
. After testing, raw and processed data were collected and analysed cen-
trally according to the methods described in Section 2.4, When providing the
raw and the processed data, participants were also asked to fill in a survey,
querying on various aspects of the testing methodology they used. Following
the central analysis, the observations were discussed with the participants
over multiple online meetings, and a consensus protocol was established and
used in round 2. The full protocol as shared with the participants can be

found in the supplementary material (section [Appendix A).

2.2. Sample preparation € shipping

2.2.1. Biological tissue

In both testing rounds, 2 sets of a proximal and a distal segment of one
porcine descending aorta was prepared per participant at FIBEr, the KU
Leuven core facility for Biomechanical Experimentation. Each round, aortas
were collected from 70 animals from a local slaughterhouse, and brought to
FIBEr in physiological medium (saline solution) at 4°C. Care was taken to
minimize biological variability, by harvesting material as much as possible
from animals of the same strain, average weight and age, and distributing
these randomly over the participants. From each aorta a distal and proxi-
mal segment of approximately 2 cm in diameter and 5 cm in length was cut,
with a small proximal anterior incision, to allow tracking of the orientation of

the sample (see Figure S2 in the supplementary material, section [Appendi
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. Samples were placed in individual containers with physiological medium,
while keeping track of the animal and the location (proximal vs distal). All
samples were transferred to a -80°C freezer inside the containers within 8
hours of excision from the animal, and stored in FIBEr until shipment. The
samples were shipped to each of the participants on dry ice in styrofoam
boxes. Participants were instructed to keep the aortic tissue in frozen condi-
tions (i.e. at -80°C) until they were ready for testing, or to start the thawing
and testing process immediately if no freezing capability was available in
the laboratory. Upon receipt of the package, the participants verified that a
sufficient amount of dry ice was still present in the box to ensure proper sam-
ple preservation. For all samples, the duration of frozen storage was recorded.

2.2.2. Synthetic samples

In round 1, two sheets of synthetic elastomer material of approximately
4.5x9cm were shipped to the participating research group along with the
biological tissue, in casu ‘Leartiker-K73” and ‘Leartiker-K51’, provided by
Leartiker s.a. (Spain).

In round 2, to use a material with more biologically relevant properties
as compared to round 1, samples were 3D printed by Materialise NV (Bel-
gium) using the company’s proprietary HeartPrintFlexPlus (HPF+) material
(Schickel et al., |2019) in the dogbone shape as agreed upon in the consensus
protocol (see section . In both rounds, the synthetic material was kept
and shipped in dry conditions at ambient temperature.

2.83. Mechanical testing

2.3.1. Round 1

In the first testing round, only minimal instructions were given to par-
ticipants. This was done on purpose to allow for an objective comparison
of the participating laboratories preferred methodologies. It was requested
that all tests were executed by the same person, to avoid any inter-user vari-
ability. Also, the same equipment and methodology had to be used for both
the aortic and the synthetic samples. The only exception in the process was
that the synthetic material should always be tested in dry conditions.

The evening before the testing day, the participating groups placed the
aortic specimen in a fridge (4°C) to thaw overnight. This allowed a thawing

9
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time of around 16 h, whereby the exact time per specimen was recorded.
Next, the specimens were divided into test samples. From each tubular seg-
ment, at least 3 uniaxial test samples were prepared, with geometry and
cutting method varying per participant. Proximal and distal segments were
used to prepare circumferentially and longitudinally oriented samples, re-
spectively. Participants were instructed to take a picture or make a sketch to
indicate the location of each of sample with respect to the original specimen.

For the synthetic specimens, at least 6 samples were cut out of each pro-
vided sheet, in a direction of choice since the material is considered to be
isotropic. Figure S3 in the supplementary material (section
gives an overview of all samples (biological and synthetic) tested per partic-
ipant.

For each (biological and synthetic) sample, the undeformed sample thick-
ness, undeformed sample width in the neck region, and undeformed length
of the neck region were measured according to each participant’s method-
ology.Finally, participants also selected individually the appropriate loading
protocol and data processing methodology to determine the elastic stiffness
moduli at various strain levels and the ultimate tensile strength.

2.3.2. Round 2

In round 2, the same thawing instructions were given as in round 1. After
thawing, test samples were excised from the aortic segments and at least three
circumferentially oriented samples were prepared from the proximal segments
and three longitudinally oriented samples from the distal segments. This
time, the samples were cut into a dogbone shape using a cutting tool that
was shipped to the participating research group along with the tissue. The
dogbone shape and cutting tool are shown in Figure[Th and b and more details
are available in[2.2] The time required for each phase in the preparation and
testing protocol was logged for each sample.

Participants were required to measure the undeformed width in the neck
region and overall length of each sample using calibrated images taken with a
high-resolution camera on millimeter paper. For the thickness measurement,
the sample was inserted into a tool that was provided to the participants,
shown in Figure [Ik. This tool gently squeezes the sample with the help of
identical elastic bands between two plates with known dimensions, such that

10



291

292

294

295

296

297

298

299

300

301

a) Overall length (OL) = 60.1*

Radius (R) =3.5
. B0 =
Radius (R) [ : =
Width (w)=4 — 2% &
o5 T
s AT o TN\ R
. Reduced section (RS)
=16
Grip 595“9;‘ (GS) Distance between shoulders (DS)
= =25.9
C) d)
- u [mm]
Top view FIN]

Figure 1: In round 2, a) samples were cut into a dogbone shape as agreed upon by all
participants. *These dimensions can be increased if more gripping surface is required.
All dimensions are in millimeter. b) A cutting tool was provided to ensure consistency
in the shape. ¢) Calibrated pictures were taken during sample preparation for dimension
measurements. Top: aortic sample on millimeter paper. Bottom: synthetic sample in
a custom-made thickness measurement tool, tightened with elastic bands. d) Loading
protocol for round 2, showing actuator displacement u and expected reaction force f as
a function of time ¢. Time ¢; corresponds to the time at which the threshold force of f;
is reached for the first time. Times t,; and t,. correspond to the start and end of the
preconditioning cycles, during which a preload amplitude u,, is applied for 10 cycles. Time
t¢ corresponds to the start of the final upward ramp and ¢,.¢ corresponds to the assumed
zero strain state.

the sample thickness can be derived from a side view image focussed on the
tissue surface.

Participants were advised to use digital image correlation (DIC) to track
sample deformation during the test, which required application of a speckle
pattern on the sample’s intimal surface, by sprinkling graphite powder on a
piece of paper and subsequently placing the intimal side of the sample onto
the paper. Alternatively, if no DIC system was available, participants used
a marker tracking technique, placing four markers at ~6 mm intervals in the
central area of the sample.

Similar to round 1, the participants were asked that all samples were
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tested using the same equipment by a single operator. After sample accli-
matisation in saline solution at 37°C for approximately 10 minutes, the load
cell was zeroed. For a horizontal set-up, this was done before mounting the
sample, whereas for a vertical set-up, this was done after the sample was
fixed in the upper clamp. During testing, the biological samples were im-
mersed in a saline bath at 37°C, whereas the synthetic samples were kept in
dry condition.

The specific loading protocol as depicted in Figure [Id was applied. After
reaching a threshold force f; = 0.1 N, 10 preconditioning cycles were applied
in the physiological loading regime with an amplitude u, = 8mm. This
was followed by a displacement-controlled ramp loading until failure at a
displacement rate of 1.3 mm/s. During the test, resulting displacement,
force, applied strain, local samples strains, and where applicable, images,
were acquired with a minimum sampling rate of 10 Hz. The full description
of the loading protocol is provided in the supplementary material (section

Appendix Al see Instructions_2nd_testround.pdf).

2.4. Data analysis

2.4.1. Method variation

In addition to the testing data submission, in round 1 the participants
were also requested to fill in a questionnaire to report their choices regarding
pre-, intra-, and post-testing conditions. These included pre-testing stor-
age conditions, test sample preparation and shape characterization, testing
device characteristics, and testing protocol.

While the consensus protocol was used in round 2, the research groups
were asked if they had any intentional or unintentional deviations from the
protocol to identify potential sources of variability.

2.4.2. Data submission

For each test, a table as shown in supplementary material was filled in,
which differed slightly depending on the testing round. Apart from the afore-
mentioned sample geometry information, actuator displacement, load cell
values and local stretch estimation in the testing direction were obtained as
a function of time. The participants were also asked to indicate whether the
sample ruptured in the central area or at the clamp site.
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2.4.3. Data processing

Dimensions of interest. In round 2, the method and software used to
measure dimensions from the calibrated images (see section were left
to the teams’ discretion.

Engineering stress & stretch. The raw force data was divided by
the cross-section area of the reduced section to compute the raw engineering
stress. The stretch data was retrieved by the participants using their own
DIC analysis or marker tracking software. Subsequently, the raw stress and
stretch data of all groups were processed by two data analysts to avoid any
processing errors, before being synthesized by just one of them using Mat-
lab 2019a and 2023a (Mathworks.com): only the test data between the end
of preconditioning and the highest stress value was kept, filtered (forward-
backward moving average with a window of 5%) and resampled to 1000
points. A qualitative double-check of the cleaned data against the raw data
was performed. Per step of 0.1 stretch ratio, a tangent modulus (TM) was
computed using a least-squares line-fitting.

Comparison of stress/stretch curves. Various parameters for each
team and per type of sample (i.e. a set) were computed to compare the
results. The mean and standard deviation of the stress was computed at
every 0.1 interval of the stretch, and the mean and standard deviation of the
stretch was then computed at every 0.1 interval of the stress. Next, the mean
stress/stretch curve a set of curves was computed point per point. Le, for
any given stress/stretch point of the 1000 points discretizing each curve, the
mean of all the values at that point within the set was used.

Analytic uncertainty on stress. A theoretical uncertainty on the
obtained stress values U(o) was determined for each team and sample type,
incorporating measurement uncertainties as follows:

Vo) = |0 ((@)2 (U, (@)2) )

In the above equation, o represents the engineering stress (in MPa), N is
the normal force and w and ¢ are the undeformed width and thickness of
the sample, respectively. The measurement uncertainty on the force, U(N),
is considered the same for all groups and on average assumed to be 0.1 N
(based on a ISO 376 class 1 load cell measuring around 20 N), while the
uncertainties on the width, U(w), and thickness, U(t), are both set to 0.02
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mm (based on the maximum permissible error for external jaws on calipers
with measurement length 0-5 cm, according to ISO 13385-1). The notation
+ represents the mean value of each parameter for a given team and sample
type.

Zero-strain state In the consensus protocol, the zero-strain state of the
final upward ramp was considered to correspond to the time point ¢,.; (see
Figure [Id) at which the threshold force ty = 0.1 N was reached. However,
during post-processing to increase consistency, this was modified to the strain
state corresponding to the time point at which the measured stress was equal
to 2xU (o) (see equation[l)). This was equal to 0.03 MPa for biological samples
and 0.06 MPa for synthetic ones.

3. Results

3.1. Submissions

In round 1, 20 participants successfully submitted their results for both
the biological and synthetic data. In round 2, we received 17 successful
submissions for the synthetic samples and 13 for the biological samples.

3.2. Method variation

The questionnaire results, regarding the choices of the research groups
in round 1 for pre-, intra-, and post-testing conditions, are given in Figure
together with how many groups (in %) employed a certain technique or
device.

Although the research groups were asked to use the consensus protocol
in round 2, intentional or unintentional deviations from the protocol were
observed by some groups and summarized in supplementary material (sec-
tion [Appendix _Al). For example, as the surface of the synthetic samples
started showing cracks during testing, the stretch measurements could not
be obtained with the intended DIC approach. Hence, many research groups
reported the clamp-to-clamp distance instead. Another common deviation
related to the removal of supposedly surrounding connective tissue in the
biological samples. Some groups removed this tissue, possibly removing the
adventitia along with it, others did not. Besides these, there were some
occasional, unintentional deviations from the loading protocol, such as dif-
ferent preconditioning displacement or time point at which load-taring was
performed.
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*
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Wrapped in moist tissue paper

*
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Figure 2: Method variation in round 1 and the percentage of groups using a certain
approach. Parameters fixed in the consensus protocol of round 2 are marked with ’«’.
Test criteria not constrained by the consensus protocol in round 2 are underlined.

3.8. Main results

An overview of all the engineering stress vs. stretch curves obtained by the
participants for both testing rounds is given in Figure |3l These curves allow
to obtain an impression of the overall variability in stress-stretch response

and ultimate strain values of the tested samples.
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Figure 3: Engineering stress (in MPa) as a function of stretch obtained from uniaxial
tension test until rupture, categorised by specimen type and separated per testing round.
The average of all curves corresponding to each specimen type and testing round is repre-
sented in black.

Figures [fa] and [4b|show the stress vs. stretch curves obtained per research
group on aortic tissue in the longitudinal direction during round 1 and 2 re-
spectively. The corresponding curves for the circumferential direction and for
the synthetic samples can be found in the supplementary material (Figure S4
and S5). The graphs also show the standard deviations of stress and stretch
values at certain intervals. Figure 5|zooms in on this standard deviation and
how it varies between research groups and between rounds. Now once again
grouped for all participants, the graphs show the coefficient of variation of
stress and stretch at two specific stretch levels. The graph also shows the
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percentage of research groups that fall under the arbitrary threshold of 0.33
in terms of this coefficient of variation.

The distributions of the tangent moduli measured at 1.2 and 1.4 stretch
are illustrated on Figure [0] and [7], respectively. To consider both the stress
and strain measurement variabilities in the assessment of the tangent moduli,
Figure [8a illustrates the coefficient of variation of stress and stretch at 1.2
and 1.4 stretch, for each group and for the various sample types. This figure
discriminates the groups that fall under the arbitrary threshold of coefficient
of variation of 0.33 for both stretch and stress.

The distributions of the measurements of the thickness and the width of
the samples among the groups and for both rounds are illustrated on Figure
9 and Figure [10] respectively. The coefficient of variation values of these
measurements are illustrated on Figure [8b]

4. Discussion

Even for a relatively simple method like uniaxial tensile testing, the re-
sults of round 1 demonstrate staggering variability between the participating
laboratories. This is true for the obtained stress-stretch curves (Figure |3)),
the corresponding coefficient of variation values (Figure [5)), as well as the
resulting tangent moduli (Figure . Looking at Figure , one can also ob-
serve a large variation in the choices made regarding the test protocol in this
first round. However, statistical analysis (not shown here) could not identify
any correlation between these protocol variations and the results. This im-
plies that the observed variability cannot be directly attributed to a single
queried aspect of the protocol. Indeed, the observed variability is a superpo-
sition of biological variability, methodological (or aleatory) uncertainty and
methodological (or epistemic) discrepancy.

4.1. Variability versus uncertainty in round 1

To minimize biological variability, aorta samples were harvested from an-
imals of the same age, weight and strain, as detailed in section [2.2] and
randomly distributed over the participants. However, even in such a popu-
lation, biological variability is expected. Therefore, in an attempt to isolate
the effect of biological variability, we also integrated synthetic samples into
our analysis, as they suffer far less from intrinsic variability. Figure [8al shows
how the overall coefficient of variation is indeed significantly reduced for the
synthetic materials compared to the biological tissue, but still reaches levels
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close to 50%.

A rough estimate of the degree of methodological uncertainty on the stress
measurement was made using equation [1, based on estimates of the accuracy
of the used load cells and geometry measurement methods. Figure [4a] shows
how this estimated measurement uncertainty relates to the resulting stan-
dard deviation in stress. For most groups, this uncertainty represents only a
fraction of the total observed variability, even for the synthetic material (see
the supplementary material).

A significant portion of the observed variability must therefore be at-
tributed to methodological variability, where we can in turn distinguish be-
tween intra-research group variability (also known as repeatability) and inter-
research group variability (also known as reproducibility). Although one
might expect the former to be minimal, given the instructions to test consis-
tently, i.e. on the same day and by the same operator, the results indicate
a significant and varying amount of intra-research group variability. Conse-
quently, one might expect this repeatability to correlate with the reported
protocol variations (see Figure . However, as mentioned, further statistical
analysis did not reveal any correlation between these protocol variations and
the actual results.

To disentangle sources of variability, one could attempt to obtain infor-
mation on biological variability from other studies reported in literature.
Indeed, there are several studies that report mechanical properties of aorta.
For example, [Shahbad et al. (2025) report on regional variations in stiff-
ness of the human aorta along its length, whereas Ryu et al.| (2022) report
region-dependent stiffness parameters of porcine aorta. Both studies show a
response and degree of variability (per region) in the same order of magnitude
as our results. Of course, and this is the main message of our publication,
it is not possible to distinguish methodological variability from biological
variability in any of the studies. Indeed, there is no reason to assume that
other laboratories would not suffer from the same degree of methodological
variability as our reported intra-research group variabilities.

4.2. Consensus protocol and its trade-offs

Therefore, in round 2, we aimed to minimize methodological variability
of as many aspects of the protocol as possible, leading to a lengthy consen-
sus protocol. All participants also used the same cutting tool and thickness
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measurement tool in this second round. Still, in this quest for a harmonized
protocol, we needed to consider two trade-offs. The first was a trade-off
between methods that are most likely to yield biologically relevant results
and methods with a lower complexity. The latter are more accessible for a
broad group of researchers, and might also induce a lower amount of vari-
ability. As an example, it is easier to test samples in dried conditions than in
physiological, submersed conditions. The latter requires mounting of a fluid
bath, which makes it harder to mount the sample, and, depending on the
orientation of the set-up, puts restrictions on the type of load cell. Although
the dry state of the sample might not alter the intrinsic variability between
samples compared to a submerged state, the extra requirements and manip-
ulations could induce further methodological variability. Still, we opted for
testing in immersed conditions. A counterexample in this respect is the fact
that all tissue was frozen until the test day, rather than testing the tissue in
fresh conditions. Whereas fresh tissue testing is, of course, more biologically
relevant (Chow & Zhang), 2011; [Stemper et al., 2007)), freezing the tissue was
necessary to allow for uniformity in the tissue preservation step. The second
trade-off was to be made between methods that are likely to yield the most
unbiased results and methods that were available to most participants (in
terms of infrastructure and personnel requirements). As an example, the
thickness measurement method should ideally not compress the tissue (Kim
et al., |2011; |O’Leary et al., 2013) or correct for any compression during the
measurement (Schwarz et al.; 2023)), but requires specific hardware and soft-
ware that was not available to all participants, which is why we opted for
the supplied thickness measurement tool.

ASTM D412 is a common standard to characterize mechanical properties
of rubbers and elastomers using a tensile test. Our resulting consensus pro-
tocol deviates from this standard in various ways. Firstly, we used a lower
displacement rate (1.3 mm/s vs. 500 mm/min) to approximate ‘physiological’
loading conditions. Secondly, where the standard suggests a fixed temper-
ature, we allowed variations between laboratories in ambient temperature
when testing the synthetic samples, which might contribute to the variabil-
ity of these measurements. Due to the limited size of an aorta, our chosen
dogbone shape was smaller than the standard, especially regarding the width
of the grip section (8.1mm vs. 25mm) and the length of the reduced section
(16mm vs. 33mm). This reduced size and aspect ratio might lead to a non
uniform strain field within the area of measurement (Lin et al., 2024).
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4.3. Variability on geometrical measurements

Despite efforts to reach a consensus on the testing methodology, the sec-
ond round did not display significant improvement in the quantities of inter-
est. One metric that was however drastically improved was the variation on
the sample width measurement (see Figures and . This makes sense
given the fact that this dimension was not specified in the first round, whereas
all participants used the same cutting tool in the second round. Thickness
measurement variability was also improved (as can be observed from the re-
duced coefficient of variation of the thickness measurement in Figure ,
but not to the same extent as the width measurement. This may be ex-
plained by a greater variation in the thickness compared to the width of the
samples, as the samples were prepared using the cutting tool. Of course,
release of residual stresses may still have led to some width variation in the
samples. Secondly, the samples are approximately twice as wide as they are
thick, reducing the signal to noise ratio for the latter measurement. The
variability on the thickness measurement is indeed significantly lower for the
synthetic samples in both rounds, although one can notice an outlier group
for the measurements on synthetic 1A samples. Apparently, this group had
used an optical laser measurement method, which suffered from laser light
penetration for this sample type, yielding a systematic error in their results
(O’Leary et al., 2013).

4.4. Variability on stress-stretch curves and tangent modulus

Figures |5| and [8al illustrate how the improvements on the dimension mea-
surements did not propagate to the resulting stress-stretch curves or tangent
moduli. For low stretch values, coefficient of variation levels are even slightly
increased, and there is a decrease in research groups reaching the threshold
value of coefficient of variation for the longitudinal stress-strain behaviour of
the aorta. For the higher strain level, we do observe a reduction in coefficient
of variation levels and a higher number of participants reaching the thresh-
old, but the improvement is far lower than initially anticipated.

An explanation for this lack of improvement in terms of tangent modulus
variability could lie in the following: due to the standardization of the zero
strain state in the consensus protocol, the origin of the curves is more ho-
mogeneous and the curves have therefore on average shifted towards the left,
leading to higher stresses for a certain stretch level (see Figures |§| and . As
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a consequence, the values of the tangent moduli obtained in round 2 are sig-
nificantly higher than in round 1, increasing the amplitude of their variability.

In all cases, we can observe less variability for synthetic samples than
for aortic samples. In round 2, all participants are below the coefficient
of variation threshold value for the stress-stretch behaviour and the overall
coefficient of variation in tangent modulus is lower for both stretch levels.
The resulting tangent modulus is also significantly higher for the synthetic
material used in round 2 compared to those of round 1. Indeed, a different
material was used, which at least at low stretch levels, matched the average
tangent modulus of the aortic material more closely.

4.5. Remaining sources of variability

The estimated methodological uncertainty on the stress measurement
(equation is significantly smaller than the observed one, even more so
for round 2 (see Figure . This means that much of the variability is still
due to other factors, a number of which are discussed below.

e Stretch measurement uncertainty - Either marker tracking or DIC
was performed in round 2. The reliability of the former can be affected
by marker placement accuracy and tracking resolution, which was not
harmonized between the participants. Also for DIC, its reliability de-
pends on the quality of the speckle pattern, the resolution of the imag-
ing system, as well as on software analysis settings, as was investigated
at length in a series of ‘DIC challenges’ (Reu et al. 2018, 2022)). Nev-
ertheless, these DIC challenges were not specifically aimed at biological
tissue applications, which pose particular challenges. For example, im-
mersion of the sample in a water bath possibly causes optical distortion,
speckle pattern application should ensure properly adherence to the tis-
sue, not cause or require dehydration of the tissue, and last through
large deformations (Lionello et al. [2014). The sample shape, shorter
than the ASTM recommendations for synthetic materials, can induce
an inhomogeneous deformation pattern, the degree of which should be
investigated (Lin et al., [2024). These inhomogeneities should be dealt
with, either through a sample-size specific correction factor, or by ap-
plying DIC rather than marker tracking where possible.

e Zero-strain state - The samples were considered to be in their zero
strain state at the start of the test, specifically at 0.03 MPa for biolog-
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ical samples and 0.06 MPa for synthetic ones. This stress-based defi-
nition clearly induces error as well as uncertainty proportional to the
force and surface area measurement uncertainty. Moreover, it is gen-
erally know that biological tissues exhibit residual strains (Vaishnav &
Vossoughil, [1983)), further confounding the definition of the zero-strain
state.

Adherence to the testing protocol in round 2 - Despite the pro-
vided instructions, we observed variations in how different groups ad-
hered to the testing protocol. For instance, some groups removed the
connective tissue of the adventitial layer while others did not. The
adventitial layer is known to be collagen-rich and therefore contribute
significantly to the nonlinearity of the stress-stretch curve. Addition-
ally, there were discrepancies in the applied preconditioning cycles and
in the definition of the state to be reached before starting the final
ramp loading. This might be attributed to misunderstanding of the
instructions, but also due to the incompatibility of certain testing ma-
chine controllers w.r.t. the desired protocol. These deviations are doc-
umented in detail in the supplementary material (see ProtocolDevia-
tionsRound2.pdf). Note also that the hypothesis was made that each
participant used calibrated sensors and testing machines, for example
according to ASTM E4 standards, but this was not explicitly verified.

Intra-group variability - Some teams exhibited greater intra-group
variability in round 2 compared to round 1. This could be attributed to
the fact that they were following a testing protocol different from their
usual practices. For example, managing samples in an immersed test
environment can be more challenging and may introduce additional
variability, especially when the user is still going through a learning
curve.

Sample misalignment - For highly anisotropic samples, ensuring that
samples are cut precisely along the circumferential or longitudinal di-
rection is crucial for consistent results. Misalignment can lead to vari-
ations in the mechanical properties measured, as the orientation of the
fibers in the tissue can significantly affect its behavior. Careful atten-
tion to cutting and aligning the samples is necessary to minimize this
source of variability, but can never be fully excluded.
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e Variability of the synthetic materials - The synthetic samples were

considered as isotropic and homogeneous, although it is known that
the manufacturing process may introduce a flow-related anisotropy and
other imperfections. Hence, even for these materials, it is important
to differentiate methodological variability from production-related vari-
ability.

Participant preferences - Certain aspects of the testing protocol
were left to the discretion of the participants, such as the orientation
of the testing device (vertical vs horizontal), the type of clamps used
(pneumatic or manual). Narrowing this down would have led to a much
smaller number of participants, which is why this trade-off was made.
Scholze et al. (2020) have proposed an easy-to-fabricate clamping sys-
tem for uniaxial tensile testing, that could be investigated for use in
future testing rounds.

Number of test samples - 6 samples were tested per condition per
research group, each time coming from two different animals. This
number is based on previous experiments combined with the practical
limitations on the number of aortas that could be collected from the
slaughterhouse. Ideally, a dedicated power analysis of the current re-
sults should be performed to reveal the required number of tests for
future testing rounds for this specific test and sample type.

4.6. Future work

This pilot campaign serves as an exploration of the current landscape,
highlighting the existing variability in the mechanical testing to characterize
biological tissues. As such, it marks only the start of a much needed effort
to further quantify and minimize this variability, and the following areas of
future work have been identified.

e Further statistical analysis of the data should be performed to help

identify specific sources of variability. Also, even more detailed analysis
of each of the participants’ submissions might uncover further devia-
tions from the protocol.

e Each of the above listed remaining sources of variability accounts for

just a portion of the overall variability. For example, when observing
the degree of anisotropy of the biological tissues tested here, one could
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argue that the difference between the circumferential and longitudinal
behavior is much smaller than the overall variability, such that sample
misalignment isn’t such a big issue. Indeed, the challenge is not only to
identify sources of uncertainty, but also to rank each of these sources in
terms of their relative importance. Once a clear overview and ranking
of these sources of variability is obtained, further fine-tuning of the
consensus protocol can be performed after which a new test round can
be launched.

To assess the impact of operator variability, it would be beneficial to
have the same operator perform the test on different set-ups. In other
words, rather than sending samples around, one could exchange re-
searchers. Organising training sessions or workshops for all participants
could help improve consistency in following the testing protocols.

The shape and amplitude of the stress-stretch curves of all the syn-
thetic materials deviate strongly from those of the curves for biological
samples. This severely limits the relevance of these synthetic samples
in terms of protocol verification capacity. Indeed, these synthetic sam-
ples do not exhibit the characteristic nonlinear stiffening behaviour,
and this absence of a so-called ‘toe-region’ significantly reduces the
sensitivity to slight differences in strain. Therefore, for future testing
rounds, we need synthetic materials that do exhibit this nonlinear stiff-
ening behaviour. Possible candidates are PVA hydrogels (Millon et al.,
20006)), fabric-reinforced polymers (Zhalmuratova et al., 2019) or melt
electrowritten scaffolds (Mirani et al., 2024). A thorough examination
of these materials is required to ensure maximal resemblance to aortic
tissue with minimal variability due to the production process, storage,
etc.

To generalize our findings it is necessary to expand the study to include
other types of tests and tissues. This can help to identify whether the
observed variability is specific to certain tests or tissues, or if it is a
more general issue.

This first C*Bio campaign serves as a wake-up call that current method-
ological variability is too large to enable reliable comparison of results be-
tween research groups. This undermines the credibility of resulting material

24



702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

properties reported in literature, and their consequent use in in silico simu-
lations. This study has made it clear that proper uncertainty quantification
is essential, and that through community effort we should aim to further
increase the quality of our mechanical testing methods and reduce the un-
certainty to a workable level.
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Appendix A. Supplementary material

All the supplementary material can be found in a repository on Zenodo
through the following link.

https://zenodo.org/uploads/141794327token=eyJhbGci0iJIUzUxMi
J9.eyJpZCI6I jR1IMzMEMGIyLTNIYTItNGY4NSO4ZT11LWFhMjA2ZTMzN2(yNiI
sImRhdGEiOnt9LCJyYW5kb20101J jMGZmZDUyZWN1ZDIzYZzc3MTYwN jAyMmR1IN
JZhYzAwNyJ9 . PG4xkyAfg2JTQuDuzZfFh341z2F2nWUedUd9D33ey0aP1AD4s4X
TtyyJpmtbftX140KjP4kSFhu8GZC4Z1iJhRfA

Note to reviewers: This link will be shortened in the final submission,
once the repository is published.
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Figure 4: Engineering stress (in MPa) - stretch curves of longitudinal specimen types
obtained in (a) round 1 and (b) round 2, grouped per participating research group indicated
in the top left corner. Vertical lines represent the standard deviation (SD) of stress values
at stretch levels of 1.1, 1.2, 1.3 and 1.4. Horizontal lines indicate the SD of stretch values
at the mean stress value corresponding to these stretch levels. Measurement uncertainty
on the mean stress value is shown at each stretch level, accounting for a 0.1 N load cell
uncertainty and 0.02 mm uncertainty in specimen thickness and width measurements.
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Figure 5: Coefficient of variation (CV) of engineering stress versus CV of stretch at two
specific stretch levels, 1.2 and 1.4. CV values are calculated per research group. Research
groups for which both CV values fall within the threshold of 0.33 are represented by
dots, while those with either CV value exceeding this threshold are marked with ‘x’
markers. The percentage of research groups whose CV values remain within the threshold
is indicated on each plot. The data are organised by specimen type and separated by
testing round.
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Figure 6: Tangent modulus of the stress-stretch curve at 1.2 stretch per research group,
organised by testing round and specimen type. Individual moduli are represented by
‘x’ markers, while the mean for each research group is indicated by a dot and first- to
third quantile (Q1-Q3) values are shown as bars. The overall mean and Q1-Q3 values,
aggregated across all research groups, are depicted by a line and shaded band, respectively.
A density plot is included to represent the distribution of all moduli for each specimen
type and testing round, providing insights into the data distribution and variability.
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Figure 7: Tangent modulus of the stress-stretch curve at 1.4 stretch per research group,
organised by testing round and specimen type. Individual moduli are represented by
‘x’ markers, while the mean for each research group is indicated by a dot and first- to
third quantile (Q1-Q3) values are shown as bars. The overall mean and Q1-Q3 values,
aggregated across all research groups, are depicted by a line and shaded band, respectively.
A density plot is included to represent the distribution of all moduli for each specimen
type and testing round, providing insights into the data distribution and variability.
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Figure 8: Bar plots showing the coefficient of variation (CV) of (a) the tangent modulus
of the stress-stretch curve at 1.2 and 1.4 stretch values, and (b) thickness and width mea-
surements. CV values are represented for each research group across different specimen
types, separated by testing round. The overall CV value, calculated by aggregating mea-
surements across all research groups for each specimen type, is represented by a line. The
corresponding sample size is annotated adjacent to the line.
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Figure 9: Specimen thickness measurements per research group, organised by testing round
and specimen type. Individual measurements are represented by ‘x’ markers, while the
mean for each research group is indicated by a dot and first- to third quantile (Q1-Q3)
values are shown as bars. The overall mean and Q1-Q3 values, aggregated across all
research groups, are depicted by a line and shaded band, respectively. A density plot is
included to represent the distribution of all measurements for each specimen type and
testing round, providing insights into the data distribution and variability.
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Figure 10: Specimen width measurements per research group, organised by testing round
and specimen type. Individual measurements are represented by ‘x’ markers, while the
mean for each research group is indicated by a dot and first- to third quantile (Q1-Q3)
values are shown as bars. The overall mean and Q1-Q3 values, aggregated across all
research groups, are depicted by a line and shaded band, respectively. A density plot is
included to represent the distribution of all measurements for each specimen type and
testing round, providing insights into the data distribution and variability.
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