

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/181920/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Felippe, Igor S. A., Babbage, Thalia L., Shaheen, Rajaa, Bassetto, Marcella, Fan, Jui-Lin, Pauza, Audrys, Gold, Olivia, Thakkar, Pratik, Dawes, Matthew, Bates, Melissa L., McBryde, Fiona, Fountain, Samuel J., Fisher, James P. and Paton, Julian F. R. 2025. Vitamin B6 (pyridoxal 5' phosphate) antagonizes carotid body P2X3 receptors in hypertension. Cardiovascular Research, cvaf195. 10.1093/cvr/cvaf195

Publishers page: https://doi.org/10.1093/cvr/cvaf195

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

3536

2 receptors in hypertension 3 Igor S A Felippe¹, Thalia L Babbage¹, Rajaa Shaheen², Marcella Bassetto³, Jui-Lin Fan¹, 4 5 Audrys Pauza¹, Olivia Gold¹, Pratik Thakkar¹, Matthew Dawes⁴, Melissa L. Bates⁵, Fiona 6 McBryde¹, Samuel J Fountain², James P Fisher^{1†}, Julian F R Paton^{1†} 7 8 ¹Department of Physiology, Manaaki Manawa - The Centre for Heart Research, Faculty of Medical & Health Sciences, 9 University of Auckland, New Zealand. 10 ²School of Biological Sciences, University of East Anglia, United Kingdom 11 ³School of Pharmacy and Pharmaceutical Sciences, Cardiff University, United Kingdom 12 ⁴Department of Medicine, Faculty of Medical & Health Sciences, University of Auckland, New Zealand 13 ⁵Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation and Department 14 of Pediatrics, Division of Neonatology, University of Iowa, United States of America 15 16 17 †Joint last and corresponding authors. 18 19 1. James P. Fisher, PhD, 20 Department of Physiology, 21 Manaaki Manawa - The Centre for Heart Research, 22 Faculty of Medical & Health Sciences, 23 University of Auckland, 85 Park Road, 24 Grafton, Auckland 1142, New Zealand. 25 Email: jp.fisher@auckland.ac.nz 26 27 2. Julian F.R. Paton, PhD, FRSNZ 28 Department of Physiology, 29 Manaaki Manawa - The Centre for Heart Research, 30 Faculty of Medical & Health Sciences, 31 University of Auckland, 85 Park Road, 32 Grafton, Auckland 1142, New Zealand. 33 Email:j.paton@auckland.ac.nz 34

Vitamin B6 (pyridoxal 5' phosphate) antagonizes carotid body P2X3

Short title: Vitamin B6 antagonizes P2X3 receptors

Abstract

37 38 39

40 41

- Aims: ATP acting on P2X3R within carotid bodies (CBs) underpins chemoreflex-mediated sympathetic overactivity in Spontaneously Hypertensive rats (SHR). Pyridoxal 5'phosphate (PLP), the active form of vitamin B6, is reported as being a non-selective P2X receptor blocker.
- 42 Hence, we hypothesized that PLP antagonism of P2X3R in the CB would treat hypertension.
- 43 Methods: Herein, we employed a multipronged approach to investigate PLP's capability to 44 attenuate CB hyperexcitability in hypertension.
- **Results:** First, PLP inhibited Ca²⁺ responses evoked by α,β-methylene ATP in cells lines 45 expressing human (h) P2X3R with IC50 of 8.7µM. Next, in-silico data predicted that PLP binds 46 47 to the same site of Gefapixant, supporting an allosteric antagonism. Using an isolated perfused 48 carotid artery bifurcation-CB preparation, arterial infusion of PLP (50 µM;15 min) attenuated 49 CBs sensory firing in SHR (P=0.012). Using the in situ working-heart brainstem preparation, 50 carotid artery injections of PLP (1-5mM) attenuated the chemoreflex-evoked sympathetic 51 (P=0.023) but not phrenic (P=0.62) responses; the CB was stimulated with potassium evanide 52 (KCN,50 µL; 0.04%). In awake telemetered SHR (n=6), intravenous infusion of PLP (48 53 mg/Kg/h; 30 min) attenuated KCN-evoked chemoreflex responses and reduced systolic, diastolic, and mean blood pressures (Δ MBP = -15.6 mmHg; P=0.025). Translating our results, 54 we performed a small double-blind randomized clinical trial. In volunteers with hypertension
- 55
- 56 (n=14), oral supplementation with pyridoxine hydrochloride (600 mg) attenuated the hypoxic
- ventilatory response only in patients with high peripheral chemoreflex sensitivity (P=0.021). 57
- Conclusion: Our findings suggest that PLP binds to and antagonizes P2X3R and is a viable 58 59 candidate for larger clinical trials to treat CB dysregulation in cardiovascular diseases.

60

Clinical Perspective

62 What is new? 63

- This is the first study to demonstrate that blocking P2X3R in humans attenuates their peripheral chemoreflex sensitivity.
- We show for the first time that PLP antagonizes P2X3R in the CB.
- PLP attenuates high peripheral chemoreflex sensitivity in patients with hypertension at therapeutic doses.

67 68

69

61

64

65

66

What are the clinical implications?

70 The findings indicate that supplementation of vitamin B6 is capable of selectively 71 attenuating CB dysregulation in people with hypertension who have a sensitized 72 peripheral chemoreflex index. 73

74

75

76

Key words: Chemoreflex, hypertension, P2X3 receptors, carotid body, Vitamin B6, Pyridoxal 5' Phosphate

CVR-2025-0623

77 Non-standard Abbreviations and Acronyms

- 78 ALP: alkaline phosphatase
- 79 ATP: adenosine 5' triphosphate
- 80 BP: blood pressure
- 81 CB: carotid body
- 82 HVR: hypoxic ventilatory response
- 83 KCN: potassium cyanide
- 84 P2X3R: P2X3 receptors
- 85 PaO₂: arterial partial pressure of oxygen
- 86 PaCO₂: arterial partial pressure of carbon dioxide
- 87 PHC: pyridoxine hydrochloride
- 88 PLP: pyridoxal 5' phosphate
- 89 SNA: sympathetic nerve activity
- 90 WKY: wistar kyoto rats

Introduction

Hypertension affects over 1 billion people worldwide and is the single most important predisposing risk factor for cardiovascular disease (1). There is emerging evidence to suggest that a major contributor to hypertension and sudden cardiac death is an overactive sympathetic nervous system (i.e., fight or flight system) that is not well controlled by current medications (2). Among the proposed causative mechanisms, aberrant carotid body (CB) discharge is linked to exaggerated sympathetic nerve activity (SNA) generation (3).

The CBs are the main peripheral chemoreceptors in the body and are responsible for monitoring the arterial blood mileu including arterial partial pressures of oxygen (PaO₂) and carbon dioxide (PaCO₂), and pH (4). CB activation results in increased ventilation and SNA, leading to increases in heart rate, cardiac contractility, vasoconstriction, and ultimately blood pressure (5). Clinical trials in which one CB was surgically resected in patients with drug resistant hypertension validate it for the first time as an effective/potent therapeutic target (6, 7). However, the nature of this intervention was associated with adverse side effects (6, 8). Therefore, an ideal approach would be to reduce CB sensitivity pharmacologically to physiological levels.

Pre-clinical animal work established a critical role of adenosine 5' triphosphate (ATP) as a transmitter for the CB in the transduction of hypoxia (9, 10). In spontaneously hypertensive rats (SHR), upregulation of P2X3 subunit receptors (P2X3R) underpins CB hypertonicity and hyperreflexia (11). Moreover, targeting P2X3R *in vivo* with a highly potent antagonist, such as MK-7264 (i.e., Gefapixant) demonstrated promising results in both hypertension and heart failure (11, 12). Such an approach awaits clinical trials in human patients as P2X3R antagonists are already employed for other indications (13, 14).

Pyridoxal 5'phosphate (PLP), the active form of vitamin B6 (pyridoxine hydrochloride; PHC), was previously suggested to act as a non-selective P2X receptor blocker (15). Moreover, low PLP levels in the blood have been associated with increased risk of cardiovascular disease and all-cause mortality in hypertensive patients (16, 17). Rats placed on a PHC-deficient diet for 8 weeks developed sympathetic-mediated hypertension (16). In humans, oral supplementation with PHC reduced blood pressure and circulating catecholamines in hypertensive patients (18); however, in this study there was no placebo group. Hence, we hypothesized that PLP antagonism of P2X3R in the CB would lower blood pressure in hypertension.

Herein we employed *in silico*, *in vitro*, and *in situ* approaches, along with *in vivo* animal models to investigate the capability of PLP to attenuate CB hyperexcitability in hypertension. We also carried out a small double-blind randomized clinical trial to investigate PLP action on peripheral chemoreflex sensitivity in participants with hypertension. Our results suggest that PLP is a viable candidate for a larger clinical trial to treat CB dysregulation in cardiovascular-respiratory diseases.

Materials & Methods

- Detailed description of Materials & Methods and Additional Results, including Statistical
- Output, are provided in Supplemental Materials.

137

134

138 Ethical approval

139

A total of eight male Wistar rats and forty-two male spontaneously hypertensive rats (SHRs) were bred by the Vernon Jansen Unit (VJU) of the University of Auckland. All tests were performed in accordance with the biomedical research guidelines for animal welfare and were approved by the University of Auckland committee for the ethical use of animals in scientific research (AEC# 2274, #22280 and #25105). All animal procedures performed were in accordance with the guidelines from Directive 2010/63/EU of the European Parliament on the protection of animals used for scientific purposes.

147

148 Ethical approval for in human study was provided by the Northen A Health and Disability Ethics Committee, Auckland, New Zealand (20/MTA/29), by the Auckland District Health 149 150 Board Research Review Committee (A+9025) and was registered with the Australian New 151 Zealand Clinical Trials Registry (URL: https://www.anzctr.org.au/; 152 ACTRN12620001121954). All participants were provided with a comprehensive written and 153 verbal explanation of the study protocols and provided written informed consent prior to participation. The study was conducted according to the Declaration of Helsinki (2013). 154

155156

Study design:

157158

159

160

161

162

163164

165

166

167168

169

170

171

172

173

Six experiments were performed to investigate whether PLP (Fig. 1e, i) is a suitable candidate for treating CB-mediated hypersensitivity in cardiovascular disease. First, in 1321N1 cells stably expressing hP2X2/3R, we investigated whether PLP could inhibit Ca2+ responses evoked by α,β-methylene ATP in vitro. Next, using a crystal structure of the hP2X3 receptor in complex with the negative allosteric modulator MK-7264 (PDB ID 5YVE19), we investigated how PLP may interact on the same negative allosteric binding site as MK-7264 (Fig. 1d, i) via a molecular docking analysis and molecular dynamic simulations. Third, we tested PLP's ability to attenuate CB excitability as measured via carotid sinus nerve (CSN) recordings in vitro. Fourth, using an in situ preparation, we investigated the effect of PLP on the peripheral chemoreflex motor responses. Fifth, in adult SHRs telemetered for arterial pressure measurement, an intravenous infusion of PLP was carried out to test its ability to both attenuate the peripheral chemoreflex response and lower blood pressure in vivo. We also quantified the level of gene expression in the CB of SHR relative to Wistar rats for the enzymes responsible for the breakdown of PLP. Finally, we carried out a small double-blind, randomized clinical trial to test whether PLP would attenuate peripheral chemoreflex sensitivity in patients with hypertension.

174

Results

PLP allosterically inhibits recombinant hP2X3R activity in vitro

PLP inhibited α ,β-methylene ATP-evoked Ca²⁺ responses in 1321N1 cells stably expressing human P2X2/3R (Fig. 1a) with an IC₅₀ of 8.7 ± 0.7 μM (N=5; Fig. 1a and b). Furthermore, PLP significantly increased the α ,β-methylene EC₅₀ from 433 ± 92 nM to 1706 ± 189 nM (N=5; P<0.01) (i.e., right-shift reducing its potency) and reduced the maximal response to α ,β-methylene by 63% (N=5; P<0.01) (i.e. reducing its efficacy), suggesting an allosteric mode of antagonism (Fig. 1c). We have previously characterised the action of the allosteric antagonist MK-7264 at human P2X3 and P2X2/3 receptors (19), which is proposed to exert action through binding an allosteric site created by contacts in the left flipper, lower body and dorsal fin receptor domains (20).

In silico analysis predicts less strong PLP binding to hP2X3's negative allosteric site

The predicted binding of PLP to the same pocket as MK-7264 in the crystal structure of its complex with hP2X3 (PDB ID 5YVE) was evaluated via molecular docking and supports its antagonistic activity. In the crystal structure of its complex with hP2X3R (Fig. 1d), MK-7264 engages with residues defining the site through a network of interactions: a hydrogen bond/electrostatic interaction between the sulphonamide oxygen atoms and the sidechain of Lys176; a hydrogen bond between the pyrimidine ring N-2 position and the backbone NH group of Leu191, and two hydrophobic interactions between the phenyl ring and the carbon atoms of Asp266 (backbone C-α) and Lys176 (sidechain C-β). In addition, the amine group at position 4 of the pyrimidine ring is at H-bond distance from the carbonyl oxygen of the sidechain of Asn190.

Following a molecular docking analysis performed with GlideXP(21), PLP is predicted to bind to the upper portion of the pocket defined by MK-7264 (Fig. 1e), with its phosphate group overlapping the sulphonamide function of MK-7264 (Fig. 1f, i) and its pyridine ring mainly occupying the space defined by the phenyl ring of MK-7264 (Fig. 1f, i). PLP is predicted to make an ionic bond and a hydrogen bond, through its phosphate group, with the sidechain of Lys176. One oxygen atom in the phosphate group is also predicted to form a weaker interaction with the C- α of Pro276. The pyridine ring appears to retain the ability to form a hydrophobic interaction with the sidechain C-B of Lys176, while the methyl group is near the sidechain of Val238, with the potential for an additional hydrophobic interaction. Next, we performed triplicate, 100 ns molecular dynamic simulations of MK-7264 and PLP in complex with hP2X3R, to compare their predicted binding energies to the negative allosteric site. MK-7264 optimised its occupation of the site, maintaining a stable position during the entire simulation. The compound adjusted its orientation in the binding pocket, establishing a network of polar interactions with the residues defining the binding site (i.e., Lys176, Asn190, Leu191, Asp266, Ser267 and Gly277), as summarized in Fig. S5. In the opposite direction, PLP did not assume a stable conformation in the binding pocket, showing variable results in terms of occupation of the binding site across the three simulations performed, consistently moving towards, and

220

221222

223

224

225

226 227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

protruding from, the upper part of the allosteric pocket. Although the protein-ligand complex reached stability after about 20 ns, as observed for MK-7264, highly variable binding modes were obtained for this compound, suggesting weaker binding to this site compared to MK-7264. This was supported by the predicted binding energies ($\Delta G_{\text{binding}}$), evaluated using the Prime/MM-GBSA calculation method(22), of -52.6 \pm 4.9 KJ/mol (N=3) and -22.7 \pm 9.7 KJ/mol (N=3) for MK-7264 and PLP, respectively.

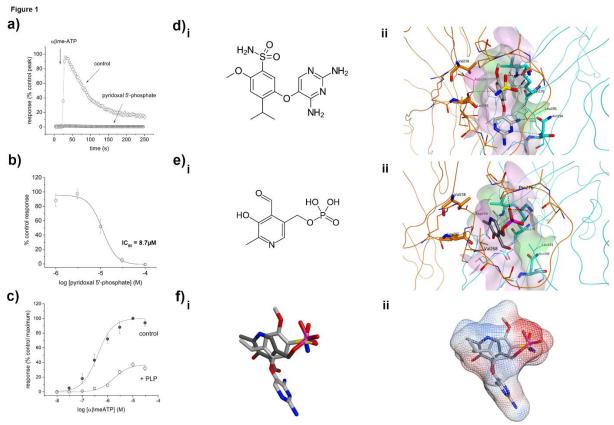


Fig. 1: Pyridoxal 5' phosphate (PLP) vs MK-7264 binding to human P2X2/3 receptor (hP2X3R). a) In cell lines expressing hP2X3R, PLP inhibits Ca^{2+} responses evoked by α,β -methylene ATP ($\alpha\beta$ me-ATP, 10 μ M). b) The dose-response curve indicate an IC₅₀ of 8.7 μM for PLP. c) In pharmacodynamic studies, PLP reduced both the potency and efficacy of αβme-ATP on hP2X3R, revealing an allosteric mode of antagonism. d) i: Molecular structure of MK-7264. ii: Binding of MK-7264 (carbon atoms in light grey) to the allosteric antagonist site of hP2X3R (PDB ID 5YVE), between the extracellular domains of two subunits (LB from one subunit, LF and LB from the adjacent subunit) (ribbon and carbon atoms in orange and light blue, respectively; third subunit hidden for clarity). The receptor molecular surface defining the site is represented according to its lipophilic/hydrophilic nature (green: lipophilic, pink: hydrophilic, white: neutral). e) i: Molecular structure of PLP. ii: Predicted binding pose of PLP (carbon atoms in dark grey) to the allosteric antagonist site in the hP2X3R crystal structure (PDB ID 5YVE). The receptor molecular surface defining the site is represented according to its lipophilic/hydrophilic nature (green: lipophilic, pink: hydrophilic, white: neutral). f) Superposition between the structure of MK-7264 co-crystallised with hP2X3 (PDB ID 5YVE, carbon atoms in light grey) and the predicted docking pose of PLP to the same site of the 5YVE crystal structure (carbon atoms in dark grey). i: ligands represented as simple sticks. ii: the ligand electrostatic surface shown for both ligands (blue: positive (partial) charge, red: negative (partial) charge, white: neutral).

PLP infusion suppresses carotid sinus nerve (CSN) firing in SHR

To test functionally whether PLP was capable of antagonizing P2X3R in the peripheral chemoreceptors of SHR, we tested its ability to attenuate CB hypertonicity and hyperreflexia (11) via CSN recordings. First, as proof-of-principle, PLP was bolus perfused at a high dose (5 mM; 5 mL) to test whether it would block potassium cyanide-evoked CSN responses (Fig. 2a; KCN, 100 μ L, 0.08%); the perfusate was gas-equilibrated with carbogen (5% CO₂ in 95% O₂, PO₂>400 mmHg). PLP strongly suppressed CSN firing evoked by KCN injection (Fig. 2a; Δ CSN= -0.86 μ V (95%CI, -1.07 to -0.66); P<0.001, Table S5). In a few instances, the evoked sensory discharge was completely abolished (Fig. 2a). Interestingly, 5 min after the infusion was finished, the effect began to wane (Δ CSN= -0.74 μ V (95%CI, -0.95 to -0.53); P<0.001, Table S5). Next, in normoxia (i.e., perfusate PO₂= 90-100 mmHg), continuously intra-arterial infusion of PLP (50 μ M; 15 min) significantly attenuated ongoing CBs sensory firing (Fig. 2b; Δ CSN= -11.44 impulse/s (95%CI, -20.8 to -2.11); P=0.022, Table S6, Fig. 2b), indicating its ability to also reduce tonicity, which has been previously demonstrated in SHR (11).

Intra-arterial injections of PLP attenuates the CB-evoked sympathetic reflex in situ

To determine the effect of PLP on the peripheral chemoreflex motor responses, we challenged the CB with KCN whilst recording thoracic sympathetic chain activity (tSNA), phrenic nerve (PN), and ECG (i.e., heart rate - HR) in the *in situ* working heart-brainstem preparation - WHBP(23, 24). Focal injections of PLP (1-5 mM) into the internal carotid artery significantly attenuated the CB-evoked sympathetic reflex (Δ tSNA_{PLP}= -0.12 μ V versus control KCN (95%CI, -0.23 to -0.019); P=0.023, Table S7, Fig. 2c). We also observed an attenuating trend in the CB-evoked bradycardia (i.e., P=0.056, Table S8, Fig. S6_a), whereas no effect was observed on either chemoreflex evoked PN rate or PN amplitude (i.e., P>0.05, Table S10 and S11). However, PLP significantly attenuated the KCN-evoked increase in neural inspiratory drive (i.e., PN amplitude/ inspiratory time - Δ PN amp/Ti = -0.67 μ V/s versus control KCN (95%CI, -1.05 to -0.304); P=0.023, Table S9, Fig. S6_d).

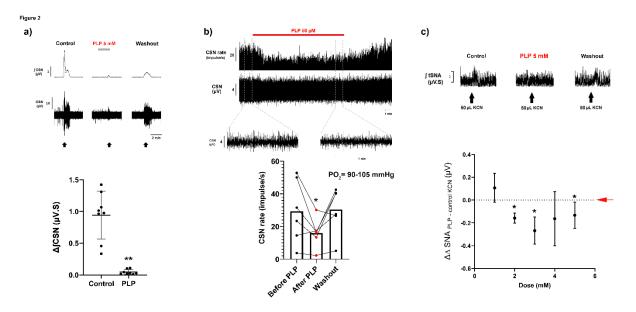


Fig. 2: Effect of Pyridoxal 5'Phosphate (PLP) on carotid body (CB) activity *in vitro* and *in situ*. a) In the isolated perfused carotid artery bifurcation-CB preparation of pre-hypertensive SHR (4-6 weeks, n=8), we used potassium cyanide (KCN; black arrow - 100 μL, 0.08%) to evoke carotid sinus nerve (CSN) responses either in the presence or absence of PLP (5 mL, 5 mM) (i.e., assessment of hyperreflexia). At the top is a typical tracing of raw (CSN) and integrated sinus nerve discharge (\int CSN). b) Under normoxia (PO₂ = 90-105 mmHg), PLP (50 μM, 15 min) was continuously infused through the bifurcation to record its effect on resting CSN firing (SHR, 4-6 weeks, n= 6). At the top is a typical tracing of raw CSN and its discharge rate . c) In the *in situ* working heart-brainstem preparation, focal injections of PLP (1-5 mM) into the internal carotid artery attenuated the CB-evoked sympathetic chemoreflex (SHR, 4-6 weeks, n= 15). At the top is a typical tracing of integrated thoracic sympathetic chain activity (\int tSNA); data are shown as $\Delta\Delta$, which means the difference between the Δ \int tSNA responses from PLP versus the first KCN (i.e., control response). The further the data departs from the dashed line at zero (red arrow), the more attenuated the response. Data were analyzed using a mixed regression model with either linear (i.e., normal) or gamma distribution. Mean ± SD, * P<0.05, **P<0.01.

PLP infusion attenuated the KCN-evoked pressor response in telemetered conscious SHR in vivo.

To test whether PLP would reproduce the above-mentioned results *in vivo*, we evoked chemoreflex responses with bolus injections of KCN -1 μ g/ μ L; 15 μ g (25) in adult telemetered SHR (n=5) and 30 μ g in Wistar rats (n=5). Ventilation was recorded via the barometric whole-body Plethysmography (26). In SHRs, KCN-evoked pressor response was attenuated during PLP infusion (24 mg/Kg) when compared to control KCN injection (Δ MBP= -48.3 mmHg versus control KCN (95%CI, -73.3 to -23.34), P=0.002, Table S14, Fig. 3_{A3}); whilst neither bradycardia (Δ HR= 46 bpm versus control KCN (95%CI, -97 to 188), P=0.48, Table S16, Fig. 3_{A4}) nor tachypnea were significantly affected (Δ f_R= -86 breaths/min versus control KCN (95%CI, -180 to 9), P=0.07, Table S15, Fig. 3_{A5}). Likewise, no effect was observed on tidal volume (V_T) (Δ V_T= -0.1 mL/Kg versus control KCN (95%CI, -0.9 to 0.7), P=0.82, Table S17, Fig. 3A5), minute ventilation (V_E) (Δ V_E= -150 mL/min/Kg versus control KCN (95%CI, -360 to 59), P=0.137, Table S18, Fig. 3A5), or respiratory efficiency (V_E/VCO₂) (Δ V_E/VCO₂= -3.27 versus control KCN (95%CI, -8.2 to 1.7), P=0.168, Table S19, Fig. 3A5).

Likewise, in Wistar rats, KCN-evoked cardiovascular responses were attenuated during PLP infusion - both pressor (ΔMBP= -24.1 mmHg versus control KCN (95%CI, -40.3 to -7.84), P=0.011, Table S20, Fig. S7a) and bradycardic responses (Δ*HR*= 96.4 bpm versus control KCN (95%CI, 26 to 166), P=0.015, Table S21, Fig. S7b). On the other hand, neither tachypnea (ΔfR= 28.9 breaths/min versus control KCN (95%CI, -52 to 109), P=0.442, Table S22, Fig. S7c) nor ventilation (ΔVE= -160 mL/min/Kg versus control KCN (95%CI, -353 to 32), P=0.101, Table S23, Fig. S7e) were significantly affected.

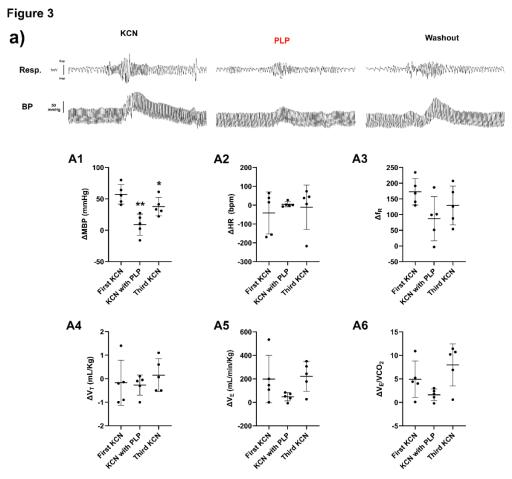


Fig. 3: Effect of Pyridoxal 5' Phosphate (PLP) on cardiorespiratory chemoreflexes. a) In adult telemetered SHR (n=5), we used potassium cyanide (KCN, $15\mu g/rat$; bolus injection i.v.) to stimulate the peripheral chemoreceptors either in the presence or absence of PLP (intravenous infusion - 48 mg/kg/h, 30 min i.v.). At the top is a typical tracing of breathing in the whole-body plethysmography and blood pressure (BP) before, during, and after PLP infusion. PLP attenuated but did not abolish the KCN-evoked increase in mean blood pressure (MBP, A1). Other KCN-evoked responses quantified are bradycardia (HR, A2), tachypnea (f_R , A3), changes in tidal volume (V_T , A4), minute ventilation (V_E , A5), and respiratory efficiency (V_E/VCO_2 , A6). Data are shown as Δ response relative to the immediate baseline. Data were analyzed using mixed regression model with either linear (i.e., normal) or gamma distribution. Mean \pm SD, * P<0.05, **P<0.01.

Intravenous infusion of PLP lowers blood pressure and CO₂ production (VCO₂) of SHR

We evaluated PLP infusion on resting blood pressure, breathing, and metabolism of both Wistar rats (n=5) and SHRs (n=5) (Table S1 and S2). In SHRs, PLP prompted significant falls in systolic (Δ SBP = -17 mmHg (95%CI, -29 to -5); P= 0.019, Table S25, Fig. 4_{A1}), diastolic (Δ DBP = -16 mmHg (95%CI, -22.4 to -9.3); P= 0.003, Table S26, Fig. 4_{A2}), mean blood pressures (Δ MBP = -16.2 mmHg (95%CI, -24.3 to -8.0); P= 0.005, Table S27, Fig. 4_{A3}), and heart rate (Δ HR = -35 bpm (95%CI, -57.6 to -12.7); P= 0.012, Table S28, Fig. 4_{A4}). PLP did not produce significant changes in breathing (P>0.05; Table S29-33), (Table S1). Regarding metabolism, PLP reduced CO₂ production (Δ VCO₂ = -8.53 mL/min/Kg (95%CI, -14.1 to -2.98); P= 0.020, Table S35, Table S1) without a change in oxygen consumption (Δ VO₂ = -2 mL/min/Kg (95%CI, -9.1 to 4.78); P= 0.490, Table S34), which reduced the respiratory exchange ratio (Δ RER = -0.22 (95%CI, -0.42 to -0.02); P= 0.054, Table S36), (Table S1).

In Wistar rats, PLP also prompted significant falls in blood pressure (Table S2); however, the latter was only a fraction of what we have seen in SHRs (Δ SBP = -4.6 mmHg (95%CI, -8.5 to -0.8); P= 0.042, Table S38; Δ DBP = -3.5 mmHg (95%CI, -6.3 to -0.8); P= 0.033, Table S39; Δ MBP = -4.0 mmHg (95%CI, -7.2 to -0.9); P= 0.035, Table S40). PLP did not produce significant changes in HR and breathing (P>0.05; Table S41-49) (Table S2).

The CBs of SHR display elevated gene expression for alkaline phosphatase (ALP) subtype Alpl

Given that the effects of PLP were short lived, we analyzed the gene expression of alkaline phosphatases (ALP), which is one of its main degrading enzymes. Based on published RNA-seq data (27), the CB of SHR displays increased transcript abundance of 3 out 4 ALP subtypes relative to Wistar-Kyoto (WKY) rats; these are, Germ line (Alpg), Biomineralization associated (Alpl), and Placental (Alpp). Using RT-qPCR(28) to validate these results, we observed a 2-fold increase in mRNA expression for Alpl ($t_{(14)}$ =14.0, P<0.001, Cohen'D= 6.98; Fig. 4_{B2}) in the CB of SHR relative to Wistar rats, whereas both Alpg ($t_{(14)}$ =-2.64, P= 0.019, Cohen'D= -1.32; Fig. 4_{B1}) and pan-ALP - a primer pair recognizing multiple ALP isoforms (Alpg, Alpp, Alpi) - ($t_{(14)}$ =-3.17, P= 0.007, Cohen'D= -1.59; Fig. 4_{B3}) were slightly downregulated.

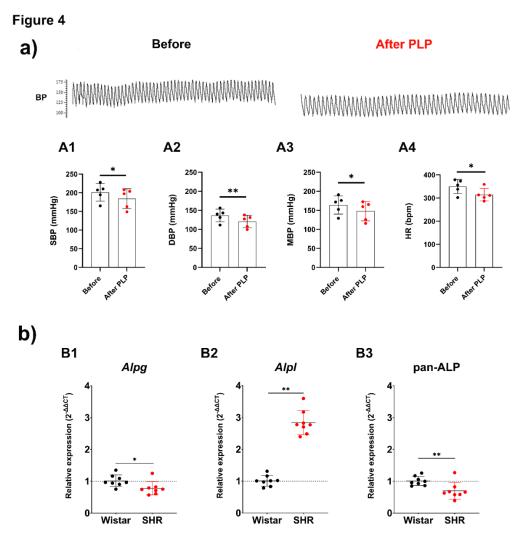


Fig. 4: Effect of Pyridoxal 5'Phosphate (PLP) on resting blood pressure *in vivo*. a) In adult SHRs (n=5), PLP was intravenously infused (48 mg/kg/h, 30 min) while recording the animal's BP. At the top is a typical tracing of BP before and immediately after the infusion. At the bottom, the effect of PLP infusion on resting SBP (A1), DBP (A2), MBP (A3) and HR (A4) **b)** RT-qPCR validation of *Alpl*, *Alpg*, and pan-ALP expression in the CB of male Wistar (4-6 weeks, n=8) and prehypertensive male (4-6 weeks, n=8) SHR. *Alpg* (B1), *Alpl* (B2), and pan-ALP (B3) expression were normalized to Eif4b – a housekeeping gene – and presented as relative change to Wistar. Data were analyzed either independent t-test or mixed regression model with either linear (i.e., normal) or gamma distribution. Mean \pm SD, * P<0.05, **P<0.01.

PHC attenuates the hypoxic ventilatory response (HVR) of human hypertensive patients with sensitized peripheral chemoreflex index

In a double-blind randomized placebo-controlled cross-over study, 18 participants with hypertension stage 2 or above (i.e., averaged SBP = 151 ± 22 mmHg, DBP = 83 ± 8 mmHg) who met the inclusion criteria were recruited and attended two visits to our laboratory (for more information see supplementary material *Section III-Additional Results*). The sample size was calculated *a priori* based on the work of Bock et al. (29). Participant demographics and current medications are reported in Table 1; baseline hemodynamic and blood biochemistry (30) are reported in supplementary materials (Table S3). Using the isocapnic hypoxic rebreathing method (31), an index of peripheral chemoreflex sensitivity was quantified via the change in

patient's \dot{V}_E relative to their estimated arterial oxygen saturation (32) (SaO2) (i.e., $\Delta\dot{V}_E/\Delta S_aO2$). 4 participants did not complete the isocapnic hypoxic rebreathing due to frequent ectopics (n=1) and technical issues (n=3). Of the 14 participants completing the isocapnic hypoxic rebreathing test, half (n=7) were deemed to have a "sensitized" peripheral chemoreflex index (i.e., the response was greater than -0.5 L/min/% during the placebo visit). This stratification was based on the work of Narkiewicz et al. (7). Oral supplementation with 600 mg PHC, which is a dose sold over the counter in supplement formulations, significantly attenuated the HVR in patients with a sensitized peripheral chemoreflex index ($\Delta\dot{V}_E/\Delta S_aO_2$ treatment*level of chemosensitivity = 0.496 L/min/% (95%CI, 0.09 to 0.90); P=0.021, Table S50, Fig. 5). In contrast, PHC had no effect on either resting blood pressure (33) or the hypoxic evoked pressor response (P>0.05; Tables S51 and S52, Table 2). Blood analysis of B6 vitamers indicate therapeutic concentrations in the micromolar range for pyridoxine, pyridoxal, and pyridoxic acid (Table S4) about 2 hours after the treatment, which allows us to infer that PLP also reached therapeutic concentrations.

Table 1: Hypertensive participant characteristics and medications

Demographics		
n	18	
Age (yr)	70 ± 8	
Female, n (%)	12 (67)	
Height (cm)	168 ± 10	
Weight (kg)	76 ± 20	
BMI (kg.m ⁻²)	27 ± 5	
Medication used		
ACE inhibitor, n (%)	5 (28)	
Aldosterone receptor agonist, n (%)	1 (6)	
Alpha blocker, n (%)	1 (6)	
Anti-platelet, n (%)	2 (11)	
Antipsychotic, n (%)	1 (6)	
ARBs, n (%)	5 (28)	
β blocker, n (%)	4 (22)	
Ca ²⁺ channel blocker, n (%)	8 (33)	
Cholesterol lowering, n (%)	1 (6)	
Islet enhancer / biguanide, n (%)	1 (6)	
Statin, n (%)	7 (39)	
Thiazide diuretic, n (%)	1 (6)	
Thiazide-type diuretic, n (%)	4 (22)	
Xanthine oxidase inhibitor, n (%)	1 (6)	

Values are expressed as mean \pm SD for continuous variables and frequency (%) for discrete variables. BMI: body mass index, ACE: angiotensin converting enzyme, ARB: angiotensin receptor blocker

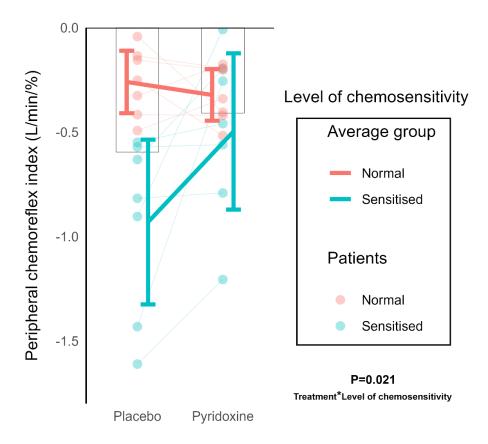


Fig. 5: Effect of Pyridoxine Hydrochloride (PHC) on the index of peripheral chemoreflex sensitivity in patients with hypertension (n=14). Using the isocapnic hypoxic rebreathing method, (31) the index of peripheral chemoreflex sensitivity was quantified as the patients' peak $\dot{V}E$ response relative to their nadir arterial oxygen saturation (S_aO₂) (i.e., $\Delta\dot{V}E/\Delta SaO_2$). Half of the patients (n=7) were deemed to have a "sensitized" index (i.e., the slope was steeper than -0.5 L/min/% during the placebo visit – this threshold was based on the work of Narkiewicz et al.(7)). Our analysis shows a significant interaction (P=0.021) between the "treatment" and "level of chemosensitivity". Data were analyzed using a linear mixed regression model (i.e., normal distribution). Mean \pm 95%CI (confidence interval).

Table 2: Peripheral and central blood pressures with PHC supplementation in hypertensive participants

	Placebo	PHC	P-value
CDD (H-)	151 + 22	157 + 20	0.270
SBP (mmHg) DBP (mmHg)	151 ± 22 83 ± 8	157 ± 20 86 ± 9	0.279 0.203
Mean pressure (mmHg)	115 ± 15	118 ± 12	0.456
Pulse pressure (mmHg)	69 ± 19	71 ± 18	0.437
Pulse rate (beats/min)	61 ± 8	62 ± 12	0.608
Central SBP (mmHg)	145 ± 20	148 ± 18	0.439
Central DBP (mmHg)	83 ± 9	86 ± 8	0.142
Central mean pressure (mmHg) Central pulse pressure (mmHg)	111 ± 12 62 ± 18	114 ± 12 62 ± 15	0.324 0.981

 Values are expressed as mean \pm SD. SBP: systolic blood pressure, DBP: diastolic blood pressure. The main effect of treatment was assessed using a paired Student's t-test.

Discussion

Our findings provide the first evidence that PLP, the active form of vitamin B6, binds to and antagonizes the P2X3R of both SHR and humans with hypertension, thus attenuating CB hyperexcitability. Our *in vitro* data showed that PLP allosterically blocked [Ca²⁺]_i responses evoked by α,β-methylene-ATP in cell lines expressing recombinant hP2X3R. Its antagonist effect is supported by our *in silico* data, which predicts that PLP binds less strongly to the same negative allosteric pocket as MK-7264 (the highly potent antagonist Gefapixant). *In situ*, PLP attenuates both CB hypertonicity and hyperreflexia in SHR and attenuated preferentially the chemoreceptor sympathetic reflex. Likewise, *in vivo*, PLP preferentially attenuated the peripheral chemoreflex pressure response and lowered resting blood pressure in conscious SHR. In a small double-blind randomized clinical trial, oral supplementation with PHC, vitamin B6, attenuated peripheral chemoreflex respiratory sensitivity in participants with a sensitized chemoreflex index based on their HVR. This is the first study to demonstrate that blocking P2X3R attenuates the peripheral chemoreflex in humans.

In the field of drug discovery, computer-aided drug design (CADD) is an important method to identify molecular scaffolds with biological activity. Molecular docking is an in silico method to predict the three-dimensional orientation/conformation (i.e., binding pose) of a molecule within the binding site of a target of interest (34). This technique, alongside molecular dynamic simulations, another in silico method for CADD, was recently used to investigate the interaction of MK-7264 and its analogues with the negative allosteric site of hP2X3R (20). In this study, the authors reported that direct contacts of MK-7264 with Asn190 and Leu191 in hP2X3R play an important role in compound binding to the pocket. In addition, Gly189 seems to be critical for allosteric inhibition, even though MK-7264 did not display direct contacts with it in the 300 ns simulations we ran. Our molecular dynamic simulations predict a network of polar interactions with the residues defining the binding site, which include hydrogen bonds between oxygen atoms from MK-7264's sulphonamide group and Lys176. Comparatively, according to our molecular docking analyses, PLP is predicted to bind the upper portion of the pocket defined by MK-7264 with its phosphate group overlapping the sulphonamide function of MK-7264 (Fig. 1i) and its pyridine ring occupying the space defined by the phenyl ring of MK-7264 (Fig. 1h, i). Our molecular dynamics and binding energy calculations suggest PLP binds to the same binding pocket of MK-7264 albeit less strongly, supporting the relatively low potency of PLP in comparison to MK-7264 (IC₅₀ = $8.7 \mu M$ versus 42.6 nM (35), respectively).

In the WHBP, intra-carotid bolus injections of PLP (1-5 mM) preferentially attenuated the CB-evoked sympathetic reflex over the respiratory and bradycardia responses. Similar results were observed with AF-353 in the same *in situ* preparation (11). In addition, PLP lowered blood pressure in the SHR *in vivo*. This preferential response on the chemoreflex-evoked sympathoexciation is not unique and was observed after denervating the sympathetic innervation to the CB (25) and following CB exposure to exedin-4, (27) a glucagon-like peptide-1 analogue. This sympathetic selectivity is consistent with the ribbon cable hypothesis that proposes separate lines of afferent transmission with different transmitter/receptors regulating distinct chemoreflex circuits governing separate target organs (36). Similarly,

intravenous infusions of PLP in telemetered conscious SHR preferentially attenuated the cardiovascular component of the peripheral chemoreflex response evoked by KCN (Fig. 3a). It is important to acknowledge that we can observe attenuation trends in the respiratory component of the chemoreflex, e.g., the KCN-evoked tachypnea was marginally attenuated (P=0.07). In addition, in the present study, we quantified the neural inspiratory drive differently (i.e., PN amp/Ti), in situ, during KCN evoked responses (Fig. S6_d), which was not measured in the above-mentioned previous studies (11, 25, 27) but may be a more sensitive measure and explain the difference.

The effect of PLP on blood pressure of SHR was pronounced. While its ability to reduce blood pressure in hypertension is well-known (18, 37–39), its underlying mechanism is not. The fact that PLP could reduce blood pressure within 30 minutes of infusion supports its mechanism via P2X3R antagonism, as previously demonstrated with MK-7264 (11). However, this might not be the only mechanism by which PLP can reduce blood pressure if given chronically. Lellig et al. (40) investigated the ability of PLP to convert angiotensin II (Ang II) into pyruvamide—Ang II, which has less affinity to Ang II type 1 receptors (AT1R). Using an osmotic pump, the authors delivered PLP at a dose of 4 µg/Kg/day in SHR; after 3 days of treatment, the authors observed significant falls in both SBP and DBP. In addition, the authors treated WKY rats with Ang II to induce hypertension, which was blocked in PLP-treated rats. These results indicate that PLP could lead to falls in blood pressure via synergic mechanisms (i.e., P2X3R antagonism and scavenging of Ang II) depending on the dose. Despite that, the authors did not demonstrate increased levels of pyruvamide—Ang II in the blood or urine of PLP-treated rats, therefore, not confirming their theory that such a reaction happens, at significant levels, *in vivo*.

PLP infusion produced a small reduction in VCO₂ without changes in breathing (Table S2). Since VO₂ was unchanged, this led to a reduction in the respiratory exchange ratio (RER) favoring lipid oxidation. This is possible since PLP is a co-factor in many metabolic reactions, including carbohydrate and lipid catabolism (41–44). For instance, Zemel & Bruckbauer(43) demonstrated that PHC increased fat oxidation and reduced R in overweight/obese patients.

In our experiments, the effect of PLP on CB activity was relatively short-lived with recovery around 30 min after the end of the infusion. The latter reflects the known PLP pharmacokinetics with a half-life ($T_{1/2}$) of 2.3h in humans (45), 49 min in goats, and 16 min in pigs (46). PLP is metabolised by two enzymes, PLP Phosphatase and ALP (47). Interestingly, increased serum ALP activity is associated with both low levels of PLP (48) and increased risk for cardiovascular disease (49), which includes hypertension (50). Therefore, adequate ALP activity seems pivotal for maintaining physiological blood levels of PLP. Herein, we report higher levels of mRNA expression for Alpl in the CB of SHR. Whether the increased Alpl gene expression is translated into increased enzymatic activity that reduces PLP translation in the CB of SHR is unknown but might explain limitations on $T_{1/2}$.

Translating these studies, we carried out a small double-blind randomized clinical trial to investigate the capability of PLP to attenuate CB hyperexcitability in patients with hypertension. Using the index of peripheral chemosensitivity from the placebo visit, we

categorized patients having either sensitized or normal CB activity. This categorization was based on collective work from the literature, which defines a normal response as approximately -0.35 L/min/% - for review see Felippe et al. (3). In addition, Narkiewicz et al. (7) were able to sort patients with hypertension who underwent unilateral CB resection into responders and non-responders based on their baseline HVR (-0.50 ± 0.05 and -0.32 ± 0.06 L/min/%, respectively). Interestingly, PHC's ability to attenuate the HVR occurred preferentially in patients with sensitized peripheral chemoreflex index (i.e., steeper than -0.5 L/min/%). In contrast to our rodent SHR studies, we did not see any effect on either resting blood pressure or the hypoxic pressor response. The reason for that might be that the hypertension was mild or reflected the acute, single dose, regimen of our protocol; however, when given chronically, oral supplementation with PHC reduced blood pressure and circulating catecholamines in hypertensive patients (18, 39). It is worth mentioning that this is the first study to show that blocking P2X3R can attenuate the peripheral chemoreflex sensitivity in humans, thus reproducing previous animal work with MK-7264 (11, 12).

Our initial study protocol, as per trial registration in 2020, involved a longitudinal study with different endpoints and plans to record the peroneal muscle sympathetic nerve activity using microneurography; however, the study protocol was negatively impacted by the COVID-19 pandemics. Thus, after amending the study with the ethics committee, we changed our protocol to the one presented herein. Therefore, not been able to carry out the protocol as initially registered is a clear limitation of our study. As another limitation, we were not successful to recruit a diverse cohort of participants; this compromised our ability investigate whether there are any sex and race/ethnicity specific responses to PHC supplementation.

It is important to recognize inter-species differences between humans and rodents in the responses to vitamin B6 treatment. Even though P2X3R is highly homologous between rat and humans (i.e., 97%)(51), there are differences between the receptor conductance and kinetics of these two species (51, 52). Additionally, when treated with vitamin B6, rats (SHR) showed an acute fall in blood pressure; humans did not, and rats seemed to need a higher concentration of plasma PLP and to have a shorter $T_{1/2}$. Finally, the respiratory component of the chemoreflex in rats seems to be less sensitive to vitamin B6 treatment than humans.

In addition to these inter-species differences, we need to acknowledge that the aetiology of hypertension in humans is not necessarily the same as in SHR, where it remains unknown if the increase in sympathetic outflow mediated by CB hyperexcitability contributes to a greater proportion to the high blood pressure phenotype. However, an increase in sympathetic activity is reported in approximately 60% of the patients with essential hypertension (53). In addition, previous clinical trials of CB resection proved that the CB is a viable target to treat autonomic imbalance in patients with resistant hypertensive (7). The latter reproduced findings in SHR(54), which demonstrates that SHRs is a good animal model for translating CB interventions.

To further comprehend why the treatment did not lower blood pressure in humans with hypertension versus SHR may relate to the mild hypertension in these patients. Although 543 patients were asked to abstain from any cardioactive medications on the morning of the study, 544 it is unlikely their medication were completely cleared from the blood, which could act as cofound variable. Finally, in humans, we used oral PHC instead of intravenous PLP as used in 545 546 the rats, which means that PHC needed to be absorbed and converted into PLP and reach blood 547 concentration at micromolar levels. Although blood analysis of B6 vitamers indicate 548 therapeutic concentrations in the micromolar range for pyridoxamine, pyridoxal, and pyridoxic 549 acid, the blood concentration of PLP in SHR were probably higher, since animals received direct intravenous infusions of PLP (24 mg/Kg). This higher concentration might be the reason 550 why the blood pressure falls acutely in SHRs rather than in humans. Nonetheless, as previously 551 552 stated, it is important to note that clinical trials with B6 supplementation in patients with 553 hypertension showed that the latter can decrease blood pressure in humans when given 554 chronically (18, 39).

555556

557

558559

560

561562

563

564

565

566

Altogether, our experiments support that PLP can attenuate CB hyperexcitability in hypertension of both rats and humans. Most importantly, the attenuating effect does not fully block the chemoreflex and showed selectivity for patients with a sensitized peripheral chemoreflex index. Given that an effective dose is sold over the counter as a supplement relatively cheaply, this could have meaningful therapeutic implications especially in developing economies (see Lellig et al. (40) for further discussion on the topic). It is important to acknowledge possible adverse side effects of long-term supplementation with vitamin B6, such as peripheral neuropathy, which could limit its therapeutic use and should be taken into consideration by healthcare providers. Nevertheless, our findings suggest that PLP is a viable candidate for larger clinical trials to treat CB dysregulation in cardiovascular disease, such as hypertension, heart failure, sleep apnoea, and possibly non-CB related disease, for instance refractory chronic cough.

567568569

Acknowledgements

570 The authors wish to thank all the volunteers for their enthusiastic participation in this study.

571572

Sources of Funding

- 573 **JFRP:** Health Research Council Programme grant (19/687); Sidney Taylor Trust and Partridge
- Research Laureate award.
- 575 **JPF:** Health Research Council Programme grant (19/687); Lotteries Grant Board (LHR-2021-
- 576 153114).
- 577 **ISAF:** New Zealand Heart foundation Grant No. 2016 and No. 2025
- 578 **TLB:** Lotteries Grant Board (LHR-2021-153114).
- 579 **JLF:** Health Research Council Sir Charles Hercus Fellowship (20/011)
- 580 AGP: New Zealand Heart foundation Grant No. 2021 supported by Ernest Hyam Davis & Ted
- & Mollie Carr Legacies and No. 2026 supported by G.R. Winn Trust.
- PT: New Zealand Heart foundation Grant No. 1976/3728668 and No.1959/3728667; Health
- Research Council Explorer Grant No. 22/629/A.
- 584 **SJF:** British Council and British Heart Foundation

CVR-2025-0623

586	Author contributions:
587	Examples:
588	Conceptualization: JFRP, JPF, MD
589	Methodology: ISAF, SJF, MB, AP, FM, JPF
590	Investigation (Data Collection): ISAF, TLB, RS, MB, JLF, AP, OG, PT, MD
591	Data analysis and interpretation: ISAF, TLB, RS, MB, MLB, AP, OG
592	Project administration: JFRP, JPF, ISAF, TLB
593	Supervision: JFRP, JPF, SJF
594	Writing – original draft: ISAF
595	Writing – review & editing: ISAF, JFRP, JPF, MLB, MB, SJF, AP, JLF, TLB
596	
597	

598 Conflict of interest:

- 599 Dr. Bates is Founder and CEO of LSF Medical Solutions. Work at LSF does not overlap
- topically with the content of this manuscript.

601

- Dr. Paton is a founder member and Chief Scientific Officer of Ceryx Medical Ltd. Work at
- 603 Ceryx does not overlap topically with the content of this manuscript.

604

- 605 **Data Availability**
- The authors declare that all supporting data have been made publicly available at the Figshare
- and can be accessed using DOI (http://dx.doi.org/10.17608/k6.auckland.28191725). Raw data
- is available from the corresponding author upon reasonable request.

- 610 References
- 1. P. M. Kearney, M. Whelton, K. Reynolds, P. Muntner, P. K. Whelton, J. He, Global burden
- of hypertension: analysis of worldwide data. *The Lancet* **365**, 217–223 (2005).
- 613 2. G. Grassi, Sympathomodulatory Effects of Antihypertensive Drug Treatment. Am J
- 614 Hypertens **29**, 665–675 (2016).
- 3. I. S. A. Felippe, R. Del Río, H. Schultz, B. H. Machado, J. F. R. Paton, Commonalities and
- differences in carotid body dysfunction in hypertension and heart failure. J Physiol 0, 1-25
- 617 (2023).
- 4. P. Ortega-Sáenz, J. López-Barneo, Physiology of the Carotid Body: From Molecules to
- 619 Disease. Annu Rev Physiol 82, 127–149 (2020).
- 620 5. M. de Burgh Daly, Peripheral arterial chemoreceptors and respiratory-cardiovascular
- *integration* (Clarendon Press, ed. 1st, 1997).
- 622 6. P. Niewinski, D. Janczak, A. Rucinski, S. Tubek, Z. J. Engelman, P. Piesiak, P. Jazwiec, W.
- Banasiak, M. Fudim, P. A. Sobotka, S. Javaheri, E. C. J. Hart, J. F. R. Paton, P. Ponikowski,
- 624 Carotid body resection for sympathetic modulation in systolic heart failure: results from first-
- 625 in-man study. Eur J Heart Fail 19, 391–400 (2017).
- 7. K. Narkiewicz, L. E. K. Ratcliffe, E. C. Hart, L. J. B. Briant, M. Chrostowska, J. Wolf, A.
- 627 Szyndler, D. Hering, A. P. Abdala, N. Manghat, A. E. Burchell, C. Durant, M. D. Lobo, P. A.
- 628 Sobotka, N. K. Patel, J. C. Leiter, Z. J. Engelman, A. K. Nightingale, J. F. R. Paton, Unilateral
- 629 Carotid Body Resection in Resistant Hypertension: A Safety and Feasibility Trial. *JACC Basic*
- 630 Transl Sci 1, 313–324 (2016).
- 8. P. Niewinski, S. Tubek, J. F. R. Paton, W. Banasiak, P. Ponikowski, Oxygenation pattern and
- compensatory responses to hypoxia and hypercapnia following bilateral carotid body resection
- 633 in humans. *J Physiol* **599**, 2323–2340 (2021).
- 9. A. Jarisch, S. Landgren, E. Neil, Y. Zotterman, Impulse Activity in the Carotid Sinus Nerve
- 635 following Intra-carotid Injection or Potassium chloride, Veratrine, Sodium citrate, Adenosine-
- 636 triphosphate and α-Dinitrophenol. *Acta Physiol Scand* **25**, 195–211 (1952).

- 637 10. W. Rong, A. V. Gourine, D. A. Cockayne, Z. Xiang, A. P. D. W. Ford, K. M. Spyer, G.
- Burnstock, Pivotal Role of Nucleotide P2X 2 Receptor Subunit of the ATP-Gated Ion Channel
- 639 Mediating Ventilatory Responses to Hypoxia. *The Journal of Neuroscience* **23**, 11315–11321
- 640 (2003).
- 11. W. Pijacka, D. J. A. Moraes, L. E. K. Ratcliffe, A. K. Nightingale, E. C. Hart, M. P. da Silva,
- B. H. Machado, F. D. McBryde, A. P. Abdala, A. P. Ford, J. F. R. Paton, Purinergic receptors in
- the carotid body as a new drug target for controlling hypertension. Nat Med 22, 1151–1159
- 644 (2016).
- 12. R. M. Lataro, D. J. A. Moraes, F. N. Gava, A. C. M. Omoto, C. A. A. Silva, F. Brognara, L.
- Alflen, V. Brazão, R. P. Colato, J. C. do Prado, A. P. Ford, H. C. Salgado, J. F. R. Paton, P2X3
- receptor antagonism attenuates the progression of heart failure. *Nature Communications 2023*
- 648 *14:1* **14**, 1–14 (2023).
- 13. J. A. Smith, M. M. Kitt, A. H. Morice, S. S. Birring, L. P. McGarvey, M. R. Sher, Y.-P. Li,
- 650 W.-C. Wu, Z. J. Xu, D. R. Muccino, A. P. Ford, J. Smith, L. McGarvey, S. Birring, J. Hull, W.
- W. Carr, A. B. Goldsobel, G. N. Gross, J. R. Holcomb, I. Hussain, M. Sher, S. Spangenthal, W.
- 652 Storms, A. Morice, D. Elkayam, G. C. Steven, J. Krainson, F. A. Fakih, J. Matz, G. D. Brooks,
- T. Casale, G. D. Berman, J. J. Condemi, L. S. Greos, S. U. Gogate, E. R. Sher, J. H. Friesen, E.
- J. Schenkel, D. I. Bernstein, J. Corren, K. Sundar, M. H. Gotfried, A. Montanaro, W. R. Lumry,
- N. J. Amar, M. S. Kaplan, B. M. Prenner, T. R. Murphy, J. S. Good, S. Parker, T. Harrison, I.
- Pavord, C. Brightling, R. Djukanovic, D. McQuaid, M. Denenberg, N. A. Ettinger, V. Iyer,
- 657 Gefapixant, a P2X3 receptor antagonist, for the treatment of refractory or unexplained chronic
- 658 cough: a randomised, double-blind, controlled, parallel-group, phase 2b trial. Lancet Respir
- 659 *Med* **8**, 775–785 (2020).
- 14. D. Garceau, N. Chauret, BLU-5937: A selective P2X3 antagonist with potent anti-tussive
- effect and no taste alteration. *Pulm Pharmacol Ther* **56**, 56–62 (2019).
- 15. O. Thériault, H. Poulin, G. R. Thomas, A. D. Friesen, W. A. Al-Shagha, M. Chahine,
- Pyridoxal-5'-phosphate (MC-1), a vitamin B6 derivative, inhibits expressed P2X receptors.
- 664 *Can J Physiol Pharmacol* **92**, 189–196 (2014).
- 16. C. S. Paulose, K. Dakshinamurti, S. Packer, N. L. Stephens, Sympathetic stimulation and
- 666 hypertension in the pyridoxine-deficient adult rat. *Hypertension* 11, 387–391 (1988).
- 17. Q. Cui, X. Zhu, G. Guan, R. Hui, L. Zhu, J. Wang, J. Zhao, Associations of vitamin B6
- turnover rate with the risk of cardiovascular and all-cause mortality in hypertensive adults.
- Nutrition, Metabolism and Cardiovascular Diseases 33, 1225–1234 (2023).
- 670 18. M. Aybak, A. Sermet, M. O. Ayyildiz, A. Z. Karakilçik, Effect of oral pyridoxine
- 671 hydrochloride supplementation on arterial blood pressure in patients with essential
- 672 hypertension. Arzneimittelforschung 45, 1271–3 (1995).
- 19. D. Richards, J. R. Gever, A. P. Ford, S. J. Fountain, Action of MK-7264 (gefapixant) at
- 674 human P2X3 and P2X2/3 receptors and in vivo efficacy in models of sensitisation. Br J
- 675 *Pharmacol* **176**, 2279–2291 (2019).

- 20. J. Wang, Y. Wang, W.-W. Cui, Y. Huang, Y. Yang, Y. Liu, W.-S. Zhao, X.-Y. Cheng, W.-S.
- 677 Sun, P. Cao, M. X. Zhu, R. Wang, M. Hattori, Y. Yu, Druggable negative allosteric site of P2X3
- 678 receptors. Proceedings of the National Academy of Sciences 115, 4939–4944 (2018).
- 21. Schrödinger Release 2024-4:, Glide, Schrödinger, LLC, New York, NY, 2024.
- 22. Schrödinger Release 2024-4:, Prime, Schrödinger, LLC, New York, NY, 2024.
- 23. J. F. R. Paton, A working heart-brainstem preparation of the mouse. J Neurosci Methods
- 682 **65**, 63–68 (1996).
- 24. J. F. R. Paton, B. H. Machado, D. J. A. Moraes, D. B. Zoccal, A. P. Abdala, J. C. Smith, V.
- R. Antunes, D. Murphy, M. Dutschmann, R. R. Dhingra, R. McAllen, A. E. Pickering, R. J. A.
- Wilson, T. A. Day, N. O. Barioni, A. M. Allen, C. Menuet, J. Donnelly, I. Felippe, W. M. St-
- John, Advancing respiratory-cardiovascular physiology with the working heart-brainstem
- preparation over 25 years. *J Physiol* **600**, 2049–2075 (2022).
- 25. I. S. A. Felippe, T. Zera, M. P. da Silva, D. J. A. Moraes, F. McBryde, J. F. R. Paton, The
- 689 sympathetic nervous system exacerbates carotid body sensitivity in hypertension. Cardiovasc
- 690 Res **119**, 316–331 (2023).
- 691 26. J. E. Drorbaugh, W. O. Fenn, A barometric method for measuring ventilation in newborn
- 692 infants. *Pediatrics* **16**, 81–7 (1955).
- 693 27. A. G. Pauza, P. Thakkar, T. Tasic, I. Felippe, P. Bishop, M. P. Greenwood, K. Rysevaite-
- Kyguoliene, J. Ast, J. Broichhagen, D. J. Hodson, H. C. Salgado, D. H. Pauza, N. Japundzic-
- Zigon, J. F. R. Paton, D. Murphy, GLP1R Attenuates Sympathetic Response to High Glucose
- 696 via Carotid Body Inhibition. *Circ Res* **130**, 694–707 (2022).
- 697 28. K. J. Livak, T. D. Schmittgen, Analysis of Relative Gene Expression Data Using Real-Time
- Quantitative PCR and the $2-\Delta\Delta$ CT Method. *Methods* **25**, 402–408 (2001).
- 699 29. J. M. Bock, K. Ueda, A. C. Schneider, W. E. Hughes, J. K. Limberg, N. S. Bryan, D. P.
- 700 Casey, Inorganic nitrate supplementation attenuates peripheral chemoreflex sensitivity but does
- not improve cardiovagal baroreflex sensitivity in older adults. American Journal of Physiology-
- 702 Heart and Circulatory Physiology **314**, H45–H51 (2018).
- 30. S. Andraos, B. Jones, C. Wall, E. Thorstensen, M. Kussmann, D. Cameron-Smith, K.
- Lange, S. Clifford, R. Saffery, D. Burgner, M. Wake, J. O'Sullivan, Plasma B Vitamers:
- 705 Population Epidemiology and Parent-Child Concordance in Children and Adults. *Nutrients* 13,
- 706 821 (2021).
- 31. A. L. C. Sayegh, M. J. Plunkett, T. Babbage, M. Dawes, J. F. R. Paton, J. P. Fisher,
- 708 Peripheral chemoreflex restrains skeletal muscle blood flow during exercise in participants
- with treated hypertension. J Physiol (2024), doi:10.1113/JP286998.
- 710 32. J. W. Severinghaus, Simple, accurate equations for human blood O2 dissociation
- 711 computations. *J Appl Physiol* **46**, 599–602 (1979).
- 712 33. A. Lowe, W. Harrison, E. El-Aklouk, P. Ruygrok, A. M. Al-Jumaily, Non-invasive model-
- based estimation of aortic pulse pressure using suprasystolic brachial pressure waveforms. J
- 714 Biomech **42**, 2111–2115 (2009).

- 715 34. T. I. Adelusi, A.-Q. K. Oyedele, I. D. Boyenle, A. T. Ogunlana, R. O. Adeyemi, C. D.
- 716 Ukachi, M. O. Idris, O. T. Olaoba, I. O. Adedotun, O. E. Kolawole, Y. Xiaoxing, M. Abdul-
- Hammed, Molecular modeling in drug discovery. *Inform Med Unlocked* **29**, 100880 (2022).
- 718 35. W.-W. Cui, S.-Y. Wang, Y.-Q. Zhang, Y. Wang, Y.-Z. Fan, C.-R. Guo, X.-H. Li, Y.-T. Lei,
- 719 W.-H. Wang, X.-N. Yang, M. Hattori, C.-Z. Li, J. Wang, Y. Yu, P2X3-selective mechanism of
- 720 Gefapixant, a drug candidate for the treatment of refractory chronic cough. Comput Struct
- 721 *Biotechnol J* **20**, 1642–1653 (2022).
- 36. T. Zera, D. J. A. Moraes, M. P. da Silva, J. P. Fisher, J. F. R. Paton, The Logic of Carotid
- Body Connectivity to the Brain. *Physiology* **34**, 264–282 (2019).
- 37. K. J. Lal, K. Dakshinamurti, J. Thliveris, The effect of vitamin B6 on the systolic blood
- pressure of rats in various animal models of hypertension. *J Hypertens* **14**, 355–363 (1996).
- 726 38. S. Vasdev, C. A. Ford, S. Parai, L. Longerich, V. Gadag, Dietary vitamin B6
- supplementation attenuates hypertension in spontaneously hypertensive rats. *Mol Cell Biochem*
- 728 **200**, 155–62 (1999).
- 39. N. Noori, H. Tabibi, F. Hosseinpanah, M. Hedayati, M. Nafar, Effects of Combined Lipoic
- Acid and Pyridoxine on Albuminuria, Advanced Glycation End-Products, and Blood Pressure
- 731 in Diabetic Nephropathy. International Journal for Vitamin and Nutrition Research 83, 77–85
- 732 (2013).
- 40. M. Lellig, M. Rodríguez, R. López-Baltanás, J. Hermann, J. Wollenhaupt, H. Noels, W.
- 734 Zidek, M. Tepel, F. Mahfoud, J. Jankowski, J. R. Muñoz-Castañeda, V. Jankowski, Pyridoxal-
- 735 5'-phosphate: A cost-effective treatment candidate for hypertensive patients? *J Intern Med* **296**,
- 736 435–448 (2024).
- 737 41. H.-P.-T. Ngo, D. Q. Nguyen, H. Park, Y. S. Park, K. Kwak, T. Kim, J. H. Lee, K. S. Cho,
- 738 L.-W. Kang, Conformational change of organic cofactor PLP is essential for catalysis in PLP-
- 739 dependent enzymes. *BMB Rep* **55**, 439–446 (2022).
- 42. J. Ciapaite, C. W. T. van Roermund, M. Bosma, J. Gerrits, S. M. Houten, L. IJlst, H. R.
- Waterham, C. D. M. van Karnebeek, R. J. A. Wanders, F. J. T. Zwartkruis, J. J. Jans, N. M.
- 742 Verhoeven-Duif, Maintenance of cellular vitamin B6 levels and mitochondrial oxidative
- 743 function depend on pyridoxal 5'-phosphate homeostasis protein. Journal of Biological
- 744 *Chemistry* **299**, 105047 (2023).
- 745 43. M. B. Zemel, A. Bruckbauer, Effects of a Leucine and Pyridoxine-Containing Nutraceutical
- on Fat Oxidation, and Oxidative and Inflammatory Stress in Overweight and Obese Subjects.
- 747 *Nutrients* **4**, 529–541 (2012).
- 748 44. S. Taş, E. Sarandöl, M. Dirican, Vitamin B6 Supplementation Improves Oxidative Stress
- and Enhances Serum Paraoxonase/Arylesterase Activities in Streptozotocin-Induced Diabetic
- 750 Rats. *The Scientific World Journal* **2014**, 1–7 (2014).
- 45. A. Lui, L. Lumeng, G. R. Aronoff, T. K. Li, Relationship between body store of vitamin B6
- and plasma pyridoxal-P clearance: metabolic balance studies in humans. J Lab Clin Med 106,
- 753 491–7 (1985).

- 46. S. P. Coburn, J. D. Mahuren, M. S. Kennedy, W. E. Schaltenbrand, D. W. Townsend,
- 755 Metabolism of [14C]- and [32P]Pyridoxal 5'-Phosphate and [3H]Pyridoxal Administered
- 756 Intravenously to Pigs and Goats ,. *J Nutr* **122**, 393–401 (1992).
- 47. A. H. MERRILL, J. M. HENDERSON, Vitamin B 6 Metabolism by Human Liver a. Ann
- 758 *N Y Acad Sci* **585**, 110–117 (1990).
- 759 48. B. B. Anderson, H. O'Brien, G. E. Griffin, D. L. Mollin, Hydrolysis of pyridoxal-5'-
- phosphate in plasma in conditions with raised alkaline phosphate. *Gut* **21**, 192–194 (1980).
- 49. S. K. Kunutsor, S. J. L. Bakker, J. E. Kootstra-Ros, R. T. Gansevoort, J. Gregson, R. P. F.
- 762 Dullaart, Y. Tintut, Ed. Serum Alkaline Phosphatase and Risk of Incident Cardiovascular
- 763 Disease: Interrelationship with High Sensitivity C-Reactive Protein. *PLoS One* **10**, e0132822
- 764 (2015).
- 50. Y. Shimizu, M. Nakazato, T. Sekita, K. Kadota, H. Yamasaki, N. Takamura, K. Aoyagi, Y.
- 766 Kusano, T. Maeda, Association between alkaline phosphatase and hypertension in a rural
- Japanese population: The Nagasaki Islands study. *J Physiol Anthropol* **32**, 10 (2013).
- 51. M. Sundukova, S. Vilotti, R. Abbate, E. Fabbretti, A. Nistri, Functional differences between
- ATP-gated human and rat P2X3 receptors are caused by critical residues of the intracellular C-
- 770 terminal domain. *J Neurochem* **122**, 557–567 (2012).
- 52. A. Serrano, G. Mo, R. Grant, M. Paré, D. O'Donnell, X. H. Yu, M. J. Tomaszewski, M. N.
- Perkins, P. Séguéla, C. Q. Cao, Differential Expression and Pharmacology of Native P2X
- Receptors in Rat and Primate Sensory Neurons. *The Journal of Neuroscience* **32**, 11890–11896
- 774 (2012).
- 53. T. N. C. Padmanabhan, S. Dani, V. K. Chopra, S. Guha, H. Vasnawala, R. Ammar,
- 776 Prevalence of sympathetic overactivity in hypertensive patients A pan India, non-
- interventional, cross sectional study. *Indian Heart J* **66**, 686–690 (2014).
- 54. F. D. McBryde, A. P. Abdala, E. B. Hendy, W. Pijacka, P. Marvar, D. J. A. Moraes, P. A.
- Sobotka, J. F. R. Paton, The carotid body as a putative therapeutic target for the treatment of
- 780 neurogenic hypertension. *Nat Commun* **4**, 1–11 (2013).