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Abstract

Ensuring reliable power system control demands innovative architectural solutions. This
research introduces a fault-tolerant hybrid parallel compensator architecture for load fre-
quency control (LFC), combining a Proportional–Integral–Derivative with Filter (PIDF)
compensator with a Fuzzy Fractional-Order PI-PD (Fuzzy FOPI–FOPD) module. Particle
Swarm Optimization (PSO) determines optimal PID gains, while the Catch Fish Optimiza-
tion Algorithm (CFOA) tunes the Fuzzy FOPI–FOPD parameters—both minimizing the
Integral Time Absolute Error (ITAE) index. The parallel compensator structure guarantees
continuous operation during subsystem faults, substantially boosting grid reliability. Rig-
orous partial failure tests confirm uncompromised performance-controlled degradation.
Benchmark comparisons against contemporary controllers reveal the proposed architec-
ture’s superiority, quantifiable through transient metric enhancements: undershoot sup-
pression (−9.57 × 10−5 p.u. to −1.17 × 10−7 p.u.), settling time improvement (8.8000 s to
3.1511 s), and ITAE reduction (0.0007891 to 0.0000001608), verifying precision and stability
gains. Resilience analyses across parameter drift and step load scenarios, simulated in
MATLAB/Simulink, demonstrate superior disturbance attenuation and operational stabil-
ity. These outcomes confirm the solution’s robustness, dependability, and field readiness.
Overall, this study introduces a transformative LFC strategy with high practical viability
for modern power networks.

Keywords: Load Frequency Control; Fuzzy FOPI–FOPD; Particle Swarm Optimization;
Catch Fish Optimization

1. Introduction
1.1. General Overview

The load frequency control (LFC) system is a fundamental component in power system
operation that is tasked with regulating and stabilizing the system frequency and tie-line
power exchange among interconnected areas. Frequency regulation is vital for maintaining
the reliability, efficiency, and overall stability of electrical power systems. As modern grids
evolve with the integration of renewable energy sources, electric vehicles, and distributed
generation, LFC has become a critical mechanism for maintaining real-time balance between
power supply and demand across dynamic operating conditions [1]. Given its foundational
importance in preserving grid integrity, it is crucial to first clarify the underlying principles
governing LFC functionality—including generation load imbalance dynamics, Area Control
Error (ACE) minimization objectives, and inertial response characteristics—and its critical
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role in sustaining nominal frequency during stochastic disturbances, abrupt load variations,
and generation contingencies.

1.2. Literature Review

Despite the emergence of numerous advanced control strategies, the Proportional–
Integral–Derivative (PID) controller persists as the fundamental approach within load
frequency control (LFC) systems. Its control structure depends on three principal tuning
parameters: proportional gain (Kp), integral gain (Ki), and derivative gain (Kd). These
components operate collectively to ensure frequency stability by correcting deviations,
eliminating steady-state errors, and enhancing transient performance [2]. While the classical
PID controller demonstrates efficacy in frequency regulation under nominal and variable
load conditions, its constrained adaptability in managing complex system dynamics and
external disturbances reveals inherent operational constraints. Consequently, significant
research efforts, extensively documented in the literature, have yielded a spectrum of
enhanced control methodologies. These advanced approaches target augmented dynamic
response, strengthened robustness against uncertainties, and improved precision in overall
frequency regulation.

Modern power grids require control architectures that surpass conventional PID
limitations, motivating new evolutionary directions in controller design. The Proportional–
Integral–Derivative–Acceleration (PIDA) and Tilt–Integral–Derivative (TID) controllers
address dynamic response constraints through specialized compensation mechanisms
absent in three-parameter designs. More fundamentally, integrating fractional operators
transforms the PID foundation into the five-dimensional Fractional-Order PID (FOPID)
framework. This architecture uniquely enables the continuous tuning of differentia-
tion/integration orders—providing unprecedented control over nonlinear dynamics, where
discrete PID variants exhibit inherent limitations [3]. Validation studies have established
that FOPID controllers consistently outperform both PIDA implementations and conven-
tional PID across various operating regimes. However, fractional-order realization requires
substantially more complex implementation than integer-based approaches, mandating
comprehensive optimization of all five parameters to achieve theoretical advantages [4].
This expansion of design freedom inherently transfers complexity from modeling to com-
putation, defining a new optimization frontier for modern control systems.

The expanded parametric dimensionality of advanced controllers, particularly
FOPID’s five degrees of freedom tuning hyperspace, precipitates fundamental limitations
in classical optimization paradigms. Legacy methodologies, such as Ziegler–Nichols (ZN)
and Cohen–Coon, anchored in linearized approximations and empirical heuristics, prove
critically insufficient for high-dimensional, nonlinear frequency regulation systems. Such
approaches often result in suboptimal gain selection, persistent oscillations, or marginal
stability boundaries. This impasse necessitates heuristic algorithms—including Genetic
Algorithms (GA), Particle Swarm Optimization (PSO), and Simulated Annealing (SA) as
essential conduits between theoretical control frameworks and physical implementation.
Metaheuristic techniques exhaustively navigate the solution landscape of modern PID vari-
ants, transcending rigid classical constraints to concurrently optimize transient suppression.
Achieving optimal performance in LFC necessitates a design focus on steady-state preci-
sion and computational efficiency [5]. This study presents a detailed analysis of heuristic
optimization techniques, specifically examining their application in tuning PID and related
controllers to enhance LFC system performance.

Prior to examining prevalent control technologies for LFC applications, advanced
strategies warrant emphasis for enhancing system robustness and adaptability. Adaptive
control and sliding mode control (SMC) demonstrate significant potential in this domain [6].
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Adaptive control dynamically modifies controller parameters in real-time to accommodate
variations in system dynamics, proving particularly effective under uncertain or fluctuating
load conditions. This methodology has been successfully implemented in demanding
aerospace applications where precision is critical. Nevertheless, adaptive control entails
substantial design complexity and requires meticulous real-time parameter adjustment,
hindering practical LFC implementation due to computational burdens [7]. Similarly, SMC
is distinguished by its robustness against matched uncertainties and ability to confine
system trajectories within predefined sliding manifolds, effectively neutralizing distur-
bances. SMC has been rigorously validated in power electronics and frequency regulation
applications where reliability is paramount [8]. However, practical deployment is often
limited by chattering high-frequency oscillations from discontinuous control signals. This
phenomenon degrades performance and risks hardware degradation in sensitive systems.
Overcoming these obstacles is crucial to fully harnessing the benefits of adaptive control
and SMC for LFC, thereby promoting their broader integration into modern power sys-
tems [9]. It is widely established that the PID controller is the foremost feedback solution
in industry, and it is found in over 90% of control applications [10]. In LFC systems, studies
indicate that many modern control methods are fundamentally built upon the PID struc-
ture. Implementations range from basic PID controllers to advanced setups, including
cascaded or gain-scheduled architectures, as well as hybrid designs that merge PID with
other paradigms, such as adaptive or intelligent control. Recent progress has focused
significantly on computational optimization for refining PID parameters in LFC systems.
A broad spectrum of metaheuristic algorithms has emerged, including Particle Swarm
Optimization (PSO) [11], Genetic Algorithm (GA) [12], Metaheuristic Anopheles Search
Algorithm and Artificial Intelligence (MASAAI) [13], Artificial Bee Colony (ABC) [14],
Artificial Rabbits Optimization (ARO) [15], Atom Search-Inspired Algorithm (ASIA) [16],
Black Widow Optimization Algorithm (BWOA) [17], Chess Algorithm (CA) [18], Grey Wolf
Optimizer (GWO) [19], lightning attachment procedure optimization (LAPO) [20], Lin-
earized Biogeography-Based Optimization (LBBO) [21], Lyrebird Optimization Algorithm
(LOA) [22], Modified Brainstorming Algorithm (MBA) [23], Marine Predator Algorithm
(MPA) [24], Modified Whale Optimization Algorithm (MWOA) [25], self-adaptive bonobo
optimizer (SABO) [26], and Slap Swarm Algorithm (SSA) [27].

To harness the benefits of alternative PID-based controllers in LFC applications, the
authors of [28] proposed and empirically validated a PIDA controller optimized using
the Competition over Resources (COR) method. This approach demonstrated superior
performance compared to conventional PID controllers optimized with the same algorithms.
Similarly, the authors of [29] employed multiple optimization techniques, including three
optimization techniques presented in this article, to tune the controllers’ parameters. The
techniques employed to optimize the parameters of PID and PIDA controllers in LFC
systems include teaching–learning-based optimization (TLBO), harmony search algorithm
(HS), and sine–cosine algorithm (SCA). These optimized implementations exhibited reliable
and robust performance across diverse operational scenarios [30,31].

Similarly, LFC research has advanced classical PID control through novel configura-
tions. A filtered-derivative PID (PIDF) architecture, distinguished by four independently
adjustable parameters, was established by the authors of [32] for frequency regulation
applications. This framework employed the Hybrid Simulated Annealing-based Quadratic
Interpolation Optimizer (hSA-QIO) for parameter calibration, achieving heightened preci-
sion and operational superiority. Subsequent developments by the authors of [33] yielded a
PID plus second-order derivative (PIDD2) controller through dual derivative action integra-
tion, with Ant Lion Optimizer (ALO)-tuned parameters demonstrating enhanced transient
response characteristics compared to conventional PID implementations in rigorous com-
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parative evaluations. The fractional-order PID (FOPID) controller, representing a significant
evolution beyond standard PID formulations, has likewise proven effective for LFC systems.
The authors of [34] validated an Aquila Optimizer (AO)-optimized FOPID implementa-
tion, achieving robust frequency stability. Further progress includes the Bees Algorithm
(BA) [35], which outperformed established techniques in FOPID parameter tuning for LFC
scenarios, delivering exceptional dynamic response. Complementary investigations by the
authors of [36] confirmed the stabilization capabilities of a skill optimization algorithm
(SOA)-enhanced FOPID controller across diverse grid operating conditions.

Additional significant advances in LFC research extend beyond conventional PID/
FOPID configurations through intelligent, fuzzy-based adaptations that target enhanced
dynamic regulation. A prominent example employs Grey Wolf Optimization (GWO) [37]
to implement a Fuzzy-PID controller for thermal–hydro–gas multi-source load frequency
control. This methodology achieves enhanced frequency/tie-line stabilization and resilience
under load disturbances and generation rate constraints without returning.

Moreover, recent innovations include a fuzzy-based self-adaptive Virtual Inertia Con-
trol with Fuzzy PID secondary controller [38], optimized using the Arithmetic Optimization
Algorithm (AOA). This architecture demonstrates exceptional robustness against para-
metric uncertainties, stochastic renewable variations, and generation–load disturbances.
Further advancing this domain, ref. [39] developed an adaptive fuzzy PID controller (A-
FLC-PID), optimized via hybrid moth flame optimization pattern search (h-MFO-PS). This
configuration provides enhanced tuning capabilities for multi-unit hydrothermal–gas sys-
tems, significantly improving frequency regulation, disturbance rejection, and dynamic
response under diverse load conditions. Complementing these advances, the authors of [40]
implemented a Grey Wolf Optimizer (GWO)-optimized fuzzy self-tuned PID controller
for power systems with high renewable penetration. This methodology achieves minimal
frequency deviations, robust regulation, and enhanced stability compared to conventional
techniques under variable load and renewable generation uncertainties.

Advancing controller design, a novel Interval Type-2 Fuzzy Logic Controller (IT2FLC)
was developed [41] to enhance hybrid microgrid energy management and provide robust
energy balance under renewable generation and electric vehicle integration uncertainties.
Additionally, the authors of [42] proposed a hybrid Fuzzy Fractional-Order PID (FOPID)
controller augmented with a PI compensator and optimized via the Catch Fish Optimiza-
tion Algorithm (CFOA) for robust load frequency control in multi-area power systems,
demonstrating significant performance improvements under nonlinear constraints. Com-
plementary research presents a Quasi-Opposition Arithmetic Optimization Algorithm
(QOAOA) tuned Interval Type-2 Fuzzy FOPIDN controller [43] for automatic generation
control in a three-area deregulated system. This design integrates vehicle-to-grid technol-
ogy and renewable sources to achieve frequency/tie-line stability with enhanced robustness
under renewable fluctuations and load variations. Additionally, a fuzzy-PID-TIDµ con-
troller optimized via the crayfish optimization algorithm (COA) was introduced in [44] for
automatic generation control with redox flow batteries, ensuring precise frequency stabi-
lization under high renewable penetration and communication delays. Collectively, these
advancements substantially enhance the precision, stability, robustness, and adaptability
of contemporary power grids. Table 1 systematically classifies control methodologies and
associated optimization algorithms documented for LFC applications.
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Table 1. The LFC frameworks proposed in the literature.

Ref. Year Control
Technique

Optimization
Tool

[2] 2025 PID TLBO
[3] 2025 FOPID NNA
[6] 2021 Adaptive control I-InC
[7] 2020 Adaptive control ESO
[8] 2025 SMC ISTA
[9] 2022 AF-SSMC STA
[11] 2025 PID PSO
[12] 2012 PID GA
[13] 2021 PID MASAAI
[14] 2022 PID ABC
[15] 2023 PID ARO
[16] 2023 PID ASIA
[17] 2022 PID BWOA
[18] 2025 PI CA
[19] 2016 PID GWO
[20] 2021 PID LAPO
[21] 2020 PID LBBO
[22] 2024 PID LOA
[23] 2024 PID MBA
[24] 2021 PID MPA
[25] 2020 PID MWOA
[26] 2025 PID SABO
[27] 2019 PID SSA
[28] 2021 PIDA COR
[29] 2018 PIDA TLBO
[32] 2024 PIDF hSA-QIO
[33] 2016 PIDD2 ALO
[34] 2024 FOPID AO
[35] 2021 FOPID BA
[36] 2022 FOPID SOA
[37] 2025 FuzzyPID GWO
[38] 2024 FuzzyPID AOA
[39] 2024 FuzzyPID h-MFO-PS
[40] 2024 FuzzyPID GWO
[41] 2024 IT2FLC -
[42] 2025 FuzzyFOPID-PI CFOA
[43] 2024 IT2FFOPIDN QOAOA
[44] 2024 FuzzyPID–TIDµ COA
[45] 2025 FO-FuzzyPID PSO
[46] 2024 T–S Fuzzy(H∞) -
[47] 2025 T3-FLC -

Contemporary advancements in fuzzy control have substantially expanded method-
ologies for regulating nonlinear systems, with significant progress in adaptive fractional-
order control. For example, the authors of [45] developed an adaptive fractional-order
fuzzy PID (FO-Fuzzy-PID) controller optimized via Particle Swarm Optimization (PSO) for
load frequency control in hybrid power systems. Similarly, the authors of [46] introduced a
Takagi–Sugeno (T–S) fuzzy-based load frequency control (LFC) methodology incorporating
switched system theory to address nonlinearities and hybrid delays in multi-area power
systems, achieving enhanced robustness and superior H∞ performance. Additionally, the
authors of [47] proposed a Type-3 Fuzzy Logic (T3-FL) controller for load frequency control
in renewable-integrated microgrids, employing online adaptive mechanisms to enhance ro-
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bustness against stochastic power fluctuations and load variations. These approaches may
encounter implementation constraints in real-time LFC applications demanding millisec-
ond response times and minimal computational overhead. Nevertheless, through targeted
optimization, such strategies may demonstrate adaptability for frequency regulation. This
justifies the development of a hybrid control strategy methodology presented in this work,
which preserves the simplicity of Type-1 fuzzy logic while enhancing reliability through a
parallel architecture specifically engineered for power system stabilization.

1.3. Motivation and Contributions

Maintaining precise frequency regulation in load frequency control (LFC) systems—
especially in hybrid multi-area power networks with a high penetration of renewable
energy sources—remains a critical challenge due to system nonlinearities, unpredictable
load variations, and intermittent renewable energy generation. Achieving a fast, dynamic
response is essential to reduce frequency deviations and enhance system stability; however,
overly aggressive control may lead to overshoot or oscillations, while conservative designs
risk delayed stabilization and inter-area imbalance.

Although a wide range of control approaches have been explored, including conven-
tional PID, adaptive control, and sliding mode control, each exhibits limitations. Despite
their benefits of simplicity and low cost, conventional PID controllers frequently lack suffi-
cient robustness when faced with varying operating conditions. Intelligent methods offer
adaptability but are typically complex to implement and computationally intensive. These
challenges highlight the need for a hybrid solution that combines structural simplicity with
intelligent adaptability.

This paper proposes an optimal two-stage control strategy for LFC applications. The
first stage employs a PID controller to achieve initial stabilization. The second stage
enhances performance using a fuzzy logic-based fractional-order controller (Fuzzy FOPI–
FOPD), which improves disturbance rejection and nonlinear handling capabilities.

The main contributions of this study are summarized as follows:

1. Innovative Controller Design: An optimal two-stage LFC configuration is proposed, in-
tegrating a PID controller with filtered derivative action (PIDF) and a fuzzy fractional-
order controller (Fuzzy FOPI–FOPD). This hierarchical design enhances system stabil-
ity and reliability, ensuring the control framework remains effective even in the event
of partial component failure.

2. Dual Optimization Framework: The first stage PIDF is optimized using Particle
Swarm Optimization (PSO) for rapid convergence and simplicity. The second-stage
Fuzzy FOPI–FOPD controller is tuned using the Catch Fish Optimization Algorithm
(CFOA), a novel metaheuristic effective in nonlinear search spaces.

3. Comparative Performance Analysis: The proposed method is evaluated against
conventional and advanced control techniques. Results confirm its superior ability to
minimize transient deviations and maintain stable frequency regulation.

4. Robustness Evaluation Under Realistic Conditions: The controller is tested under
nonlinearities such as GRC and GDB, as well as system parameter uncertainties.
It consistently demonstrates stable operation and low sensitivity to disturbances,
confirming its robustness in dynamic and uncertain environments.

1.4. Paper Structure

This paper is organized as follows. Section 2 describes the mathematical modeling
of the two-area load frequency control (LFC) system, including the nonlinear elements
considered. Section 3 introduces the proposed two-stage controller structure and outlines
the optimization strategies applied. Section 4 presents the simulation results and evaluates
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the controller’s performance and examines the system’s robustness under various operating
scenarios. Finally, Section 5 concludes the study and suggests directions for future work.

2. Power Systems Under Study: Modeling and Parameters
This research validates the proposed PIDF + Fuzzy FOPI–FOPD controller using two

hybrid power system models. The first model is employed for comprehensive robustness
investigations, incorporating nonlinearities such as (GDB) and (GRC), alongside parametric
uncertainties and random load disturbances. In contrast, the second model is primarily
utilized for effectiveness analysis, focusing on dynamic performance under standard
operating conditions. Together, these evaluations confirm the controller’s adaptability and
resilience across diverse and realistic power system scenarios.

2.1. Hybrid Power System One

The proposed hybrid power system model consists of two interconnected areas linked
by a tie-line, as illustrated in Figure 1. Area 1 includes a diesel generator with a valve
actuator, a wind turbine energy source, a superconducting magnetic energy storage (SMES)
unit, and a local load. Area 2 consists of a diesel generator with a valve actuator, a
photovoltaic (PV) energy source, a battery energy storage (BES) system, and a local load.
Both areas are equipped with a dual-stage control structure, integrating a (PID) compensator
in the first stage and a cascaded fuzzy (FOPI–FOPD) controller alongside PID in the second
stage. This control scheme is designed to maintain frequency stability, improve dynamic
performance, and enhance robustness under varying operating conditions, including load
disturbances and parameter uncertainties.

Figure 1. The first hybrid power system studied.

In this system configuration, the wind turbine in Area 1 and the PV system in Area
2 each supply approximately 25% of the total system demand, with their respective energy
storage systems sized to match their generation capacity. The diesel generators in both
areas share the remaining demand equally. All system components are modeled as linear
first-order transfer functions, as summarized in Table 2 [48]. This system serves as the
benchmark platform to assess the proposed control strategy’s performance relative to
conventional approaches.
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Table 2. System model transfer functions and parameters [48].

Component Transfer Function Design Parameters

Diesel generator KDG
TDG·S+1

KDG1 = KDG2 = 1
TDG1 = TDG2 = 0.5

Valve actuator Kv
TV·S+1

KV1 = KV2 = 1
TV1 = TV2 = 0.05

Wind turbine KWT
TWT·S+1

KWT = 1
TWT = 1.5

SMES KSMES
TSMES·S+1

KSMES = 0.98
TSMES = 0.03

PV KPV
TPV·S+1

KPV = 1
TPV = 0.03

BES KBES
TBES·S+1

KBES = 1.8
TBES = 0

Area swing KAS
TAS·S+1

KAS1 = KAS2 = 1
TAS1 = TAS2 = 3

Synchronizing coefficient K12
S K12 = 1.4π

Speed drops R1, R2 R1 = R2 = 0.05

Frequency bias coefficients B1, B2 B1 = B2 = 21

2.1.1. BES Model

The (BES) unit functions by storing energy through chemical processes and subse-
quently delivering it as electrical power. To achieve this, the BES requires integration with
both a charging system and an inverter to facilitate the conversion from direct current
(DC) to alternating current (AC) [48]. In this study, a fast-responding BES type is consid-
ered. Accordingly, its dynamic behavior is represented using a first-order transfer function
characterized by a gain of 1.8 and a time constant set to zero, as formulated below:

GBES(s) =
KBES

TBES · S + 1
(1)

2.1.2. SMES Model

The (SMES) system retains energy in the form of a magnetic field generated by circu-
lating (DC) through a superconducting coil, which is maintained at a temperature below
the material’s critical superconducting point. To function properly, the SMES unit must be
equipped with both an inverter and a cryogenic refrigeration system to sustain the required
low-temperature environment. The amount of magnetic energy stored, denoted as (E), and
the corresponding power (P), are calculated using the following expressions, as presented
in Equations (2) and (3) [48]:

E = 0.5LI2 (2)

P =
∂E
∂t

= LI
∂I
∂t

= VI (3)

In this work, the SMES device is represented by a first-order transfer function, charac-
terized by a gain value of 0.98 and a time constant of 0.03 s, as shown below:

GSMES(s) =
KSMES

TSMES · S + 1
(4)
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2.1.3. Diesel Generator Model

In standalone hybrid microgrid configurations, renewable energy sources are inte-
grated with diesel generators to ensure a stable and reliable electricity supply for isolated
loads, as the output from renewables fluctuates depending on weather conditions. Typically,
diesel generators are outfitted with valve actuators that adjust engine speed to manage the
generated power [48]. Under conditions of high load demand, both the diesel units and
energy storage systems work together to fulfill the required energy. In this study, the dy-
namic behavior of the diesel generators and their associated valve actuators is represented
using first-order transfer functions, each with a unity gain and time constants of 0.5 s and
0.05 s, respectively.

2.2. GDB and GRC Modeling and Integration

The governor dead band (GDB) represents an intrinsic physical nonlinearity in power
system governors, defined by a specified insensitivity zone where small-frequency devia-
tions do not trigger corrective valve action. This behavior stems from two key mechanisms:
(i) mechanical clearances within the valve actuation linkage, introducing inherent back-
lash, and (ii) intentional signal conditioning to prevent unnecessary control cycling during
transients. The resultant time delay degrades LFC performance by introducing phase shift,
aggravating power swings, and reducing regulation accuracy.

To realistically represent the practical behavior of a turbine governor, the GDB nonlin-
earity is embedded within the system model, following the mathematical representation
in [42]. This model explicitly incorporates the governor valve’s unresponsive region during
minor speed changes. The corresponding governor transfer function, accounting for GDB
effects, is given by

GGDB(s) =
− 0.2

π s + 0.8
Tgs + 1

(5)

where Tg designates the governor’s time constant. The numerator coefficients 0.8 and
− 0.2

π mathematically encapsulate the dead band’s asymmetric impact on valve actuation
dynamics, as formally established in [42]. This nonlinearity is deliberately integrated into
the governor module to rigorously evaluate controlled efficacy under non-ideal operating
regimes, verifying disturbance resilience against practical electromechanical transients.
Furthermore, the generation rate constraint (GRC) represents a physical constraint limiting
permissible power output ramp rates. These restrictions arise from inherent thermody-
namic limitations, mechanical inertia, and operational safety constraints within turbine
systems. GRC specifications typically define upper/lower bounds on the generation rate
of change, ensuring operation within feasible engineering margins. Neglecting GRC in
dynamic models yields unrealistically rapid power adjustments inconsistent with physical
plant behavior.

To address this practical limitation, the linear turbine model (Figure 1) is replaced by
the nonlinear representation in Figure 2, incorporating GRC constrained to ±0.05 p.u./s.
This formulation employs a saturation element enforcing rate-limited response dynamics,
accurately capturing inertial delays and thermodynamic lags. As substantiated in [42], this
approach restricts turbine power variations to physically achievable trajectories, precluding
artificial performance inflation in simulations.
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Figure 2. A nonlinear turbine model with GRC.

Furthermore, this aspect highlights that GRC integration is crucial for the accurate
performance assessment of load frequency controllers. Its exclusion produces overly favor-
able assessments of transient response and stability. Embedding GRC within the turbine
module enables credible analysis of frequency dynamics and tie-line power interchange
under realistic disturbance scenarios.

2.3. Hybrid Power System Two

Thermal Generator Model Area 1 comprises a thermal generation system integrating a
generator, turbine, governor, and reheater. System parameters are detailed in Appendix A.
The transfer functions for each component are defined as follows [49], and the overall
system is illustrated in Figure 3.

Figure 3. The second hybrid power system studied.

Governor dynamics:

Ggov(s) =
Kg

sTg + 1
(6)

where Kg is the governor gain, and Tg is the time constant (s).
This first-order transfer function represents the governor’s mechanical power adjust-

ment for frequency regulation.
Turbine dynamics:

Gtrb(s) =
Kt

sTt + 1
(7)
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where Kt is the turbine gain, and Tt is the time constant (s).
This first-order transfer function characterizes the turbine’s mechanical power output

response to demand variations.
The reheater transfer function is defined as

Grht(s) =
sTrKr + 1

sTr + 1
(8)

Kr denotes the reheater gain, and Tr represents its associated time constant. This trans-
fer function mathematically characterizes the reheater’s energy transfer dynamics during
system transients, encapsulating both the transient response and equilibrium behavior
within the power generation process.

The Power System Transfer Function is

Gps(s) =
Kps

sTps + 1
(9)

Kps denotes the system gain, and Tps represents the inertial time constant (s). This
transfer function characterizes the grid’s inertial response to load generation imbalances.

Photovoltaic System Model: The aggregate transfer function representing the inte-
grated photovoltaic system encompassing the solar array, maximum power point tracking
(MPPT) converter, inverter, and output filter is defined as follows [49]:

Gpv =
−18S + 900

S2 + 100S + 50
(10)

3. The Proposed Controller and Tuning Tool
3.1. Two-Stage Optimized PIDF Plus Fuzzy Architecture

The design in Figure 4 targets superior frequency regulation capabilities and enhanced
operational resilience, ensuring stable LFC under varying operating conditions. This
hierarchical control structure features two concurrently operated stages, each independently
optimized. The primary PID with Filter (PIDF) controller undergoes initial independent
optimization via the Particle Swarm Optimization (PSO) algorithm. To further enhance the
PIDF’s performance, a secondary controller is integrated. The control signals from both
stages are combined to generate the final actuation command. The auxiliary controller is
optimized using the Catch Fish Optimization Algorithm (CFOA), with the optimization
process constrained by the pre-optimized PIDF parameters obtained in the first stage.

Figure 4. The developed control scheme.

This hierarchical control design provides enhanced stability, reliability, and robustness,
ensuring uninterrupted operation even in the event of partial subsystem failures.

3.2. The Primary PIDF

The Proportional–Integral–Derivative with Filter (PIDF) structure extends conven-
tional PID capability by filtering the derivative path. This architecture directly counters
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the traditional PID vulnerability to high-frequency disturbances, which can provoke desta-
bilizing actuation. A low-pass filter integrated within the derivative stage attenuates
measurement noise, producing deterministic control signals. Enhanced disturbance im-
munity follows, crucially stabilizing systems operating under stochastic loads. Where
conventional PID controllers misinterpret noise as process dynamics, PIDF preserves re-
sponse fidelity to actual plant behavior. The filter coefficient introduces supplementary
design freedom, enabling refined transient shaping in noise-corrupted regimes—a domain
where standard PID exhibits inherent limitations. Empirical results confirm PIDF’s suppres-
sion of overshoot and oscillatory modes, yielding accelerated settling and rigorous stability
margins. These attributes designate PIDF as the preferred solution for high-integrity control
applications. The governing transfer function is

PIDFc(S) = Kp +
Ki

S
+

KdKF

1 + KF
1
S

(11)

with KP, Ki, Kd, and KF representing proportional, integral, derivative, and filter gains. Pa-
rameter optimization employs Particle Swarm Optimization (PSO), detailed subsequently.

3.3. PIDF Plus Fuzzy Logic Control with FOPI–FOPD

This research focuses on strengthening the principal PIDF controller through com-
plementary control method integration to determine the optimal (LFC) configuration.
Fuzzy Logic Control (FLC) maintains robust operation across diverse power system condi-
tions, serving as an established intelligent technique that delivers consistent performance
enhancements. Therefore, the primary PIDF controller receives augmentation via FLC
implementation, elevating the overall frequency regulation capability. Figure 5 displays
this integrated architecture.

Figure 5. The PIDF integrated with Fuzzy FOPI–FOPD for LFC.

The PSO algorithm first optimizes the PIDF controller gains. A Fuzzy FOPI–FOPD
controller is then integrated into this control scheme. This FLC processes two normalized
inputs: the error signal and its time derivative. Normalization uses scaling factors K1 and
K2, respectively, where K1 corresponds to the proportional gain KP and scales the error
input, K2 corresponds to the derivative gain Kd and scales the first-order derivative of the
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error, and K3 corresponds to the fractional derivative order (µ). A single output from this
fuzzy controller merges with the PIDF structure. Specifically, the Fuzzy FOPI–FOPD output
combines with the primary PIDF output to produce the final composite control signal. The
transfer function of the proposed controller is outlined in Equations (12) and (13).

CFOPI(s) = Kp1 +
Ki1

sλ
(12)

CFOPD(s) = Kp2 + Kd2sµ (13)

PSO was chosen for the PIDF stage because it provides fast and reliable convergence in
smooth, low-dimensional search spaces. In contrast, the fuzzy fractional-order compensator
operates in a highly nonlinear, multi-modal domain, where CFOA’s balanced exploration
and exploitation enhance robustness under GRC and GDB effects. Employing separate
optimizers prevents error propagation between heterogeneous components and improves
reproducibility compared to a unified approach. This hybrid design exploits both the
adaptive nature of fuzzy logic and the deterministic behavior of the PIDF framework,
enhancing overall performance.

Structural simplicity and efficiency guide the implementation of the FLC. It utilizes five
trapezoidal and triangular membership functions for all linguistic input/output variables.
Figure 6 labels these as Negative Big (NB), Negative Small (NS), Zero (Z), Positive Small (PS),
and Positive Big (PB). The operation relies on a fuzzy rule base containing 25 conditional
statements (Table 3).

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
NB NS Z PS PB

Figure 6. The membership functions of the fuzzy controller.

Table 3. The rule base of the FLC component.

Error
Change of Error

NB NS Z PS PB

NB NB NB NB NS Z
NS NB NB NS Z PS
Z NB NS Z BS PB
PS NS Z PS PB PB
PB Z PS PB PB PB

To optimize the gain parameters K1, K2, K3, Kp, Ki, Kd, λ, and µ, the CFO algorithm
is employed. This process incorporates the PIDF controller’s pre-optimized gains. Crisp
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input data undergo fuzzification via the Mamdani inference method, resulting in fuzzy
linguistic variables. For defuzzification, the centroid technique determines the final control
signal. This real-valued output is derived by determining the centroid of the combined
output fuzzy set.

3.4. The Suggested Tuning Tool: PSO Algorithm

The primary PIDF controller undergoes precise tuning via Particle Swarm Optimiza-
tion (PSO), a population-based metaheuristic derived from collective biological phenomena
observed in avian flocks and fish schools. The algorithm initializes a solution representing
particles that traverse multidimensional search spaces defined by the controller gain pa-
rameters. During iterative optimization cycles, trajectory updates synthesize each particle’s
historical optimum (pbest) with the swarm’s best global solution (gbest). Specifically,
velocity and position adjustments incorporate weighted contributions from individual
experience and collective swarm intelligence. This bio-inspired mechanism maintains a
critical equilibrium between exploration (diversified global search) and exploitation (local
solution refinement), thereby facilitating efficient navigation of non-convex optimization
landscapes common in control engineering applications. Through continuous self-learning
(cognitive adaptation) and social learning (swarm knowledge exchange) processes, PSO
dynamically refines parameter sets to ensure robust controller performance under complex
dynamic conditions, including nonlinear plant dynamics and disturbance rejection scenar-
ios. The theoretical foundations of this approach are detailed in [50]. Table 4 specifies the
applied PSO configuration for gain optimization.

➢ Particle Numbers: 50 solutions, governing the swarm size to modulate solution
diversity and computational burden.

➢ Inertia weight: Linearly decreases from Wmax = 1.2 (preserving momentum for global
exploration) to Wmin = 0.2 (intensifying local exploitation).

➢ Cognitive coefficient: C1 = 1.2 (attraction to personal best positions).
➢ Social coefficient: C2 = 1.2 (attraction to swarm optimal solutions).
➢ Velocity constraints: Confined to ±0.2 (ub − lb) (20% of design variable bounds),

preventing oscillatory divergence while maintaining search efficacy.
➢ Termination criterion: 100 iterations.

Table 4. The PSO parameters.

Parameter Value

No. of Particles 50

Wmax 1.2

Wmin 0.2

C1 1.2

C2 1.2

Vmax (ub − lb) × 0.2

Vmin −Vmax

Termination Criterion 100 iterations

3.5. The Suggested Tuning Tool: CFO Algorithm

The Catch Fish Optimization Algorithm (CFOA) is a metaheuristic optimization
technique inspired by traditional fishing practices, where fishermen are modeled as au-
tonomous search agents. The algorithm operates through two main behavioral phases:
the exploration phase, where agents conduct an independent search to locate promising
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regions, and the exploitation phase, where agents coordinate collective encirclement to
refine solutions near identified optima. CFOA transitions adaptively between these modes
using a stochastic capture rate coefficient (α), balancing diversification and intensification.
Importantly, CFOA has been demonstrated in recent studies [42] to be particularly effective
for tuning controllers under nonlinear elements, such as GRC and GDB, due to its robust
balance between exploration and exploitation. This evidence strongly supports its suitabil-
ity for the present work, where nonlinearities play a central role. To maintain a reasonable
computational overhead during the tuning process, the algorithm’s population size and
iteration count were set to 50 and 100, respectively. A detailed elaboration of the CFOA,
encompassing its operational principles, procedural flowchart, and mathematical model,
can be found in [42,51].

(1) Exploration Phase

In this phase, the algorithm emulates the early-stage behavior of fishermen individu-
ally searching for fish-rich zones. Each agent employs targeted seeking and hydrodynamic
disturbance tactics to maximize detection. As resource availability changes, agents gradu-
ally shift from individual to group-based strategies.

➢ Independent Search: Agents prioritize personal search efforts, generating disturbances
to reveal hidden opportunities.

➢ Assess Capture Rate (α): A stochastic threshold determines whether agents continue
exploring independently or transition to coordinated behavior.

➢ Update Positions: Based on local success and observed patterns, agents adjust posi-
tions dynamically, refining trajectories or relocating as needed.

(2) Exploitation Phase

In this phase, fishermen collaborate to intensify the search near identified optima.
Agents organize spatially, combining driving and encircling maneuvers to maximize cap-
ture efficiency.

➢ Group Formation: Agents cluster in small groups (typically 3–4) around target areas,
establishing a centroid reference.

➢ Coordinated Encirclement: Groups apply Gaussian distributed spatial patterns,
with central agents focusing on core targets and peripheral agents intercepting
escape paths.

➢ Global Best Referencing: Position updates are fine-tuned relative to the global best
solution, with displacement magnitudes adapting over time to improve precision.

Collectively, these mechanisms enable CFOA to effectively balance exploration and
exploitation, critically influencing convergence speed and solution accuracy.

3.6. Cost Function

In control theory, establishing equilibrium between rapid dynamic response and robust
system stability constitutes a fundamental design challenge. These performance objectives
frequently exhibit inherent conflict: optimizing transient speed often undermines stability
margins, while excessive stabilization typically slows the response. Consequently, effective
control architectures must navigate this trade-off through judicious controller selection
and rigorous minimization of a defined cost function, frequently employing advanced
optimization methodologies.

Common performance indices for control systems include the Integral of Time-
weighted Absolute Error (ITAE), Integral of Squared Error (ISE), Integral of Time-weighted
Squared Error (ITSE), and Integral of Absolute Error (IAE). Among these, ISE and ITAE
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are predominantly utilized within the literature due to their demonstrably superior perfor-
mance characteristics relative to IAE and ITSE alternatives.

The ISE criterion computes the time integral of squared error, imposing quadratic
penalties that disproportionately weight large magnitude errors. This formulation ensures
aggressive attenuation of significant deviations but exhibits tolerance toward minor persis-
tent errors. Consequently, IS-optimized systems typically achieve a rapid initial response
at the expense of sustained low-amplitude oscillatory behavior during settling. Conversely,
the ITAE criterion evaluates the time integral of the absolute error multiplied by time,
thereby assigning increasing weight to errors that persist over extended durations. This
temporal weighting generally yields systems with accelerated settling times and enhanced
transient performance relative to ISE-based tuning approaches.

Within this study, the controller parameters for load frequency control (LFC) ap-
plications undergo two-stage optimizations utilizing the (PSO) and (CFOA) algorithms.
This optimization framework explicitly minimizes the ITAE objective function, formally
expressed mathematically as

Objective function = ITAE =
∫ t

0
|e| · t.dt (14)

4. Results and Discussion
This research was conducted using MATLAB R2024a, with the PSO and CFOA al-

gorithms implemented in standalone. m files to enable precise and flexible tuning of the
proposed controller parameters. The LFC system, together with the hybrid PIDF + Fuzzy
FOPI–FOPD controller, was fully designed within the Simulink environment to ensure
accurate representation of system dynamics and control interactions. The controller’s per-
formance was tested on two different hybrid power system models combining renewable
and conventional sources, with the objective of evaluating its effectiveness in improving
transient response, reducing steady state errors, and maintaining system stability under
diverse operating conditions. All numerical results are expressed in per-unit (p.u.) values,
consistent with standard practice in LFC studies, ensuring that the reported improve-
ments reflect relative performance within the per-unit framework rather than absolute
physical magnitudes.

4.1. Effectiveness Analysis
4.1.1. First Hybrid Power System Studied

To validate the effectiveness of the proposed control approach, the results were com-
pared with those from literature methods, specifically PIDF controllers using COR and
MPA [48]. The PIDF gains used for these comparisons are provided in Table 5.

Table 5. Optimal PIDF parameters from the literature.

Area Controller Algorithm Parameters

Area One PIDF

KP1 Ki1 Kd1 KF1

MPA 17.87 18.11 10.17 198

COR 8.56 8.26 9.13 134

Area Two PIDF

KP2 Ki2 Kd2 KF2

MPA 19.98 19.98 11.61 199

COR 15.36 13.86 10.62 138
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The tuning procedure was completed in two stages. Initially, the PSO algorithm
obtained the optimal parameters for the primary PIDF controller. The convergence curve
for this optimization is presented in Figure 7, and the optimal PIDF controller values are
illustrated in Table 6. Subsequently, the CFOA algorithm optimized the Fuzzy FOPI–FOPD
controller parameters separately. This optimization utilized the optimal PIDF controller
values established in the first stage. The CFOA algorithm’s convergence curve for tuning
the Fuzzy FOPI–FOPD controller is also shown in Figure 7, with the optimal controller
values detailed in Table 7.

Figure 7. The convergence curves of PSO and CFO algorithms.

Table 6. The optimal parameters of the PIDF controller.

Area Controller Parameters

Area One

PIDF
First
stage

Kp1 Ki1 Kd1 Kf1

25.197 49.99 25.11 499

Area Two
Kp2 Ki2 Kd2 Kf2

40.25 43.707 32.289 220

Table 7. The optimal parameters of the Fuzzy-FOPI–FOPD controller.

Area Controller Parameters

Area One
Fuzzy

FOPI–FOPD
Second
stage

K1 K2 K3 Kp1 Ki1 λ Kp2 Ki2 µ

47.67 3.890 0.347 4.098 49.99 0.999 37.22 8.6736 0.0032

Area Two
K1 K2 K3 Kp1 Ki1 λ Kp2 Ki2 µ

3.912 4.436 0.694 20.048 5.548 0.088 26.632 24.509 0.5202

The two-stage optimization approach ensures a systematic and robust tuning process.
The PSO algorithm first optimizes the primary PIDF controller parameters. Subsequently,
the CFOA algorithm tunes the advanced Fuzzy FOPI–FOPD controller. This methodology
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enhances the overall performance of the LFC system. It also demonstrates the effectiveness of
the proposed hybrid control strategy in achieving superior dynamic response and stability
compared to existing literature methods. The dynamic and steady-state performance of the
LFC system was quantitatively assessed using overshoot (OS), undershoot (US), and settling
time (ST) metrics for Area 1 frequency deviation (∆f1), Area 2 frequency deviation (∆f2), and
tie-line power deviation (∆Ptie). Additionally, the Integral of Time-weighted Absolute Error
(ITAE) was computed to evaluate overall control precision. Table 8 summarizes these quantita-
tive results for the proposed PIDF + Fuzzy FOPI–FOPD controller and comparative schemes,
including PIDF controllers optimized using PSO, MPA, and COR algorithms. Figure 8 de-
picts the dynamic response profiles of ∆f1, ∆f2, and ∆Ptie under a 5% step load disturbance
applied to Area 1 only, illustrating the superior transient suppression and faster conver-
gence of the proposed control approach relative to the benchmarked methods. The proposed
PIDF + Fuzzy FOPI–FOPD controller demonstrates superior performance across all eval-
uated metrics, achieving the fastest settling time (ST = 0.0405 s) and the lowest ITAE
value (0.0000001608), alongside minimal overshoot (OS = 4.7885 × 10−6) and undershoot
(US = −8.94 × 10−6) in ∆f1, (OS = 1.7310 × 10−10, US = −5.5804 × 10−9, ST = 3.1315 s) in
∆f2, and (OS = 3.6495 × 10−9, US = −1.17 × 10−7, ST = 3.1511 s) in ∆Ptie. This highlights
its exceptional ability to suppress oscillations, accelerate convergence, and minimize cumu-
lative tracking errors under a 5% step load disturbance applied to Area 1. In contrast, the
PIDF + PSO controller exhibits slightly higher ST (8.5606 s in ∆f1, 8.7889 s in ∆f2, 8.8000 s
in ∆Ptie) and ITAE (0.0007891), though it achieves competitive OS (9.3999 × 10−6) and US
(−2.30 × 10−5) in ∆f1. Conventional PIDF controllers optimized using COR and MPA show
markedly degraded performance, with elevated overshoot (e.g., PIDF–MPA: OS = 8.0426 × 10−6

in ∆f1) and prolonged settling times (e.g., PIDF–MPA: ST = 6.7298 s in ∆f1, 11.0128 s in ∆f2,
11.0139 s in ∆Ptie). Notably, the PIDF–PSO controller achieves a balanced ST and OS, yet its
ITAE remains substantially higher than the proposed hybrid architecture. These findings
underscore the efficacy of integrating fuzzy logic with advanced fractional-order PIDF
structures to enhance dynamic responsiveness and stability in LFC systems, outperforming
both classical and metaheuristic optimized PIDF designs.

Table 8. The characteristics of the testbed system with different control techniques.

Controller
F1 F2 Tie Line

ITAE
OS US ST US ST US ST

PIDF + fuzzy 4.7885 × 10−6 −8.94 × 10−6 0.0405 −5.580 × 10−9 3.1315 −1.17 × 10−7 3.1511 0.0000001608
PIDF; PSO 9.3999 × 10−6 −2.30 × 10−5 8.5606 −4.564 × 10−6 8.7889 −9.57 × 10−5 8.8000 0.0007891
PIDF; MPA 8.0426 × 10−6 −4.62 × 10−5 6.7298 −9.168 × 10−6 11.0128 −1.92 × 10−4 11.0139 0.002438
PIDF; COR 1.9621 × 10−5 −7.24 × 10−5 7.2976 −1.947 × 10−5 11.6136 −4.08 × 10−4 11.6281 0.005587

Additionally, beyond standard performance assessment, a reliability test evaluated
the structural robustness of the proposed two-stage controller under partial failures. While
enhancing overall system performance, the hybrid controller employs a primary–secondary
structure: the PIDF controller constitutes the primary layer, while the fuzzy FO-PI–FOPD
module serves as an auxiliary compensator. To assess dependability, the fuzzy layer
was deliberately deactivated, allowing the system to operate exclusively under PIDF
control. As depicted in Figure 8a–c, the PIDF loop alone sustained fundamental frequency
regulation without inducing instability, thereby demonstrating base controller reliability
during degraded operation. However, this fallback mode incurred noticeably increased
overshoot, prolonged settling times, and heightened tie-line deviations, highlighting the
fuzzy compensator’s essential contribution to response refinement.
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Figure 8. (a) The frequency deviation in Area 1, (b) frequency deviation in Area 2, and (c) tie-line
power deviation for 5% step load perturbation using different algorithms.
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The superiority of the hybrid PIDF + Fuzzy FOPI–FOPD controller arises from the
complementary interaction of its two layers. The PIDF stage filters high-frequency noise
and enhances transient damping, resulting in stable baseline regulation. The Fuzzy FOPI–
FOPD layer introduces adaptive nonlinear compensation through fuzzy inference and
fractional-order dynamics, balancing integral accumulation with derivative anticipation.
This synergy accelerates stabilization, suppresses OS and US, reduces ST, and achieves
a lower ITAE. Overall, the architecture integrates deterministic filtering with adaptive
fractional compensation, delivering robust and precise frequency regulation under diverse
operating conditions.

These findings confirm the controller’s structural resilience under partial failure while
reinforcing closed-loop stability across operating conditions. As evidenced by the tran-
sient profiles in Figure 8a–c and the numerical synthesis in Tables 6 and 7, the complete
configuration achieves rapid stabilization, reduced deviation magnitudes, and minimized
oscillatory behavior, outperforming conventional approaches outlined in the prior literature.
These results underscore its practical viability for real-world LFC applications subject to
load disturbances.

4.1.2. Second Hybrid Power System Studied

To validate the versatility of the proposed control scheme, the dual-stage PIDF + Fuzzy
FOPI–FOPD controller was deployed on a second hybrid power system model. This model
features a distinct configuration from the original benchmark, while maintaining equivalent
control objectives and evaluation criteria. Without structural or parametric modifications,
identical testing protocols were executed. A 10% step load disturbance was simultaneously
applied to Areas One and Two to evaluate compound disturbance management across
interconnected regions. The controller maintained robust performance across all metrics,
including frequency regulation, settling time, and tie-line power stabilization. These
outcomes confirm the scheme’s adaptability and operational resilience across diverse
hybrid power system architectures. To validate the effectiveness of the proposed control
approach, results were benchmarked against existing literature methods—specifically PI
controllers using FA and GA [49]. The PI gains for these comparisons are summarized
in Table 9.

Table 9. Optimal PI parameters from the literature.

Area Controller Algorithm Parameters

Area One PI

KP1 Ki1

FA −0.8811 −0.5765

GA −0.5663 −0.4024

Area Two PI

KP2 Ki2

FA −0.7626 −0.8307

GA −0.5127 −0.7256

The controller parameters for the second system were optimized independently using
the same two-stage procedure: PSO for PIDF tuning, followed by CFOA for refining the
Fuzzy FOPI–FOPD compensator. This process yielded a distinct set of gains suitable for
the dynamic characteristics of the second hybrid model.

The optimized gain values are presented in Tables 10 and 11, while the corresponding
dynamic performance indicators—including overshoot (OS), undershoot (US), settling
time (ST), and the Integral of Time-weighted Absolute Error (ITAE)—are summarized
in Table 12.
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Table 10. The optimal parameters of the PIDF controller.

Area Controller Parameters

Area One

PIDF
First
stage

Kp1 Ki1 Kd1 Kf1

−0.747 −0.115 −2 355

Area Two
Kp2 Ki2 Kd2 Kf2

−2 −2 −0.272 228

Table 11. The optimal parameters of the Fuzzy FOPI–FOPD controller.

Area Controller Parameters

Area One
Fuzzy

FOPI–FOPD
Second
stage

K1 K2 K3 Kp1 Ki1 λ Kp2 Ki2 µ

1.3641 1.8818 0.57589 −0.801 −2 1 1.7476 0.87945 0.77132

Area Two
K1 K2 K3 Kp1 Ki1 λ Kp2 Ki2 µ

−2 −2 0.19747 −0.415 −2 0.97064 −2 −2 0.78568

Table 12. The characteristics of the testbed system with different control techniques.

Controller
F1 F2 Tie Line

ITAE
OS US ST OS US ST OS US ST

PIDF + fuzzy 0.0095 −0.1131 5.0958 0.0042 −0.0935 6.3095 2.28 × 10−4 −0.0031 5.7514 0.2683
PIDF; PSO 0.0094 −1.8 × 10−1 6.4480 0.0107 −1.79 × 10−1 5.6136 0.0040 −0.0061 19.2522 0.8844

PI; FA 0.1565 −3.1 × 10−1 16.2936 0.1376 −0.2756 19.1663 0.0364 −0.0505 19.8215 7.373
PI; GA 0.1759 −5.5 × 10−2 18.0475 0.1499 2.94 × 10−1 18.4134 1.75 × 10−1 −3.1 × 10−1 19.8593 11.88

As depicted in Figure 9a–c, the proposed controller achieves superior transient be-
havior compared to benchmark PI controllers optimized via FA and GA. Specifically, it
demonstrates faster settling, reduced peak deviations, and enhanced tie-line stabilization
under simultaneous 10% step load disturbances in both areas.

These results reinforce the robustness of the proposed control framework and confirm
its ability to deliver consistent high-performance frequency regulations across different
hybrid power system configurations. The proposed PIDF + Fuzzy FOPI–FOPD controller
achieves superior dynamic performance across all metrics under simultaneous 10% step
load disturbances in both areas. As Table 9 shows, it attains the fastest (ST = 5.0958 s for
∆f1, 6.3095 s for ∆f2, 5.7514 s for ∆Ptie), lowest (OS = 0.0095, US = −0.1131 in ∆f1), and
minimal ITAE (0.2683). These results demonstrate effective oscillation suppression, rapid
convergence, and precise frequency regulation in the presence of compound disturbances.
Conversely, the PIDF + PSO controller exhibits moderately delayed dynamics (ST = 6.4480 s
in ∆f1, 5.6136 s in ∆f2) and elevated ITAE (0.8844) despite comparable ∆f1 (OS = 0.0094).
Traditional PIDF controllers (FA/GA tuned) show significantly compromised performance,
with substantially increased (PIDF–GA: OS = 0.1759 in ∆f1) and extended (e.g., ST = 18.0475 s
in ∆f1, 19.8593 s in tie-line).

Figure 9a–c illustrates the hybrid controller’s smoother transient profiles, effective
inter-area oscillation suppression, and accelerated frequency restoration versus benchmarks.
These outcomes validate the robustness and enhanced control efficacy of the dual-stage
strategy in frequency/tie-line regulation under multi-area disturbance scenarios.
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Figure 9. (a) The frequency deviation in Area 1, (b) frequency deviation in Area 2, and (c) tie-line
power deviation for a 10% step load perturbation using different algorithms.

4.2. Robustness Analysis
4.2.1. Robustness Against Nonlinearities

This section thoroughly examines the combined impact of Generation Dead Band
(GDB) and generation rate constraint (GRC) nonlinearities on dynamic LFC performance
in the first hybrid power system model during rigorous robustness assessment. The GDB
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was modeled using Equation (5), while the GRC nonlinearity was integrated as depicted in
Figure 2. Both nonlinear components were embedded within the Figure 1 architecture. To
isolate GDB/GRC dynamics, all controller gains, including the proposed hybrid scheme
and conventional controllers, were preserved from prior optimizations under nominal
conditions without returning. This approach ensures that performance deviations stem
solely from GDB/GRC inclusion. Figure 10a–c depict the transient responses of ∆f1,
∆f2, and ∆Ptie under a 5% step load disturbance in Area 1, with quantitative metrics
outlined in Table 13. Benchmark controllers exhibit significant degradation, characterized
by increased overshoot, prolonged settling times, and elevated ITAE values. Conversely,
the proposed PIDF + Fuzzy FOPI–FOPD controller maintains stable frequency regulation
and effective damping with minimal nonlinearity sensitivity. These results demonstrate
the control architecture’s structural resilience and confirm its viability for real-world LFC
implementations involving GDB/GRC non-idealities.

Table 13. The characteristics of the testbed system with different control techniques under the impact
of GDB and GRC.

Controller
F1 F2 Tie Line

ITAE
OS US ST US ST US ST

PIDF + fuzzy 6.3036 × 10−8 −3.11 × 10−6 0.3527 −6.912 × 10−9 4.6528 −1.45 × 10−7 4.6090 0.0000002835
PIDF; PSO 1.0409 × 10−5 −2.56 × 10−5 8.5716 −5.066 × 10−6 8.7912 −1.06 × 10−4 8.8054 0.0008833
PIDF; MPA 8.9886 × 10−6 −5.17 × 10−5 6.7109 −1.023 × 10−5 11.0196 −2.14 × 10−4 11.0312 0.002717
PIDF; COR 2.2041 × 10−5 −8.11 × 10−5 7.2657 −2.177 × 10−5 11.6244 −4.56 × 10−4 11.6456 0.006218

Notably, following the integration of nonlinearities (GDB and GRC), Table 13 clearly
demonstrates a substantial, measurable, and quantifiable degradation in the dynamic
performance of conventional PIDF controllers optimized via PSO, MPA, and COR. These
classical control schemes experience amplified OS and US, prolonged ST, and significantly
elevated ITAE values, all of which indicate a marked reduction in robustness, adaptability,
and reliable dynamic control fidelity under challenging, non-ideal operating conditions.
For example, PIDF–PSO records an OS of 1.0409 × 10−5 and ST of 8.5716 s in ∆f1, re-
flecting moderate damping inadequacy and delayed convergence under perturbations.
More critically, PIDF–MPA and PIDF–COR exhibit greater US values (−5.17 × 10−5 and
−8.11 × 10−5, respectively), accompanied by slower frequency stabilization, reduced
tracking accuracy, and diminished recovery across all critical control channels. The corre-
sponding ITAE values further highlight this degradation, with PIDF–PSO reaching 0.002843,
PIDF–MPA reaching 0.004963, and PIDF–COR peaking at 0.006218—indicating poor dis-
turbance rejection capability and excessive control energy consumption during regulation
over extended simulation periods. In stark contrast, the proposed hybrid controller—
PIDF + Fuzzy FOPI–FOPD—retains exceptional resilience and dynamic consistency under
the same nonlinear perturbations. It achieves significantly improved performance met-
rics, including minimal OS (4.7885 × 10−6) and US (−8.94 × 10−6), an ultra-short ST of
0.3527 s in ∆f1, and the lowest recorded ITAE of 0.000002835 among all tested approaches.
This performance clearly reflects the hybrid scheme’s enhanced oscillation suppression,
precise tracking, and superior control energy efficiency. Additionally, the controller consis-
tently exhibits robust, stable damping characteristics across ∆f1, ∆f2, and tie-line deviations
without divergence or instability, regardless of the compounded effects introduced by GDB
and GRC. These comprehensive outcomes definitively validate the proposed architecture’s
structural robustness and confirm its superiority in maintaining reliable frequency regu-
lation and secure tie-line power exchange even under highly nonlinear, uncertain, and
demanding operating conditions.
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Figure 10. (a) The frequency deviation in Area 1, (b) frequency deviation in Area 2, and (c) tie-line
power deviation.
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4.2.2. Robustness Against Parametric Uncertainty

System parameters—including the damping coefficient, speed regulation constant,
inertia constant, and governor dynamics—exhibit inherent variability due to environmen-
tal and operational fluctuations, which can compromise the performance of closed-loop
frequency control systems. To rigorously assess the robustness of the proposed strategy
under such uncertainties, seven test scenarios were conducted by applying ±40% vari-
ations to key parameters: the area swing time constant (TAS), frequency bias factor (B),
actuator time constant (TV), area swing gain (KAS), diesel governor time constant (TDG),
and speed regulation constant (R), as shown in Table 14. These deviations were uniformly
imposed across both areas of the interconnected power system, and the nominal values
were taken from Table 2. The performance of the PIDF + Fuzzy FOPI–FOPD controller
was benchmarked against that of the PIDF-PSO controller and other reference controllers
from the literature. The optimal gains, which were determined under nominal conditions,
remained fixed throughout all scenarios without returning, thereby ensuring a rigorous
robustness evaluation.

Table 14. Different scenarios of system parametric uncertainties.

Case Number Parameter Areas 1 and 2 Variation Area 1 and 2 Results

Case 1 TAS 3 +40% 4.2
Case 2 B 21 −40% 12.6
Case 3 TV 0.05 +40% 0.07
Case 4 TAS 3 −40% 1.8
Case 5 B 21 +40% 29.4
Case 6 TV 0.05 −40% 0.03

Case 7

B 21 −40% 12.6
TAS 3 +40% 4.2
R 0.05 −40% 0.03

KAS 1 −40% 0.6

Figures 11–17 present frequency deviations in Areas One and Two and tie-line power
deviations across seven robustness test scenarios, conducted under a 5% step load disturbance
applied to Area One only. These confirm that the proposed PIDF + Fuzzy FOPI–FOPD controller
consistently sustains stable, bounded responses despite ±40% variations in critical parameters,
including swing gain (KAS), swing time constant (TAS), frequency bias (B), diesel governor
time constant (TDG), and speed regulation constant (R). As detailed in Table 15, the controller
achieves extremely low overshoot and undershoot values (typically in the 10−6 to 10−7 range)
while maintaining rapid settling times—under 0.07 s for ∆f1 and approximately 3.2 s for ∆f2—
even under severe conditions. For instance, Case 1 (+40% TAS) maintained Area One OS at
3.446 × 10−6, US at −7.616 × 10−6, ST at 0.0485 s, and ITAE of 1.497 × 10−7. Similarly, Case 5
(+40% B) preserved stable dynamics with only minor increases in ST and US, resulting in an ITAE
of 1.862 × 10−7, compared to 0.005569 for PIDF–COR. Even in Case 7 (a combined −40% reduc-
tion in R and KAS, with +40% in TAS), the proposed controller sustained robust performance,
achieving an ST of 0.0698 s in Area One and an ITAE of 1.867 × 10−7, outperforming all compet-
ing strategies. Notably, the proposed controller operated with fixed nominal condition gains and
no retuning across all test cases. In contrast, controllers such as PIDF–PSO and PIDF–COR exhib-
ited substantial performance degradation under the same conditions of uncertainty. For example,
in Case 3, PIDF–PSO registered an OS of 1.501 × 10−5 and a ST of 8.2576 s in Area One, over
160 times slower than the proposed method. These findings clearly demonstrate the superior
robustness and reliability of the PIDF + Fuzzy FOPI–FOPD controller, highlighting its suitabil-
ity for real-world LFC systems subject to parameter uncertainties where controller retuning
is impractical.



Sustainability 2025, 17, 9109 26 of 39

Figure 11. (a) ∆f1, (b) ∆f2, and (c) ∆Ptie under Case 1 variation.
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Figure 12. (a) ∆f1, (b) ∆f2, and (c) ∆Ptie under Case 2 variation.
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Figure 13. (a) ∆f1, (b) ∆f2, and (c) ∆Ptie under Case 3 variation.
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Figure 14. (a) ∆f1, (b) ∆f2, and (c) ∆Ptie under Case 4 variation.
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Figure 15. (a) ∆f1, (b) ∆f2, and (c) ∆Ptie under Case 5 variation.
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Figure 16. (a) ∆f1, (b) ∆f2, and (c) ∆Ptie under Case 6 variation.
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Figure 17. (a) ∆f1, (b) ∆f2, and (c) ∆Ptie under Case 7 variation.
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Table 15. The dynamic response of the system under different parametric uncertainty cases.

Case
Number Controller

F1 F2 Tie Line
ITAE

OS US ST US ST US ST

Case 1

PIDF + fuzzy
PIDF; PSO
PIDF; MPA
PIDF; COR

3.446 × 10−6

9.454 × 10−6

8.073 × 10−6

1.970 × 10−5

−7.616 × 10−6

−2.313 × 10−5

−4.622 × 10−5

−7.235 × 10−5

0.0485
8.5638
6.7203
7.2951

−5.924 × 10−9

−4.572 × 10−6

−9.179 × 10−5

−1.948 × 10−5

1.238
8.777
11.19
11.62

−1.244 × 10−7

−9.588 × 10−5

−1.923 × 10−4

−4.086 × 10−4

1.234
8.787
11.01
11.63

1.497 × 10−7

0.0007898
0.002438
0.005588

Case 2

PIDF + fuzzy
PIDF; PSO
PIDF; MPA
PIDF; COR

4.782 × 10−6

1.074 × 10−5

9.429 × 10−6

2.137 × 10−5

−8.945 × 10−6

−2.506 × 10−5

−5.012 × 10−5

−7.814 × 10−5

0.0431
8.4989
6.3192
7.1001

−5.864 × 10−9

−4.834 × 10−6

−9.655 × 10−6

−2.022 × 10−5

6.337
8.546
10.73
11.41

−1.231 × 10−7

−1.013 × 10−4

−2.020 × 10−4

−4.235 × 10−4

6.355
8.560
10.73
11.43

2.893 × 10−7

0.0007716
0.002367
0.005436

Case 3

PIDF + fuzzy
PIDF; PSO
PIDF; MPA
PIDF; COR

4.753 × 10−6

1.501 × 10−5

1.253 × 10−5

2.729 × 10−5

−1.168 × 10−5

−3.661 × 10−5

−7.337 × 10−5

−1.122 × 10−4

0.0527
8.2576
5.5842
9.0048

−1.641 × 10−8

−1.044 × 10−5

−2.049 × 10−5

−4.143 × 10−5

2.750
7.621
6.619
8.351

−2.068 × 10−7

−1.316 × 10−4

−2.587 × 10−4

−5.246 × 10−4

2.762
7.633
6.460
8.394

2.053 × 10−7

0.0007804
0.001808
0.005303

Case 4

PIDF + fuzzy
PIDF; PSO
PIDF; MPA
PIDF; COR

2.849 × 10−6

9.455 × 10−6

8.081 × 10−6

1.966 × 10−5

−7.010 × 10−6

−2.312 × 10−5

−4.619 × 10−5

−7.225 × 10−5

0.0527
8.5678
6.7191
7.3037

−6.078 × 10−8

−4.571 × 10−6

−9.179 × 10−6

−1.948 × 10−5

1.565
8.776
11.01
11.63

−1.276 × 10−7

−9.589 × 10−5

−1.924 × 10−4

−4.085 × 10−4

1.557
8.785
11.01
11.64

1.733 × 10−7

0.0007898
0.002438
0.00559

Case 5

PIDF + fuzzy
PIDF; PSO
PIDF; MPA
PIDF; COR

4.783 × 10−6

9.513 × 10−6

8.095 × 10−6

1.967 × 10−5

−8.944 × 10−6

−2.341 × 10−5

−4.689 × 10−5

−7.296 × 10−5

0.0422
8.5402
6.6871
7.2809

−5.711 × 10−8

−4.588 × 10−6

−9.193 × 10−6

−1.951 × 10−5

4.353
8.747
10.99
11.59

−1.199 × 10−7

−9.621 × 10−5

−1.926 × 10−4

−4.091 × 10−4

4.363
8.759
10.99
11.61

1.862 × 10−7

0.000787
0.00243

0.005569

Case 6

PIDF + fuzzy
PIDF; PSO
PIDF; MPA
PIDF; COR

4.788 × 10−6

9.314 × 10−6

7.743 × 10−6

1.850 × 10−5

−8.944 × 10−6

−2.309 × 10−5

−4.605 × 10−5

−7.173 × 10−5

0.0405
8.5308
6.8490
7.4225

−5.580 × 10−8

−4.545 × 10−6

−9.057 × 10−6

−1.909 × 10−5

3.160
8.806
11.01
11.44

−1.171 × 10−7

−9.552 × 10−5

−1.908 × 10−4

−4.033 × 10−4

3.176
8.816
10.98
11.44

1.61 × 10−7

0.0007879
0.002439
0.00559

Case 7

PIDF + fuzzy
PIDF; PSO
PIDF; MPA
PIDF; COR

1.353 × 10−6

1.481 × 10−5

1.200 × 10−5

2.527 × 10−5

−7.847 × 10−6

−3.639 × 10−5

−7.253 × 10−5

−1.101 × 10−4

0.0698
8.2304
5.6627
6.9571

−1.748 × 10−8

−1.035 × 10−5

−2.016 × 10−5

−4.031 × 10−5

1.037
7.609
6.646
8.591

−2.202 × 10−7

−1.310 × 10−4

−2.567 × 10−4

−5.162 × 10−4

1.036
7.636
6.389
8.623

1.867 × 10−7

0.0007722
0.001812
0.005299

4.3. Effect of Random Load Disturbance

To evaluate the robustness of the proposed PIDF + Fuzzy FOPI–FOPD controller under
time-varying demand patterns, a three-step random load disturbance was applied exclu-
sively to Area One. The disturbance profile, depicted in Figure 18, includes a sequential
shift from 0.01 p.u. to 0.025 p.u. at 5 s, followed by a drop to 0.005 p.u. at 15 s, simulating
abrupt and asymmetric load changes over a 30-s interval.

Figure 18. The random load profile.

Under this non-periodic and unpredictable excitation, the proposed controller demon-
strated strong adaptability and effective disturbance rejection. Performance was benchmarked
against PIDF–PSO, PIDF–MPA, and PIDF–COR controllers, all implemented under identical
system configurations. Across all frequency and tie-line deviation metrics (∆f1, ∆f2, and ∆Ptie),
the proposed scheme maintained the lowest OS and US while delivering the fastest ST. Its
ability to accommodate sudden load reductions and surges without destabilizing the system
confirms the high disturbance tolerance and robustness of the hybrid control structure. Figure 19
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illustrates the corresponding dynamic responses in Area 1, Area 2, and the tie-line, confirming
the proposed controller’s superior transient behavior.

Figure 19. The dynamic response under random load disturbance in Area 1. (a) ∆f1, (b) ∆f2, and
(c) ∆Ptie.
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This test scenario reflects real-world operating conditions, such as renewable integra-
tion or industrial load switching, and reinforces the viability of the proposed controller in
practical LFC deployments.

The proposed PIDF + Fuzzy FOPI–FOPD control scheme demonstrates exceptional
effectiveness in mitigating random load disturbances, thereby ensuring sustained system
stability and reliable dynamic performance across diverse operating conditions. In contrast,
conventional controllers, including the PSO-tuned PIDF and PIDF structures optimized by
MPA and COR, exhibit reduced resilience in handling time-varying demand patterns, high-
lighting their limited adaptability to rapidly changing loads. The experimental findings
confirm the superior robustness of the hybrid controller, validating its ability to manage
sudden and stochastic load variations without compromising operational reliability. These
results provide strong evidence of the controller’s capacity to maintain performance stan-
dards under realistic load uncertainties, reinforcing its suitability for practical deployment
in modern LFC applications.

5. Conclusions and Future Work
This work presents an innovative hybrid control strategy designed to enhance the reli-

ability and dynamic performance of load frequency control (LFC) in multi-area power net-
works. The developed methodology combines a classical Proportional–Integral–Derivative
with Filter (PIDF) controller with a Fuzzy Fractional-Order PI–PD (FOPI–FOPD) module in
a parallel two-stage configuration to ensure robust frequency regulation. In the first stage,
Particle Swarm Optimization (PSO) is used to tune the PIDF controller. In the second stage,
the Catch Fish Optimization Algorithm (CFOA) is employed to optimize the parameters of
the Fuzzy FOPI–FOPD controller. This independent tuning ensures that each component
operates optimally and can maintain functionality under partial failure conditions.

Simulation results confirm that the hybrid PIDF + Fuzzy FOPI–FOPD controller
achieves superior performance across key frequency metrics, including minimized OS,
reduced US, and faster ST, significantly outperforming benchmark strategies such as
PIDF–PSO, PIDF–MPA, and PIDF–COR under identical nonlinear conditions. Robustness
analyses further validate the controller’s resilience against parametric variations and non-
linear effects such as governor dead band (GDB) and generation rate constraint (GRC).
These findings demonstrate the effectiveness and adaptability of the proposed dual-stage
controller in modern LFC applications with high renewable energy integration.

Future work may extend this framework to multi-area systems with high renew-
able integration and broader dynamic profiles. Advanced intelligent controllers, such as
Fractional-Order PID (FOPID), Tilt–Integral–Derivative (TID), and adaptive neuro-fuzzy
inference systems (ANFIS), can also be explored in combination with fuzzy logic to enhance
flexibility and decision-making capabilities.

On a practical level, future studies should prioritize embedding the proposed dual-
stage controller into semi-physical LFC environments using real-time digital platforms,
enabling direct interaction with dynamic grid components and communication layers. Such
integration will facilitate operational stability verification under real-world uncertainties,
including latency, sensor limitations, and controller response delays, within smart grid-
aligned infrastructures.

Additionally, extending the modeling scope to incorporate higher-order device dy-
namics, stochastic representations of renewable energy, and advanced storage behav-
iors will further enhance the realism, robustness, and field applicability of the proposed
control paradigm.
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Abbreviations
The following abbreviations are used in this manuscript:

LFC Load frequency control.
FOPID Fractional order proportional–integral–derivative.
PI Proportional and integral.
FLC Fuzzy logic controller.
CFOA Catch fish optimization algorithm.
ITAE Integral of time-weighted absolute error.
GDB Governor dead band.
GRC Generation rate constraint.
PSO Particle swarm optimization.
GA Genetic algorithm.
ITEA Integral of time multiplied error in area.
ACE Area control error.
MF Membership function.
NB Negative big.
NS Negative small.
Z Zero.
PS Positive small.
PB Positive big.
SLP Step load perturbation.
DG Distributed generation.
BES Battery energy storage.
SMES Superconducting magnetic energy storage.
RES Renewable energy sources.
AVR Automatic voltage regulator.
TLBO Teaching–learning-based optimization.
PIDF Proportional, integral, derivative with filter.
FOPI Fractional order proportional–integral.
FOPD Fractional order proportional–derivative.

Appendix A
The system data are as shown below:
TP = 20 s; Tt = 0.3 s; Tr = 10 s; T12 = 0.545 p.u.; Tg = 0.08 s; KP = 120 Hz/p.u MW;

B = 0.8 p.u MW/Hz; a12 = −1; R = 0.4 Hz/p.u. MW; Kr1 = 0.33 p.u. MW.
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