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Summary

Background One of the main reasons why drugs for neurodegenerative diseases often fail is that treatment typically
begins only after symptoms have appeared—by which point significant, and possibly irreversible, damage may have
already occurred. Non-invasive imaging techniques, such as Magnetic Resonance Imaging (MRI), have previously
been explored for presymptomatic diagnosis, but with limited success. More recently, Magnetic Resonance
Elastography (MRE)—a technique capable of mapping the brain’s biomechanical properties, including stiffness
and damping ratio—has shown promise in detecting early changes. However, current studies have been limited
by small sample sizes, and a lack of robust algorithms capable of accurately interpreting data under such constraints.

Methods We developed a self-supervised contrastive regression framework trained on 3D MRE-derived stiffness and
damping ratio maps from 311 healthy individuals (aged 14-90) and evaluated its performance against structural 3D
T1-weighted MRI. Brain age predictions were used to compute brain age gaps (BAGs), quantifying deviations from
normative ageing trajectories. We applied the models to Alzheimer’s disease (AD, n = 11) and mild cognitive
impairment (MCI, n = 20) cohorts, and analysed whole-brain and region-specific predictions using occlusion-
based saliency maps and subcortical segmentation.

Findings Self-supervised models using MRE achieved a mean absolute error (MAE) of 3.51 years in brain age
prediction—significantly outperforming MRI (MAE: 4.79 years, p < 0.05) under matched conditions. The greater age
sensitivity of MRE translated into improved differentiation of Alzheimer’s disease (AD) and mild cognitive
impairment (MCI) from healthy individuals. Stiffness was the dominant ageing biomarker in AD (BAG in-
crease: +9.2 years, p < 0.05), whereas damping ratio revealed early MCl-related changes (BAG increase: +6.3 years,
p < 0.05). Region-wise analysis identified the caudate (stiffness) and thalamus (damping ratio) as key markers for AD
and MCI, respectively. Notably, some cognitively normal individuals exhibited biomechanical profiles resembling
patients with MCI or AD, suggesting that these individuals may share some biomechanical characteristics with
clinical populations.

Interpretation In our controlled experimental setting, MRE combined with contrastive learning provides a sensitive,
non-invasive biomarker of brain ageing and neurodegeneration, outperforming MRI and differentiating disease
stage-specific biomechanical signatures. Regional BAG profiling may have the potential to identify at-risk,
cognitively normal individuals, which could facilitate timely intervention trials in the future, pending
longitudinal validation.

Funding Gates Cambridge Trust; Cambridge Centre for Data-Driven Discovery (Schmidt Sciences); Wellcome Trust;
NIH (R01-AG058853, U01-NS112120); UK EPSRC; UK MRC; Alzheimer’s Research UK; Michael J. Fox Foundation;
Infinitus China Lid.

Copyright © 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

*Corresponding author.
E-mail addresses: gsk20@cam.ac.uk (G.S. Kaminski Schierle), jnt27@cam.ac.uk (J. Trauble), HiscoxL@cardiff.ac.uk (L.V. Hiscox), clj@udel.edu
(C.L. Johnson), aviles-rivero@tsinghua.edu.cn (A. Aviles-Rivero), cbs31@cam.ac.uk (C.B. Schonlieb).

www.thelancet.com Vol 121 November, 2025

Check for
Updates

ssssssssss

eBioMedicine
2025;121: 105996

Published Online xxx
https://doi.org/10.
1016/j.ebiom.2025.
105996


http://creativecommons.org/licenses/by/4.0/
Delta:1_given-name
Delta:1_surname
Delta:1_given-name
Delta:1_surname
Delta:1_given-name
Delta:1_surname
http://creativecommons.org/licenses/by/4.0/
mailto:gsk20@cam.ac.uk
mailto:jnt27@cam.ac.uk
mailto:HiscoxL@cardiff.ac.uk
mailto:clj@udel.edu
mailto:aviles-rivero@tsinghua.edu.cn
mailto:cbs31@cam.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ebiom.2025.105996&domain=pdf
https://doi.org/10.1016/j.ebiom.2025.105996
https://doi.org/10.1016/j.ebiom.2025.105996
https://doi.org/10.1016/j.ebiom.2025.105996
http://www.thelancet.com

Articles

Keywords: Brain age prediction; Magnetic resonance elastography (MRE); Contrastive learning; Neurodegenerative

diseases; Biomarkers

Research in context

Evidence before this study

Magnetic Resonance Elastography (MRE) has emerged as a
powerful and highly sensitive modality for quantifying brain
tissue mechanics—such as stiffness and damping ratio—
which are known to change with ageing and in
neurodegenerative diseases. While previous studies have
shown that these mechanical properties decline with age and
are altered in AD, their predictive utility has been limited,
largely due to small cohort sizes and coarse analytical
approaches. To date, most MRE research has focused on
whole-brain averages or simplistic linear trends, overlooking
the potential of spatially resolved analysis and the
integration of advanced machine learning models. In
contrast to structural MRI, which has been extensively used
for brain age prediction, the application of MRE in predictive
modelling—especially using deep learning in the context of
neurodegeneration—remains largely untapped. This
represents a critical missed opportunity, given MRE's unique
sensitivity to early and subtle tissue changes that precede
structural atrophy.

Added value of this study

This study presents a powerful self-supervised contrastive
regression framework tailored for small datasets, leveraging
3D MRE-derived maps of brain stiffness and damping ratio to
predict brain age and uncover early neurodegenerative

Introduction

Neurodegeneration and ageing are closely intertwined,
yet few methods exist to non-invasively monitor their
progression across the human lifespan. While different
neurodegenerative diseases target specific brain
regions, our understanding is largely derived from post-
mortem analyses that capture end-stage pathology.
Much less is known about how these diseases evolve
over time and how ageing influences their onset and
progression. Ageing itself is a multifaceted biological
process that affects the brain at molecular, cellular,
structural and functional levels.* Over the past
decades, neuroimaging  techniques—aimed at
providing unique perspectives on the key biological
processes underlying neurodegeneration and ageing—
have offered some insights into these disease- and age-
related changes, revealing declines in grey matter vol-
ume, white matter integrity, and functional
connectivity.*”’

More recently, magnetic resonance elastography
(MRE) has emerged as a promising method for char-
acterising the biomechanical properties of brain tissue,
capturing microstructural properties of neural tissue,

changes. Our model not only surpasses traditional MRI-based
methods in age prediction accuracy but also uncovers
distinct, spatially resolved mechanical ageing trajectories.
Through brain age gap analysis and region-specific profiling,
we identify the caudate and thalamus as critical age-sensitive
hubs. Crucially, we demonstrate that damping ratio detects
subtle early-stage changes in MCl, while stiffness reflects
more advanced degeneration in AD. Most strikingly, our
approach flags cognitively healthy individuals whose
biomechanical signatures mirror those of disease cohorts—
offering a transformative, non-invasive strategy for
presymptomatic detection and intervention in
neurodegenerative disease.

Implications of all the available evidence

MRE combined with contrastive learning offers a powerful,
non-invasive tool for detecting early neurodegenerative
changes and individual deviations from normative ageing.
These findings suggest that biomechanical brain properties,
particularly when analysed at high spatial resolution, could
serve as robust biomarkers for risk stratification, early
intervention planning, and longitudinal monitoring in clinical
research on cognitive decline and dementia. Future work
should explore integration with multimodal imaging and
larger prospective studies.

which are relevant for brain ageing and neuro-
degeneration.® Unlike conventional magnetic reso-
nance imaging (MRI), which provides anatomical
images and is typically used to measure brain volumes,
MRE non-invasively characterises the brain’s visco-
elasticity by yielding quantitative maps of brain tissue
shear stiffness, reflecting tissue composition, and
damping ratio, which relates to cellular organisation.’
MRE involves a conventional MRI scanner but with
an actuation system and specialised imaging pulse
sequences to generate and track shear waves as they
propagate through tissue, from which tissue mechani-
cal properties are reconstructed via an inverse prob-
lem.” Recent studies indicate that mechanical
brain properties exceed traditional MRI measures in
sensitivity to age-related changes.*'"'> For instance,
whole-brain stiffness has shown a sensitivity to ageing-
related softening at a rate three times greater than
volumetric atrophy rates observed with MRIL"
Furthermore, this sensitivity extends to neurodegener-
ative diseases such as Alzheimer’s disease (AD), Par-
kinson’s disease (PD), and frontotemporal dementia
(FTD), where abnormal mechanical alterations in
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specific brain regions have been reported.'*'® There are
some regional MRE studies that have shown that
ageing effects are not uniform across the brain, with the
frontal, temporal, and occipital lobes displaying distinct
mechanical signatures of ageing, while deeper brain
structures show differential responses depending on
disease state.”* However, current MRE studies pre-
dominantly focus on whole-brain or region-wide aver-
ages, underutilising the detailed information available
in biomechanical maps, which can be captured via
nonlinear relationships at the voxel level. Unlocking
this level of detail could provide a more refined un-
derstanding of localised mechanical changes associated
with ageing and neurodegeneration, potentially
enabling earlier detection when interventions may still
be effective.

Brain age estimation—the prediction of chronolog-
ical age from neuroimaging data—has gained promi-
nence as a means to assess deviations from normative
ageing trajectories.” This technique has been predom-
inantly applied to structural MRI modalities* but has
also been extended to other imaging techniques such as
functional MRI (fMRI) and diffusion MRI.*" In the field
of brain age estimation, different modelling approaches
have been used, ranging from traditional statistical
kernel methods such as Gaussian processes” to deep
learning models like convolutional neural networks
(CNNs),”* and more recently, advanced self-supervised
learning approaches.”* By leveraging a relatively large
dataset of healthy individuals to establish a normative
ageing trajectory, these models effectively mitigate class
imbalance issues often found in classification tasks,
where disease cohorts are typically underrepresented.
Recently, Claros-Olivares et al.”” introduced MRE-based
features for brain age prediction using CNNs, demon-
strating the utility of mechanical biomarkers. However,
progress has been limited by small sample sizes and a
lack of robust algorithms capable of handling such data.

In this study, we present a new framework that
integrates MRE-derived stiffness and damping ratio
metrics to enhance brain age prediction and detect
pathological ageing in neurodegenerative disease. In
contrast to standard supervised convolutional networks
that learn directly from individual image-label pairs,
contrastive learning leverages relationships between
pairs of images, enabling many more training examples
to be generated from the same dataset — an advantage
in small-sample settings such as ours. Furthermore, by
incorporating adaptive neighbourhoods, the framework
can guide representation learning from broad inter-
subject differences toward finer-grained distinctions
as training progresses. Our MRE-based approach shows
a greater sensitivity in detecting age-related changes
compared to conventional MRI-based models. Specif-
ically, we find that stiffness helps capture late-stage
neurodegenerative alterations in AD, while damping
ratio is more sensitive to early changes in MCI. We
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further identify the caudate and thalamus as highly age-
sensitive structures, with predominant thalamic
involvement in AD and early hippocampal vulnerability
in MCIL

Crucially, our framework can identify cognitively
healthy individuals whose biomechanical ageing pro-
files resemble those of patients with MCI or AD. While
longitudinal studies are needed for confirmation, this
offers a promising avenue for developing a non-invasive
method for early disease screening and personalised
risk stratification.

Methods

Study design and participants

This retrospective, multi-centre study pooled MRE
datasets from five healthy-volunteer studies (n = 311;
14-90 years)'"'®**? and two patient cohorts (mild
cognitive impairment [MCI], n = 20; Alzheimer’s dis-
ease [AD], n = 11)."** The pooled dataset comprises
structural MRI and MRE data, collected under highly
similar acquisition protocols. For each participant,
mechanical properties are extracted by applying
nonlinear inversion techniques® to brain tissue
displacement data collected with MRE, resulting in
quantitative maps of stiffness p and damping ratio &.*"**
Subsequent preprocessing—including skull stripping
and bias-field correction using FreeSurfer,” and regis-
tration to the MNI152 template using ANTs**—ensures
that these maps are spatially standardised (Fig. 1a).
These standardised maps serve as inputs for predictive
modelling. Full demographic tables, inclusion criteria
and detailed pre-processing workflows are provided in
Supplementary Material (pp 2 and 3).

Algorithm development and procedures

We have developed a two-stage contrastive regression
framework to predict age from brain images. In the first
stage, the encoder is trained with an age-aware
contrastive objective that arranges subjects in a latent
space so that similar ages are closer together and dis-
similar ages are farther apart. An adaptive neighbour-
hoods mechanism progressively narrows the set of
repelled neighbours during training, shifting the focus
from coarse to fine age distinctions. Once the encoder
is trained, it is frozen, and a ridge regression model is
fitted on the latent representations of the training set to
predict age.

Central to our brain age prediction framework is the
adaptive neighbourhood approach—a contrastive
learning method tailored for regression tasks under
non-uniform distributions in low-data regimes, which
we have recently developed for stiffness maps.* In this
work, we have extended this self-supervised framework
to utilise additional neuroimaging data, such as
damping ratio also from MRE and MRI-derived
anatomical images for comparison (Supplementary
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Fig. 1: Study workflow overview. (a) Data collection and preprocessing:

Image acquisition via MRE, reconstruction using nonlinear inversion

to extract mechanical properties, data pooling from multiple clinical studies, and preprocessing steps such as skull stripping, bias-field
correction, and registration to the MNI152 template. (b) Brain age prediction framework: A self-supervised contrastive regression model
leveraging adaptive neighbourhood selection to enhance age-related feature learning. (c) Clinical applications: Predicting brain age trajec-
tories during healthy ageing to compare age-sensitivity of brain modalities, visualising most relevant brain areas, probing neurodegeneration
using modelled normative ageing trajectories, assessing regional differences across ageing and disease, and identifying at risk healthy

individuals showing similar brain profiles to disease signatures.

Material pp 4 and 5). Furthermore, we expand this
framework to facilitate the integration of segmentation-
based subcortical regions. Here, our contrastive
learning method dynamically adjusts sample neigh-
bourhoods to emphasise age-relevant differences. The
adaptive contrastive loss for a sample x; is defined as:

exp(si,k)
exp(s,;,( 1- w,;,))

Ladapnn = —Zzgié t
t

i ki

log|
2

x;ENN(xg ;epoch)

where w;y = K (y; - yi) measures the similarity in age
between samples x; and x, via a Gaussian kernel

function K (-), and s; = sim (f (x;), f (xi)) measures the
similarity of their feature embeddings.

Thus, both w;, (age-kernel weight) and s;x
(embedding similarity) are computed at the subject
level. The dynamically adjusted set NN (x; epoch)
ensures that the loss function focuses on the most
relevant comparisons at each training stage. This allows
the model to capture localised ageing patterns and to
generalise across the heterogenous dataset (Fig. 1b).

We benchmarked our proposed contrastive frame-
work against two baseline models representing the
dominant approaches in the field: (1) a kernel-based
method using principal-component analysis*® followed
by Gaussian-process regression,” (2) a fully supervised
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deep learning approach using a 3-D ResNet-18 con-
volutional neural network.”® All models were trained
using an 80:20 train-test split. Model performance was
assessed using the mean absolute error (MAE) on the
held-out test set, averaging the model’s brain age pre-
dictions across ten random seeds. For MRE models,
stiffness (n) and damping-ratio (£) volumes were sup-
plied as separate input channels, enabling each con-
volutional kernel to learn joint spatial patterns across
the two modalities. Detailed hyperparameter tuning
strategies and model configurations are described in
the Supplementary Material pp 5-7. To visualise spatial
drivers of age prediction, occlusion-based saliency
maps* were generated on the independent test set. For
each subject, 7 x 7 x 7 voxel regions were masked and
the change in prediction error was computed (AMAE).
Maps were generated across five age bins and normal-
ised to allow group-level visualisation. Regions with the
largest error increase upon occlusion were considered
most influential for the model. For both whole-brain
and regional analyses, MAE values were calculated on
the held-out test set of healthy participants to assess raw
prediction performance. We quantified deviations from
normative ageing trajectories using the brain age gap
(BAG), calculated as the difference between predicted
and chronological age. For disease cohorts, models
were retrained using only healthy individuals
(excluding matched controls), and BAGs were bias-
corrected using a Theil-Sen regressor** fitted on the
control group. BAGs were computed for the whole
brain and ten subcortical regions. By integrating voxel-
wise MRE-based measurements with advanced adaptive
learning strategies, our approach (I) compares MRE to
MRI in age sensitivity (II) pinpoints brain areas highly
relevant for predictions (III) evaluates stiffness and
damping ratio in neurodegeneration (IV) analyses
localised ageing effects (V) establishes neurodegenera-
tive disease signatures in deep brain structures and (VI)
highlights healthy individuals with brain age profiles
that resemble those of clinical cohorts, as illustrated in
Fig. 1c.

Ethics

This study is a retrospective, secondary analysis of fully
de-identified data pooled from previously published
studies. All datasets included in this analysis were
collected in accordance with ethical standards, under
protocols approved by the respective local institutional
review boards of the original studies."*** In each of
these primary studies, all participants provided written
informed consent for their participation, which
included consent for the sharing and re-analysis of their
de-identified data for future research.

Statistics

We used the Shapiro-Wilk* test to assess normality. To
compare the performance between different model
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configurations (e.g., MRI vs. MRE), we used either
paired t-tests* or the non-parametric Wilcoxon signed-
rank’ test depending on whether the data were nor-
mally distributed or not. For these paired tests, the
dependent variable was the Mean Absolute Error (MAE)
from each of the 10 model training runs. The 95%
confidence intervals for the mean absolute error were
calculated using the t-distribution from the results of
the 10 model training runs. To compare the Brain Age
Gap (BAG) between clinical cohorts, we used inde-
pendent t-tests” or the non-parametric Mann—-Whitney
U test.”” For these group comparisons, the dependent
variable was the calculated BAG, and the independent
group variable was the participant’s clinical diagnosis
(Healthy, MCI, or AD), with each disease cohort
compared only to its own matched healthy control
group using independent samples. All tests were two-
sided with significance set at p < 0.05. All analyses
were performed in Python using SciPy.

Role of funders

The funders of the study had no role in study design,
data collection, data analysis, data interpretation, or
writing of the report.

Results

MRE outperforms MRI in brain age estimation,
with brain stiffness as the dominant ageing
biomarker

To validate that our model inputs reflect biologically
meaningful ageing trends, we first examined whole-
brain average stiffness p and damping ratio & across
age. Global stiffness declines at a rate of —0.33% per
year, highlighting progressive brain softening with
ageing (Fig. 2a)—consistent with trends observed in the
field.”'”** In contrast, the damping ratio increases at a
rate of 0.34% per year, indicating more viscous or fluid-
like tissue behaviour over time with higher energy
dissipation (Fig. 2b). Representative mechanical brain
maps at three different ages (Fig. 2c) illustrate these
effects, showing a clear reduction in stiffness alongside
the increase in damping properties. The strong associ-
ation of both mechanical properties with age supports
their suitability for brain age prediction. Building on
these whole-brain trends, we utilise a voxel-wise
approach to enhance spatial resolution, allowing
models to capture localised ageing patterns across the
brain.

We compare three distinct modelling approaches for
brain age prediction (Fig. 2d). The results demonstrate
a improvement from established to more recent
machine learning approaches, highlighting the impact
of advanced modelling techniques on brain age pre-
diction accuracy. While PCA with Gaussian processes
achieves a mean absolute error (MAE) of 7.47 years
(95% CI: 7.38-7.57) using MRI, deep learning improves
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Fig. 2: Whole-brain biomechanical age trends reveal superior performance of voxel-wise MRE-based models over MRI in brain age
prediction. (a) Whole-brain average stiffness p decreases with age, while (b) damping ratio & increases, reflecting distinct ageing trajectories.
(c) Representative mechanical property maps illustrate brain softening and increasing viscoelasticity across different ages. (d) Comparison of
mechanical (MRE) against anatomical properties (MRI) using three distinct modelling approaches shows improved performance of MRE and
that self-supervised deep learning achieves the lowest mean absolute error (MAE) for brain age prediction, outperforming PCA + Gaussian
Processes and supervised deep learning. (e) Comparison of unimodal models (stiffness-only and damping ratio-only) highlights stiffness as
the dominant mechanical biomarker of ageing. Statistical significance between modalities was assessed using paired t-tests or Wilcoxon
signed-rank tests. n.s. (not significant) p > 0.05; **p < 0.01; ****p < 0.0001. N = 10.

prediction accuracy, with supervised deep learning
reducing the MAE to 6.89 years (95% CI: 6.41-7.37) and
self-supervised learning further lowering it to 4.79 years
(95% CI: 4.71-4.87). This trend is even more pro-
nounced when incorporating MRE-based properties—
namely, stiffness and damping ratio—where the MAE
decreases from 6.51 years (95% CI: 6.40-6.61) with
PCA + GPs to 4.69 years (95% CI: 4.32-5.06) with
supervised deep learning, and further to 3.51 years
(95% CI: 3.26-3.77) with self-supervised learning.
Notably, in our dataset and experimental setup, self-
supervised learning improved MRE-based predictions
by 25.2% compared to the supervised baseline. This
gain reflects the advantage of advanced representation
learning under conditions where model capacity is
matched to dataset size (ResNet-18 for the supervised
baseline) and training protocols are harmonised across
modalities. Across all three model classes, the MAE is
consistently lower when using mechanical brain prop-
erties derived from MRE compared to traditional
T1-weighted MRI scans. For PCA + GPs, the difference
between MRI and MRE is relatively small, with only a
12.9% reduction in MAE (t (9) = 15.48, p < 0.001).
However, for deep learning models, the advantage of
MRE Dbecomes much more pronounced, with

supervised deep learning showing a 31.9% reduction in
MAE (t (9) = 11.08, p < 0.001) and self-supervised
learning achieving a similar 26.7% reduction (W = 0,
p < 0.002). MRE-based models showed lower MAEs
than MRI-based models across all three methodological
families, indicating higher age sensitivity of mechanical
properties under matched conditions.

We now assess stiffness and damping ratio indi-
vidually (Fig. 2e). While both mechanical properties
capture ageing-related changes, their effectiveness de-
pends on the modelling approach. For kernel methods,
damping ratio achieves a lower MAE (7.57 years;
95% CI: 7.50-7.64) compared to stiffness (8.91 years;
95% CI: 8.80-9.02), showing a 15.0% improvement
(t (9) = 46.20, p < 0.001). This may be due to the more
diffuse spatial distribution of damping ratio, which
could align better with the global nature of kernel-based
representations. However, with more advanced models,
stiffness emerges as the more informative feature for
accurately modelling the ageing trajectory. Supervised
deep learning reduces the MAE to 6.41 years (95% CI:
5.77-7.06) with damping ratio and further to 5.70 years
(95% CI: 5.11-6.28) with stiffness, a 11.1% improve-
ment, however this difference was not statistically sig-
nificant (t (9) = -1.69, p = 0.13). With self-supervised
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learning, stiffness-based predictions achieve an MAE of
3.57 years (95% CI: 3.42-3.72), a substantial 27.1%
improvement over damping ratio (t (9) = -10.84,
p < 0.001), reinforcing stiffness as the more informative
feature. This reflects the ability of deep learning models
to capture more focal, spatially specific ageing patterns
observed in stiffness maps. In general, combining
stiffness and damping ratio—as shown in Fig. 2d—
tend to yield better accuracy than using either property
alone. For instance, in our best-performing self-super-
vised model, the combined MRE model significantly
outperforms the damping ratio-only model (W = 0.0,
p = 0.002). Remarkably, for self-supervised learning,
stiffness alone (3.57 years; CI: 3.42-3.72) performs
similarly to the combined MRE model (3.51 years; CI:
3.26-3.77; W = 16.0, p = 0.28), implying that, with
sufficiently robust representation learning, stiffness
alone captures most relevant age-related information.

We further investigate the spatial effects of ageing
(Supplementary Material p 8) by normalising each im-
age independently, removing the global trends of brain
softening and increasing viscoelasticity observed in
Fig. 2a—c. Under these spatially normalised conditions,
MRE-based predictions remain highly effective, con-
firming that stiffness and damping ratio capture
meaningful ageing signals beyond global trends.
This demonstrates that mechanical properties encode
additional localised ageing effects that persist
independently of whole-brain trends, further high-
lighting the unique sensitivity of our MRE-derived
biomarkers.

To explore the interplay between the modalities, we
have also evaluated models trained on a combination of
MRI and MRE data, which shows improved perfor-
mance over MRI alone but yields results comparable to
MRE-only models (Supplementary Material p 10),
suggesting that MRE already captures most of the age-
relevant information.

Occlusion-based saliency maps reveal the
importance of deep brain structures as markers
for late life stages

To interpret and gain insights into the brain age pre-
diction models, we apply occlusion-based saliency maps
(see Methods) to examine which spatial features
contribute most to the model predictions (Fig. 3).

The saliency maps reveal how the model focus shifts
across the brain with age, reflecting changes in the
spatial importance of mechanical properties for brain
age prediction. At the same time, they highlight distinct
patterns across biomechanical modalities. For the
stiffness-based model, saliency appears more frag-
mented in younger age groups, with multiple small
regions of high importance primarily in deeper brain
structures, while some high-saliency areas also emerge
near the cortical surface. In contrast, for midlife in-
dividuals (30-63 years), saliency becomes more spatially
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coherent, with a smoother distribution that is more
prominently focused on cortical regions. This shows
that stiffness alterations in cortical areas may be
stronger indicators of ageing during this period. In
older age groups, the saliency distribution remains
smooth rather than fragmented, in contrast to younger
individuals. However, during older age, the model
shifts its focus to subcortical structures, particularly the
thalamus. Overall, deep grey matter structures,
including the thalamus and putamen, consistently
stand out on saliency maps across age groups, rein-
forcing their relevance in brain ageing.'®** While the
caudate, thalamus and putamen have previously been
identified as the regions showing the most stiffness-
related changes from childhood to adulthood,” our
findings extend the importance of the thalamus in
stiffness-related ageing to later life stages.

For damping ratio-based predictions, the saliency
maps reveal a more spatially diffuse pattern compared
to stiffness, suggesting that damping ratio captures
broader mechanical ageing effects. In younger age
groups, high-saliency regions are distributed across the
brain, spanning both deep grey matter structures and
more cortical regions. However, in midlife and older
age groups, while the overall saliency distribution
remains diffuse, contributions from cortical regions
diminish, and the model increasingly focuses on deeper
brain structures. Among these, the caudate continues to
show strong contributions across all age groups. Our
findings show that the importance of cortical grey
matter does not extrapolate to later life, whereas the
caudate remains a key region throughout ageing. This
extends previous studies® that reported significant de-
creases in damping ratio within both the caudate and
cortical grey matter during development from child-
hood to adulthood (ages 5-35 years), highlighting that
while cortical effects are transient, the caudate’s rele-
vance persists beyond early-life changes. The overall
more diffuse saliency pattern suggests that viscoelastic
ageing effects, as captured by damping ratio, are not
tightly confined to specific structures but rather reflect
broader mechanical alterations that are spatially wide-
spread, yet still informative at a local level.

These findings show that stiffness and damping
ratio provide complementary information in brain age
prediction, consistent with the improved performance
observed in multi-modal models. While stiffness-based
predictions exhibit a shifting spatial focus—initially
more widespread in younger individuals, becoming
more cortical in midlife, and then predominantly
subcortical in older age—damping ratio-based pre-
dictions follow a more diffuse pattern, suggesting a
more globally distributed role of viscoelastic changes in
ageing. The prominence of deep grey matter structures,
particularly the thalamus, in both modalities highlight
their fundamental role in brain ageing, while the
modality-specific spatial differences further support the
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idea that stiffness and damping ratio capture distinct
but interrelated aspects of neurobiological ageing.

Superior age sensitivity of MRE translates to
improved detection of disease pathology of
patients with AD and MCI

We apply the self-supervised brain age models to
cohorts of MCI and AD, and examine the brain age gap
(BAG), i.e., the difference between predicted and
chronological age, to assess whether the superior age
sensitivity of MRE over MRI, observed earlier in healthy
samples, translates into improved disease detection
(Fig. 4a). BAGs are computed relative to normative
trajectories learnt from healthy individuals, and pre-
dictions are evaluated on independent study-specific
healthy control and patient groups. Applying the MRI-
based models to the MCI cohort, the predicted age

distribution shows a similar but slightly decreased
profile to the healthy samples (mean of BAG: —4.00
years, median of BAG: —6.83 years), and this difference
is not statistically significant (t (86) = 1.22, p = 0.225). In
contrast, MRE-based predictions show an increase in
the brain age gap, with the median shifting from 0.04
years in healthy samples to 4.37 years in MCI samples,
thus, observing an increase in the brain age gap.
However, this trend does not reach statistical signifi-
cance (U = 546.0, p = 0.184). For the AD cohort, MRI-
based predictions again show similar median values
between healthy volunteers (7.85 years)—reflecting
study-specific distributional differences relative to the
normative trajectories—and patients (8.10 years), with
no detectable statistical significance between cohorts
(U = 50.0, p = 0.340). In contrast, MRE-based pre-
dictions reveal a statistically significant increase in
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BAG, with the median rising from 1.96 years in healthy
samples to 12.38 years in patients with AD (U = 22.0,
p = 0.022). These findings suggest that the greater age
sensitivity of MRE over MRI observed in healthy ageing
encodes meaningful information for detecting early
neurodegeneration, as it translates to superior differ-
entiation in disease cohorts.

To further dissect the individual contributions of
stiffness and damping ratio to these effects, we examine
their performance using stiffness-only and damping
ratio-only models (Fig. 4b). In the MCI cohort, stiffness
exhibits only a minimal increase in median BAG
compared to normal controls (from -0.17 to 0.99 years),
a non-significant difference (U = 614.0, p = 0.514),
while damping ratio shows a statistically significant
increase (from 1.70 to 6.33 years; t (86) = -2.95,
p = 0.044), indicating BAG elevation in MCI was most
strongly associated with changes in damping ratio.
Interestingly, the combined MRE model does not
outperform damping ratio alone, implying that stiffness
neither strongly reinforces nor counteracts the observed
trend. In contrast, in AD, stiffness-based predictions
show a significant increase in BAG (from 0.75 to 9.16
years; U = 20.0, p = 0.015), while damping ratio exhibits
only a minor, non-significant shift in median values
(U =67.0, p = 0.975). This suggests that BAG elevation
in AD is most strongly associated with changes in
stiffness, while damping ratio provides additional
complementary information that enhances the MRE-

www.thelancet.com Vol 121 November, 2025

based model’s performance. Notably, unlike in MCI,
the combined MRE model significantly outperforms
damping ratio alone in AD (W = 0.0, p = 0.002), indi-
cating that the integration of stiffness and damping
ratio provides a more comprehensive characterisation
of disease-related brain ageing.

Regional brain age prediction reveals caudate and
thalamus as key age-sensitive structures

We extend the brain age modelling framework to
individual brain regions, focussing on deep brain
regions, which were identified as highly relevant in the
whole-brain models through occlusion analysis earlier,
as well as white matter (WM) and grey matter (GM), to
investigate regional contributions to brain ageing.
Fig. 5a visualises the segmentation of the ten subcor-
tical structures, illustrating the spatial distribution of
the selected regions. The corresponding region sizes,
shown in Fig. 5b, highlight the substantial variability in
anatomical volume across structures, ranging from
large regions such as the cerebellum (mean: 16,408
voxels) and thalamus (2603 voxels) to smaller structures
such as the nucleus accumbens (200 voxels) and the
pallidum (633 voxels).

Using the self-supervised learning framework, we
assess region-wise brain age prediction separately for
stiffness and damping ratio by training models using
all voxels within segmentation-based masks for each
subcortical structure (Fig. 5c and d). For both stiffness
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Fig. 5: Subcortical structures, white matter and grey matter display distinct patterns in stiffness and damping ratio, and caudate and
thalamus are key age-sensitive structures as revealed by brain age prediction errors. (a) Visualisation of ten subcortical structures used in
the analysis. (b) Variability in anatomical volumes across regions. (c) Stiffness-based brain age prediction across subcortical regions shows
caudate exhibits the lowest mean absolute error (MAE). (d) Damping ratio-based brain age prediction across subcortical regions shows

thalamus displays the lowest MAE.

and damping ratio, GM and WM exhibit lower MAEs
than any individual subcortical structure, likely due to
their larger volume, which provides a more stable signal
for model training. GM consistently shows higher
MAEs than WM, with stiffness-based predictions
yielding MAEs of 3.83 years for GM and 3.38 years for
WM, while damping ratio-based predictions result in
6.27 years for GM and 5.03 years for WM. This finding
may reflect differences in the underlying tissue
composition and ageing processes, as age-related
changes in WM, such as demyelination and axonal
degradation, are often more pronounced compared to
GM. Furthermore, prior studies’ have shown that brain
stiffness is correlated with myelin content, suggesting
that changes in myelination could influence the
predictive performance of stiffness-based models.
Among subcortical structures, the caudate yields the
lowest mean absolute error (MAE) for stiffness-based
predictions (5.78 years), while the thalamus achieves
the lowest for damping ratio (8.07 years). These MAEs
are expected to be higher than for whole-brain models
because each regional model is trained on substantially
fewer voxels, which limits the amount of age-relevant
information available for prediction. Notably, both
structures perform well across modalities, with the
thalamus also showing low stiffness-based error

(6.54 years) and the caudate performing reliably in
damping ratio-based predictions (8.97 years). The hip-
pocampus and ventral diencephalon (Ventral DC), of
particular interest due to their known roles in the early
development of neurodegenerative disease, exhibit
moderate prediction accuracy (MAEs: 9.15 and 7.01
years for stiffness; 9.51 and 11.31 years for damping
ratio, respectively). This region-wise analysis sheds
further light on the contribution of individual deep
brain structures to brain ageing by evaluating their
predictive capacity in isolation—unlike saliency-based
maps, which reflect more distributed patterns. By dis-
entangling regional contributions, it highlights the
caudate and thalamus as particularly informative
structures for capturing age-related brain changes.

Detecting regional BAG profiles in healthy
individuals that resemble disease-related patterns
and identifying thalamus and hippocampus as
early markers of AD and MCI, respectively

Having extended the brain age modelling framework to
individual brain regions in healthy individuals, we now
extend this regional analysis to disease cohorts to
examine how neurodegenerative conditions affect me-
chanical brain ageing (Fig. 6a). We compute brain age
gaps (BAGs) for each region in MCI and AD cohorts,
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allowing us to construct subcortical brain age gap
profiles for each group. To create a representative
cohort profile, we average the individual brain profiles
within each cohort.

In stiffness-based brain age profiles, healthy in-
dividuals show predominantly neutral to slightly nega-
tive BAGs across brain regions, suggesting that their
predicted brain ages align closely with or are slightly
younger than their chronological age. In the MCI
cohort, the regional brain age profile is varied, with
most regions showing only minor deviations from
chronological age, though a moderately elevated BAG is
observed in the amygdala (8.19 years). A distinct shift in
this pattern emerges in the AD cohort, which is char-
acterised by a markedly pronounced BAG elevation in
the thalamus (47.31 years). More subtle elevations are
also present in the pallidum (3.59 years) and brain stem
(2.88 years). The progression from healthy to AD is
reflected in these brain age profiles, with increasing
regional deviations marking the transition from normal
ageing to neurodegeneration. These findings mirror the
whole-brain results, where stiffness shows the strongest
association with BAG elevation in AD. In damping
ratio-based brain age profiles, healthy individuals
similarly exhibit neutral to negative BAGs across most
regions. However, in the MCI cohort, the hippocampus
shows the strongest elevation (26.46 years), followed by
the brain stem (5.24 years), while the ventral dien-
cephalon exhibits only a slight increase (0.60 years),
suggesting early-stage neurodegenerative changes.
Unlike stiffness-based profiles, damping ratio-based
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predictions do not show a progressive increase in
BAGs from MCI to AD. Instead, the AD cohort exhibits a
brain profile similar to MCI, with the putamen showing
the highest BAG elevation (11.16 years), while the brain
stem (5.10 years) remains elevated but without further
progression, suggesting that viscoelastic changes are
more prominently associated with early neurodegenera-
tive processes than with later-stage disease progression.

Overall, these subcortical brain profiles provide
regional insights into neurodegeneration and further
support the differential contributions of stiffness and
damping ratio to disease detection—stiffness being
more sensitive to AD-related changes and damping
ratio capturing early-stage alterations in MCI.

Beyond group-level analyses, these regional BAG
profiles allow us to examine individual healthy partici-
pants and assess whether their brain age patterns
resemble those observed in MCI or AD cohorts. Fig. 6b
shows four such examples, where the first two healthy
individuals are damping ratio-based profiles closely
resembling the MCI cohort profile, while the latter two
healthy individuals display stiffness-based profiles
similar to the AD cohort. While the underlying causes
remain to be determined, the resemblance between the
BAG profiles of these healthy individuals and the clin-
ical cohorts is noteworthy.

Discussion

Within our controlled design, MRE-based models
consistently showed lower MAEs than MRI-based
models in brain age prediction, especially when using
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modern self-supervised learning techniques, such as
the contrastive learning method developed here, which
is particularly well suited for small sample sizes. This
superior sensitivity to age-related change suggests that
MRE can detect subtler brain ageing effects than
structural MRI. Structural MRI predominantly captures
age-related macrostructural changes, such as volu-
metric atrophy, cortical thinning, and ventricular
enlargement—relatively coarse markers that tend to
emerge in later stages of ageing.**"*? In contrast, our
findings align with physiological evidence that biome-
chanical brain properties are sensitive to earlier
microstructural alterations that may arise closer to the
underlying molecular and cellular changes of ageing,
and which often remain undetected by conventional
MRI.****¢ MRE effectively captures these subtler
alterations, including changes in neuronal density,
myelination, and extracellular matrix organisation—
hallmarks of the ageing process.””* Although one
recent study” applied deep learning to MRE-derived
features, most prior MRE studies remain restricted to
linear, whole-brain, or region-wide averaging methods,
all of which are further limited by small datasets."*'7'#%
Our voxel-wise approach moves beyond these assump-
tions, capturing non-linear biomechanical dependencies
at high spatial resolution. Leveraging a contrastive
regression framework tailored to non-uniform, low-data
regimes,” our method reveals finer-grained mechanical
ageing patterns, outperforming both kernel-based and
supervised deep learning models.

Our results reinforce the notion that stiffness is the
dominant mechanical biomarker of brain ageing, but
crucially, it is the application of our algorithmic
framework that allows this property to be fully lever-
aged. The predominance of stiffness over damping ratio
reflect their distinct biophysical underpinnings: stiff-
ness is more directly influenced by tissue composition,
whereas damping ratio is thought to relate to cellular
organisation.’ This finding thus emphasises the greater
relevance of tissue composition in capturing age-related
brain changes, supporting prior observations that
stiffness declines strongly with age and disease—while
damping ratio shows less pronounced changes.*

Our occlusion-based saliency analysis pinpoints
regions with arbitrary shapes and sizes of most interest
to brain age models. Notably, the saliency maps reveal a
shift in the most predictive brain regions across
different age groups, supporting previous findings that
mechanical ageing patterns evolve throughout the life-
span.'>5** Stiffness-based brain age models shift focus
from cortical to subcortical regions, increasingly
emphasising the thalamus and caudate in older adults,
extending their known role in mechanical ageing much
beyond early life.” Meanwhile, damping ratio-based
models show a progressive decline in cortical rele-
vance in older ages, revealing that cortical sensitivity to
ageing—previously observed only during the

developmental years (ages 5-35)“—does not persist
into later adulthood. When considered individually, the
caudate and thalamus emerge as the most age-sensitive
subcortical structures. Previous MRE studies have pri-
marily characterised the caudate and thalamus in terms
of their age-related decline in stiffness, with an accel-
erated decrease observed in elderly individuals.®’ Our
voxel-wise approach extends these findings by not only
confirming their role in age-related stiffness changes
but also demonstrating their relevance for damping
ratio-based biomarkers. In addition to previous findings
on caudate atrophy and metabolic decline in ageing and
neurodegeneration®®, our results emphasise the
importance of biomechanical characterisation in
detecting these processes. Studies have shown that
caudate atrophy is associated with gait dysfunction and
poorer physical performance,” while metabolic
reductions in the caudate nucleus serve as sensitive
biomarkers for normal ageing and early neurodegen-
erative stages.”” Furthermore, recent research high-
lights dopaminergic deficits in the caudate as a
contributing factor to cognitive decline in Parkinson’s
disease, particularly in pre-dementia stages.** Our
findings extend this understanding by demonstrating
that biomechanical measures offer a distinct and sen-
sitive marker of age-related changes in the caudate,
reinforcing its role as a key region in detection of
ongoing neurodegeneration. Similarly, beyond well-
documented atrophy and morphological alterations of
the thalamus in neurodegenerative diseases®, our
study highlights the potential of biomechanical prop-
erties as complementary biomarkers of ageing and
disease progression. Thalamic morphology has been
proposed as a putative biomarker across multiple
neurodegenerative disorders®, with distinct patterns of
atrophy observed in early- and late-onset Alzheimer’s
disease.®® Our results build on this by showing that
stiffness and damping ratio capture differential ageing
effects within thalamic subregions, further under-
scoring the relevance of MRE-derived biomarkers in
tracking the progression of neurodegeneration.
Beyond healthy ageing, our contrastive regression
framework enables the detection of neurodegeneration-
related changes from MRE data. While MRI-derived
models show minimal BAG differences, MRE reveals
significant deviations. Our results reveal that damping
ratio is more sensitive to early MCl-related neuro-
degeneration, while stiffness more effectively captures
higher predicted brain age in AD. Damping ratio is
often considered to reflect the microstructural organi-
sation of tissue,” and may capture subtle changes in
tissue such as inflammation. This is consistent with
prior findings that damping ratio is strongly associated
with cognitive function and memory performance, that
may be affected by similar changes in tissue micro-
structure,”* making damping ratio a potentially sen-
sitive marker of early cognitive decline.”° In contrast,
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stiffness decline reflects advanced neurodegeneration,
with significant reductions observed in patients with
AD.»7 Stiffness is affected by changes in tissue
composition® and the progressive loss of tissue struc-
ture from neuronal death is likely captured by this
property. These findings further support the interpre-
tation that mechanical properties reflect different
aspects of neurodegeneration — with damping ratio
changes more prominent in earlier stages (MCI) and
stiffness reductions more pronounced in later stages
(AD), although longitudinal data will be required to
confirm temporal ordering. A noteworthy result is the
large stiffness-based BAG observed in the thalamus of
the AD cohort. This aligns with literature identifying
the thalamus as a critical hub for AD pathology, with
evidence that its degeneration can be an early event that
contributes directly to cognitive symptoms.”>”* Howev-
er, the relatively small sample size warrants caution and
future larger studies are needed to confirm the
magnitude and specificity of this effect.

Despite these advantages, several limitations
remain, offering avenues for future improvement.
Although our dataset is relatively large for MRE studies,
it is still smaller than typical MRI-based datasets,”
which may partly explain the lack of statistical signifi-
cance in MRI-based models for AD detection. Accord-
ingly, we refrain from drawing firm conclusions from
this observation. Similarly, while our self-supervised
model has outperformed the baseline models in this
study, a direct comparison with publicly available MRI-
based brain age prediction methods lies beyond the
scope of this work, as our primary objective has been to
evaluate MRI and MRE under matched conditions. The
higher MRI MAEs being observed here compared with
those reported in large-scale MRI-only studies are
consistent with our modest sample size. As highlighted
by a recent study,”* model performance depends on
multiple factors, including training dataset size and
composition as well as preprocessing pipelines.
Importantly, the ability to detect significant effects in a
relatively small MRE sample supports the sensitivity of
our approach, suggesting that MRE captures relevant
biomechanical changes even under limited sample sizes
using a self-supervised contrastive regression frame-
work. Nonetheless, the modest size of our clinical
cohorts is a limitation inherent to this emerging modality,
and the clinical findings should therefore be interpreted
with caution. Future large-scale studies will be essential to
validate the promising effects observed here.

The inclusion of multiple clinical studies introduces
potential confounders, which we have attempted to
mitigate through image registration; however, residual
inter-study variability may persist. Another limitation is
the need to retrain models without healthy controls
when computing brain age gaps for disease cohorts.
While this approach reduces site-related confounding,
it limits model generalisability, a challenge that larger
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and more diverse datasets will help to overcome.
Current MRE studies also occasionally exhibit partial
brain coverage, potentially affecting regional analyses.
Brainstem measurements remain particularly chal-
lenging due to shear-wave attenuation in central brain
regions and susceptibility to motion artefacts from
adjacent pulsating structures. Continued advances in
MRE hardware and sequence design will be crucial in
addressing these issues.

Additional constraints arise from the retrospective
nature of this study, which has precluded the inclusion
of age-related comorbidities (e.g., vascular risk factors
or metabolic conditions) known to affect brain structure
and mechanics. Future prospective studies should
incorporate these factors to better delineate their
contribution. Finally, our occlusion analysis employed a
7 x 7 x 7 voxel mask, chosen to balance anatomical
relevance with localisation in line with prior work.
Systematic exploration of this parameter in future
studies could further refine interpretability.

Our findings open promising avenues for future
research. Within our framework, we have identified
‘healthy’ individuals who exhibit biomechanical brain-
ageing patterns resembling those seen in patients
with MCI or AD, despite scoring within the normal
range on the Montreal Cognitive Assessment (MoCA).
Whereas specialised neuropsychological composites
such as the Preclinical Alzheimer’s Cognitive Com-
posite (PACC)” are sensitive to subtle cognitive decline
in preclinical AD, the MoCA is less sensitive than our
image-derived brain-age biomarker. This raises the
hypothesis that such biomechanical patterns reflect
increased vulnerability to future cognitive decline.
Alternatively, they may represent benign variants of
normal ageing. Given the cross-sectional design of this
study, we cannot distinguish between these possibil-
ities, underscoring the need for longitudinal follow-up
to determine whether these individuals later develop
cognitive impairment or dementia. Moving forward, we
plan to extend this framework to populations at risk for
AD, identified through genetic predisposition and life-
style factors, and to integrate MRE with multimodal
approaches, including advanced MRI-based micro-
structural imaging,® to improve sensitivity and
strengthen clinical applicability.

In summary, our results establish that the contras-
tive regression framework offers a powerful and sen-
sitive approach for detecting subtle, region-specific
biomechanical changes linked to brain ageing and
neurodegeneration, reflecting spatial heterogeneity
across regions. By significantly enhancing the sensi-
tivity of MRE-based models, this method paves the way
for early, non-invasive detection of pathological ageing
trajectories, even before clinical symptoms emerge.
This represents a critical step toward presymptomatic
screening and precision medicine in neurodegenerative
diseases, with the potential to transform how we
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diagnose, monitor, and ultimately intervene in the
ageing brain.

Plain language summary

Our machine learning model is designed to estimate a
person’s brain age using a specialised type of scan
called Magnetic Resonance Elastography (MRE). Unlike
a standard MRI which shows the brain’s structure,
an MRE measures its biomechanical properties—
specifically stiffness (how soft or firm the tissue is) and
damping ratio (a property related to tissue viscosity).
The goal is to use these properties to identify subtle,
early signs of brain ageing and neurodegeneration. The
overall workflow of our study, from data collection to
clinical application, is illustrated in Fig. 1.

We trained our model on a dataset of 311 MRE scans
from healthy individuals aged 14 to 90, collected across
several research centres. To handle this moderately-
sized dataset, we used an advanced Al technique
called self-supervised contrastive learning. The model’s
performance was then tested on scans from patients
with Alzheimer’s disease (AD) and Mild Cognitive
Impairment (MCI).

Our model can predict a person’s age from their
MRE scan with an average error of just 3.51 years,
which was significantly more accurate than a model
using standard MRI scans. The model learnt that
changes in stiffness were a strong indicator of the more
advanced changes seen in AD, while the damping ratio
was more sensitive to the earlier changes in MCI. Our
analysis also highlighted that deep brain structures,
particularly the caudate and thalamus, were critical
regions for tracking the effects of ageing.

This work is based on a retrospective analysis of
existing, de-identified data. Our promising results
suggest the potential for this MRE-based approach to
serve as a non-invasive biomarker for brain health.
Future longitudinal studies will be a crucial next step to
validate these findings and to confirm if the biome-
chanical profiles we identified can help predict an in-
dividual’s risk of cognitive decline. Such confirmation
could pave the way for using this method to stratify
atrisk individuals for timely inclusion in clinical
intervention trials.
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