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Abstract

Background: Genetic risk factors for psychiatric and neurodegenerative disorders are well
documented. However, some individuals with high genetic risk remain unaffected, and the
mechanisms underlying such resilience remain poorly understood. The presence of protective
resilience factors that mitigate risk could help explain the disconnect between predicted risk and
reality, particularly for brain disorders, where genetic contributions are substantial but
incompletely understood. Identifying and studying resilience factors could improve our
understanding of pathology, enhance risk prediction, and inform preventive measures or
treatment strategies. However, such efforts are complicated by the difficulty of identifying

resilience that is separable from low risk.

Methods. We devel oped a novel adversarial multi-task neural network model to detect genetic
resilience markers. The model learns to separate high-risk unaffected individuals from affected
individuals at smilar risk while "unlearning” patterns found in low-risk groups using adversarial

learning. In simulated and existing Alzheimer’s disease (AD) datasets, we identified markers of
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resilience with a feature-importance-based approach that prioritized specificity, generated

resilience scores, and analyzed associations with polygenic risk scores (PRS).

Results: In ssimulations, our model had high specificity and moderate sengitivity in identifying
resilience markers, outperforming traditional approaches. Applied to AD data, the model
generated genetic resilience scores protective against AD and independent of PRS. We identified
fiveresilience-associated SNPs, including known AD-associated variants, underscoring their

potential involvement in risk/resilience interactions.

Conclusions. Our methods of modeling and evaluation of feature-importance successfully
identified resilience markers that were obscured in previous work. The high specificity of our
model provides high confidence that these markers reflect resilience and not simply low risk.
Our findings support the utility of resilience scores in modifying risk predictions, particularly for
high-risk groups. Expanding this method could aid in understanding resilience mechanisms,
potentially improving diagnosis, prevention, and treatment strategies for AD and other complex

brain disorders.
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I ntroduction

Through global research efforts, great strides have been made in improving our understanding of
the genetic risk factors associated with psychiatric and neurodegenerative disorders. Despite all
we have learned about risk factors for these disorders, it is still unclear asto why some people
with high risk for a disorder remain unaffected. One explanation is that those people have
protective features that make them resilient to developing the disorder. Resilience in this context
refers to features that mitigate the impact of risk factors, or in the prevailing taxonomy, these
factorsincrease resilient “capacity”.(1, 2) A better understanding of resilience would improve our
ability to predict risk for psychiatric and neurodegenerative disorders, leading to earlier and more
objective interventions. Just as importantly, such knowledge would lend insight into avenues for

better treatment and prevention.

The genetic architecture of Alzheimer’s disease (AD) indicates that resilience is a powerful lens
through which to view pathogenesis and therapeutic options. Twin studies have estimated the
heritability of late-onset Alzheimer’s disease (LOAD), the most common form of AD, at 58 —
79%,(3) but the variance explained by common single nucleotide polymorphisms (SNPs) in
additive modelsis lower, at 38-66%, and has been found to be decreasing with larger study
sizes.(4) Further understanding of AD will be critical in explaining this “missing heritability” and
combating the disorder’s growing impacts on individuals and society. Indeed, studies have found
that people with AD brain pathology are not destined to have or develop dementia. Both
environmental and genetic resilience factors have been shown to play an important rolein the
pathology of AD.(5) In this study we focus on genetic resilience factors, which are sequence

variants that modify the risk that would otherwise be associated with one or more loci.
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Since the discovery of the risk-conferring APOE haplotypes, other studies have identified SNPs
in nearby genes that modify the effects of APOE,(6, 7) which otherwise carries the greatest risk
for LOAD of any gene. The APOE haplotype that confers AD risk is made up of two SNPs,
rs429358 and rs7412.(8) When both SNPs are cytosing, asin the APOE-g4 haplotype, the odds
of developing AD are 3.7 times higher compared to the most common scenario where rs429358
isathymine and rs7412 isacytosine,(9) asisthe case in the APOE-¢3 haplotype. When both
SNPs are thymine, asin the APOE-£2 haplotype, the odds ratio for developing AD is 0.6
compared to APOE-¢3, indicating a protective effect. The alleles at these two SNPs regulate
APOE protein isoforms, which go on to affect the clearance, transport, and immune response
pathways implicated in AD.(9) It could be inferred that the protein structure produced based on
thymine alleles in rs429358 are protective against either the structural effects of the rs7412(C)
alele or the combined effects of rs7412(C) and rs429358(C).(10) Many studies have nominated
cis or trans elements that modify APOE risk.(11, 12) (7, 13-16) Such APOE results illustrate the
broader challenge in which many genomic resilience features are positionally nearby and in LD
with risk variants. Therefore, it would be helpful to develop a method that can include correlated

variants while adjusting out pure risk effects.

Here, we introduce a novel neural network approach to detect markers of resilience with
increased resolution. Specifically, it overcomes the requirement of prior methods to exclude
SNPsin LD with risk SNPs, addressing a mgjor limitation of previous approaches(17). We used
multi-task neural networks to find markers of resilience, which we define as SNPs that
accurately discriminate unaffected people who have high risk for a disorder from affected people
with similar risk, but which cannot accurately discriminate low-risk unaffected from affected

people with similar risk. In other words, genetic markers that collectively make high-risk
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individuals resilient to devel oping disease but have little to no effect on disease devel opment
among individuals at low risk. This approach was designed to simulate the real-world possibility
of syntenic risk and resilience SNPs, and to test our ability to detect such resilience SNPs when
they arein strong LD with risk SNPs. We hypothesized that the difference in allele frequency of
these resilience SNPs would be higher when comparing high-risk unaffected and high-risk
affected individuals relative to comparisons between low-risk unaffected and low-risk affected
individuals. Thisis because, without resilience features, the elevated risk found in high risk-
unaffected people would otherwise result in more people in this group devel oping the disorder,
whereas the presence of resilience genesin individuals at low risk does not impact the likelihood
of illness. We evaluated the validity of our approach by applying it to both smulated and

previously collected AD genome-wide association study (GWAS) data.
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Methods and M aterials

SNP-Pair Smulation

One million smulated individuals were randomly assigned to be either a case with a smulated
polygenic disease or an unaffected control. In these individuals we simulated 4 types of SNP-
pairs defined as two SNPs, with 2 alleles each, simulated to bein LD with an r* between 0.5 and
1. Thefour pair types were: 1) risk/null pairs with one risk-associated SNP that was more
common in cases and one null SNP that is unevenly distributed in cases and controls only
through its LD with the risk SNP; 2) Inverse-risk/null pairs with one SNP that was less common
in cases and one null SNP; 3) Risk/resilience pairs with one SNP that was more common in cases
and one SNP that was less common in cases and which reduced the effects of the risk SNP when
both were present; and 4) Null/null pairs with two SNPsin LD that were equally distributed in
cases and controls. We randomly generated SNP-pairs weighted by predefined probabilities with
risk/null, inverse-risk/null, and risk/resilience pairs equally frequent and null/null SNPs 6 times
more frequent than the other individual pairs. For all SNP-pairs, minor allele frequencies ranged
between 0.05 and 0.5 and LD ranged between an r? of 0.5 and 0.9. In each individual, the
genotype at the first SNP was generated conditional on the assumed allele frequencies,
penetrance model, and the individual’s affection status. Then, pairs of haplotypes were generated
by ssmulating alleles at the second SNP conditional on the allele at the first SNP, the assumed
value of LD, and the penetrance model. Risk/null pairs had arelative risk range between 1.05
and 1.3 for therisk SNP, with the range selected to reflect typical psychiatric GWAS results.
Inverse-risk/null pairs had arelative risk range between the reciprocal of 1.3 and the reciprocal

of 1.05 for the inverse-risk SNP. For risk/resilience pairs, the base relative risk range for risk
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SNPswas 1.05 to 1.3 while the base relative risk for resilience SNPs ranged between the

reciprocal of 1.3 and the reciprocal of 1.05.

When looking at SNP effect size individually, asis commonly the case in GWAS, the opposing
effects of risk and resilience SNPsin LD make the odds ratios of each SNP appear smaller than
the true effect when considering interactions. In real data, it is possible that SNPs with
risk/resilience interactions are still among the top resultsin GWAS, which would mean that those
SNPs have true effect sizes that are higher than those estimated from the GWAS. Therefore, to
allow for correlated SNPs with opposing effects reducing the apparent effect sizes, we multiplied
the base relative risk range of SNPsin risk/resilience pairs by a value representing 2 times the
LD r? value between the SNPs. We chose this value to keep the individual odds ratios of SNPsin
therisk/resilience pairs closer to those of the other pair types. This allows the risk/resilience pairs
to better reflect those we would expect to include and detect in real data analyses, since we use
individual SNP GWAS results to determine inclusion in neural network models. The resulting
odds ratios of the risk SNPs in risk/resilience pairs were still significantly less than thosein
risk/null pairs and the odds ratios of the resilience SNPs were significantly greater from the
inverse-risk SNPsin the inverse-risk/null pairs (Supplementary Table 6 and 7). Thisindicates
that the effect sizesin risk/resilience pairs were weaker on average than those in the other pair
types. Figure 1 visualizes the first ten SNP-pairs for each pair type and demonstrates the induced

reduction in apparent effect size in risk/resilience pairs.

Based on the LD, relativerisk, and allele frequencies, avaue of O, 1, or 2 was generated for each
SNP, reflecting the number of minor aleles generated for that SNP for each individual. For each
SNP, we calculated log-additive risk for each individual by estimating allelic SNP effects using a

logistic regression model predicting case/control status and multiplying the number of alleles by
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the allelic effect. For each simulated pair, we calculated the total risk, defined here as the risk
that includes both risk and resilience effects, using the expressions in Table 1, dependent on the
values of both SNPs in the pair. We used the expressions in Table 1 to smulate multiplicative
effects of resilience SNPs that multiplicatively counteract the effects of risk SNPs. For both total
risk and traditional log-additive risk, we summed scores across all SNPs generated for each
individual to create polygenic risk scores. We continued randomly generating SNP-pairs until the
top 5% of total risk scoresin the set of control simulations no longer completely overlapped with

the bottom 5% of total risk scoresin the case smulations.

M oded Architecture

We designed a neural network architecture with PyTorch(18) to detect markers of resilience. We
accomplished this using multi-task modeling. The first task of our model was to minimize error
when predicting case vs. control status in the high-risk subgroup, which we defined as controls
with alog-additive polygenic risk score (PRS) above a selected percentile in the control group
distribution and PRS-matched cases. The second task was an adversarial task that maximized the
error when predicting case vs. control status in the low-risk subgroup, which we defined as
controls within a selected lower percentile range of the control group distribution and PRS-
matched cases. Essentially, this means the adversarial task drives the model to unlearn any
features that would be useful in predicting the low-risk subgroup. The PRS percentiles we used
to define high-risk and low-risk subgroups were selected through a process we describe in the
high-risk/low-risk subgroup thresholding analysis section. Unaccounted-for risk variants (i.e.,
those not identified in atypical comparison of all casesvs. al controls) and null variants are as
likely to be present in the low-risk subgroup as they are to be in the high-risk subgroup, which

means the adversarial task drives the model away from detecting and using those types of
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variants that might otherwise lead to false-positive resilience associations. The adversarial task
was implemented by using a gradient reversal layer, which reverses the direction of the gradient
during backpropagation such that the weights of the neural network are shifted in the direction

that maximizes error for that task.

The neural network architectureisillustrated in Panel 6 of Figure 2. The primary and adversarial
task in our models both have unique output layers, but otherwise share the rest of the layersin
the neural network. The gradient reversal layer is applied between the final shared layer and the
adversarial task output layer, which means the adversarial task output layer istrying to minimize
error in the task and will use any information available in the shared layersto best learn the
adversarial task. With this design, we can accurately measure and optimize the differencein
predictability between the high-risk subgroup and low-risk subgroup. For comparison, we also
trained and optimized models with similar architectures but without the adversarial task. To
maximize the difference between predictability in high-risk and low-risk subgroups, we
optimized the learning rate, epochs, number of shared layers, shared layer size, L1 lambda, and
the strength of the gradient reversal. The ranges for each of these hyperparameter optimizations
can be found in Supplementary Table 1. Optimization was performed using Optuna(19) with a
criterion of maximizing AUC for predicting case-control statusin the high-risk subgroup and
minimizing the difference between 0.5 and the AUC for predicting case-control statusin the low-
risk subgroup. Driving the AUC in the low-risk subgroup with the adversarial task is critical
because it discourages the entire model from using any discriminative factors that are present in
the low-risk subgroup. We anticipate that risk factors are likely to be similarly discriminative in
high and low-risk subgroups. We expect that resilience factors and their interactions with risk

factors are more discriminative in the high-risk subgroup, since those factors are likely to be

10


https://doi.org/10.1101/2025.02.26.25322962
http://creativecommons.org/licenses/by-nc/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2025.02.26.25322962; this version posted February 27, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

more prevalent in individuals that remain unaffected despite high genetic risk. Therefore, the
mode is designed to model resilience factors and their interactions with risk factorsin away that

isindependent of log-additive risk.

High-risk/L ow-risk Subgroup Thresholding Analysis

Previous studies of genetic resilience have defined the resilient controls as those in the top 10%
PRS in controls.(17, 20) For our machine learning models, we needed to define both a high-risk
subgroup, where we expect to see resilience features more often in controls, and alow-risk
subgroup, where we expect resilience features to be more evenly distributed. Ideally, we would
aim to select subgroups such that we have high sensitivity for detecting markers of resilience and
high specificity such that we will not falsely claim a SNPto be a marker of resilience when it is
not. Thiswould be a challenging task to optimize in real-world data since we cannot know for
certain which SNPs are resilience markers. However, in our simulated data set we are able to set
different thresholds and look at metrics for how well the models trained on the resulting
subgroups specifically detect resilience SNPs. For this reason, we performed agrid search over a
range of thresholds for defining the lower and upper thresholds for the low-risk subgroup and the
lower threshold for the high-risk subgroup based on the PRS. The optimization ranges can be
found in Supplementary Table 2. With each set of thresholds, we matched controls with cases
and split the resulting data into a training subset containing 70% of the datato be used to train
the models, a validation subset containing 15% of the data to be used to optimize the
hyperparameters of the models, and atesting subset containing 15% of the data to be used for
final measurement of performance metrics. We optimized models for each pair of high-risk and
low-risk subgroups from each threshold possibility in our grid search. In hyperparameter

optimization, we selected the mode by finding the maximum value for the objective function

11
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Objective = auc,,.q, — abs(0.5 — adversarial auc,,.4,,) * 2 + 0.5

where auCmen represents the mean AUC in the primary task across 5 model trials and adversarial
alCmean represents the mean AUC in the adversarial task across 5 mode trials. This
hyperparameter objective function effectively encourages models that are predictive in the
primary task and have AUCs close to 0.5 in the adversarial task, with twice the emphasis on
keeping the adversarial task close to 0.5. Thisis meant to increase confidence that resilience

SNPs identified by the model are not actually unaccounted-for risk SNPs.

For the best model for each set of thresholds, we used Integrated Gradients(21) to identify the
features that were most important in separating cases from controls. The output from Integrated
Gradientsis afeature-attribution value for each input feature for each smulated individual
representing how much that feature contributed to the prediction of that smulated individual’s
case/control status. To generate a more robust feature-attribution measurement, we performed
Integrated Gradients analysis on 5 separately initialized and trained models and used the average
attribution. To estimate overall feature importance, we compared the mean attributions in cases
and controls for each feature using two-sided t-tests. We adjusted for multiple comparisonsin our

feature-importance analyses using Bonferroni correction.

Since our aim is to identify resilience features, we measured the sensitivity and specificity of our
feature-importance analysis in identifying risk/resilience pairs as significantly important while
avoiding calling other types of pairs significantly important. For sensitivity and specificity
calculations, we defined true positives as risk/resilience pairs that had significantly different

attri butions between cases and controls in only the high-risk subgroup, false-positives as any
other type of pair that had significantly different attributions between cases and controlsin only

the high-risk subgroup, false-negatives as risk/resilience pairs that did not have significantly
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different attributions in only the high-risk subgroup, and true-negatives as any other type of pair
that did not have significantly different attributionsin only the high-risk subgroup. For
comparison, we also optimized models without the adversarial task for the same sets of

thresholds.

For all models, we measured and reported AUC for predicting case-control statusin the high-risk
subgroup, AUC for predicting case-control status in the low-risk subgroup, and sensitivity and
specificity in feature-importance analyses. While our models were not designed to maximize
prediction, we calculated AUCs to compare the models' prediction between the high-risk
subgroup and low-risk subgroup and validate the models’ ability to find features that are more

predictive in the high-risk subgroup.

Alzheimer’s Disease Resillience Analysis

Our analysis pipdineis shown in Figure 2. We used the seven sets of Alzheimer’s Disease
Center (ADC) genotyped subjects used in the Alzheimer’s Disease Genetics Consortium’s
GWAS(22) to identify genes associated with an increased risk of developing AD. We applied the
same sample and genotype quality-control steps as previous resilience analyses.(17) We
randomly split the data into training (70%) and validation (30%) subsets. In the training subset,
we used PRS-CY(23) with summary statistics from the Psychiatric Genomics Consortium’s AD
GWAS,(24) which does not contain the data used in our analysis, and the 1000 Genomes Project
reference panel(25) to infer posterior effects of SNPs after adjustment for LD. We used these
posterior effects to create polygenic risk scores in the training and validation subsets. We split
each subset into high-risk and low-risk subgroups based on these polygenic risk scores, using the
set of definition thresholds that had the best balance of sensitivity and specificity in our

simulation analyses. We then matched the controls in the high-risk subgroup with cases that had
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similar risk scores using the Matchlt R(26) package with the optimal pair matching method. We
used the Welch two-sample t-test to calculate whether age was significantly different in cases and
controlsin the low-risk and high-risk subgroups. Likewise, we used Pearson’s chi-squared test to
calculate whether sex or the presence of APOE-¢4 haplotypes were significantly different in

cases and controls in the two subgroups.

In the matched training subset, we reduced the dimensions of the SNPs for input into our neural
network models by clumping SNPs using the two plink(27) clump commands with default
parameter settings. The first clumping command generated risk clumps by clumping based on
SNP p-values from the Psychiatric Genomics Consortium AD GWAS. The second clumping
command generated resilience clumps by clumping based on a GWAS of AD cases vs. controls
performed in the matched, high-risk subgroup of the training subset. We also performed a GWAS
in the matched, high-risk subgroup of the validation subset to compare to our neural network
feature-importance results, but these test subset GWAS results were not used in any models.
Resilience and traditional risk SNPs may be present in either group, but our rationale in using
these two sets of SNPsis that our models need to have information about the risk for each person
to look for interactions that resilience SNPs may have on that risk. For all subsets, we output a
file containing the number of minor alleles for each SNPin the two SNP sets and the case/control

label for each person. These files were the input for our neural network models.

We optimized hyperparameters using the same optimization ranges and objective function used
in our smulation analysis and added dropout for additional regularization. Using the best set of
hyperparameters, we performed the same Integrated Gradients feature-importance analysis we
used in our smulation analysis. To better understand the difference between our neural network

results and those from GWAS, we compared the results of this feature-importance analysis to
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GWAS p-values. We used the average predictions across ten models for all of our datato
generate a resilience score, which we defined as 1 minus the average prediction. This score
reflected the tendency of neural networks to classify each individual as a control in our class-
balanced, risk-matched, adversarial model. In this constrained model, we expect individuals
predicted to be controls to be enriched in resilience features specific to the high-risk subgroup.
We investigated the relationship between PRS and resilience score by removing any correlation
between PRS-CS and resilience score through residualization and fitting a logistic regression in
the training data predicting case/control status using PRS-CS, residualized resilience score, and

the interaction between the PRS-CS and residualized resilience score.

We performed an additional analysis using the same methods restricted to individuals that are
APOE-¢&4 carriers. For thisanaysis, we removed APOE and its flanking region (chr19: 44,400 kb
— 46,500 kb) from al steps. Hyperparameter optimization for this analysis failed to produce a

reproducible model, so we did not perform further analysis on the resulting model.
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Results

Simulated Data Analyses

Our SNP-pair simulation method created a sample of one million ssmulated individuals, al with
107 risk/null pairs, 149 inverse-risk/null pairs, 163 risk/resilience pairs, and 779 null/null pairs.
The simulated data, each simulated individual’s standard additive risk and total risk scores, and
information on each simulated SNP are available in the supplementary datafile. Supplementary

Figures 1 and 2 show density plots of the distribution of both risk scoresin cases and controls.

The results of our thresholding analysis are shown in Figure 3 and Supplementary Table 2.
Overal, models with the adversarial task were more consistent and had higher specificity in
comparison to models without the adversarial task. Based on the results, we chose to use the
adversarial model using athreshold of 0.90 for the high-risk subgroup and thresholds of 0.2 and
0.5 for the low-risk subgroup because these thresholds were in the middle of a group of
thresholds with the highest and most consistent specificities, which we considered the most
important factor for avoiding false-positive results. In the task of identifying simulated
risk/resilience pairs, the model with the best set of hyperparameters for this set of thresholds had
a sensitivity of 0.48 and a specificity of 0.99. The hyperparameters selected for this model are
shown in Supplementary Table 3. The model had an average AUC of 0.80 (95% CI. 0.77 —0.83)
across 5 trials in the task of classifying cases and controls in the high-risk subgroup and had an
average AUC of 0.66 (95% CI: 0.56 — 0.76) in the same 5 trials in the task of classifying cases
and controlsin the low-risk subgroup, indicating that the model was successful in finding

patterns that were more predictive or exclusively in the high-risk subgroup.
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Alzheimer’s Disease Analyses

We created risk-matched subgroups using the thresholds determined by the ssmulated data
analyses. A logistic regression using PRS-CS had an AUC of 0.69 (95% CI: 0.67 —0.71) in the
independent validation subset. After matching based on PRS-CS, the same logistic regression
model was no longer significantly predictive, with an AUC of 0.51 (95% CI: 0.46 —0.55). The
resulting high-risk subgroup contained 225 cases and 225 controls in the training subset and 106
cases and 106 controls in the validation subset. The low-risk subgroup contained 538 cases and
538 controls in the training subset and 227 cases and 227 controls in the validation subset. Age,
sex, and APOE-¢4 haplotype presence were not significantly different between low-risk and
high-risk subgroups in cases or controls. Information about the age, sex, and APOE-¢4 haplotype
presence for cases and controls in each subgroup is available in Supplementary Table 4. After
clumping, there were 919 SNPs (831 from risk GWAS and 88 from resilience GWAS) remaining

as input into the neural network.

The best set of hyperparameters for the model trained on the training subset of these datais
shown in Supplementary Table 3. Acrossten trials, the model had an average AUC of 0.69 (95%
Cl: 0.68 — 0.69) in the task of classifying cases and controls in the high-risk subgroup and an
average AUC of 0.53 (95% CI 0.52 — 0.55) in the task of classifying cases and controlsin the
low-risk subgroup. Feature-importance analysis found significant attribution differencesin the 5
SNPs shown in Table 2 after Bonferroni correction for multiple-testing in high-risk cases and
controls. Feature-importance analysis results for all SNPs used by our models alongside GWAS
results for those SNPs are shown in Supplementary Table 5. The p-values calculated from the

feature-importance analysis, after Z-transformation, were significantly correlated with the Z-
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transformed GWAS p-values calculated using the training subset, with a correlation of 0.11 (p =

8.5x 10%.

The resilience score had a correlation of -0.09 (p = 1.4 x 10°) with PRS-CSiin the validation
subset. After residualization, the two were not significantly correlated. In alogistic regression
predicting case/control status, PRS-CS, the residualized resilience score, and their interaction
were all significantly associated with case/control status. The results of this model are presented
in Table 3. The interaction between PRS-CS and the residualized resilience score is visualized in
Figure 4, demonstrating an increase in association between PRS-CS and case/control prediction
as the resilience score decreases. The association between PRS-CS and case/control prediction
was approximately twice as strong in the bottom 25% resilience score bin compared to the top
25% resilience score bin, with logistic regression coefficients of 8.3 x 10° and 4.1 x 10°,

respectively.
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Discussion

In both ssmulated data and actual Alzheimer’s disease data, our findings show that our
adversarial multi-task neural network architecture improves our ability to detect markers of
resilience, even when they arein linkage disequilibrium with risk alleles. We are the first to
apply adversarial learning in the context of resilience to effectively unlearn patterns that are
present in low-risk groups to explicitly drive the model towards learning the patterns that are
specific to high-risk, resilient controls relative to risk-matched cases. This feature of the model is
critical to ensuring that resilience effects are distinct from risk. Rather, the impact of resilienceis
to modify the effect of risk variants. In smulated data, these methods resulted in more consistent
and specific determination of risk/resilience pairs compared to a neural network using a more
traditional approach to capturing resilience effects. In AD data, we trained a model that was
significantly more accurate at classifying cases and controls in the high-risk subset compared to
the low-risk subset. We found 5 SNPs to be significantly implicated in this high-risk-specific
model, suggesting these SNPs are markers of resilience in these high-risk controls, and not

simply unaccounted for risk variants.

In adataset of 1 million simulated individuals, we aimed to test how well our neural network
architecture could separate the effects of simulated risk/resilience SNP-pairs from the effects of
other types of ssmulated SNP-pairs. As shown in Figure 3, we found that, compared with the
standard approach of only using the high-risk subset to train the model, the specificity of our
adversarial method in determining risk/resilience SNP-pairs was much higher in most of the sets
of thresholds used to determine high-risk and low-risk subsets. While the adversarial models

were also moderately sensitive, with most models identifying around half of the risk/resilience
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SNPs, we deemed specificity to be the more important metric due to the costs of pursuing false-

positives.

Perhaps most importantly, the results of the adversarial models were much more consistent than
the standard models across threshold sets. Thisis critical because other data sets will inevitably
differ in ideal thresholding criteria, so knowing that our method for detecting resilience markers
performs consistently across different thresholds and model architectures isimportant towards
trusting the output outside of our simulated dataset. The models for each threshold set were
optimized in the same way and the results suggest that in the standard approach the sensitivity
and specificity are dependent upon the best set of hyperparameters. In comparison, the high
consistency of the adversarial approach suggests that the sensitivity and specificity are robust to
different choices of model hyperparameters. In real-world data we rarely know the ground truth
for which SNPs are markers of risk/resilience interaction effects and which SNPs represent
additive risk, which makes it impossible to objectively select thresholds in the same way we
were able to with smulated data. Our simulation results demonstrate that, across a range of
parameter choices, the model is unlikely to produce a substantial number of false positives,

providing reassurance that any significant SNPs can be interpreted as resilience-related variants.

In AD data, we selected thresholds for defining low-risk and high-risk subgroups based on the
results in the ssimulated data and used the same approach for identifying markers of resilience.
The correlation of 0.11 between the Z-transformed neural network feature-importance p-values
and GWAS results suggests that our method is mostly detecting risk features that would not be
picked up by GWAS. The significant associations of PRS-CS and resilience score in the logistic
regression model predicting AD diagnosis also suggest that the effects of resilience score arein

part independent of the effects of polygenic risk-scoring. The significant interaction between
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resilience score and PRS-CS, shown in Table 3, suggests that the resilience scoreis protective
against polygenic risk by attenuating its effect. As shown in Figure 4, the effect of PRS-CS on
AD diagnosis prediction was lower in groups with higher resilience scores. Conversely,
resilience effects were more apparent at higher levels of risk. Thiswas an expected result, since
we anticipated that unaffected individuals with higher risk likely had resilience factors in place
that counteracted their elevated risk to prevent development of the disorder. This result also
aligns with a GWAS-oriented resilience-scoring method applied to AD that found higher
resilience scores were associated with a lower risk of AD.(17) Our models were designed to
detect resilience features and are not designed to maximize AUC. Since our adversarial learning
approach is purposefully disruptive to the normal machine learning process, our models' AUCs
are expectedly lower than previous work that focused on maximizing classification accuracy.(28,
29) Rather, we impose a congtraint of maintaining high specificity such that we are not simply
(re)identifying risk SNPs. However, the difference between the AUC in the high-risk subgroup
(0.69) and the AUC in the low-risk subgroup (0.53) across ten trials further suggests our model
can find patterns that are more predictive of case/control statusin the high-risk subgroup. This
AUC difference mirrors the same difference seen in our models on simulated data that detected

risk/resilience pairs with high specificity.

Our approach identified 5 SNPs that had significantly different feature-attributions between cases
and controls. The SNPs were rs429358, rs12721051, rs12972156, rs10119, and rs2394936. The
SNPs themselves are part of SNP clumps that we formed based on LD, so the results could
represent those SNPs acting as markers for nearby causal resilience SNPs as well. The most
statistically significant difference was seen in rs429358, one of the two SNPs that defines APOE

variants. The APOE interaction pair, while known, is exactly the type of effect we would expect
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this analysis to identify. So, while our identification of rs429358 is not novel, its detection
validates our methodology. This, by analogy, lends credibility to the other resilience SNPs
detected via the same method. One of these isrs12721051 in the Apolipoprotein C1 (APOC1)
gene. Multiple studies(11, 12) (7, 13)have found associations between APOC1 and AD and
interactions between in APOC1 and APOE. Cudaback et al.(7) showed that APOCL is an APOE-
genotype-dependent suppressor of glial activation. Zhou et al.(13) found that an APOC1

insertion allele increased AD risk in APOE-g4 carriers but did not increase risk in non-carriers.

Another resilience-associated SNP was rs12972156 located in the Nectin Cell Adhesion
Molecule 2 (NECTIN2) gene. A study using latent class analysis found that NECTIN2 was
differentially associated with cognitive decline in three latent classes,(30) which offers evidence
of conditional risk effects we would expect to see with risk/resilience interactions. rs10119isin
the translocase of outer mitochondrial membrane 40 (TOMM40) gene. TOMMA40 has been found
to influence AD risk both independently(14) and in combination(14) with APOE. Zhu et al.(15)
found that TOMM40 and APOE variants synergistically increase the risk for AD.(15) One study
found that the four genes implicated by our work, NECTIN2, APOE, APOC1, and TOMMA40,
were likely the genes affecting plasma APOE expression levels.(16) While the other SNPs
identified by our method are well studied and within APOE and it’s flanking region on
chromosome 19, rs2394936 is located on chromosome 7 and little is known about the SNP. The
abundance of existing evidence supporting interactions between the SNPs and genes identified
by our method adds validity to the output of our models and strengthens our interest in further

studying and validating rs2394936.

While one of the two SNPs that defines APOE variants was among the identified SNPs, the

other, rs7412, was not. We suspect that thisis aresult of the adversarial learning process
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purposefully driving down the weights of rs7412 to avoid using the APOE-¢4 haplotype as a
feature. As shown in Supplementary Table 4, the proportion of APOE-&4 carriersin controlsis
not different between the low-risk and high-risk subgroups (27.3% vs 27.4%). The proportion of
APOE-¢4 carriersin cases between the low-risk and high-risk subgroups are slightly, but not
significantly, different (60.4% vs 68.9%). Since APOE-c4 appears to be strongly and similarly
predictive in the high-risk and low-risk subgroups, the model drives weights away from that
interaction. This reflects alimitation of our models; by purposefully avoiding features that are
predictive in the low-risk subgroup to avoid false positives and detect features that are
independent of log-additive risk, the model is unable to detect any real resilience features that are

similarly predictive in the high-risk and low-risk subgroups.

Other limitations should also be considered. The resilience against clinical dementia seen in
high-risk controlsis likely to reflect some combination of biological and environmental factors.
In our study, we address only the genomic part of potential biological resilience factors.
Coallecting and modeling multi-omic data may detect more forms of resilience and interactions
between risk and resilience. We a'so did not have data on AD-related pathological burden or on
the mechanism underlying resilience. Even if they have the same resilience-associated SNPs,
two individuals might still differ in being classified as case or control if one had much greater
AD-related pathology at the time of assessment. Resilience-associated SNPs may confer
resilience against AD pathology that has already developed, or they may confer resilience against
the effects of other genes that in turn reduce or prevent development of AD pathology in the first
place. Our study was likely limited by the size of our AD data set. Thisis especially truein the
APOE-¢4 carrier sub-analysis, which failed to produce a reproducible model with our limited

data size. Likewise, the number of SNPs we used in our modds, which we minimized to balance
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sample size and model complexity, likely limited our results by excluding SNPs that would have
been identified asimportant. It’s possible that with larger data sets and more input SNPs, more

markers of resilience may be identified.

In summary, we have described a novel multi-task, adversarial neural network method for
identifying and combining markers of genomic resilience. The results of applying our method to
alarge, smulated data set suggest that the method is an improvement over prior work that will
minimize false-positives. Applied to Alzheimer’s disease data, our approach produced resilience
scores that were protective against polygenic risk and identified 5 SNPs as markers of resilience.
This approach shows promise in identifying variants that mark areas of importancein
understanding the pathology of AD, with the ultimate goal of improved diagnosis and

prevention.
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Simulated SNP Pair Visualization
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Figure 1: Simulated SNP-Pair Visualization. Visualization of the first ten SNP-pairs for each SNP-pair type. For each SNP-pair, the
left circle represents the first SNP named in the pair type name (for example the risk SNP in the risk/null pair). The right circle
represents the second SNP named in the pair type name (for example the null SNP in the risk/null pair). The left side of each
circle represents the relative risk (RR) value used to generate alleles for that SNP, while the right side of each circle represents the
odds ratio (OR) that resulted for that SNP based on RR, allele frequency, and LD of both SNPs in the pair. This illustrates the
tendency of simulated Null SNPs to look like the type of SNP with which they are in LD. It also illustrates the tendency of
risk/resilience pairs to reduce the apparent effect size of correlated SNPs with opposing effects. Marker (a) shows a
risk/resilience SNP-pair where the strong LD and effect size of the resilience SNP nullifies the effect of the risk SNP, resulting in
the risk SNP having an OR very close to 1. This risk SNP would likely be missed in GWAS, but in those without the closely linked
resilience SNP would be an important risk factor. Marker (b) shows a risk/resilience SNP-pair where the strong LD and effect size
of the risk SNP makes the resulting OR of the resilience SNP appear as though it is a risk SNP in GWAS, illustrating the
importance of understanding these potential interactions.
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Figure 2: Alzheimer’s Disease Resilience Analysis Pipeline. Panel 1: We split data into a training subset (70%) used for GWAS
and machine learning model training and validation (30%) used for reporting performance and feature importance. Panel 2: We
calculate polygenic risk scores using independent, external summary statistics. Panel 3: We define minimum and maximum
thresholds for low and high-risk subgroups and split the data based on those definitions. Panel 4: We match cases and controls
based on PRS. Panel 5: We perform a GWAS on the high-risk subgroup in the training subset, clump SNPs from that GWAS and
the external summary statistics based on AD association p-values, and output the clumping index SNPs for machine learning
modeling. Panel 6: We train models using the training subset in the illustrated model architecture. High-risk and low-risk
subgroups are used simultaneously to collectively train the shared layer and used separately to train the risk-group-specific
output layers. Backpropagation is modified for the low-risk subgroup classification task, such that after minimizing the error of
the output layer, the gradient is reversed in the gradient reverse layer (GRL), resulting in an adversarial task that directs the
model to maximize error for the low-risk subgroup task in the shared layer. In combination, the multi-task network directs the
model to find and use features that are more predictive in the high-risk subgroup. We expect this group of features to be
enriched with resilience features and their interactions with risk features. After model training, we measure classification
performance and calculate resilience scores and feature importances using the validation subset.
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Figure 3: Risk/Resilience SNP-Pair Sensitivity and Specificity for each Threshold Set. Shown are the sensitivity and specificity in
correctly detecting only risk/resilience SNP-pairs across the tested threshold sets, which determined the PRS percentiles we used
to define high-risk and low-risk subgroups. The threshold sets each contain a lower PRS percentile threshold for defining the
high-risk subgroup, and a lower and upper PRS percentile threshold for defining the low-risk subgroup. Results are presented for
models that had the adversarial task (filled shapes) and standard models that did not have the adversarial task (unfilled shapes)
but were otherwise the same and were equally optimized. Our first priority in selecting the best model was high specificity, due
to our goal of avoiding false positive results, and our second priority was high sensitivity. Models with adversarial tasks were
consistently more specific in identifying risk/resilience SNP-pairs.
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Figure 4: Interaction between resilience score and PRS-CS. The interaction between PRS-CS and the residualized resilience score
visualized by binning residualized resilience score into 4 bins and plotting PRS-CS vs diagnosis prediction.

34


https://doi.org/10.1101/2025.02.26.25322962
http://creativecommons.org/licenses/by-nc/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2025.02.26.25322962; this version posted February 27, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

BB 1 sr s

Bb 1 st s

bb 1 r r’
aa Aa AA

Table 1: 2-locusrisk/resilience calculations. The formulae used to
calculate total risk for each smulated SNP pair, where ‘a and ‘A’ represent
the major and minor alelefor therisk SNP, ‘b’ and ‘B’ represent the major
and minor alelesfor the resilience SNP, s represents the odds ratio of
resilience effects and r represents the odds ratio of risk effects.

SNP P-value Clumped SNPs  Location
rs429358 1.9x10' 27 19:45411941
rs12721051 5.9x10' 2 19:45422160
rs12972156 6.3x10° 21 19:45387459
rs10119 0.002 3 19:45406673
rs2394936 0.037 8 7:98413656

Table 2: Significant results from feature importance analysis. P-values were
corrected using Bonferroni multiple-testing correction. Clumped SNPsisthe
number of correlated SNPs clumped into each primary SNP. Location
represents the chromosome and position of the SNP.

Table 3. Logistic regression predicting case/control status using PRS-CS, resilience score,
and the interaction between PRS-CS and resilience score

Feature Coefficient Std. Error Z p

PRS-CS ’ ¥ 13.1 16
1.1x 10 8.4x10 : <2x10

Residualized -1.9 0.2 -8.8 <2x10°"

resilience score

PRS-CS* residudized .75 10" 7.8x 10’ 9.7 <2x10"
resilience score

*: interaction
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