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Abstract

We analyse the conditions for a particular type of mixed strategy profile to be an equilibrium in

a specific buy and sell strategic market game à la Shapley and Shubik (1977), with two goods, using

best responses of a player against random bids by the other players. We first identify a difficulty

in characterising mixed Nash equilibria; we show that the expected utility is not quasiconcave in

strategies. We still prove that any mixed strategy Nash equilibrium profile in which every player

faces a mix over only two positive bids is purifiable, that is, is a mixture of some pure strategy

Nash equilibrium profiles. Moreover, we prove that the outcome (the price and the allocations) is

deterministic in any such equilibrium.
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1 INTRODUCTION

Randomness in economic outcomes (prices and net allocations) has been extensively studied both

in competitive and strategic models. Some of these studies are based on intrinsic uncertainty while

many examine extrinsic uncertainty. In the competitive framework, the concept of sunspot equilibrium

(Cass and Shell, 1983) models extrinsic uncertainty; in non-cooperative games, the notion of correlated

equilibrium (Aumann, 1974, 1987) has been widely studied.

Strategic market games, introduced by Shapley (1976), Shapley and Shubik (1977), Dubey and

Shubik (1978, 1980) among others, develop a method of constructing a non-cooperative game from the

general equilibrium framework (for surveys, see Dubey, 1994; Ali Khan and Sun, 2002; Giraud, 2003).

In strategic market games, players can influence the prices through their buy and sell orders. In the

Shapley and Shubik (1977) version of the game, one good is specified as the monetary medium used

for buying and selling all other commodities.1 The price at each single-good trading post is simply the

money / good ratio at that post.

The definition of non-cooperative equilibrium in this context is simply a Nash equilibrium in pure

strategies, where no trader, given the bids of others, can improve by deviating unilaterally. There is a

rich literature on randomness in terms of both correlated and sunspot equilibria within this framework

(see for example, Aumann, Peck and Shell, 1988; Davila, 1999; Forges, 1991; Forges and Peck, 1995,

Maskin and Tirole, 1987; Peck, 1994; Peck and Shell, 1991; Polemarchakis and Ray, 2006). Surprisingly

however, random moves of individuals in this game are still left to be analysed. To the best of our

knowledge, the first and perhaps only work that considers mixed strategies in market games is by

Levando (2012); Levando and Sakharov (2018) analyse a market game with two goods and two players

with a specific utility function, however they do not explicitly characterise the structure of the mixed

equilibria in their game. Voliotis (2006) analyses boundedly rational traders who act strategically in a

“sell all” version of strategic market game. All strategic market games à la Shapley and Shubik (1977)

have a no-trade (“trivial”) equilibrium, where nothing is offered on either side of each trading post.

The existence of equilibria with positive bids is still an open question (Busetto and Codognato, 2006).

Here we do not contribute to the existence question, but merely characterise a special case of mixed

strategy Nash equilibria, if they exist. Mitra, Ray and Roy (2024) characterise “trading” equilibria

that exist in buy-and-sell games.

Shapley and Shubik, in their paper (1977, p. 948, footnote 17) remark: “The definition of Nash

1There are possible variations (“buy or sell” or “sell all”) of this game. Also, there are other ways to model trading

posts in strategic market games. In Sahi and Yao (1989) and Amir et al (1990), all goods can be exchanged directly;

hence a trader’s bid for a good specifies the amounts of all other goods she wants to sacrifice in exchange for it. In these

complete-market models, a price vector (one price for each good as in Sahi and Yao, 1989) or a price matrix (one price

for each pair of goods as in Amir et al, 1990) equate the supply and the demand for each good.
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includes the possibility of mixed strategies. These have no plausible interpretation in our present

model so we shall be searching only for Nash equilibrium in pure strategies.” Shapley himself however,

seems to have a contrary view when he claims (1976, p. 158): “... a well-defined game for which other

types of solution may be attempted (including the Nash equilibrium in mixed strategies).” We agree

with the view expressed in Shapley (1976) above. The strategic market game is indeed a well-defined

non-cooperative game and therefore one should consider mixed strategies. The purpose of this paper

is to study the structure of possible mixed strategy Nash equilibria in such games.

To characterise the set of mixed Nash equilibria, we consider a simple framework for a buy-and-sell

game, with two goods only (a commodity and a “money”) and n players. We apply the concept of

mixed strategies directly to the strategy sets of the players: the players are allowed to randomise

over pure strategies in their respective strategy sets. The outcome (the prices and the allocations) is

obtained on the basis of the realisations of the mixed strategies. The payoff for a player is the expected

payoff over the outcomes from the realised strategies.

The intellectual appeal of strategic market games lies in their explicit pricing mechanism, where

each trader can single-handedly influence the price. We show that this analytical completeness comes

at the cost of equilibrium under-determinacy. In particular, the explicit pricing mechanism means

the players’ payoff functions are not concave and their best responses are not necessarily unique. The

intuition behind the above observation is as follows. Each player can affect the market price by varying

the amounts she sells and buys. Since these two variables affect the price, they do not linearly cancel

out. This means the player’s payoff is not concave in strategies even if it is concave in final allocations

of commodities.2

Moreover, expected utility need not even be quasiconcave in strategies, as we show in an example.

Hence, the best response to a mixed profile of other player’s strategies might not be unique. This

means strategic market games have a higher level of equilibrium under-determinacy than previously

thought. Not only do they have multiple pure strategy equilibria, fully mixed-strategy equilibria also

cannot be ruled out. The presence of fully mixed equilibria would have important implications in the

real-life counterparts of strategic market games, suggesting price instability in commodity markets.

We first analyse best responses for a player in our set-up. Our first result shows that the best

response for a player against a mixed strategy profile is unique, apart from some degenerate cases.

We prove that the outcome (price and allocation) from a mixed strategy equilibrium profile in such

a market is deterministic. However, we can fully characterise the set of mixed Nash equilibria just

for the special case in which the player who plays a mixed strategy is mixing over only two positive

bids. Although this profile is very restrictive, we can prove a conclusive result and show that there

2Concavity of a utility function in the final holdings of commodities is a standard assumption which reflects the

decreasing marginal utility of those commodities.
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is no effect of mixing in this game. We find that the mixed Nash equilibria are purifiable, as they

are simply mixtures of pure equilibria. This perhaps justifies the dismissive judgment of Shapley and

Shubik mentioned above, at any rate as regards this special case.

It must be stressed that in strategic market games, a player does not usually have a unique best

response. Indeed this is true when only pure strategies are considered, as noted by Shapley (1976).

Therefore, the very problem of existence of a Nash equilibrium in pure strategies has not been solved

so far (see Busetto and Codognato, 2006). Consequently, the characterisation of the set of MSNE for

this game seems to be a problematic task, given that even in the case of pure strategies we cannot

rule out that the set of equilibria is empty. Our work is particularly relevant for this issue, since our

characterisation shows that MSNEs are purifiable.

2 MODEL

Consider an exchange economy with n (≥ 2) agents (indexed by i = 1, 2, ..., n) and two commodities,

labelled 1 and 2, whose consumption quantities are denoted respectively by x and y. Commodity 2 is

money (the numéraire good). Each agent i is endowed with a positive vector of goods, (wi1, wi2) >> 0

and has a concave, strictly increasing3 and differentiable utility function over her final allocation of

the two commodities, ui(xi, yi) : R
2
+ → R. The final allocations are determined in a strategic market

game.

Each agent in the economy is a player in the game: N = {1, . . . , n}. In a buy-and-sell game, players

announce the amount of good 1 they want to to sell, denoted by qi, and also the amount of money they

want to spend on buying back the same good (good 1), denoted by bi. Hence, (qi, bi) is player i’s pure

strategy, or bid. Let (q, b) = (qi, bi)i=1,...,n denote the profile of pure strategies. A player cannot bid

more than her endowment; hence, her pure strategy set is given by Si = {(qi, bi) : 0 ≤ qi ≤ wi1, 0 ≤

bi ≤ wi2}, i = 1, . . . , n. Given a strategy profile (q, b), the market-clearing price p(q, b) is formed as a

ratio of total bid to total supply (if positive):

p =
∑n

i=1 bi
/∑n

i=1 qi if
∑n

i=1 qi > 0;

= 0 if
∑n

i=1 qi = 0.
(1)

A player’s final allocation is determined from her initial allocation (wi1, wi2), her bid (qi, bi) and

the price p (of good 1):

3The assumption of strict monotonicity was first introduced in Dubey and Shubik (1978), however, it was not present

in the Shapley and Shubik (1977) paper. Busetto and Codognato (2006) used it to prove their existence results.
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
xi(q, b) = wi1 − qi + bi/p if p > 0,

= wi1 − qi if p = 0

yi(q, b) = wi2 − bi + qip.

(2)

Player i’s payoff from her final allocations of the two goods is given by ui (q, b) = ui (xi (q, b) , yi (q, b)),

i = 1, . . . , n.

Suppose all players apart from i are playing a pure strategy. Let (Q−i, B−i) denote the other

players’ total bid: Q−i ≡
∑

j qj , j ∈ N \ {i}; B−i ≡
∑

j bj , j ∈ N \ {i}.

Suppose (Q−i, B−i) ≫ 0, meaning Q−i > 0 and B−i > 0. We maintain this assumption throughout.

Then the price can be written as

p =
B−i + bi
Q−i + qi

> 0 (3)

and system (2) rearranged as follows:

 xi = wi1 +Q−i −B−i/p;

yi = wi2 +B−i −Q−ip.
(4)

In words, given the other players’ strategy the final allocation and payoff of player i depends only

on the price.

Importantly, for a fixed (Q−i, B−i), player i’s utility is strictly concave in price, which we show in

the following lemma.

Lemma 1 Let ui(xi, yi) : R
2
+ → R be strictly increasing in each of its arguments, and concave. Let

xi = xi(p) : R+ → R+ be a strictly concave function and yi = yi(p) : R+ → R+ be a weakly concave

function. Then the composition ui = ui(xi(p), yi(p)) : R+ → R is strictly concave.

Proof. Strict concavity of xi(p), with weak concavity of yi(p), implies that xi (λp+ λ′p′) >

λxi (p) + λ′xi (p
′) and yi (λp+ λ′p′) ≥ λyi (p) + λ′yi (p

′). The strict monotonicity and the concavity

of ui(xi, yi) imply that u (xi (λp+ λ′p′) , yi (λp+ λ′p′)) > u (λxi (p) + λ′xi (p
′) , λyi (p) + λ′yi (p

′)) ≥

λu (xi (p) , yi (p)) + λ′u (xi (p
′) , yi (p

′)). Thus, we have shown, with p and p′ distinct, λ ∈ (0, 1),

λ′ = 1− λ, and p′′ = λp+ λ′p′, u (xi(p
′′), yi(p

′′)) > λu (xi(p), yi(p)) + λ′u (xi(p
′), yi(p

′)).

2.1 Mixed Strategy

When it comes to mixed strategies in this game, we consider mixing over finitely many positive points

only. By a positive point, we mean a strategy where both dimensions are strictly positive: (qi, bi) ≫ 0

if qi > 0 and bi > 0. Let K ∈ N denote the number of points player i is mixing over.
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Definition 1 A mixed strategy of player i is a probability distribution µ over finitely many pure positive

strategies (qki , b
k
i ) ≫ 0, k = 1, 2, . . . ,K (where K ≥ 2) with respective probabilities µk such that µk > 0

for all k = 1, 2, . . . ,K and
∑K

k=1 µk = 1.

Player i’s payoff from a mixed strategy profile is the usual expected payoff.

First, we present an important negative result. In a strategic market game with a concave (in

fact, strictly concave) utility over allocations, the resulting expected utility over strategies need not be

quasiconcave.

Example 1. Consider a player i with the initial endowment of (wi1, wi2) = (1, 1) and the following

utility function over the allocation of the two commodities: ui(xi, yi) = xα
i + yαi , where α ∈ (0, 1]. It

is easy to verify that this utility function is concave, strictly increasing and differentiable.

Let the player face two different total bids (Q1
−i, B

1
−i) = (0.9, 0.37) and (Q2

−i, B
2
−i) = (0.01, 0.1),

with probability 0.5 each.

Now consider the following two strategies of the player: (qi, bi) = (0.05, 0.04) and (q′i, b
′
i) = (1, 0.64),

with respective price realisations as follows:

(qi, bi) = (0.05, 0.04) with price realisations p1 = 0.04+0.37
0.05+0.9 = 41

95 ; p2 = 0.04+0.1
0.05+0.01 = 7

3 ,

(q′i, b
′
i) = (1, 0.64) with price realisations p′1 = 0.64+0.37

1+0.9 = 101
190 ; p

′
2 = 0.64+0.1

1+0.01 = 74
101 .

Now take the 1
2 -

1
2 convex combination (the average) of these two strategies:

(q′′i , b
′′
i ) = (0.525, 0.34) with price realisations p′′1 = 0.34+0.37

0.525+0.9 = 142
285 ; p

′′
2 = 0.34+0.1

0.525+0.01 = 88
107 .

With a linear utility function for this player: ui(xi, yi) = xi + yi, the player’s expected utility is

not quasiconcave in her strategy, since the expected utility of a convex combination of strategies is less

than the smaller of the two endpoint expected utilities, as shown below:

E (ui (q
′′
i , b

′′
i )) = 2.0296 < min{2.0340, 2.0309} = min{E (ui (qi, bi)) , E (ui (q

′
i, b

′
i))}.

The same is true for a strictly concave utility function ui(xi, yi) = x0.9
i + y0.9i as well, as shown

below.

E (ui (qi, bi)) = 1
2

[(
1.9− 0.37∗95

41

)0.9
+
(
1.37− 0.9∗41

95

)0.9
+

(
1.01− 0.1∗3

7

)0.9
+
(
1.1− 0.01∗7

3

)0.9]
=

2.0304.

E (ui (q
′
i, b

′
i)) =

1
2

[(
1.9− 0.37∗190

101

)0.9
+

(
1.37− 0.9∗101

190

)0.9
+

(
1.01− 0.1∗101

74

)0.9
+

(
1.1− 0.01∗74

101

)0.9]
=

2.0261.

E (ui (q
′′
i , b

′′
i )) =

1
2

[(
1.9− 0.37∗285

142

)0.9
+

(
1.37− 0.9∗142

285

)0.9
+

(
1.01− 0.1∗107

88

)0.9
+
(
1.1− 0.01∗88

107

)0.9]
=

2.0255.

E (ui (q
′′
i , b

′′
i )) = 2.0255 < min{2.0304, 2.0261} = min{E (ui (qi, bi)) , E (ui (q

′
i, b

′
i))}.

It therefore remains an open question whether the best response set for a player against a mixed

strategy profile (of others) must always be a singleton, or even be a convex set. We are, nevertheless,

able to characterise mixed strategy Nash equilibria in a special case in the next section.
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In particular, we deal with a specific mixed strategy profile, as below.

Definition 2 (i) For a two-player game (n = 2), a 2-point mixed strategy profile is a profile in

which at least one player plays a mixed strategy (as in Definition 1) however no player mixes over

more than two pure strategies (that is, for any mixing player, K = 2 as in Definition 1).

(ii) For n > 2, a 2-point mixed strategy profile is a profile in which only one player j mixes

over two pure strategies (that is, in player j’s mixed strategy, K = 2 as in Definition 1), while all other

players play pure strategies.

In accordance with Definition 2, in a 2-point mixed strategy profile any player faces either a

deterministic (pure) total bid by the other players (if none of them are mixing) or a probability

distribution over two pure positive total bids by the other players (if only one of the other players

is mixing, say playing (q1j , b
1
j ) ≫ 0 with probability σ1

−i and a bid (q2j , b
2
j ) ≫ 0 with probability

σ2
−i = 1−σ1

−i). In the latter case the resulting mixed bid, denoted by σ−i, is a probability distribution

over two strictly positive total bids: (Q1
−i, B

1
−i) ≡ (q1j , b

1
j ) +

∑N
l ̸=i,j(ql, bl) with probability σ1

−i and a

bid (Q2
−i, B

2
−i) ≡ (q2j , b

2
j ) +

∑N
l ̸=i,j(ql, bl) with probability σ2

−i = 1 − σ1
−i. In words, each total bid in

the mix is derived by adding the respective strategy of the mixing player to the deterministic sum of

strategies of other (non-mixing) players.

Definition 3 A 2-point mixed total bid faced by player i (denoted by σ−i) is a probability distribution

over two strictly positive total bids of other players (Qk
−i, B

k
−i) ≫ 0, k = 1, 2 with respective probabilities

σk
−i such that σk

−i > 0 for k = 1, 2 and
∑K

k=1 σ
k
−i = 1.

In other words, in a 2-point mixed strategy profile each player is facing at most one other player

who is mixing. In a game with more than two players, we are looking at strategy profiles where only

one player is mixing (over two positive points), while in a game with two players, such profiles include

both players mixing over two positive bids.

The definition of equilibrium in this game is standard Nash equilibrium (either in pure or in mixed

strategies). A (pure or mixed) strategy profile is said to be a (Nash) equilibrium if every player is

playing a best response against other players’ strategies in the profile.

3 BEST RESPONSE ANALYSIS

Before we find the best response of player i against (Q−i, B−i) ≫ 0, we observe the following.

If B−i = Q−i = 0, the set of allocations achievable by player i consists of her initial endowment,

and all the points where she has less of one of the goods than she was endowed with: {(wi1− qi, wi2)∪

(wi1, wi2 − bi) | qi ∈ [0, wi1], bi ∈ [0, wi2]}. By component-wise monotonicity of ui(xi, yi), the unique
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maximum is the initial endowment, which can be achieved by either abstaining from trade: (qi, bi) =

(0, 0), or sending positive quantities of both goods, which return to the player: (qi, bi) ≫ 0. If she bids

a positive amount of only one good, she generates a zero price and “burns” her bid.

If B−i > 0 and Q−i = 0, the set of allocations achievable by player i consists of two line seg-

ments: (i) an open set where she acquires all B−i by bidding any amount qi > 0 and generat-

ing a positive price p = (B−i + bi)
/
qi, and (ii) a closed set where she does not bid any qi = 0,

generating a zero price; any bi she bids is “burned”. Mathematically, her set of achievable allo-

cations is {
(
wi1 − qi + biqi

/
(B−i + bi), wi2 +B−i

)
| qi ∈ (0, wi1] , bi ∈ [0, wi2]} ∪ {(wi1, wi2 − bi) |

bi ∈ [0, wi2]}. To obtain player i’s best response set, first observe that for any qi > 0 and any

bi she can increase her utility by bidding a fraction of qi instead (for example, qi
/
2), because she

would capture the same amount of the second good in exchange for a smaller amount of the first

good: u(wi1 − qi
/
2 + biqi

/
2(B−i + bi), wi2 + B−i) > u(wi1 − qi + biqi

/
(B−i + bi), wi2 + B−i) for all

qi > 0. Second, for qi = 0 and any bi > 0 player i can increase her utility by not burning money:

u(wi1, wi2) > u(wi1, wi2 − bi). Finally, if qi = bi = 0 player i can increase her utility by sending a

sufficiently small amount of the first good to the market, to capture the entire supply of the second

good. Indeed, by continuity of ui(xi, yi) there exists a q∗i sufficiently small that she would be happy to

trade it off for the whole of B−i, i.e. such that u(wi1, wi2) < u(wi1 − q∗i , wi2 + B−i). In other words,

for any strategy of player i, a different strategy can be found resulting in greater utility. Hence player

i’s best response set to B−i > Q−i = 0 is empty.

By symmetry, the same argument applies to the case where Q−i > 0 and B−i = 0. Player i’s best

response set in that case is also empty. It follows that, if a strategy profile is such that any player i is

facing either B−i > 0 and Q−i = 0 or Q−i > 0 and B−i = 0, that strategy profile cannot be a Nash

equilibrium (a mutual best response).

Now let Ai(Q−i, B−i) denote the set of allocations achievable by player i, given (Q−i, B−i) ≫ 0.

The set can be characterised by solving one of the equations in system (4) for p and substituting into

the other:

Ai(Q−i, B−i) = {(xi, yi) ∈ R+ | xiyi− (wi2+B−i)xi− (wi1+Q−i)yi+wi1wi2+wi1B−i+wi2Q−i = 0}

(5)

Observe that i’s set of achievable allocations Ai(Q−i, B−i) is the graph of the strictly concave

continuous function yi(xi) = wi2 + B−i − Q−iB−i

/
(wi1 +Q−i − xi) with the domain x ∈ [0, wi1 +

wi2Q−i

/
(wi2 +B−i)], which is a hyperbola segment joining the axes at allocations achievable respec-

tively by the strategies (qi, bi) = (0, wi2) and (qi, bi) = (wi1, 0).

The set Ai(Q−i, B−i) is thereby closed and bounded. Hence by the Extreme Value Theorem a

continuous function ui(xi, yi) attains a global maximum (x∗
i , y

∗
i ) over the set.
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Suppose two distinct points (xi, yi) and (x′
i, y

′
i) maximise the concave ui(xi, yi), then so would their

convex combination (x′′
i , y

′′
i ). However, the vertical projection of that point onto the graph of yi(xi)

would attain a strictly greater utility ui(x
′′
i , yi(x

′′
i )) > ui(x

′′
i , y

′′
i ) = ui(xi, yi) = ui(x

′
i, y

′
i), by strict

monotonicity of ui(xi, yi) and strict concavity of yi(xi) – a contradiction; hence the maximum (x∗
i , y

∗
i )

is unique.

Player i can achieve (x∗
i , y

∗
i ) by a continuum of strategies (qi, bi) satisfying equation (6):

bi = qi
B−i

wi1 − x∗
i +Q−i

+
B−i(x

∗
i − wi1)

wi1 − x∗
i +Q−i

(6)

Equation (6) implicitly characterises player i’s best response set to an aggregate bid of the other

players, (Q−i, B−i).

We now analyse best responses of a player against a mixed total bid from others (a non-degenerate

probability distribution over the sum of bids and offers of players other than i).

Our main theoretical contribution is the extension of the best response analysis of a player i to a

2-point mixed strategy profile. The best response here cannot be easily characterised by closed-form

equations such as (5) and (6). However, the best response to a mixed total bid has an important

property, which we derive below.

Proposition 1 The best response to a 2-point mixed total bid is unique, apart from one degenerate

case when the best response lines to the realisations of the mixed bid coincide. In that case, any point

in that joint best response set is a best response to the mixed strategy.

The detailed proof of Proposition 1 is relegated to Appendix. In the proof, we show that the best

response falls into one of the three cases:

Case 1. Best response lines to realisations of the mixed bid coincide. In this case, any point on that line

is a best response against the mixed bid (the degenerate case).

Case 2. Best response lines to realisations of the mixed bid have an intersection in the player’s strategy

set. In this case, this intersection is the unique best response against the mixed bid.

Case 3. Best response lines to realisations of the mixed bid do not have an intersection in the player’s

strategy set. In this case, a point on the boundary of the player’s strategy set is the unique best

response against the mixed bid.

We provide examples, one each, of these three cases in the Appendix.
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4 MIXED STRATEGY NASH EQUILIBRIUM

The definition of Nash equilibrium (in pure or mixed strategies) is standard for such a game.

Definition 4 A 2-point mixed strategy Nash equilibrium (hereafter a 2-point MSNE) is a 2-point

mixed strategy profile such that no player can strictly increase their expected utility by playing a different

strategy.

We now proceed to characterise the 2-point MSNE of our market game. We start by showing that

the outcome of 2-point MSNE is deterministic.

Proposition 2 If a 2-point mixed strategy profile is a 2-point MSNE, then the realised outcome (price

and final allocations) is deterministic.

Proof. We invoke the proof of Proposition 1 to show that the best response to a mixed strategy is

either is a unique (pure) bid (Cases 2 and 3), or a continuum of bids generating the same price (Case

1).

Consider a 2-point MSNE in a game with more than two players (that is, n > 2). By Definition

2(ii), only one player is mixing. Then that player is doing so in the manner described in the previous

step, resulting in deterministic price and outcome for all players.

Now consider a 2-point MSNE in a game with two players (that is, n = 2); by Definition 2(i), two

players are mixing. Then each mixing player has to be best-responding to a mixed strategy of the

other player. A mixed strategy can only be a best response to a mixed total bid in Case 1 (coinciding

best-response lines) described in the proof of Proposition 1. This case entails the player mixing between

strategies collinear with the realisations of the other players’ total bids, hence entailing the same price,

and the same outcome for both the players.

Before characterising 2-point MSNEs further, we introduce a useful concept.

Definition 5 A 2-point MSNE is called purifiable if any realisation of the players’ strategies under

that 2-point MSNE forms a pure strategy Nash equilibrium.

Clearly, in a game with more than two players, any 2-point MSNE has exactly two pure strategy

realisations while in a game with two players, there may be either two or four possible realisations.

“Purifiability” in Definition 4 implies a mixture of pure strategy Nash equilibria. It turns out that

“non-purifiable” 2-point MSNE do not exist, as the theorem below demonstrates. In other words,

in every such 2-point MSNE, any of its constituent pure-strategy profiles is by itself a pure Nash

equilibrium.

Theorem 1 Consider a 2-good, n-player strategic market game. Any 2-point MSNE of this game is

purifiable.
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Proof. First note that from the proof of Proposition 2, in any 2-point MSNE, the price is de-

terministic. This means that all players best-responding to a mixed total bid are playing a strategy

giving rise to the same price under both total bids in the mix. Geometrically, their strategy is thus

necessarily lying on the line connecting the two pure total bids of the other players (implying also that

this line intersects the strategy set). Since all strategies on this line give rise to the same expected

utility, they are also best responses.

Recall that, according to Proposition 1, the best response to a mixed strategy is either a unique

point in the pure strategy space, or, in the extreme case where the best response lines to constituent

pure profiles in that mixed strategy coincide, this whole line is the best response. However we just

argued above that a unique best response cannot be part of 2-point MSNE. The only remaining

possibility is a continuum of best responses, which is possible only in Case 1, where any point in the

best-response continuum is also a best response against either constituent pure bid of the other players.

Theorem 1 now follows from this observation. It follows that in any 2-point MSNE, all players

facing a mixed total bid are playing a strategy which would have been a best response against all

constituent pure bids within this mixed bid, which proves the Theorem.

An important implication of Theorem 1 is that Cases 2 and 3 from the proof of Proposition 1 cannot

be part of our 2-point MSNE (the cases where the best response is unique). The only remaining case

is Case 1 (coinciding BR lines; hence any point on that line is a best response). Section 7.1 of the

Appendix presents an example of a mixed strategy Nash equilibrium in a game with two players, who

are both mixing in accordance with Case 1. That equilibrium is purifiable, illustrating Theorem 1.

5 FURTHER ANALYSIS

5.1 More than 2 goods

One may ask if our analysis could be generalised by considering n commodities. This would also raise

the question of which kind of strategic market game should be used with more than 2 commodities;

for instance, one may use decentralised trading posts or centralised consistent market clearing prices

as in the Sahi and Yao (1989) model. Consideration of n-commodity strategic market games opens

the general question of the interplay between price mechanisms and Nash equilibria in such games.

The type of market price mechanism we have in mind, if the number of commodities generalises

from 2 of the paper to g, is as follows. Commodity g is the numéraire (‘money’). There are g − 1

trading posts. Trader i leaves quantity qij of commodity j and quantity bij of money at post j. Trader

i has strictly concave utility ui : R
g
+ → R. The market-clearing price of commodity j is pj =

Σibij
Σiqij

,

1 ≤ j ≤ g − 1. For such a market game, the only significant result we have relates to pure-strategy

11



equilibria. In any pure-strategy equilibrium in which player i faces plays (qi, bi) when facing the

aggregate action (q−i, b−i) by the other players, leading to price p = bi+b−i

qi+q−i
, player i could equally well

play (q′i, b
′
i) ≡ (qi, bi) + λ (1, p) for any λ for which (q′i, b

′
i) is a feasible action. Such an action would

leave p unaltered, would also be a best response, and would define an alternative pure equilibrium.

Lemma 1 for the 2-good case, in this paper, that a convex combinations of actions leads to a convex

combination of prices, seems not to generalise for more than two goods in the above set up. Although

the price of each good is a convex combination of its two prices, the same is not true of the price vector

as a whole. So, it might be hard to show that a player’s utility function, facing random strategies of

the other players, over actions is concave, for more than two goods; indeed, this result might not even

be true. Therefore, the possibility that there are “interesting” 2-point MSNE, with more than two

commodities, remains open.

5.2 Corner endowments

One may also wonder about mixed strategy Nash equilibria in a two-commodity version with corner

endowments. With corner endowments, our model would be akin to a bilateral oligopoly model, as the

one introduced by Gabszewicz and Michel (1997), in which case, all three kinds of strategic market

games, namely those of Shapley and Shubik (1977), Sahi and Yao (1989), and Amir et al (1990),

coincide, offering a possible comparison with different market price mechanisms. Let us therefore

analyse our market game with corner endowments.

Suppose each agent i is endowed with a positive amount of only one of the goods, and none of the

other (corner endowments): wi1 ·wi2 = 0 and wi1 +wi2 > 0 for all i ∈ N . Player i’s strategy (qi, bi) is

now effectively unidimensional, as she can only offer a zero amount of the good she was not endowed

with: qi · bi = 0.

If the game has only two players (endowed with different goods), no trade is its only equilibrium.4

To see why, suppose player 1 submits a positive amount of their good on the market. Player 2 can

capture the whole supply by bidding an infinitesimal amount of the other good. The less she bids, the

higher her utility, as long as she bids a positive amount. Hence, the best response to a positive bid of

the other player does not exist. If the other player bids nothing, then bidding any amount will be a

net loss, hence bidding nothing in return is the best response.

Now suppose there are n > 2 players in the game. Consider player 1 and let her be endowed

with good 1, without loss of generality: wi1 > wi2 = 0. The player’s strategy is hence (q1, 0), where

q1 ∈ [0, w11]. Her final allocation is determined as follows:

4If both players are endowed with the same good, the price is always zero and whatever amounts they send to the

market are lost, hence sending nothing is a strictly dominant strategy.
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 x1(q1, p) = w11 − q1

y1(q1, p) = q1p,
(7)

where p, as before, denotes the market-clearing price (i.e. the ratio of total bid to total supply, if

positive):

p =
∑n

i=2 bi
/∑n

i=1 qi if
∑n

i=1 qi > 0;

= 0 if
∑n

i=1 qi = 0.
(8)

We first note that a no-trade equilibrium always exists with Q−1 = B−1 = 0, where player 1’s

best response is q1 = 0 since any amount she sends to the market is lost. By symmetry, all other

players in this profile are also best-responding. Moreover, no equilibrium exists where any player faces

Q−i > B−i = 0 or B−i > Q−i = 0, because any of the players endowed with the zero-supply good could

increase their utility by submitting an infinitesimal amount to the trading post. Hence we consider

only equilibria where player 1 faces a positive total bid of other players, that is, (Q−1, B−1) > 0. Note

that, as shown by Busetto and Codognato (2006), the game might not contain any equilibria with

active trading posts.

When (Q−1, B−1) > 0, the market-clearing price can be written down as B−1

q1+Q−1
, which means

y1(q1, Q−1, B−1) is strictly concave in q1, while x1(q1, Q−1, B−1) is linear in q1: x1(q1, Q−1, B−1) = w11 − q1

y1(q1, Q−1, B−1) = q1B−1

q1+Q−1
,

(9)

By Lemma 1, the composition u = ui(x1(q1, Q−1, B−1), y1(q1, Q−1, B−1)) : R+ → R is strictly

concave in q1, hence it attains a unique maximum on the player’s compact convex strategy set [0, w11].

In other words, player 1 always has a unique best response to any (Q−1, B−1) ≫ 0. Hence she will

never best-respond to a pure total bid with a mixed strategy.

Now suppose player 1 is facing a mixed total bid, i.e., a probability distribution µ over finitely

many pure total bids (Qk
−1, B

k
−1), k = 1, 2, . . . ,K (where K ≥ 2) with respective probabilities µk

such that µk > 0 for all k = 1, 2, . . . ,K and
∑K

k=1 µk = 1. Her payoff in this case is the standard

expected utility – a convex combination of utilities in each realisation of the mixed total bid: U =∑K
k=1 µku1(x1(q1, Q

k
−1, B

k
−1), y1(q1, Q

k
−1, B

k
−1)). As a convex combination of strictly concave functions,

the expected utility is also strictly concave in q1; hence, the player has a unique best response to the

mixed total bid µ. By symmetry, the same argument applies to all other players. To summarise, there

are no mixed equilibria in the game with corner endowments, since every player has a unique best

response to any strategy profile of the other players, pure or mixed.
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6 CONCLUDING REMARKS

Our result shows that there are no “interesting” mixed strategy equilibria in a market game, where

some players are made indifferent between their strategies by a specific mixing probability of the other

players (at least for the case where each player is facing a mixed bid over at most two positive profiles).

In every realisation of a 2-point MSNE the outcome (price and allocations) of the game and utilities

of all players are exactly the same. This result provides theoretical support to the intuitive dismissal

by Shapley and Shubik (1977) of mixed equilibria case as uninteresting.

We admit that our characterisation of MSNE is indeed valid only in a very restrictive set-up. In

particular, we avoid the problem of payoff discontinuity at qi = 0 (respectively, bi = 0) when Q−i = 0

(respectively, B−i = 0) by restricting our analysis to strictly positive bids in the mixed strategy.

However, given the difficulty (posed by the fact that the expected utility may not be quasi-concave),

this is the best result we could achieve. We have not managed to generalise these results, despite

significant effort. We recognise that the most important open question in the literature is that of

equilibrium existence (Busetto and Codognato, 2006); however, here we do not contribute to this

debate, but merely characterise mixed strategy equilibria if they exist..

One may ask whether the restriction to mixed strategies over two actions is justified. Perhaps for

instance a more natural arena for analysis would be games in which each player mixes over a convex

set of actions. This, we think, is a speculation naturally arising from the limited nature of the results

we have been able to attain, and therefore to some extent dependent on them. We postpone exploring

other avenues to future research.

Some further comments are in order.

First, that our analysis might not be robust against small perturbations of the game, at any rate

if we try to extend it to the case where a player can face a mixture of more than two aggregate bids

by the other players. This is because in such a game we cannot guarantee uniqueness of a player’s

best response (which remains an open question). As far as we know, a small increase in a player’s

endowments might cause a switch to a quite different best response and a quite different equilibrium.

Hence, in such an extended game, our purifiable equilibria are not “nice” in the sense of Cordella and

Gabszewicz (1998) and Busetto and Codognato (2006).

Second, payoff concavity can be restored by restricting the strategy space to only one dimension

for each trading post (“buy or sell” or “sell all” variations of the game). However, such restrictions can

be circumvented in real-life markets. Characterising equilibria in the natural unrestricted formulation

of a buy-and-sell strategic market game can shed light on price stability in such economies. If one does

consider either the buy-or-sell or the sell-all version of the market game model, the best response of

any player against a mixed strategy profile will be unique, and no mixed equilibria will exist, similarly
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to the analysis in Section 5.2 above.

Third, it is interesting to know whether market games have mixed strategy Nash equilibria that

are non-purifiable (in the sense of this paper). The question provides an insight into such games:

if ‘non-trivial’ equilibria in this sense exist, then market games become both relatively harder and

relatively more interesting to analyze. If they do not, which we might take to be the null conjecture

about such games, then they are in a certain sense simple. We cannot claim to have resolved the

existence question we set ourselves, but along with the purifiability results we have obtained, we have

found an obstacle for future analysts to consider, namely that best response functions against mixed

strategies are not necessarily quasiconcave.

In market game models, pure Nash equilibria are in general, (Pareto-) inefficient (Dubey 1980,

Dubey and Shubik, 1980; Dubey and Rogawski, 1990). Our paper indicates that mixed strategies in

strategic market games might not generate new equilibrium outcomes, even if we allow mixed strategies,

in a restricted sense. It is now interesting to know whether mixed strategy Nash equilibria are efficient

or not in a more general construct.

One could consider the effect of a replication of our basic game, i.e., about what would happen in

case the number of traders increased, possibly without limit. Though the replicated game is simpler

than a general more than 2-player game, in that the possible actions are more highly structured, the

additional structure does not help us, as far as we can see. This is not a situation we have so far been

able to analyse.
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7 APPENDIX 1: PROOF OF PROPOSITION 1

Proof of Proposition 1. Consider player i and let one of the other players (j ̸= i) play a mixture

over two positive pure strategy profiles: (Q,B) > 0 and (Q′, B′) > 0. The best response sets to each

of these profiles are denoted by BR and BR′ respectively. As shown in the main text of the paper, BR

and BR′ are straight upward sloping lines in (qi, bi) space, characterised by equation (6). Finally, the

player’s payoff in a realisation of the mixed bid is denoted uQ,B(qi, bi) and uQ′,B′(qi, bi) for the cases

when the total bid is (Q,B) and (Q′, B′) respectively.

Player i’s strategy set Si is a rectangle in (qi, bi) space. Fix other players’ total bid (Q,B) and

observe that player i’s best response line passes through the point (−Q,−B), if extended to the third

quadrant.5 In the analysis below, we consider these extended best response lines defined on R2, keeping

in mind that only the line segments within Si contains feasible strategies: bi = BR(qi) : [0, wi1] →

[0, wi2].

Depending on the relative position of the two extended best response lines to realisations of the

mixed bid, three cases can be considered:

Case 1. Best response lines coincide.

Case 2. Best response lines intersect in the player’s strategy set.

Case 3. Best response lines intersect outside the player’s strategy set.

We consider the three options one by one and prove that, in Case 1, the whole line is the best

response, while in Cases 2 and 3, the best response is a unique point (q∗i , b
∗
i ) in player i’s strategy set.

We also provide examples of best responses in each case for a player with the utility function

ui = xiyi and an endowment wi1 = wi2 = 3, unless specified otherwise.6

For a player with the utility ui = xiyi the best response to total bid (Q,B) can be characterised

as follows:

bi = qi

√
B(wi2 +B)

Q(wi1 +Q)
+

√
QB

√
wi2 +B

wi1 +Q
−B. (10)

7.1 Case 1. Coinciding Best Response Lines

Let BR = BR′. In this case, any point on the line is a best response, generating the same price and final

allocation for player i. Indeed, a point on the line maximises player i’s utility under either realisation

of the other players’ mixed bid, and hence also maximises the expected utility.

5Indeed, note that (−Q,−B) satisfies the best response equation (6).
6The results in this paper hold for all admissible utility functions and endowments, rather than that specific player

only.
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Result: The best response coincides with the best response line to the realisations of the mixed

bid.

Figure 1: Example 2. Best Response Line to (1,1) and (2,2)
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•
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Example 2. Consider (Q,B) = (1, 1) and (Q′, B′) = (2, 2).

Using the formula (10) and substituting wi1 = wi2 = 3, we find that player i’s best response lines

to (1, 1) and (2, 2) coincide (Figure 1):

bi = qi. (11)

Any point on the line bi = qi maximises both uQ,B(qi, bi) and uQ′,B′(qi, bi), and hence also their

convex combination U = µuQ,B(qi, bi) + (1− µ)uQ′,B′(qi, bi).

Case 1 can be part of a mixed strategy Nash Equilibrium, as Example 2a below shows.

Example 2a. Consider player j who has the same utility function and endowments as player i.7 In

a game between these two players, a strategy profile where both mix between (qi, bi) = (qj , bj) = (1, 1)

and (qi, bi) = (qj , bj) = (2, 2) with any probabilities pi, pj ∈ [0, 1] is a mutual best response. Indeed,

any strategy such that bi = qi (respectively, bj = qj) is a best response of i (respectively, j) to any

7The result will still hold if the players have different utility functions.
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mixed total bid such that Q−i = B−i (respectively, Q−j = B−j), and hence to any mixture between

such total bids, as shown in equation (10) and Example 2.

7.2 Case 2. Intersecting Best Response Lines

Let BR ∩ BR′ = (q∗i , b
∗
i ) ∈ Si (that is, the best-response lines intersect within Si). By definition

of the best response, (q∗i , b
∗
i ) = argmaxuQ,B(qi, bi) = argmaxuQ′,B′(qi, bi) and hence, (q∗i , b

∗
i ) =

argmax {µuQ,B(qi, bi) + (1− µ)uQ′,B′(qi, bi)}. Moreover, (q∗i , b
∗
i ) is the unique best response, since

any other point in Si lies outside either BR or BR′, hence generating a strictly lower utility in at least

one realisation of the other player’s strategies.

Result: The best response is a unique point (q∗i , b
∗
i ).

Figure 2: Example 3. Best Response Lines to (2,2) and (4,0.5)
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q1 (good 1)

b 1
(g
o
o
d
2)

(Q,B) = (2, 2)

•

(Q′, B′) = (4, 0.5)

(q∗i , b
∗
i ) = (2

3
, 2
3
)

•

•
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•

Example 3. Consider (Q,B) = (2, 2) and (Q′, B′) = (4, 0.5).

It is easy to show using equation (10) that player i’s best response to (2, 2) is bi = qi, whereas her

best response to (4, 0.5) is bi = 0.25qi + 0.5. These lines intersect at the point (qi, bi) = ( 23 ,
2
3 ), which

is the best response to both (2, 2) and (4, 0.5) and hence also to any mixture between them (Figure 2).

In order to exhaust possible best response cases, we now consider a situation when best response

lines to (Q,B) and (Q′, B′) do not intersect in player i’s strategy set.

18



7.3 Case 3. Best Response Lines Intersecting Outside the Strategy Set

Let BR ∩ BR′ = (q∗i , b
∗
i ) /∈ Si (in words, BR lines intersect outside Si). If the best response lines do

not cross in Si, one of them passes through Si to the left of the other. Without loss of generality, let

BR denote the left best response line and BR′ the right best response line. As we show below, the

best response in this case is unique and lies on the boundary of Si.

First, we show that a player’s best response to such mixed bid lies on the boundary of her strategy

set. Second, we show that it is unique.

Claim 1 Consider a mixed total bid (µ(Q,B), (1− µ)(Q′, B′)) such that the best response lines to

(Q,B) and (Q′, B′) are distinct and intersect outside Si. A player’s best response to the bid is either

a unique point on the boundary of the strategy set Si, or all the points within Si on the line collinear

with (−Q,−B), (−Q′,−B′).

Proof: See Section 7.4.

Claim 1 asserts that a best response in Case 3 lies on the boundary of the strategy set. Moreover,

it is either unique, or belongs to the best response set which is a line segment collinear with the

realisations of a mixed total bid. In the next claim we rule out the latter possibility.

Claim 2 Suppose the mixed total bid of all players apart from player i is (µ (Q,B) ; (1− µ) (Q′, B′)),

such that the best response lines to (Q,B) and (Q′, B′) are distinct and intersect outside Si. Then the

points within Si on the line collinear with (−Q,−B) and (−Q′,−B′) cannot all be best responses.

Proof: See Section 7.6.

As shown above, the best response in Case 3 is a unique point at the boundary. It can also be

shown that the best response lies strictly between BR and BR′ (proof available on demand).

Note that the best response can belong to either the inner or the outer boundary. Section 7.5 below

collects examples of boundary best responses to a mixed total bid (Case 3).

Result: The best response is a unique point (q∗i , b
∗
i ).

7.4 Proof of Claim 1

First, observe that a function Ui(qi, bi, σ−i) ≡ µuQ,B(qi, bi)+(1−µ)uQ′,B′(qi, bi) is continuous. Hence,

by the extreme value theorem, it attains a maximum on a closed bounded set Si, which is a best

response.

To show that a best response lies on the boundary, consider a point (q∗i , b
∗
i ) which lies in the interior

of Si.

We show that such (q∗i , b
∗
i ) cannot be a best response. Consider contour lines of uQ,B and uQ′,B′

passing through (q∗i , b
∗
i ), denoted L and L′ respectively. As demonstrated in the paper, given the
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others’ total bid (Q,B), a player’s utility is completely determined by the price p. Fixing (Q,B),

player i’s bids in Si resulting in price p satisfy the following:

bi = pqi + pQ−B. (12)

Hence, contour lines of uQ,B are straight lines passing through (−Q,−B). Moreover, since utility

is strictly concave in price, a contour line uQ,B separates the plane into lower and upper contour sets

of the points on the line.

Note that, unless L and L′ (i.e. the contour lines of uQ,B and uQ′,B′) coincide, they separate R2
+

into four areas. One of these areas is the intersection of upper contour sets of (q∗i , b
∗
i ) with respect to

uQ,B and uQ′,B′ (a double shaded triangular area in Figure 3).

Figure 3: Upper Contour Sets of (q∗i , b
∗
i ) w.r.t uQ,B and uQ′,B′
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.

It follows that, unless (q∗i , b
∗
i ) is on the boundary, the intersection of the strict upper contour sets

of (q∗i , b
∗
i ) with respect to uQ,B and uQ′,B′ in Si is non-empty:

{(qi, bi) : uQ,B(qi, bi) > uQ,B(q
∗
i , b

∗
i )} ∪ {(qi, bi) : uQ′,B′(qi, bi) > uQ′,B′(q∗i , b

∗
i )} ∪ Si ̸= ∅ (13)
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At any point in that intersection, the expected utility is strictly greater than at (q∗i , b
∗
i ). Hence,

(q∗i , b
∗
i ) cannot be a best response.

Third, on any boundary, Ui(qi, bi) becomes a one-dimensional function (either Uqi(bi) or Ubi(qi)) of

the strategic variable which is not fixed on that boundary. Moreover, Ui(·) is strictly concave in that

variable, hence a best response which lies on the boundary is unique. To see why the one-dimensional

restriction of expected utility is strictly concave, fix other players’ total bid (Q,B) and one dimension

of player i’s strategy (qi). Observe that i’s utility uQ,B(bi) = xi(bi)yi(bi) is a strictly concave function.

This follows from Lemma 1 and the fact that xi(bi) = wi1 − qi + bi(qi +Q)/(bi +B) is strictly concave

while yi(bi) = wi1 − bi + qi(bi + B)/(qi + Q) is weakly concave. Similarly, uQ′,B′(bi) = xi(bi)yi(bi)

is strictly concave. Hence, i’s expected utility Uqi(bi) = µuQ,B(bi) + (1 − µ)uQ′,B′(bi) is also strictly

concave as a convex combination of strictly concave functions (the same holds for Ubi(qi)).

Fourth, if L = L′, we cannot rule out the case that a point on the line is the best response (the

upper contour sets of that point with respect to the two realised utilities do not intersect). Moreover,

by definition, both (−Q,−B) and (−Q′,−B′) lie on this line; hence, any point on the line generates

the same price and the same outcome for player i under (Q,B) and (Q′, B′). It follows that the whole

line L = L′ is the best response.

Summing up the third and the fourth points, the best response is either unique and lies on the

boundary, or is the whole line collinear with (Q,B) and (Q′, B′). Q.E.D.

7.5 Examples of Case 3.

When best-response lines intersect outside Si, there are three possible options for the unique best

response to the mixed bid, illustrated by Examples 4, 5 and 6 below.

Example 4. Converging BR lines; unique best response on the outer boundary.

Let other players’ total bids be (Q,B) = (5, 0.25) and (Q′, B′) = (8, 0.4). The best response to

these total bids are bi = qi
√
1.3

/
8 +

√
6.5/8 − 0.25. and bi =

√
1.87qi + 8

√
1.87 − 0.4 respectively.

Figure 4 shows that these BR lines cross in the first quadrant outside Si; hence, they are converging.

Also note that when the best-response lines are converging the best response always lies on the

outer boundary. This is because, for any point on the inner boundary, the intersection of upper contour

sets of uQ,B and uQ′,B′ lies above and to the right of this point (inside the strategy set) and hence

be achievable. In particular, in our example the unique best response to a mixed strategy can be

determined from the following equation:

µ
13
/
2− 5(b∗i + 0.25)2

(b∗i + 0.25)2
= (1− µ)

8(b∗i + 0.4)2 − 374
/
25

(b∗i + 0.4)2
, (14)

e.g., if the other player is mixing with probability µ = 1216
/
4051, then player i’s best response is
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Figure 4: Example 4. Best Response Lines to (5,0.25) and (8,0.4)
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(q∗i , b
∗
i ) = (3, 0.95).

Example 5. Diverging BR lines; unique best response on the inner boundary.

Let the other players’ total bids be (Q,B) = (4, 0.5) and (Q′, B′) = (6.75, 4/3). The best responses

to these total bids are bi = 0.25qi + 0.5 and bi = 8/27qi + 2/35 respectively. As shown in Figure 5,

these best-response lines cross in the third quadrant; hence, they are diverging.

Figure 5: Example 5. Best Response Lines to (4, 0.5) and (6.75, 4/3)
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Note that the best response to this mixed strategy lies on the inner boundary. This is because, for

any point on the outer boundary, the intersection of upper contour sets of uQ,B and uQ′B′ lies below
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and to the left of this point (inside the strategy set) and hence be achievable. In particular, in our

example the unique best response to a mixed strategy can be determined from the following equation:

µ
−7(b∗i + 1.5)(b∗i − 0.5)

(b∗i + 0.5)2
= (1− µ)

39(b∗i + 10/3)(b∗i − 2/3)

4(b∗i + 4/3)2
. (15)

For example, if µ = 92807
/
257643, then player i’s best response is (q∗i , b

∗
i ) = (0, 0.6).

Example 6. Diverging BR lines; unique best response on the outer boundary.

Let the other players’ total bids be (Q,B) = (4, 0.6) and (Q′, B′) = (6.75, 4/3). The best responses

to these total bids are bi = 0.3qi
√

6/7 + 1.2
√

6/7 − 0.6 and bi = 8/27qi + 2/35 respectively. These

best-response lines cross in the third quadrant; hence, they are diverging.

Figure 6: Example 6. Best Response Lines to (4, 0.6) and (6.75, 4/3)
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Unlike the previous example, the unique optimum lies on the outer boundary, by the logic similar

to that of Example 4. The unique best response to a mixed strategy can be determined from the

following equation:

µ
4(b∗i + 0.6)2 − 15.12

(b∗i + 0.6)2
= (1− µ)

169/3− 27/4(b∗i + 4/3)2

(b∗i + 4/3)2
. (16)

For example, if µ = 2163
/
6787, then player i’s best response is (q∗i , b

∗
i ) = (3, 1.5).

7.6 Proof of Claim 2

Let b∗i (qi) denote the function whose graph is a straight line connecting (−Q,−B) and (−Q′,−B′) in

R2. It is easy to derive the formula for b∗i (qi):
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b∗i = qi
B′ −B

Q′ −Q
+

B′Q−BQ′

Q′ −Q
. (17)

The set of i’s strategies on the line is denoted S∗
i ≡ {(qi, bi) : bi = b∗i (qi)} ∪ Si. If all points in the

set S∗
i were best responses, then any point (qi, b

∗
i (qi)) in the set would need to be the maximiser of

Uqi(bi). Since Uqi(bi) is strictly concave (as shown in the proof of Claim 1), any point (qi, b
∗
i (qi)) on

the line would need to satisfy the first-order condition:

µ
∂uQ,B

∂bi
(qi, b

∗
i (qi)) + (1− µ)

∂uQ′,B′

∂bi
(qi, b

∗
i (qi)) = 0 (18)

Applying the chain rule to (18) obtains:

µ
[
∂ui(x,y)

∂x
(qi, b

∗
i (qi))

∂xQ,B

∂bi
(qi, b

∗
i (qi)) +

∂ui(x,y)
∂y

(qi, b
∗
i (qi))

∂yQ,B

∂bi
(qi, b

∗
i (qi))

]
+(1− µ)

[
∂ui(x,y)

∂x
(qi, b

∗
i (qi))

∂xQ′,B′
∂bi

(qi, b
∗
i (qi)) +

∂ui(x,y)
∂y

(qi, b
∗
i (qi))

∂yQ′,B′
∂bi

(qi, b
∗
i (qi))

]
= 0

(19)

Note that, at all points along S∗
i the player’s final allocation of xi and yi is the same (under

either realisation of mixed total bid). Hence, her utility ui(xi, yi) is the same, and, most importantly,

partial derivatives of utility with respect to xi and yi are the same. Rewrite (19) denoting ux ≡
∂ui(xi,yi)

∂xi
(qi, b

∗
i (qi)) and uy ≡ ∂ui(xi,yi)

∂yi
(qi, b

∗
i (qi)):

µ

[
ux

∂xQ,B

∂bi
(qi, b

∗
i (qi)) + uy

∂yQ,B

∂bi
(qi, b

∗
i (qi))

]
+ (1− µ)

[
ux

∂xQ′,B′

∂bi
(qi, b

∗
i (qi)) + uy

∂yQ′,B′

∂bi
(qi, b

∗
i (qi))

]
= 0

The derivatives of xi and yi w.r.t. to bi can be easily calculated, and rearranged using the formula

for b∗i (qi):

∂xQ,B

∂bi
=

B(q1 +Q)

(b1 +B)2
=

B (Q′ −Q)
2

(B′ −B)2 (q1 +Q)
; (20)

∂xQ′,B′

∂bi
=

B′(q1 +Q′)

(b1 +B′)2
=

B′ (Q′ −Q)
2

(B′ −B)2 (q1 +Q′)
; (21)

∂yQ,B

∂bi
=

−Q

q1 +Q
; (22)

∂yQ′,B′

∂bi
=

−Q′

q1 +Q′ . (23)

The first-order condition can then be rewritten as follows:

µ

[
ux

B (Q′ −Q)
2

(B′ −B)2 (q1 +Q)
− uy

Q

q1 +Q

]
= (µ− 1)

[
ux

B′ (Q′ −Q)
2

(B′ −B)2 (q1 +Q′)
− uy

Q′

q1 +Q′

]
. (24)

The expression in the square brackets on the right-hand-side of (24) is the value of the partial

derivative of uQ′,B′ with respect to bi at point (qi, b
∗
i (qi)). It equals zero iff (qi, b

∗
i (qi)) lies on player
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i’s best response line to (Q′, B′). However, recall that (qi, b
∗
i (qi)) is a point on the line connecting

(−Q′,−B′) and (−Q,−B). This line intersects the best response to (Q′, B′) at (−Q′,−B′) and not

at (qi, b
∗
i (qi)).

Hence the expression in the square bracket is non-zero, and we can divide both sides of (24) by it.

Rearranging (24), we thereby obtain

[
uxB (Q′ −Q)

2 − uyQ (B′ −B)
2
]
(q1 +Q′)[

uxB′ (Q′ −Q)2 − uyQ′ (B′ −B)2
]
(q1 +Q)

=
µ− 1

µ
. (25)

Denote A =

[
uxB(Q′−Q)

2−uyQ(B′−B)
2
]
(q1+Q′)

[uxB′(Q′−Q)2−uyQ′(B′−B)2](q1+Q)
. Observe that A is constant w.r.t. qi (indeed, as

argued above, ux and uy are constant w.r.t. qi). Equation (25) becomes

A
q1 +Q′

q1 +Q
=

µ− 1

µ
. (26)

Denote f(qi) = A q1+Q′

q1+Q . The derivation above implies that all points in S∗
i are best responses

iff f(qi) = (µ − 1)
/
µ for all qi. In other words, f(qi) needs to be constant with respect to qi, i.e.,

∂f(qi)
/
∂qi = 0:

A
Q−Q′

(q1 +Q)2
= 0. (27)

Expression (27) holds if either (i) Q = Q′, in which case the line connecting (−Q,−B) and

(−Q′,−B′) does not intersect Si and hence the points on the line cannot be best responses; or (ii)

A = 0. However, if A = 0, then f(qi) = 0 ̸= (µ − 1)
/
µ, i.e. the first-order condition does not hold,

implying that points in S∗
i are not best responses. In either case, the points in Si collinear with

(−Q,−B) and (−Q′,−B′) cannot all be best responses. Q.E.D.
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