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Abstract 

Background: Genetic risk factors for psychiatric and neurodegenerative disorders are well 

documented. However, some individuals with high genetic risk remain unaffected, and the 

mechanisms underlying such resilience remain poorly understood. The presence of protective 

resilience factors that mitigate risk could help explain the disconnect between predicted risk and 

reality, particularly for brain disorders, where genetic contributions are substantial but 

incompletely understood. Identifying and studying resilience factors could improve our 

understanding of pathology, enhance risk prediction, and inform preventive measures or 

treatment strategies. However, such efforts are complicated by the difficulty of identifying 

resilience that is separable from low risk.  

Methods: We developed a novel adversarial multi-task neural network model to detect genetic 

resilience markers. The model learns to separate high-risk unaffected individuals from affected 

individuals at similar risk while "unlearning" patterns found in low-risk groups using adversarial 

learning. In simulated and existing Alzheimer’s disease (AD) datasets, we identified markers of 
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resilience with a feature-importance-based approach that prioritized specificity, generated 

resilience scores, and analyzed associations with polygenic risk scores (PRS). 

Results: In simulations, our model had high specificity and moderate sensitivity in identifying 

resilience markers, outperforming traditional approaches. Applied to AD data, the model 

generated genetic resilience scores protective against AD and independent of PRS. We identified 

five resilience-associated SNPs, including known AD-associated variants, underscoring their 

potential involvement in risk/resilience interactions. 

Conclusions: Our methods of modeling and evaluation of feature-importance successfully 

identified resilience markers that were obscured in previous work. The high specificity of our 

model provides high confidence that these markers reflect resilience and not simply low risk. 

Our findings support the utility of resilience scores in modifying risk predictions, particularly for 

high-risk groups. Expanding this method could aid in understanding resilience mechanisms, 

potentially improving diagnosis, prevention, and treatment strategies for AD and other complex 

brain disorders. 

 

 

  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 27, 2025. ; https://doi.org/10.1101/2025.02.26.25322962doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.26.25322962
http://creativecommons.org/licenses/by-nc/4.0/


4 

 

Introduction 

Through global research efforts, great strides have been made in improving our understanding of 

the genetic risk factors associated with psychiatric and neurodegenerative disorders. Despite all 

we have learned about risk factors for these disorders, it is still unclear as to why some people 

with high risk for a disorder remain unaffected. One explanation is that those people have 

protective features that make them resilient to developing the disorder. Resilience in this context 

refers to features that mitigate the impact of risk factors, or in the prevailing taxonomy, these 

factors increase resilient “capacity”.(1, 2) A better understanding of resilience would improve our 

ability to predict risk for psychiatric and neurodegenerative disorders, leading to earlier and more 

objective interventions. Just as importantly, such knowledge would lend insight into avenues for 

better treatment and prevention.  

The genetic architecture of Alzheimer’s disease (AD) indicates that resilience is a powerful lens 

through which to view pathogenesis and therapeutic options. Twin studies have estimated the 

heritability of late-onset Alzheimer’s disease (LOAD), the most common form of AD, at 58 – 

79%,(3) but the variance explained by common single nucleotide polymorphisms (SNPs) in 

additive models is lower, at 38-66%, and has been found to be decreasing with larger study 

sizes.(4) Further understanding of AD will be critical in explaining this “missing heritability” and 

combating the disorder’s growing impacts on individuals and society. Indeed, studies have found 

that people with AD brain pathology are not destined to have or develop dementia.  Both 

environmental and genetic resilience factors have been shown to play an important role in the 

pathology of AD.(5)  In this study we focus on genetic resilience factors, which are sequence 

variants that modify the risk that would otherwise be associated with one or more loci. 
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Since the discovery of the risk-conferring APOE haplotypes, other studies have identified SNPs 

in nearby genes that modify the effects of APOE,(6, 7) which otherwise carries the greatest risk 

for LOAD of any gene. The APOE haplotype that confers AD risk is made up of two SNPs, 

rs429358 and rs7412.(8) When both SNPs are cytosine, as in the APOE-ε4 haplotype, the odds 

of developing AD are 3.7 times higher compared to the most common scenario where rs429358 

is a thymine and rs7412 is a cytosine,(9) as is the case in the APOE-ε3 haplotype. When both 

SNPs are thymine, as in the APOE-ε2 haplotype, the odds ratio for developing AD is 0.6 

compared to APOE-ε3, indicating a protective effect. The alleles at these two SNPs regulate 

APOE protein isoforms, which go on to affect the clearance, transport, and immune response 

pathways implicated in AD.(9) It could be inferred that the protein structure produced based on 

thymine alleles in rs429358 are protective against either the structural effects of the rs7412(C) 

allele or the combined effects of rs7412(C) and rs429358(C).(10)  Many studies have nominated 

cis or trans elements that modify APOE risk.(11, 12) (7, 13-16)  Such APOE results illustrate the 

broader challenge in which many genomic resilience features are positionally nearby and in LD 

with risk variants. Therefore, it would be helpful to develop a method that can include correlated 

variants while adjusting out pure risk effects.  

Here, we introduce a novel neural network approach to detect markers of resilience with 

increased resolution.  Specifically, it overcomes the requirement of prior methods to exclude 

SNPs in LD with risk SNPs, addressing a major limitation of previous approaches(17). We used 

multi-task neural networks to find markers of resilience, which we define as SNPs that 

accurately discriminate unaffected people who have high risk for a disorder from affected people 

with similar risk, but which cannot accurately discriminate low-risk unaffected from affected 

people with similar risk. In other words, genetic markers that collectively make high-risk 
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individuals resilient to developing disease but have little to no effect on disease development 

among individuals at low risk. This approach was designed to simulate the real-world possibility 

of syntenic risk and resilience SNPs, and to test our ability to detect such resilience SNPs when 

they are in strong LD with risk SNPs. We hypothesized that the difference in allele frequency of 

these resilience SNPs would be higher when comparing high-risk unaffected and high-risk 

affected individuals relative to comparisons between low-risk unaffected and low-risk affected 

individuals. This is because, without resilience features, the elevated risk found in high risk-

unaffected people would otherwise result in more people in this group developing the disorder, 

whereas the presence of resilience genes in individuals at low risk does not impact the likelihood 

of illness. We evaluated the validity of our approach by applying it to both simulated and 

previously collected AD genome-wide association study (GWAS) data. 
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Methods and Materials 

SNP-Pair Simulation 

One million simulated individuals were randomly assigned to be either a case with a simulated 

polygenic disease or an unaffected control.  In these individuals we simulated 4 types of SNP-

pairs defined as two SNPs, with 2 alleles each, simulated to be in LD with an r2  between 0.5 and 

1. The four pair types were: 1) risk/null pairs with one risk-associated SNP that was more 

common in cases and one null SNP that is unevenly distributed in cases and controls only 

through its LD with the risk SNP; 2) Inverse-risk/null pairs with one SNP that was less common 

in cases and one null SNP; 3) Risk/resilience pairs with one SNP that was more common in cases 

and one SNP that was less common in cases and which reduced the effects of the risk SNP when 

both were present; and 4) Null/null pairs with two SNPs in LD that were equally distributed in 

cases and controls. We randomly generated SNP-pairs weighted by predefined probabilities with 

risk/null, inverse-risk/null, and risk/resilience pairs equally frequent and null/null SNPs 6 times 

more frequent than the other individual pairs. For all SNP-pairs, minor allele frequencies ranged 

between 0.05 and 0.5 and LD ranged between an r2 of 0.5 and 0.9. In each individual, the 

genotype at the first SNP was generated conditional on the assumed allele frequencies, 

penetrance model, and the individual’s affection status. Then, pairs of haplotypes were generated 

by simulating alleles at the second SNP conditional on the allele at the first SNP, the assumed 

value of LD, and the penetrance model. Risk/null pairs had a relative risk range between 1.05 

and 1.3 for the risk SNP, with the range selected to reflect typical psychiatric GWAS results. 

Inverse-risk/null pairs had a relative risk range between the reciprocal of 1.3 and the reciprocal 

of 1.05 for the inverse-risk SNP.  For risk/resilience pairs, the base relative risk range for risk 
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SNPs was 1.05 to 1.3 while the base relative risk for resilience SNPs ranged between the 

reciprocal of 1.3 and the reciprocal of 1.05.  

When looking at SNP effect size individually, as is commonly the case in GWAS, the opposing 

effects of risk and resilience SNPs in LD make the odds ratios of each SNP appear smaller than 

the true effect when considering interactions. In real data, it is possible that SNPs with 

risk/resilience interactions are still among the top results in GWAS, which would mean that those 

SNPs have true effect sizes that are higher than those estimated from the GWAS. Therefore, to 

allow for correlated SNPs with opposing effects reducing the apparent effect sizes, we multiplied 

the base relative risk range of SNPs in risk/resilience pairs by a value representing 2 times the 

LD r2 value between the SNPs. We chose this value to keep the individual odds ratios of SNPs in 

the risk/resilience pairs closer to those of the other pair types. This allows the risk/resilience pairs 

to better reflect those we would expect to include and detect in real data analyses, since we use 

individual SNP GWAS results to determine inclusion in neural network models. The resulting 

odds ratios of the risk SNPs in risk/resilience pairs were still significantly less than those in 

risk/null pairs and the odds ratios of the resilience SNPs were significantly greater from the 

inverse-risk SNPs in the inverse-risk/null pairs (Supplementary Table 6 and 7). This indicates 

that the effect sizes in risk/resilience pairs were weaker on average than those in the other pair 

types. Figure 1 visualizes the first ten SNP-pairs for each pair type and demonstrates the induced 

reduction in apparent effect size in risk/resilience pairs.  

Based on the LD, relative risk, and allele frequencies, a value of 0, 1, or 2 was generated for each 

SNP, reflecting the number of minor alleles generated for that SNP for each individual. For each 

SNP, we calculated log-additive risk for each individual by estimating allelic SNP effects using a 

logistic regression model predicting case/control status and multiplying the number of alleles by 
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the allelic effect. For each simulated pair, we calculated the total risk, defined here as the risk 

that includes both risk and resilience effects, using the expressions in Table 1, dependent on the 

values of both SNPs in the pair. We used the expressions in Table 1 to simulate multiplicative 

effects of resilience SNPs that multiplicatively counteract the effects of risk SNPs. For both total 

risk and traditional log-additive risk, we summed scores across all SNPs generated for each 

individual to create polygenic risk scores. We continued randomly generating SNP-pairs until the 

top 5% of total risk scores in the set of control simulations no longer completely overlapped with 

the bottom 5% of total risk scores in the case simulations.  

Model Architecture 

We designed a neural network architecture with PyTorch(18) to detect markers of resilience. We 

accomplished this using multi-task modeling. The first task of our model was to minimize error 

when predicting case vs. control status in the high-risk subgroup, which we defined as controls 

with a log-additive polygenic risk score (PRS) above a selected percentile in the control group 

distribution and PRS-matched cases. The second task was an adversarial task that maximized the 

error when predicting case vs. control status in the low-risk subgroup, which we defined as 

controls within a selected lower percentile range of the control group distribution and PRS-

matched cases. Essentially, this means the adversarial task drives the model to unlearn any 

features that would be useful in predicting the low-risk subgroup. The PRS percentiles we used 

to define high-risk and low-risk subgroups were selected through a process we describe in the 

high-risk/low-risk subgroup thresholding analysis section. Unaccounted-for risk variants (i.e., 

those not identified in a typical comparison of all cases vs. all controls) and null variants are as 

likely to be present in the low-risk subgroup as they are to be in the high-risk subgroup, which 

means the adversarial task drives the model away from detecting and using those types of 
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variants that might otherwise lead to false-positive resilience associations. The adversarial task 

was implemented by using a gradient reversal layer, which reverses the direction of the gradient 

during backpropagation such that the weights of the neural network are shifted in the direction 

that maximizes error for that task.  

The neural network architecture is illustrated in Panel 6 of Figure 2. The primary and adversarial 

task in our models both have unique output layers, but otherwise share the rest of the layers in 

the neural network. The gradient reversal layer is applied between the final shared layer and the 

adversarial task output layer, which means the adversarial task output layer is trying to minimize 

error in the task and will use any information available in the shared layers to best learn the 

adversarial task. With this design, we can accurately measure and optimize the difference in 

predictability between the high-risk subgroup and low-risk subgroup. For comparison, we also 

trained and optimized models with similar architectures but without the adversarial task. To 

maximize the difference between predictability in high-risk and low-risk subgroups, we 

optimized the learning rate, epochs, number of shared layers, shared layer size, L1 lambda, and 

the strength of the gradient reversal. The ranges for each of these hyperparameter optimizations 

can be found in Supplementary Table 1. Optimization was performed using Optuna(19) with a 

criterion of maximizing AUC for predicting case-control status in the high-risk subgroup and 

minimizing the difference between 0.5 and the AUC for predicting case-control status in the low-

risk subgroup. Driving the AUC in the low-risk subgroup with the adversarial task is critical 

because it discourages the entire model from using any discriminative factors that are present in 

the low-risk subgroup. We anticipate that risk factors are likely to be similarly discriminative in 

high and low-risk subgroups. We expect that resilience factors and their interactions with risk 

factors are more discriminative in the high-risk subgroup, since those factors are likely to be 
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more prevalent in individuals that remain unaffected despite high genetic risk. Therefore, the 

model is designed to model resilience factors and their interactions with risk factors in a way that 

is independent of log-additive risk. 

High-risk/Low-risk Subgroup Thresholding Analysis 

Previous studies of genetic resilience have defined the resilient controls as those in the top 10% 

PRS in controls.(17, 20) For our machine learning models, we needed to define both a high-risk 

subgroup, where we expect to see resilience features more often in controls, and a low-risk 

subgroup, where we expect resilience features to be more evenly distributed. Ideally, we would 

aim to select subgroups such that we have high sensitivity for detecting markers of resilience and 

high specificity such that we will not falsely claim a SNP to be a marker of resilience when it is 

not. This would be a challenging task to optimize in real-world data since we cannot know for 

certain which SNPs are resilience markers. However, in our simulated data set we are able to set 

different thresholds and look at metrics for how well the models trained on the resulting 

subgroups specifically detect resilience SNPs. For this reason, we performed a grid search over a 

range of thresholds for defining the lower and upper thresholds for the low-risk subgroup and the 

lower threshold for the high-risk subgroup based on the PRS. The optimization ranges can be 

found in Supplementary Table 2. With each set of thresholds, we matched controls with cases 

and split the resulting data into a training subset containing 70% of the data to be used to train 

the models, a validation subset containing 15% of the data to be used to optimize the 

hyperparameters of the models, and a testing subset containing 15% of the data to be used for 

final measurement of performance metrics. We optimized models for each pair of high-risk and 

low-risk subgroups from each threshold possibility in our grid search. In hyperparameter 

optimization, we selected the model by finding the maximum value for the objective function 
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where aucmean represents the mean AUC in the primary task across 5 model trials and adversarial 

aucmean represents the mean AUC in the adversarial task across 5 model trials. This 

hyperparameter objective function effectively encourages models that are predictive in the 

primary task and have AUCs close to 0.5 in the adversarial task, with twice the emphasis on 

keeping the adversarial task close to 0.5. This is meant to increase confidence that resilience 

SNPs identified by the model are not actually unaccounted-for risk SNPs.  

For the best model for each set of thresholds, we used Integrated Gradients(21) to identify the 

features that were most important in separating cases from controls. The output from Integrated 

Gradients is a feature-attribution value for each input feature for each simulated individual 

representing how much that feature contributed to the prediction of that simulated individual’s 

case/control status. To generate a more robust feature-attribution measurement, we performed 

Integrated Gradients analysis on 5 separately initialized and trained models and used the average 

attribution. To estimate overall feature importance, we compared the mean attributions in cases 

and controls for each feature using two-sided t-tests. We adjusted for multiple comparisons in our 

feature-importance analyses using Bonferroni correction.  

Since our aim is to identify resilience features, we measured the sensitivity and specificity of our 

feature-importance analysis in identifying risk/resilience pairs as significantly important while 

avoiding calling other types of pairs significantly important. For sensitivity and specificity 

calculations, we defined true positives as risk/resilience pairs that had significantly different 

attributions between cases and controls in only the high-risk subgroup, false-positives as any 

other type of pair that had significantly different attributions between cases and controls in only 

the high-risk subgroup, false-negatives as risk/resilience pairs that did not have significantly 
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different attributions in only the high-risk subgroup, and true-negatives as any other type of pair 

that did not have significantly different attributions in only the high-risk subgroup. For 

comparison, we also optimized models without the adversarial task for the same sets of 

thresholds. 

For all models, we measured and reported AUC for predicting case-control status in the high-risk 

subgroup, AUC for predicting case-control status in the low-risk subgroup, and sensitivity and 

specificity in feature-importance analyses. While our models were not designed to maximize 

prediction, we calculated AUCs to compare the models’ prediction between the high-risk 

subgroup and low-risk subgroup and validate the models’ ability to find features that are more 

predictive in the high-risk subgroup.  

Alzheimer’s Disease Resilience Analysis 

Our analysis pipeline is shown in Figure 2. We used the seven sets of Alzheimer’s Disease 

Center (ADC) genotyped subjects used in the Alzheimer’s Disease Genetics Consortium’s 

GWAS(22) to identify genes associated with an increased risk of developing AD. We applied the 

same sample and genotype quality-control steps as previous resilience analyses.(17) We 

randomly split the data into training (70%) and validation (30%) subsets. In the training subset, 

we used PRS-CS(23) with summary statistics from the Psychiatric Genomics Consortium’s AD 

GWAS,(24) which does not contain the data used in our analysis, and the 1000 Genomes Project 

reference panel(25) to infer posterior effects of SNPs after adjustment for LD. We used these 

posterior effects to create polygenic risk scores in the training and validation subsets. We split 

each subset into high-risk and low-risk subgroups based on these polygenic risk scores, using the 

set of definition thresholds that had the best balance of sensitivity and specificity in our 

simulation analyses. We then matched the controls in the high-risk subgroup with cases that had 
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similar risk scores using the MatchIt R(26) package with the optimal pair matching method. We 

used the Welch two-sample t-test to calculate whether age was significantly different in cases and 

controls in the low-risk and high-risk subgroups. Likewise, we used Pearson’s chi-squared test to 

calculate whether sex or the presence of APOE-ε4 haplotypes were significantly different in 

cases and controls in the two subgroups. 

In the matched training subset, we reduced the dimensions of the SNPs for input into our neural 

network models by clumping SNPs using the two plink(27) clump commands with default 

parameter settings. The first clumping command generated risk clumps by clumping based on 

SNP p-values from the Psychiatric Genomics Consortium AD GWAS. The second clumping 

command generated resilience clumps by clumping based on a GWAS of AD cases vs. controls 

performed in the matched, high-risk subgroup of the training subset. We also performed a GWAS 

in the matched, high-risk subgroup of the validation subset to compare to our neural network 

feature-importance results, but these test subset GWAS results were not used in any models. 

Resilience and traditional risk SNPs may be present in either group, but our rationale in using 

these two sets of SNPs is that our models need to have information about the risk for each person 

to look for interactions that resilience SNPs may have on that risk. For all subsets, we output a 

file containing the number of minor alleles for each SNP in the two SNP sets and the case/control 

label for each person. These files were the input for our neural network models.  

We optimized hyperparameters using the same optimization ranges and objective function used 

in our simulation analysis and added dropout for additional regularization. Using the best set of 

hyperparameters, we performed the same Integrated Gradients feature-importance analysis we 

used in our simulation analysis. To better understand the difference between our neural network 

results and those from GWAS, we compared the results of this feature-importance analysis to 
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GWAS p-values. We used the average predictions across ten models for all of our data to 

generate a resilience score, which we defined as 1 minus the average prediction. This score 

reflected the tendency of neural networks to classify each individual as a control in our class-

balanced, risk-matched, adversarial model. In this constrained model, we expect individuals 

predicted to be controls to be enriched in resilience features specific to the high-risk subgroup. 

We investigated the relationship between PRS and resilience score by removing any correlation 

between PRS-CS and resilience score through residualization and fitting a logistic regression in 

the training data predicting case/control status using PRS-CS, residualized resilience score, and 

the interaction between the PRS-CS and residualized resilience score.  

We performed an additional analysis using the same methods restricted to individuals that are 

APOE-ε4 carriers. For this analysis, we removed APOE and its flanking region (chr19: 44,400 kb 

– 46,500 kb) from all steps. Hyperparameter optimization for this analysis failed to produce a 

reproducible model, so we did not perform further analysis on the resulting model.  
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Results 

Simulated Data Analyses 

Our SNP-pair simulation method created a sample of one million simulated individuals, all with 

107 risk/null pairs, 149 inverse-risk/null pairs, 163 risk/resilience pairs, and 779 null/null pairs. 

The simulated data, each simulated individual’s standard additive risk and total risk scores, and 

information on each simulated SNP are available in the supplementary data file. Supplementary 

Figures 1 and 2 show density plots of the distribution of both risk scores in cases and controls. 

The results of our thresholding analysis are shown in Figure 3 and Supplementary Table 2. 

Overall, models with the adversarial task were more consistent and had higher specificity in 

comparison to models without the adversarial task. Based on the results, we chose to use the 

adversarial model using a threshold of 0.90 for the high-risk subgroup and thresholds of 0.2 and 

0.5 for the low-risk subgroup because these thresholds were in the middle of a group of 

thresholds with the highest and most consistent specificities, which we considered the most 

important factor for avoiding false-positive results. In the task of identifying simulated 

risk/resilience pairs, the model with the best set of hyperparameters for this set of thresholds had 

a sensitivity of 0.48 and a specificity of 0.99. The hyperparameters selected for this model are 

shown in Supplementary Table 3. The model had an average AUC of 0.80 (95% CI: 0.77 – 0.83) 

across 5 trials in the task of classifying cases and controls in the high-risk subgroup and had an 

average AUC of 0.66 (95% CI: 0.56 – 0.76) in the same 5 trials in the task of classifying cases 

and controls in the low-risk subgroup, indicating that the model was successful in finding 

patterns that were more predictive or exclusively in the high-risk subgroup. 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 27, 2025. ; https://doi.org/10.1101/2025.02.26.25322962doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.26.25322962
http://creativecommons.org/licenses/by-nc/4.0/


17 

 

Alzheimer’s Disease Analyses 

We created risk-matched subgroups using the thresholds determined by the simulated data 

analyses. A logistic regression using PRS-CS had an AUC of 0.69 (95% CI: 0.67 – 0.71) in the 

independent validation subset. After matching based on PRS-CS, the same logistic regression 

model was no longer significantly predictive, with an AUC of 0.51 (95% CI: 0.46 – 0.55). The 

resulting high-risk subgroup contained 225 cases and 225 controls in the training subset and 106 

cases and 106 controls in the validation subset. The low-risk subgroup contained 538 cases and 

538 controls in the training subset and 227 cases and 227 controls in the validation subset. Age, 

sex, and APOE-ε4 haplotype presence were not significantly different between low-risk and 

high-risk subgroups in cases or controls. Information about the age, sex, and APOE-ε4 haplotype 

presence for cases and controls in each subgroup is available in Supplementary Table 4. After 

clumping, there were 919 SNPs (831 from risk GWAS and 88 from resilience GWAS) remaining 

as input into the neural network.  

The best set of hyperparameters for the model trained on the training subset of these data is 

shown in Supplementary Table 3. Across ten trials, the model had an average AUC of 0.69 (95% 

CI: 0.68 – 0.69) in the task of classifying cases and controls in the high-risk subgroup and an 

average AUC of 0.53 (95% CI 0.52 – 0.55) in the task of classifying cases and controls in the 

low-risk subgroup. Feature-importance analysis found significant attribution differences in the 5 

SNPs shown in Table 2 after Bonferroni correction for multiple-testing in high-risk cases and 

controls. Feature-importance analysis results for all SNPs used by our models alongside GWAS 

results for those SNPs are shown in Supplementary Table 5. The p-values calculated from the 

feature-importance analysis, after Z-transformation, were significantly correlated with the Z-
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transformed GWAS p-values calculated using the training subset, with a correlation of 0.11 (p = 

8.5 x 10-4).  

The resilience score had a correlation of -0.09 (p = 1.4 x 10-5) with PRS-CS in the validation 

subset. After residualization, the two were not significantly correlated. In a logistic regression 

predicting case/control status, PRS-CS, the residualized resilience score, and their interaction 

were all significantly associated with case/control status. The results of this model are presented 

in Table 3. The interaction between PRS-CS and the residualized resilience score is visualized in 

Figure 4, demonstrating an increase in association between PRS-CS and case/control prediction 

as the resilience score decreases. The association between PRS-CS and case/control prediction 

was approximately twice as strong in the bottom 25% resilience score bin compared to the top 

25% resilience score bin, with logistic regression coefficients of 8.3 x 105 and 4.1 x 105, 

respectively.  
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Discussion 

In both simulated data and actual Alzheimer’s disease data, our findings show that our 

adversarial multi-task neural network architecture improves our ability to detect markers of 

resilience, even when they are in linkage disequilibrium with risk alleles. We are the first to 

apply adversarial learning in the context of resilience to effectively unlearn patterns that are 

present in low-risk groups to explicitly drive the model towards learning the patterns that are 

specific to high-risk, resilient controls relative to risk-matched cases. This feature of the model is 

critical to ensuring that resilience effects are distinct from risk. Rather, the impact of resilience is 

to modify the effect of risk variants. In simulated data, these methods resulted in more consistent 

and specific determination of risk/resilience pairs compared to a neural network using a more 

traditional approach to capturing resilience effects. In AD data, we trained a model that was 

significantly more accurate at classifying cases and controls in the high-risk subset compared to 

the low-risk subset. We found 5 SNPs to be significantly implicated in this high-risk-specific 

model, suggesting these SNPs are markers of resilience in these high-risk controls, and not 

simply unaccounted for risk variants.  

In a dataset of 1 million simulated individuals, we aimed to test how well our neural network 

architecture could separate the effects of simulated risk/resilience SNP-pairs from the effects of 

other types of simulated SNP-pairs. As shown in Figure 3, we found that, compared with the 

standard approach of only using the high-risk subset to train the model, the specificity of our 

adversarial method in determining risk/resilience SNP-pairs was much higher in most of the sets 

of thresholds used to determine high-risk and low-risk subsets.  While the adversarial models 

were also moderately sensitive, with most models identifying around half of the risk/resilience 
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SNPs, we deemed specificity to be the more important metric due to the costs of pursuing false-

positives.  

Perhaps most importantly, the results of the adversarial models were much more consistent than 

the standard models across threshold sets. This is critical because other data sets will inevitably 

differ in ideal thresholding criteria, so knowing that our method for detecting resilience markers 

performs consistently across different thresholds and model architectures is important towards 

trusting the output outside of our simulated dataset. The models for each threshold set were 

optimized in the same way and the results suggest that in the standard approach the sensitivity 

and specificity are dependent upon the best set of hyperparameters. In comparison, the high 

consistency of the adversarial approach suggests that the sensitivity and specificity are robust to 

different choices of model hyperparameters. In real-world data we rarely know the ground truth 

for which SNPs are markers of risk/resilience interaction effects and which SNPs represent 

additive risk, which makes it impossible to objectively select thresholds in the same way we 

were able to with simulated data. Our simulation results demonstrate that, across a range of 

parameter choices, the model is unlikely to produce a substantial number of false positives, 

providing reassurance that any significant SNPs can be interpreted as resilience-related variants.  

In AD data, we selected thresholds for defining low-risk and high-risk subgroups based on the 

results in the simulated data and used the same approach for identifying markers of resilience. 

The correlation of 0.11 between the Z-transformed neural network feature-importance p-values 

and GWAS results suggests that our method is mostly detecting risk features that would not be 

picked up by GWAS. The significant associations of PRS-CS and resilience score in the logistic 

regression model predicting AD diagnosis also suggest that the effects of resilience score are in 

part independent of the effects of polygenic risk-scoring. The significant interaction between 
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resilience score and PRS-CS, shown in Table 3, suggests that the resilience score is protective 

against polygenic risk by attenuating its effect. As shown in Figure 4, the effect of PRS-CS on 

AD diagnosis prediction was lower in groups with higher resilience scores. Conversely, 

resilience effects were more apparent at higher levels of risk. This was an expected result, since 

we anticipated that unaffected individuals with higher risk likely had resilience factors in place 

that counteracted their elevated risk to prevent development of the disorder. This result also 

aligns with a GWAS-oriented resilience-scoring method applied to AD that found higher 

resilience scores were associated with a lower risk of AD.(17) Our models were designed to 

detect resilience features and are not designed to maximize AUC. Since our adversarial learning 

approach is purposefully disruptive to the normal machine learning process, our models’ AUCs 

are expectedly lower than previous work that focused on maximizing classification accuracy.(28, 

29) Rather, we impose a constraint of maintaining high specificity such that we are not simply 

(re)identifying risk SNPs. However, the difference between the AUC in the high-risk subgroup 

(0.69) and the AUC in the low-risk subgroup (0.53) across ten trials further suggests our model 

can find patterns that are more predictive of case/control status in the high-risk subgroup. This 

AUC difference mirrors the same difference seen in our models on simulated data that detected 

risk/resilience pairs with high specificity.  

Our approach identified 5 SNPs that had significantly different feature-attributions between cases 

and controls. The SNPs were rs429358, rs12721051, rs12972156, rs10119, and rs2394936. The 

SNPs themselves are part of SNP clumps that we formed based on LD, so the results could 

represent those SNPs acting as markers for nearby causal resilience SNPs as well. The most 

statistically significant difference was seen in rs429358, one of the two SNPs that defines APOE 

variants. The APOE interaction pair, while known, is exactly the type of effect we would expect 
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this analysis to identify. So, while our identification of rs429358 is not novel, its detection 

validates our methodology. This, by analogy, lends credibility to the other resilience SNPs 

detected via the same method. One of these is rs12721051 in the Apolipoprotein C1 (APOC1) 

gene. Multiple studies(11, 12) (7, 13)have found associations between APOC1 and AD and 

interactions between in APOC1 and APOE. Cudaback et al.(7) showed that APOC1 is an APOE-

genotype-dependent suppressor of glial activation. Zhou et al.(13) found that an APOC1 

insertion allele increased AD risk in APOE-ε4 carriers but did not increase risk in non-carriers.  

Another resilience-associated SNP was rs12972156 located in the Nectin Cell Adhesion 

Molecule 2 (NECTIN2) gene. A study using latent class analysis found that NECTIN2 was 

differentially associated with cognitive decline in three latent classes,(30) which offers evidence 

of conditional risk effects we would expect to see with risk/resilience interactions. rs10119 is in 

the translocase of outer mitochondrial membrane 40 (TOMM40) gene. TOMM40 has been found 

to influence AD risk both independently(14) and in combination(14)  with APOE. Zhu et al.(15) 

found that TOMM40 and APOE variants synergistically increase the risk for AD.(15) One study 

found that the four genes implicated by our work, NECTIN2, APOE, APOC1, and TOMM40, 

were likely the genes affecting plasma APOE expression levels.(16) While the other SNPs 

identified by our method are well studied and within APOE and it’s flanking region on 

chromosome 19, rs2394936 is located on chromosome 7 and little is known about the SNP. The 

abundance of existing evidence supporting interactions between the SNPs and genes identified 

by our method adds validity to the output of our models and strengthens our interest in further 

studying and validating rs2394936.  

While one of the two SNPs that defines APOE variants was among the identified SNPs, the 

other, rs7412, was not. We suspect that this is a result of the adversarial learning process 
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purposefully driving down the weights of rs7412 to avoid using the APOE-ε4 haplotype as a 

feature. As shown in Supplementary Table 4, the proportion of APOE-ε4 carriers in controls is 

not different between the low-risk and high-risk subgroups (27.3% vs 27.4%). The proportion of 

APOE-ε4 carriers in cases between the low-risk and high-risk subgroups are slightly, but not 

significantly, different (60.4% vs 68.9%). Since APOE-ε4 appears to be strongly and similarly 

predictive in the high-risk and low-risk subgroups, the model drives weights away from that 

interaction. This reflects a limitation of our models; by purposefully avoiding features that are 

predictive in the low-risk subgroup to avoid false positives and detect features that are 

independent of log-additive risk, the model is unable to detect any real resilience features that are 

similarly predictive in the high-risk and low-risk subgroups. 

Other limitations should also be considered. The resilience against clinical dementia seen in 

high-risk controls is likely to reflect some combination of biological and environmental factors. 

In our study, we address only the genomic part of potential biological resilience factors. 

Collecting and modeling multi-omic data may detect more forms of resilience and interactions 

between risk and resilience. We also did not have data on AD-related pathological burden or on 

the mechanism underlying resilience.  Even if they have the same resilience-associated SNPs, 

two individuals might still differ in being classified as case or control if one had much greater 

AD-related pathology at the time of assessment. Resilience-associated SNPs may confer 

resilience against AD pathology that has already developed, or they may confer resilience against 

the effects of other genes that in turn reduce or prevent development of AD pathology in the first 

place. Our study was likely limited by the size of our AD data set. This is especially true in the 

APOE-ε4 carrier sub-analysis, which failed to produce a reproducible model with our limited 

data size. Likewise, the number of SNPs we used in our models, which we minimized to balance 
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sample size and model complexity, likely limited our results by excluding SNPs that would have 

been identified as important. It’s possible that with larger data sets and more input SNPs, more 

markers of resilience may be identified. 

In summary, we have described a novel multi-task, adversarial neural network method for 

identifying and combining markers of genomic resilience. The results of applying our method to 

a large, simulated data set suggest that the method is an improvement over prior work that will 

minimize false-positives. Applied to Alzheimer’s disease data, our approach produced resilience 

scores that were protective against polygenic risk and identified 5 SNPs as markers of resilience. 

This approach shows promise in identifying variants that mark areas of importance in 

understanding the pathology of AD, with the ultimate goal of improved diagnosis and 

prevention.  
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Figure 1: Simulated SNP-Pair Visualization. Visualization of the first ten SNP-pairs for each SNP-pair type. For each SNP-pair, the

left circle represents the first SNP named in the pair type name (for example the risk SNP in the risk/null pair). The right circle 

represents the second SNP named in the pair type name (for example the null SNP in the risk/null pair). The left side of each 

circle represents the relative risk (RR) value used to generate alleles for that SNP, while the right side of each circle represents the

odds ratio (OR) that resulted for that SNP based on RR, allele frequency, and LD of both SNPs in the pair. This illustrates the 

tendency of simulated Null SNPs to look like the type of SNP with which they are in LD. It also illustrates the tendency of 

risk/resilience pairs to reduce the apparent effect size of correlated SNPs with opposing effects. Marker (a) shows a 

risk/resilience SNP-pair where the strong LD and effect size of the resilience SNP nullifies the effect of the risk SNP, resulting in 

the risk SNP having an OR very close to 1. This risk SNP would likely be missed in GWAS, but in those without the closely linked 

resilience SNP would be an important risk factor. Marker (b) shows a risk/resilience SNP-pair where the strong LD and effect size 

of the risk SNP makes the resulting OR of the resilience SNP appear as though it is a risk SNP in GWAS, illustrating the 

importance of understanding these potential interactions.  
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Figure 2: Alzheimer’s Disease Resilience Analysis Pipeline. Panel 1: We split data into a training subset (70%) used for GWAS 

and machine learning model training and validation (30%) used for reporting performance and feature importance. Panel 2: We 

calculate polygenic risk scores using independent, external summary statistics. Panel 3: We define minimum and maximum 

thresholds for low and high-risk subgroups and split the data based on those definitions. Panel 4: We match cases and controls 

based on PRS. Panel 5: We perform a GWAS on the high-risk subgroup in the training subset, clump SNPs from that GWAS and 

the external summary statistics based on AD association p-values, and output the clumping index SNPs for machine learning 

modeling. Panel 6: We train models using the training subset in the illustrated model architecture. High-risk and low-risk 

subgroups are used simultaneously to collectively train the shared layer and used separately to train the risk-group-specific 

output layers. Backpropagation is modified for the low-risk subgroup classification task, such that after minimizing the error of 

the output layer, the gradient is reversed in the gradient reverse layer (GRL), resulting in an adversarial task that directs the 

model to maximize error for the low-risk subgroup task in the shared layer. In combination, the multi-task network directs the 

model to find and use features that are more predictive in the high-risk subgroup. We expect this group of features to be 

enriched with resilience features and their interactions with risk features. After model training, we measure classification 

performance and calculate resilience scores and feature importances using the validation subset.    
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Figure 3: Risk/Resilience SNP-Pair Sensitivity and Specificity for each Threshold Set. Shown are the sensitivity and specificity in 

correctly detecting only risk/resilience SNP-pairs across the tested threshold sets, which determined the PRS percentiles we used 

to define high-risk and low-risk subgroups. The threshold sets each contain a lower PRS percentile threshold for defining the 

high-risk subgroup, and a lower and upper PRS percentile threshold for defining the low-risk subgroup. Results are presented for 

models that had the adversarial task (filled shapes) and standard models that did not have the adversarial task (unfilled shapes) 

but were otherwise the same and were equally optimized. Our first priority in selecting the best model was high specificity, due 

to our goal of avoiding false positive results, and our second priority was high sensitivity. Models with adversarial tasks were 

consistently more specific in identifying risk/resilience SNP-pairs.  
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Figure 4: Interaction between resilience score and PRS-CS. The interaction between PRS-CS and the residualized resilience score 

visualized by binning residualized resilience score into 4 bins and plotting PRS-CS vs diagnosis prediction. 
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BB 1 s2r s2r2 

Bb 1 sr sr2 

bb 1 r r2 

 aa Aa AA 

Table 1: 2-locus risk/resilience calculations. The formulae used to 
calculate total risk for each simulated SNP pair, where ‘a’ and ‘A’ represent 
the major and minor allele for the risk SNP, ‘b’ and ‘B’ represent the major 
and minor alleles for the resilience SNP, s represents the odds ratio of 
resilience effects and r represents the odds ratio of risk effects. 

 

 

SNP P-value Clumped SNPs Location 
rs429358 1.9x10

7 27 19:45411941 
rs12721051 5.9x10

7 2 19:45422160 
rs12972156 6.3x10

5 21 19:45387459 
rs10119 0.002 3 19:45406673 
rs2394936 0.037 8 7:98413656 

Table 2: Significant results from feature importance analysis. P-values were 
corrected using Bonferroni multiple-testing correction. Clumped SNPs is the 
number of correlated SNPs clumped into each primary SNP. Location 
represents the chromosome and position of the SNP. 

 

 

Table 3. Logistic regression predicting case/control status using PRS-CS, resilience score, 
and the interaction between PRS-CS and resilience score 

Feature Coefficient Std. Error Z p 

PRS-CS 1.1 x 10
7
 8.4 x 10

5 13.1 < 2 x 10
-16 

Residualized 
resilience score 

-1.9 0.2 -8.8 < 2 x 10
-16 

PRS-CS * residualized 
resilience score 

-7.5 x 10
6
 7.8 x 10

5 -9.7 < 2 x 10
-16 

*: interaction    
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