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Summary
Background One of the main reasons why drugs for neurodegenerative diseases often fail is that treatment typically 
begins only after symptoms have appeared—by which point significant, and possibly irreversible, damage may have 
already occurred. Non-invasive imaging techniques, such as Magnetic Resonance Imaging (MRI), have previously 
been explored for presymptomatic diagnosis, but with limited success. More recently, Magnetic Resonance 
Elastography (MRE)—a technique capable of mapping the brain’s biomechanical properties, including stiffness 
and damping ratio—has shown promise in detecting early changes. However, current studies have been limited 
by small sample sizes, and a lack of robust algorithms capable of accurately interpreting data under such constraints.

Methods We developed a self-supervised contrastive regression framework trained on 3D MRE-derived stiffness and 
damping ratio maps from 311 healthy individuals (aged 14–90) and evaluated its performance against structural 3D 
T1-weighted MRI. Brain age predictions were used to compute brain age gaps (BAGs), quantifying deviations from 
normative ageing trajectories. We applied the models to Alzheimer’s disease (AD, n = 11) and mild cognitive 
impairment (MCI, n = 20) cohorts, and analysed whole-brain and region-specific predictions using occlusion- 
based saliency maps and subcortical segmentation.

Findings Self-supervised models using MRE achieved a mean absolute error (MAE) of 3.51 years in brain age 
prediction—significantly outperforming MRI (MAE: 4.79 years, p < 0.05) under matched conditions. The greater age 
sensitivity of MRE translated into improved differentiation of Alzheimer’s disease (AD) and mild cognitive 
impairment (MCI) from healthy individuals. Stiffness was the dominant ageing biomarker in AD (BAG in
crease: +9.2 years, p < 0.05), whereas damping ratio revealed early MCI-related changes (BAG increase: +6.3 years, 
p < 0.05). Region-wise analysis identified the caudate (stiffness) and thalamus (damping ratio) as key markers for AD 
and MCI, respectively. Notably, some cognitively normal individuals exhibited biomechanical profiles resembling 
patients with MCI or AD, suggesting that these individuals may share some biomechanical characteristics with 
clinical populations.

Interpretation In our controlled experimental setting, MRE combined with contrastive learning provides a sensitive, 
non-invasive biomarker of brain ageing and neurodegeneration, outperforming MRI and differentiating disease 
stage–specific biomechanical signatures. Regional BAG profiling may have the potential to identify at-risk, 
cognitively normal individuals, which could facilitate timely intervention trials in the future, pending 
longitudinal validation.
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Introduction
Neurodegeneration and ageing are closely intertwined, 
yet few methods exist to non-invasively monitor their 
progression across the human lifespan. While different 
neurodegenerative diseases target specific brain 
regions, our understanding is largely derived from post- 
mortem analyses that capture end-stage pathology. 
Much less is known about how these diseases evolve 
over time and how ageing influences their onset and 
progression. Ageing itself is a multifaceted biological 
process that affects the brain at molecular, cellular, 
structural and functional levels.1–3 Over the past 
decades, neuroimaging techniques—aimed at 
providing unique perspectives on the key biological 
processes underlying neurodegeneration and ageing— 
have offered some insights into these disease- and age- 
related changes, revealing declines in grey matter vol
ume, white matter integrity, and functional 
connectivity.4–7

More recently, magnetic resonance elastography 
(MRE) has emerged as a promising method for char
acterising the biomechanical properties of brain tissue, 
capturing microstructural properties of neural tissue, 

which are relevant for brain ageing and neuro
degeneration.8 Unlike conventional magnetic reso
nance imaging (MRI), which provides anatomical 
images and is typically used to measure brain volumes, 
MRE non-invasively characterises the brain’s visco
elasticity by yielding quantitative maps of brain tissue 
shear stiffness, reflecting tissue composition, and 
damping ratio, which relates to cellular organisation.9 

MRE involves a conventional MRI scanner but with 
an actuation system and specialised imaging pulse 
sequences to generate and track shear waves as they 
propagate through tissue, from which tissue mechani
cal properties are reconstructed via an inverse prob
lem.10 Recent studies indicate that mechanical 
brain properties exceed traditional MRI measures in 
sensitivity to age-related changes.8,11,12 For instance, 
whole-brain stiffness has shown a sensitivity to ageing- 
related softening at a rate three times greater than 
volumetric atrophy rates observed with MRI.13 

Furthermore, this sensitivity extends to neurodegener
ative diseases such as Alzheimer’s disease (AD), Par
kinson’s disease (PD), and frontotemporal dementia 
(FTD), where abnormal mechanical alterations in 

Research in context

Evidence before this study
Magnetic Resonance Elastography (MRE) has emerged as a 
powerful and highly sensitive modality for quantifying brain 
tissue mechanics—such as stiffness and damping ratio— 
which are known to change with ageing and in 
neurodegenerative diseases. While previous studies have 
shown that these mechanical properties decline with age and 
are altered in AD, their predictive utility has been limited, 
largely due to small cohort sizes and coarse analytical 
approaches. To date, most MRE research has focused on 
whole-brain averages or simplistic linear trends, overlooking 
the potential of spatially resolved analysis and the 
integration of advanced machine learning models. In 
contrast to structural MRI, which has been extensively used 
for brain age prediction, the application of MRE in predictive 
modelling—especially using deep learning in the context of 
neurodegeneration—remains largely untapped. This 
represents a critical missed opportunity, given MRE’s unique 
sensitivity to early and subtle tissue changes that precede 
structural atrophy.

Added value of this study
This study presents a powerful self-supervised contrastive 
regression framework tailored for small datasets, leveraging 
3D MRE-derived maps of brain stiffness and damping ratio to 
predict brain age and uncover early neurodegenerative 

changes. Our model not only surpasses traditional MRI-based 
methods in age prediction accuracy but also uncovers 
distinct, spatially resolved mechanical ageing trajectories. 
Through brain age gap analysis and region-specific profiling, 
we identify the caudate and thalamus as critical age-sensitive 
hubs. Crucially, we demonstrate that damping ratio detects 
subtle early-stage changes in MCI, while stiffness reflects 
more advanced degeneration in AD. Most strikingly, our 
approach flags cognitively healthy individuals whose 
biomechanical signatures mirror those of disease cohorts— 
offering a transformative, non-invasive strategy for 
presymptomatic detection and intervention in 
neurodegenerative disease.

Implications of all the available evidence
MRE combined with contrastive learning offers a powerful, 
non-invasive tool for detecting early neurodegenerative 
changes and individual deviations from normative ageing. 
These findings suggest that biomechanical brain properties, 
particularly when analysed at high spatial resolution, could 
serve as robust biomarkers for risk stratification, early 
intervention planning, and longitudinal monitoring in clinical 
research on cognitive decline and dementia. Future work 
should explore integration with multimodal imaging and 
larger prospective studies.
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specific brain regions have been reported.14–16 There are 
some regional MRE studies that have shown that 
ageing effects are not uniform across the brain, with the 
frontal, temporal, and occipital lobes displaying distinct 
mechanical signatures of ageing, while deeper brain 
structures show differential responses depending on 
disease state.17,18 However, current MRE studies pre
dominantly focus on whole-brain or region-wide aver
ages, underutilising the detailed information available 
in biomechanical maps, which can be captured via 
nonlinear relationships at the voxel level. Unlocking 
this level of detail could provide a more refined un
derstanding of localised mechanical changes associated 
with ageing and neurodegeneration, potentially 
enabling earlier detection when interventions may still 
be effective.

Brain age estimation—the prediction of chronolog
ical age from neuroimaging data—has gained promi
nence as a means to assess deviations from normative 
ageing trajectories.19 This technique has been predom
inantly applied to structural MRI modalities20 but has 
also been extended to other imaging techniques such as 
functional MRI (fMRI) and diffusion MRI.21 In the field 
of brain age estimation, different modelling approaches 
have been used, ranging from traditional statistical 
kernel methods such as Gaussian processes22 to deep 
learning models like convolutional neural networks 
(CNNs),23 and more recently, advanced self-supervised 
learning approaches.24 By leveraging a relatively large 
dataset of healthy individuals to establish a normative 
ageing trajectory, these models effectively mitigate class 
imbalance issues often found in classification tasks, 
where disease cohorts are typically underrepresented. 
Recently, Claros-Olivares et al.25 introduced MRE-based 
features for brain age prediction using CNNs, demon
strating the utility of mechanical biomarkers. However, 
progress has been limited by small sample sizes and a 
lack of robust algorithms capable of handling such data.

In this study, we present a new framework that 
integrates MRE-derived stiffness and damping ratio 
metrics to enhance brain age prediction and detect 
pathological ageing in neurodegenerative disease. In 
contrast to standard supervised convolutional networks 
that learn directly from individual image–label pairs, 
contrastive learning leverages relationships between 
pairs of images, enabling many more training examples 
to be generated from the same dataset — an advantage 
in small-sample settings such as ours. Furthermore, by 
incorporating adaptive neighbourhoods, the framework 
can guide representation learning from broad inter- 
subject differences toward finer-grained distinctions 
as training progresses. Our MRE-based approach shows 
a greater sensitivity in detecting age-related changes 
compared to conventional MRI-based models. Specif
ically, we find that stiffness helps capture late-stage 
neurodegenerative alterations in AD, while damping 
ratio is more sensitive to early changes in MCI. We 

further identify the caudate and thalamus as highly age- 
sensitive structures, with predominant thalamic 
involvement in AD and early hippocampal vulnerability 
in MCI.

Crucially, our framework can identify cognitively 
healthy individuals whose biomechanical ageing pro
files resemble those of patients with MCI or AD. While 
longitudinal studies are needed for confirmation, this 
offers a promising avenue for developing a non-invasive 
method for early disease screening and personalised 
risk stratification.

Methods
Study design and participants
This retrospective, multi-centre study pooled MRE 
datasets from five healthy-volunteer studies (n = 311; 
14–90 years)11,16,26–29 and two patient cohorts (mild 
cognitive impairment [MCI], n = 20; Alzheimer’s dis
ease [AD], n = 11).16,26 The pooled dataset comprises 
structural MRI and MRE data, collected under highly 
similar acquisition protocols. For each participant, 
mechanical properties are extracted by applying 
nonlinear inversion techniques30 to brain tissue 
displacement data collected with MRE, resulting in 
quantitative maps of stiffness μ and damping ratio ξ.31,32 

Subsequent preprocessing—including skull stripping 
and bias-field correction using FreeSurfer,33 and regis
tration to the MNI152 template using ANTs34—ensures 
that these maps are spatially standardised (Fig. 1a). 
These standardised maps serve as inputs for predictive 
modelling. Full demographic tables, inclusion criteria 
and detailed pre-processing workflows are provided in 
Supplementary Material (pp 2 and 3).

Algorithm development and procedures
We have developed a two-stage contrastive regression 
framework to predict age from brain images. In the first 
stage, the encoder is trained with an age-aware 
contrastive objective that arranges subjects in a latent 
space so that similar ages are closer together and dis
similar ages are farther apart. An adaptive neighbour
hoods mechanism progressively narrows the set of 
repelled neighbours during training, shifting the focus 
from coarse to fine age distinctions. Once the encoder 
is trained, it is frozen, and a ridge regression model is 
fitted on the latent representations of the training set to 
predict age.

Central to our brain age prediction framework is the 
adaptive neighbourhood approach—a contrastive 
learning method tailored for regression tasks under 
non-uniform distributions in low-data regimes, which 
we have recently developed for stiffness maps.35 In this 
work, we have extended this self-supervised framework 
to utilise additional neuroimaging data, such as 
damping ratio also from MRE and MRI-derived 
anatomical images for comparison (Supplementary 
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Material pp 4 and 5). Furthermore, we expand this 
framework to facilitate the integration of segmentation- 
based subcortical regions. Here, our contrastive 
learning method dynamically adjusts sample neigh
bourhoods to emphasise age-relevant differences. The 
adaptive contrastive loss for a sample xi is defined as:

LAdapNN = −∑
i

∑
k∕=i

wi,k

∑
t

wi,t
log

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

exp( si,k)

∑
xt∈NN(xi;epoch)

exp( si,t(1 − wi,t))

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where wi,k = K (yi - yk) measures the similarity in age 
between samples xi and xk via a Gaussian kernel 

function K (⋅), and si,k = sim (f (xi), f (xk)) measures the 
similarity of their feature embeddings.

Thus, both wi,k (age-kernel weight) and si,k 

(embedding similarity) are computed at the subject 
level. The dynamically adjusted set NN (xi; epoch) 
ensures that the loss function focuses on the most 
relevant comparisons at each training stage. This allows 
the model to capture localised ageing patterns and to 
generalise across the heterogenous dataset (Fig. 1b).

We benchmarked our proposed contrastive frame
work against two baseline models representing the 
dominant approaches in the field: (1) a kernel-based 
method using principal-component analysis36 followed 
by Gaussian-process regression,37 (2) a fully supervised 

a

b

c

Fig. 1: Study workflow overview. (a) Data collection and preprocessing: Image acquisition via MRE, reconstruction using nonlinear inversion 
to extract mechanical properties, data pooling from multiple clinical studies, and preprocessing steps such as skull stripping, bias-field 
correction, and registration to the MNI152 template. (b) Brain age prediction framework: A self-supervised contrastive regression model 
leveraging adaptive neighbourhood selection to enhance age-related feature learning. (c) Clinical applications: Predicting brain age trajec
tories during healthy ageing to compare age-sensitivity of brain modalities, visualising most relevant brain areas, probing neurodegeneration 
using modelled normative ageing trajectories, assessing regional differences across ageing and disease, and identifying at risk healthy 
individuals showing similar brain profiles to disease signatures.
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deep learning approach using a 3-D ResNet-18 con
volutional neural network.38 All models were trained 
using an 80:20 train-test split. Model performance was 
assessed using the mean absolute error (MAE) on the 
held-out test set, averaging the model’s brain age pre
dictions across ten random seeds. For MRE models, 
stiffness (μ) and damping-ratio (ξ) volumes were sup
plied as separate input channels, enabling each con
volutional kernel to learn joint spatial patterns across 
the two modalities. Detailed hyperparameter tuning 
strategies and model configurations are described in 
the Supplementary Material pp 5–7. To visualise spatial 
drivers of age prediction, occlusion-based saliency 
maps39 were generated on the independent test set. For 
each subject, 7 × 7 × 7 voxel regions were masked and 
the change in prediction error was computed (ΔMAE). 
Maps were generated across five age bins and normal
ised to allow group-level visualisation. Regions with the 
largest error increase upon occlusion were considered 
most influential for the model. For both whole-brain 
and regional analyses, MAE values were calculated on 
the held-out test set of healthy participants to assess raw 
prediction performance. We quantified deviations from 
normative ageing trajectories using the brain age gap 
(BAG), calculated as the difference between predicted 
and chronological age. For disease cohorts, models 
were retrained using only healthy individuals 
(excluding matched controls), and BAGs were bias- 
corrected using a Theil-Sen regressor40–43 fitted on the 
control group. BAGs were computed for the whole 
brain and ten subcortical regions. By integrating voxel- 
wise MRE-based measurements with advanced adaptive 
learning strategies, our approach (I) compares MRE to 
MRI in age sensitivity (II) pinpoints brain areas highly 
relevant for predictions (III) evaluates stiffness and 
damping ratio in neurodegeneration (IV) analyses 
localised ageing effects (V) establishes neurodegenera
tive disease signatures in deep brain structures and (VI) 
highlights healthy individuals with brain age profiles 
that resemble those of clinical cohorts, as illustrated in 
Fig. 1c.

Ethics
This study is a retrospective, secondary analysis of fully 
de-identified data pooled from previously published 
studies. All datasets included in this analysis were 
collected in accordance with ethical standards, under 
protocols approved by the respective local institutional 
review boards of the original studies.11,16,26–29 In each of 
these primary studies, all participants provided written 
informed consent for their participation, which 
included consent for the sharing and re-analysis of their 
de-identified data for future research.

Statistics
We used the Shapiro-Wilk44 test to assess normality. To 
compare the performance between different model 

configurations (e.g., MRI vs. MRE), we used either 
paired t-tests45 or the non-parametric Wilcoxon signed- 
rank46 test depending on whether the data were nor
mally distributed or not. For these paired tests, the 
dependent variable was the Mean Absolute Error (MAE) 
from each of the 10 model training runs. The 95% 
confidence intervals for the mean absolute error were 
calculated using the t-distribution from the results of 
the 10 model training runs. To compare the Brain Age 
Gap (BAG) between clinical cohorts, we used inde
pendent t-tests45 or the non-parametric Mann–Whitney 
U test.47 For these group comparisons, the dependent 
variable was the calculated BAG, and the independent 
group variable was the participant’s clinical diagnosis 
(Healthy, MCI, or AD), with each disease cohort 
compared only to its own matched healthy control 
group using independent samples. All tests were two- 
sided with significance set at p < 0.05. All analyses 
were performed in Python using SciPy.

Role of funders
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report.

Results
MRE outperforms MRI in brain age estimation, 
with brain stiffness as the dominant ageing 
biomarker
To validate that our model inputs reflect biologically 
meaningful ageing trends, we first examined whole- 
brain average stiffness μ and damping ratio ξ across 
age. Global stiffness declines at a rate of −0.33% per 
year, highlighting progressive brain softening with 
ageing (Fig. 2a)–consistent with trends observed in the 
field.13,17,18 In contrast, the damping ratio increases at a 
rate of 0.34% per year, indicating more viscous or fluid- 
like tissue behaviour over time with higher energy 
dissipation (Fig. 2b). Representative mechanical brain 
maps at three different ages (Fig. 2c) illustrate these 
effects, showing a clear reduction in stiffness alongside 
the increase in damping properties. The strong associ
ation of both mechanical properties with age supports 
their suitability for brain age prediction. Building on 
these whole-brain trends, we utilise a voxel-wise 
approach to enhance spatial resolution, allowing 
models to capture localised ageing patterns across the 
brain.

We compare three distinct modelling approaches for 
brain age prediction (Fig. 2d). The results demonstrate 
a improvement from established to more recent 
machine learning approaches, highlighting the impact 
of advanced modelling techniques on brain age pre
diction accuracy. While PCA with Gaussian processes 
achieves a mean absolute error (MAE) of 7.47 years 
(95% CI: 7.38–7.57) using MRI, deep learning improves 
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prediction accuracy, with supervised deep learning 
reducing the MAE to 6.89 years (95% CI: 6.41–7.37) and 
self-supervised learning further lowering it to 4.79 years 
(95% CI: 4.71–4.87). This trend is even more pro
nounced when incorporating MRE-based properties— 
namely, stiffness and damping ratio—where the MAE 
decreases from 6.51 years (95% CI: 6.40–6.61) with 
PCA + GPs to 4.69 years (95% CI: 4.32–5.06) with 
supervised deep learning, and further to 3.51 years 
(95% CI: 3.26–3.77) with self-supervised learning. 
Notably, in our dataset and experimental setup, self- 
supervised learning improved MRE-based predictions 
by 25.2% compared to the supervised baseline. This 
gain reflects the advantage of advanced representation 
learning under conditions where model capacity is 
matched to dataset size (ResNet-18 for the supervised 
baseline) and training protocols are harmonised across 
modalities. Across all three model classes, the MAE is 
consistently lower when using mechanical brain prop
erties derived from MRE compared to traditional 
T1-weighted MRI scans. For PCA + GPs, the difference 
between MRI and MRE is relatively small, with only a 
12.9% reduction in MAE (t (9) = 15.48, p < 0.001). 
However, for deep learning models, the advantage of 
MRE becomes much more pronounced, with 

supervised deep learning showing a 31.9% reduction in 
MAE (t (9) = 11.08, p < 0.001) and self-supervised 
learning achieving a similar 26.7% reduction (W = 0, 
p < 0.002). MRE-based models showed lower MAEs 
than MRI-based models across all three methodological 
families, indicating higher age sensitivity of mechanical 
properties under matched conditions.

We now assess stiffness and damping ratio indi
vidually (Fig. 2e). While both mechanical properties 
capture ageing-related changes, their effectiveness de
pends on the modelling approach. For kernel methods, 
damping ratio achieves a lower MAE (7.57 years; 
95% CI: 7.50–7.64) compared to stiffness (8.91 years; 
95% CI: 8.80–9.02), showing a 15.0% improvement 
(t (9) = 46.20, p < 0.001). This may be due to the more 
diffuse spatial distribution of damping ratio, which 
could align better with the global nature of kernel-based 
representations. However, with more advanced models, 
stiffness emerges as the more informative feature for 
accurately modelling the ageing trajectory. Supervised 
deep learning reduces the MAE to 6.41 years (95% CI: 
5.77–7.06) with damping ratio and further to 5.70 years 
(95% CI: 5.11–6.28) with stiffness, a 11.1% improve
ment, however this difference was not statistically sig
nificant (t (9) = −1.69, p = 0.13). With self-supervised 

a b c

ed

Fig. 2: Whole-brain biomechanical age trends reveal superior performance of voxel-wise MRE-based models over MRI in brain age 
prediction. (a) Whole-brain average stiffness μ decreases with age, while (b) damping ratio ξ increases, reflecting distinct ageing trajectories. 
(c) Representative mechanical property maps illustrate brain softening and increasing viscoelasticity across different ages. (d) Comparison of 
mechanical (MRE) against anatomical properties (MRI) using three distinct modelling approaches shows improved performance of MRE and 
that self-supervised deep learning achieves the lowest mean absolute error (MAE) for brain age prediction, outperforming PCA + Gaussian 
Processes and supervised deep learning. (e) Comparison of unimodal models (stiffness-only and damping ratio-only) highlights stiffness as 
the dominant mechanical biomarker of ageing. Statistical significance between modalities was assessed using paired t-tests or Wilcoxon 
signed-rank tests. n.s. (not significant) p ≥ 0.05; **p < 0.01; ****p < 0.0001. N = 10.
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learning, stiffness-based predictions achieve an MAE of 
3.57 years (95% CI: 3.42–3.72), a substantial 27.1% 
improvement over damping ratio (t (9) = −10.84, 
p < 0.001), reinforcing stiffness as the more informative 
feature. This reflects the ability of deep learning models 
to capture more focal, spatially specific ageing patterns 
observed in stiffness maps. In general, combining 
stiffness and damping ratio—as shown in Fig. 2d— 
tend to yield better accuracy than using either property 
alone. For instance, in our best-performing self-super
vised model, the combined MRE model significantly 
outperforms the damping ratio-only model (W = 0.0, 
p = 0.002). Remarkably, for self-supervised learning, 
stiffness alone (3.57 years; CI: 3.42–3.72) performs 
similarly to the combined MRE model (3.51 years; CI: 
3.26–3.77; W = 16.0, p = 0.28), implying that, with 
sufficiently robust representation learning, stiffness 
alone captures most relevant age-related information.

We further investigate the spatial effects of ageing 
(Supplementary Material p 8) by normalising each im
age independently, removing the global trends of brain 
softening and increasing viscoelasticity observed in 
Fig. 2a–c. Under these spatially normalised conditions, 
MRE-based predictions remain highly effective, con
firming that stiffness and damping ratio capture 
meaningful ageing signals beyond global trends. 
This demonstrates that mechanical properties encode 
additional localised ageing effects that persist 
independently of whole-brain trends, further high
lighting the unique sensitivity of our MRE-derived 
biomarkers.

To explore the interplay between the modalities, we 
have also evaluated models trained on a combination of 
MRI and MRE data, which shows improved perfor
mance over MRI alone but yields results comparable to 
MRE-only models (Supplementary Material p 10), 
suggesting that MRE already captures most of the age- 
relevant information.

Occlusion-based saliency maps reveal the 
importance of deep brain structures as markers 
for late life stages
To interpret and gain insights into the brain age pre
diction models, we apply occlusion-based saliency maps 
(see Methods) to examine which spatial features 
contribute most to the model predictions (Fig. 3).

The saliency maps reveal how the model focus shifts 
across the brain with age, reflecting changes in the 
spatial importance of mechanical properties for brain 
age prediction. At the same time, they highlight distinct 
patterns across biomechanical modalities. For the 
stiffness-based model, saliency appears more frag
mented in younger age groups, with multiple small 
regions of high importance primarily in deeper brain 
structures, while some high-saliency areas also emerge 
near the cortical surface. In contrast, for midlife in
dividuals (30–63 years), saliency becomes more spatially 

coherent, with a smoother distribution that is more 
prominently focused on cortical regions. This shows 
that stiffness alterations in cortical areas may be 
stronger indicators of ageing during this period. In 
older age groups, the saliency distribution remains 
smooth rather than fragmented, in contrast to younger 
individuals. However, during older age, the model 
shifts its focus to subcortical structures, particularly the 
thalamus. Overall, deep grey matter structures, 
including the thalamus and putamen, consistently 
stand out on saliency maps across age groups, rein
forcing their relevance in brain ageing.18,48 While the 
caudate, thalamus and putamen have previously been 
identified as the regions showing the most stiffness- 
related changes from childhood to adulthood,49 our 
findings extend the importance of the thalamus in 
stiffness-related ageing to later life stages.

For damping ratio-based predictions, the saliency 
maps reveal a more spatially diffuse pattern compared 
to stiffness, suggesting that damping ratio captures 
broader mechanical ageing effects. In younger age 
groups, high-saliency regions are distributed across the 
brain, spanning both deep grey matter structures and 
more cortical regions. However, in midlife and older 
age groups, while the overall saliency distribution 
remains diffuse, contributions from cortical regions 
diminish, and the model increasingly focuses on deeper 
brain structures. Among these, the caudate continues to 
show strong contributions across all age groups. Our 
findings show that the importance of cortical grey 
matter does not extrapolate to later life, whereas the 
caudate remains a key region throughout ageing. This 
extends previous studies49 that reported significant de
creases in damping ratio within both the caudate and 
cortical grey matter during development from child
hood to adulthood (ages 5–35 years), highlighting that 
while cortical effects are transient, the caudate’s rele
vance persists beyond early-life changes. The overall 
more diffuse saliency pattern suggests that viscoelastic 
ageing effects, as captured by damping ratio, are not 
tightly confined to specific structures but rather reflect 
broader mechanical alterations that are spatially wide
spread, yet still informative at a local level.

These findings show that stiffness and damping 
ratio provide complementary information in brain age 
prediction, consistent with the improved performance 
observed in multi-modal models. While stiffness-based 
predictions exhibit a shifting spatial focus—initially 
more widespread in younger individuals, becoming 
more cortical in midlife, and then predominantly 
subcortical in older age—damping ratio-based pre
dictions follow a more diffuse pattern, suggesting a 
more globally distributed role of viscoelastic changes in 
ageing. The prominence of deep grey matter structures, 
particularly the thalamus, in both modalities highlight 
their fundamental role in brain ageing, while the 
modality-specific spatial differences further support the 
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idea that stiffness and damping ratio capture distinct 
but interrelated aspects of neurobiological ageing.

Superior age sensitivity of MRE translates to 
improved detection of disease pathology of 
patients with AD and MCI
We apply the self-supervised brain age models to 
cohorts of MCI and AD, and examine the brain age gap 
(BAG), i.e., the difference between predicted and 
chronological age, to assess whether the superior age 
sensitivity of MRE over MRI, observed earlier in healthy 
samples, translates into improved disease detection 
(Fig. 4a). BAGs are computed relative to normative 
trajectories learnt from healthy individuals, and pre
dictions are evaluated on independent study-specific 
healthy control and patient groups. Applying the MRI- 
based models to the MCI cohort, the predicted age 

distribution shows a similar but slightly decreased 
profile to the healthy samples (mean of BAG: −4.00 
years, median of BAG: −6.83 years), and this difference 
is not statistically significant (t (86) = 1.22, p = 0.225). In 
contrast, MRE-based predictions show an increase in 
the brain age gap, with the median shifting from 0.04 
years in healthy samples to 4.37 years in MCI samples, 
thus, observing an increase in the brain age gap. 
However, this trend does not reach statistical signifi
cance (U = 546.0, p = 0.184). For the AD cohort, MRI- 
based predictions again show similar median values 
between healthy volunteers (7.85 years)—reflecting 
study-specific distributional differences relative to the 
normative trajectories—and patients (8.10 years), with 
no detectable statistical significance between cohorts 
(U = 50.0, p = 0.340). In contrast, MRE-based pre
dictions reveal a statistically significant increase in 

Fig. 3: Occlusion-based saliency maps highlight age-specific contributions of brain regions to brain age prediction by identifying which 
regions most strongly influence the model’s output. Each row represents a different quantile-based age bin, illustrating the spatial dis
tribution of important features for stiffness-based models (left) and damping ratio-based models (right). Stiffness analysis reveals more 
focalised effects, with increasing cortical contributions in midlife and subcortical focus in older adults. Damping ratio exhibits a more diffuse 
distribution across the brain, suggesting broader viscoelastic ageing effects.
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BAG, with the median rising from 1.96 years in healthy 
samples to 12.38 years in patients with AD (U = 22.0, 
p = 0.022). These findings suggest that the greater age 
sensitivity of MRE over MRI observed in healthy ageing 
encodes meaningful information for detecting early 
neurodegeneration, as it translates to superior differ
entiation in disease cohorts.

To further dissect the individual contributions of 
stiffness and damping ratio to these effects, we examine 
their performance using stiffness-only and damping 
ratio-only models (Fig. 4b). In the MCI cohort, stiffness 
exhibits only a minimal increase in median BAG 
compared to normal controls (from −0.17 to 0.99 years), 
a non-significant difference (U = 614.0, p = 0.514), 
while damping ratio shows a statistically significant 
increase (from 1.70 to 6.33 years; t (86) = −2.95, 
p = 0.044), indicating BAG elevation in MCI was most 
strongly associated with changes in damping ratio. 
Interestingly, the combined MRE model does not 
outperform damping ratio alone, implying that stiffness 
neither strongly reinforces nor counteracts the observed 
trend. In contrast, in AD, stiffness-based predictions 
show a significant increase in BAG (from 0.75 to 9.16 
years; U = 20.0, p = 0.015), while damping ratio exhibits 
only a minor, non-significant shift in median values 
(U = 67.0, p = 0.975). This suggests that BAG elevation 
in AD is most strongly associated with changes in 
stiffness, while damping ratio provides additional 
complementary information that enhances the MRE- 

based model’s performance. Notably, unlike in MCI, 
the combined MRE model significantly outperforms 
damping ratio alone in AD (W = 0.0, p = 0.002), indi
cating that the integration of stiffness and damping 
ratio provides a more comprehensive characterisation 
of disease-related brain ageing.

Regional brain age prediction reveals caudate and 
thalamus as key age-sensitive structures
We extend the brain age modelling framework to 
individual brain regions, focussing on deep brain 
regions, which were identified as highly relevant in the 
whole-brain models through occlusion analysis earlier, 
as well as white matter (WM) and grey matter (GM), to 
investigate regional contributions to brain ageing. 
Fig. 5a visualises the segmentation of the ten subcor
tical structures, illustrating the spatial distribution of 
the selected regions. The corresponding region sizes, 
shown in Fig. 5b, highlight the substantial variability in 
anatomical volume across structures, ranging from 
large regions such as the cerebellum (mean: 16,408 
voxels) and thalamus (2603 voxels) to smaller structures 
such as the nucleus accumbens (200 voxels) and the 
pallidum (633 voxels).

Using the self-supervised learning framework, we 
assess region-wise brain age prediction separately for 
stiffness and damping ratio by training models using 
all voxels within segmentation-based masks for each 
subcortical structure (Fig. 5c and d). For both stiffness 

a b

Fig. 4: Brain age gap (BAG) analysis highlights MRE’s sensitivity to detecting neurodegeneration-related defects in patients with MCI 
and AD. (a) MRI-based predictions show minimal differentiation in brain age gap (BAG) between healthy and diseased groups, while 
MRE-based models, using stiffness and damping ratio, capture an increase in the brain age gap in MCI and AD. (b) Stiffness is more sensitive 
to AD-related changes, while damping ratio captures early-stage neurodegeneration-related defects in MCI. Median values are annotated. 
Statistical significance between patient and control groups was assessed using independent t-tests or Mann–Whitney U tests. *p < 0.05. 
NMCI = 20; NMCI control = 68; NAD = 11; NAD control = 12.
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and damping ratio, GM and WM exhibit lower MAEs 
than any individual subcortical structure, likely due to 
their larger volume, which provides a more stable signal 
for model training. GM consistently shows higher 
MAEs than WM, with stiffness-based predictions 
yielding MAEs of 3.83 years for GM and 3.38 years for 
WM, while damping ratio-based predictions result in 
6.27 years for GM and 5.03 years for WM. This finding 
may reflect differences in the underlying tissue 
composition and ageing processes, as age-related 
changes in WM, such as demyelination and axonal 
degradation, are often more pronounced compared to 
GM. Furthermore, prior studies50 have shown that brain 
stiffness is correlated with myelin content, suggesting 
that changes in myelination could influence the 
predictive performance of stiffness-based models.

Among subcortical structures, the caudate yields the 
lowest mean absolute error (MAE) for stiffness-based 
predictions (5.78 years), while the thalamus achieves 
the lowest for damping ratio (8.07 years). These MAEs 
are expected to be higher than for whole-brain models 
because each regional model is trained on substantially 
fewer voxels, which limits the amount of age-relevant 
information available for prediction. Notably, both 
structures perform well across modalities, with the 
thalamus also showing low stiffness-based error 

(6.54 years) and the caudate performing reliably in 
damping ratio-based predictions (8.97 years). The hip
pocampus and ventral diencephalon (Ventral DC), of 
particular interest due to their known roles in the early 
development of neurodegenerative disease, exhibit 
moderate prediction accuracy (MAEs: 9.15 and 7.01 
years for stiffness; 9.51 and 11.31 years for damping 
ratio, respectively). This region-wise analysis sheds 
further light on the contribution of individual deep 
brain structures to brain ageing by evaluating their 
predictive capacity in isolation—unlike saliency-based 
maps, which reflect more distributed patterns. By dis
entangling regional contributions, it highlights the 
caudate and thalamus as particularly informative 
structures for capturing age-related brain changes.

Detecting regional BAG profiles in healthy 
individuals that resemble disease-related patterns 
and identifying thalamus and hippocampus as 
early markers of AD and MCI, respectively
Having extended the brain age modelling framework to 
individual brain regions in healthy individuals, we now 
extend this regional analysis to disease cohorts to 
examine how neurodegenerative conditions affect me
chanical brain ageing (Fig. 6a). We compute brain age 
gaps (BAGs) for each region in MCI and AD cohorts, 

a

c d

b

Fig. 5: Subcortical structures, white matter and grey matter display distinct patterns in stiffness and damping ratio, and caudate and 
thalamus are key age-sensitive structures as revealed by brain age prediction errors. (a) Visualisation of ten subcortical structures used in 
the analysis. (b) Variability in anatomical volumes across regions. (c) Stiffness-based brain age prediction across subcortical regions shows 
caudate exhibits the lowest mean absolute error (MAE). (d) Damping ratio-based brain age prediction across subcortical regions shows 
thalamus displays the lowest MAE.
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allowing us to construct subcortical brain age gap 
profiles for each group. To create a representative 
cohort profile, we average the individual brain profiles 
within each cohort.

In stiffness-based brain age profiles, healthy in
dividuals show predominantly neutral to slightly nega
tive BAGs across brain regions, suggesting that their 
predicted brain ages align closely with or are slightly 
younger than their chronological age. In the MCI 
cohort, the regional brain age profile is varied, with 
most regions showing only minor deviations from 
chronological age, though a moderately elevated BAG is 
observed in the amygdala (8.19 years). A distinct shift in 
this pattern emerges in the AD cohort, which is char
acterised by a markedly pronounced BAG elevation in 
the thalamus (47.31 years). More subtle elevations are 
also present in the pallidum (3.59 years) and brain stem 
(2.88 years). The progression from healthy to AD is 
reflected in these brain age profiles, with increasing 
regional deviations marking the transition from normal 
ageing to neurodegeneration. These findings mirror the 
whole-brain results, where stiffness shows the strongest 
association with BAG elevation in AD. In damping 
ratio-based brain age profiles, healthy individuals 
similarly exhibit neutral to negative BAGs across most 
regions. However, in the MCI cohort, the hippocampus 
shows the strongest elevation (26.46 years), followed by 
the brain stem (5.24 years), while the ventral dien
cephalon exhibits only a slight increase (0.60 years), 
suggesting early-stage neurodegenerative changes. 
Unlike stiffness-based profiles, damping ratio-based 

predictions do not show a progressive increase in 
BAGs from MCI to AD. Instead, the AD cohort exhibits a 
brain profile similar to MCI, with the putamen showing 
the highest BAG elevation (11.16 years), while the brain 
stem (5.10 years) remains elevated but without further 
progression, suggesting that viscoelastic changes are 
more prominently associated with early neurodegenera
tive processes than with later-stage disease progression.

Overall, these subcortical brain profiles provide 
regional insights into neurodegeneration and further 
support the differential contributions of stiffness and 
damping ratio to disease detection—stiffness being 
more sensitive to AD-related changes and damping 
ratio capturing early-stage alterations in MCI.

Beyond group-level analyses, these regional BAG 
profiles allow us to examine individual healthy partici
pants and assess whether their brain age patterns 
resemble those observed in MCI or AD cohorts. Fig. 6b 
shows four such examples, where the first two healthy 
individuals are damping ratio-based profiles closely 
resembling the MCI cohort profile, while the latter two 
healthy individuals display stiffness-based profiles 
similar to the AD cohort. While the underlying causes 
remain to be determined, the resemblance between the 
BAG profiles of these healthy individuals and the clin
ical cohorts is noteworthy.

Discussion
Within our controlled design, MRE-based models 
consistently showed lower MAEs than MRI-based 
models in brain age prediction, especially when using 

Fig. 6: Brain age profiling reveals distinct biomechanical alterations in MCI and AD, illustrating regional BAG patterns in some healthy 
individuals that resemble patient profiles. (a) Subcortical brain age gaps (BAGs) show distinct regional patterns, highlighting the spatial 
heterogeneity in MCI and AD, with stiffness capturing AD-related changes, particularly a pronounced BAG elevation in the thalamus, and 
damping ratio highlighting early alterations in MCI, most notably in the hippocampus. (b) Individual examples of healthy subjects with brain 
age profiles similar to those observed in MCI or AD.
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modern self-supervised learning techniques, such as 
the contrastive learning method developed here, which 
is particularly well suited for small sample sizes. This 
superior sensitivity to age-related change suggests that 
MRE can detect subtler brain ageing effects than 
structural MRI. Structural MRI predominantly captures 
age-related macrostructural changes, such as volu
metric atrophy, cortical thinning, and ventricular 
enlargement—relatively coarse markers that tend to 
emerge in later stages of ageing.4,51,52 In contrast, our 
findings align with physiological evidence that biome
chanical brain properties are sensitive to earlier 
microstructural alterations that may arise closer to the 
underlying molecular and cellular changes of ageing, 
and which often remain undetected by conventional 
MRI.8,9,53,54 MRE effectively captures these subtler 
alterations, including changes in neuronal density, 
myelination, and extracellular matrix organisation— 
hallmarks of the ageing process.9,55–58 Although one 
recent study25 applied deep learning to MRE-derived 
features, most prior MRE studies remain restricted to 
linear, whole-brain, or region-wide averaging methods, 
all of which are further limited by small datasets.14,17,18,59 

Our voxel-wise approach moves beyond these assump
tions, capturing non-linear biomechanical dependencies 
at high spatial resolution. Leveraging a contrastive 
regression framework tailored to non-uniform, low-data 
regimes,60 our method reveals finer-grained mechanical 
ageing patterns, outperforming both kernel-based and 
supervised deep learning models.

Our results reinforce the notion that stiffness is the 
dominant mechanical biomarker of brain ageing, but 
crucially, it is the application of our algorithmic 
framework that allows this property to be fully lever
aged. The predominance of stiffness over damping ratio 
reflect their distinct biophysical underpinnings: stiff
ness is more directly influenced by tissue composition, 
whereas damping ratio is thought to relate to cellular 
organisation.9 This finding thus emphasises the greater 
relevance of tissue composition in capturing age-related 
brain changes, supporting prior observations that 
stiffness declines strongly with age and disease—while 
damping ratio shows less pronounced changes.8

Our occlusion-based saliency analysis pinpoints 
regions with arbitrary shapes and sizes of most interest 
to brain age models. Notably, the saliency maps reveal a 
shift in the most predictive brain regions across 
different age groups, supporting previous findings that 
mechanical ageing patterns evolve throughout the life
span.12,54,59 Stiffness-based brain age models shift focus 
from cortical to subcortical regions, increasingly 
emphasising the thalamus and caudate in older adults, 
extending their known role in mechanical ageing much 
beyond early life.49 Meanwhile, damping ratio-based 
models show a progressive decline in cortical rele
vance in older ages, revealing that cortical sensitivity to 
ageing—previously observed only during the 

developmental years (ages 5–35)49—does not persist 
into later adulthood. When considered individually, the 
caudate and thalamus emerge as the most age-sensitive 
subcortical structures. Previous MRE studies have pri
marily characterised the caudate and thalamus in terms 
of their age-related decline in stiffness, with an accel
erated decrease observed in elderly individuals.61 Our 
voxel-wise approach extends these findings by not only 
confirming their role in age-related stiffness changes 
but also demonstrating their relevance for damping 
ratio-based biomarkers. In addition to previous findings 
on caudate atrophy and metabolic decline in ageing and 
neurodegeneration62,63, our results emphasise the 
importance of biomechanical characterisation in 
detecting these processes. Studies have shown that 
caudate atrophy is associated with gait dysfunction and 
poorer physical performance,63 while metabolic 
reductions in the caudate nucleus serve as sensitive 
biomarkers for normal ageing and early neurodegen
erative stages.62 Furthermore, recent research high
lights dopaminergic deficits in the caudate as a 
contributing factor to cognitive decline in Parkinson’s 
disease, particularly in pre-dementia stages.64 Our 
findings extend this understanding by demonstrating 
that biomechanical measures offer a distinct and sen
sitive marker of age-related changes in the caudate, 
reinforcing its role as a key region in detection of 
ongoing neurodegeneration. Similarly, beyond well- 
documented atrophy and morphological alterations of 
the thalamus in neurodegenerative diseases65,66, our 
study highlights the potential of biomechanical prop
erties as complementary biomarkers of ageing and 
disease progression. Thalamic morphology has been 
proposed as a putative biomarker across multiple 
neurodegenerative disorders65, with distinct patterns of 
atrophy observed in early- and late-onset Alzheimer’s 
disease.66 Our results build on this by showing that 
stiffness and damping ratio capture differential ageing 
effects within thalamic subregions, further under
scoring the relevance of MRE-derived biomarkers in 
tracking the progression of neurodegeneration.

Beyond healthy ageing, our contrastive regression 
framework enables the detection of neurodegeneration- 
related changes from MRE data. While MRI-derived 
models show minimal BAG differences, MRE reveals 
significant deviations. Our results reveal that damping 
ratio is more sensitive to early MCI-related neuro
degeneration, while stiffness more effectively captures 
higher predicted brain age in AD. Damping ratio is 
often considered to reflect the microstructural organi
sation of tissue,9 and may capture subtle changes in 
tissue such as inflammation. This is consistent with 
prior findings that damping ratio is strongly associated 
with cognitive function and memory performance, that 
may be affected by similar changes in tissue micro
structure,67,68 making damping ratio a potentially sen
sitive marker of early cognitive decline.69,70 In contrast, 
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stiffness decline reflects advanced neurodegeneration, 
with significant reductions observed in patients with 
AD.59,71 Stiffness is affected by changes in tissue 
composition9 and the progressive loss of tissue struc
ture from neuronal death is likely captured by this 
property. These findings further support the interpre
tation that mechanical properties reflect different 
aspects of neurodegeneration — with damping ratio 
changes more prominent in earlier stages (MCI) and 
stiffness reductions more pronounced in later stages 
(AD), although longitudinal data will be required to 
confirm temporal ordering. A noteworthy result is the 
large stiffness-based BAG observed in the thalamus of 
the AD cohort. This aligns with literature identifying 
the thalamus as a critical hub for AD pathology, with 
evidence that its degeneration can be an early event that 
contributes directly to cognitive symptoms.72,73 Howev
er, the relatively small sample size warrants caution and 
future larger studies are needed to confirm the 
magnitude and specificity of this effect.

Despite these advantages, several limitations 
remain, offering avenues for future improvement. 
Although our dataset is relatively large for MRE studies, 
it is still smaller than typical MRI-based datasets,52 

which may partly explain the lack of statistical signifi
cance in MRI-based models for AD detection. Accord
ingly, we refrain from drawing firm conclusions from 
this observation. Similarly, while our self-supervised 
model has outperformed the baseline models in this 
study, a direct comparison with publicly available MRI- 
based brain age prediction methods lies beyond the 
scope of this work, as our primary objective has been to 
evaluate MRI and MRE under matched conditions. The 
higher MRI MAEs being observed here compared with 
those reported in large-scale MRI-only studies are 
consistent with our modest sample size. As highlighted 
by a recent study,74 model performance depends on 
multiple factors, including training dataset size and 
composition as well as preprocessing pipelines. 
Importantly, the ability to detect significant effects in a 
relatively small MRE sample supports the sensitivity of 
our approach, suggesting that MRE captures relevant 
biomechanical changes even under limited sample sizes 
using a self-supervised contrastive regression frame
work. Nonetheless, the modest size of our clinical 
cohorts is a limitation inherent to this emerging modality, 
and the clinical findings should therefore be interpreted 
with caution. Future large-scale studies will be essential to 
validate the promising effects observed here.

The inclusion of multiple clinical studies introduces 
potential confounders, which we have attempted to 
mitigate through image registration; however, residual 
inter-study variability may persist. Another limitation is 
the need to retrain models without healthy controls 
when computing brain age gaps for disease cohorts. 
While this approach reduces site-related confounding, 
it limits model generalisability, a challenge that larger 

and more diverse datasets will help to overcome. 
Current MRE studies also occasionally exhibit partial 
brain coverage, potentially affecting regional analyses. 
Brainstem measurements remain particularly chal
lenging due to shear-wave attenuation in central brain 
regions and susceptibility to motion artefacts from 
adjacent pulsating structures. Continued advances in 
MRE hardware and sequence design will be crucial in 
addressing these issues.

Additional constraints arise from the retrospective 
nature of this study, which has precluded the inclusion 
of age-related comorbidities (e.g., vascular risk factors 
or metabolic conditions) known to affect brain structure 
and mechanics. Future prospective studies should 
incorporate these factors to better delineate their 
contribution. Finally, our occlusion analysis employed a 
7 × 7 × 7 voxel mask, chosen to balance anatomical 
relevance with localisation in line with prior work. 
Systematic exploration of this parameter in future 
studies could further refine interpretability.

Our findings open promising avenues for future 
research. Within our framework, we have identified 
‘healthy’ individuals who exhibit biomechanical brain- 
ageing patterns resembling those seen in patients 
with MCI or AD, despite scoring within the normal 
range on the Montreal Cognitive Assessment (MoCA). 
Whereas specialised neuropsychological composites 
such as the Preclinical Alzheimer’s Cognitive Com
posite (PACC)75 are sensitive to subtle cognitive decline 
in preclinical AD, the MoCA is less sensitive than our 
image-derived brain-age biomarker. This raises the 
hypothesis that such biomechanical patterns reflect 
increased vulnerability to future cognitive decline. 
Alternatively, they may represent benign variants of 
normal ageing. Given the cross-sectional design of this 
study, we cannot distinguish between these possibil
ities, underscoring the need for longitudinal follow-up 
to determine whether these individuals later develop 
cognitive impairment or dementia. Moving forward, we 
plan to extend this framework to populations at risk for 
AD, identified through genetic predisposition and life
style factors, and to integrate MRE with multimodal 
approaches, including advanced MRI-based micro
structural imaging,76 to improve sensitivity and 
strengthen clinical applicability.

In summary, our results establish that the contras
tive regression framework offers a powerful and sen
sitive approach for detecting subtle, region-specific 
biomechanical changes linked to brain ageing and 
neurodegeneration, reflecting spatial heterogeneity 
across regions. By significantly enhancing the sensi
tivity of MRE-based models, this method paves the way 
for early, non-invasive detection of pathological ageing 
trajectories, even before clinical symptoms emerge. 
This represents a critical step toward presymptomatic 
screening and precision medicine in neurodegenerative 
diseases, with the potential to transform how we 

Articles

www.thelancet.com Vol 121 November, 2025 13



diagnose, monitor, and ultimately intervene in the 
ageing brain.

Plain language summary
Our machine learning model is designed to estimate a 
person’s brain age using a specialised type of scan 
called Magnetic Resonance Elastography (MRE). Unlike 
a standard MRI which shows the brain’s structure, 
an MRE measures its biomechanical properties— 
specifically stiffness (how soft or firm the tissue is) and 
damping ratio (a property related to tissue viscosity). 
The goal is to use these properties to identify subtle, 
early signs of brain ageing and neurodegeneration. The 
overall workflow of our study, from data collection to 
clinical application, is illustrated in Fig. 1.

We trained our model on a dataset of 311 MRE scans 
from healthy individuals aged 14 to 90, collected across 
several research centres. To handle this moderately- 
sized dataset, we used an advanced AI technique 
called self-supervised contrastive learning. The model’s 
performance was then tested on scans from patients 
with Alzheimer’s disease (AD) and Mild Cognitive 
Impairment (MCI).

Our model can predict a person’s age from their 
MRE scan with an average error of just 3.51 years, 
which was significantly more accurate than a model 
using standard MRI scans. The model learnt that 
changes in stiffness were a strong indicator of the more 
advanced changes seen in AD, while the damping ratio 
was more sensitive to the earlier changes in MCI. Our 
analysis also highlighted that deep brain structures, 
particularly the caudate and thalamus, were critical 
regions for tracking the effects of ageing.

This work is based on a retrospective analysis of 
existing, de-identified data. Our promising results 
suggest the potential for this MRE-based approach to 
serve as a non-invasive biomarker for brain health. 
Future longitudinal studies will be a crucial next step to 
validate these findings and to confirm if the biome
chanical profiles we identified can help predict an in
dividual’s risk of cognitive decline. Such confirmation 
could pave the way for using this method to stratify 
at-risk individuals for timely inclusion in clinical 
intervention trials.
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