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Univ. Bordeaux, CNRS, LaBRI
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ABSTRACT

Entity resolution (ER) is a central task in data quality,
which is concerned with identifying pairs of distinct con-
stants or tuples that refer to the same real-world en-
tity. Declarative approaches, based upon logical rules
and constraints, are a natural choice for tackling com-
plex, collective ER tasks involving the joint resolution
of multiple entity types across multiple tables. This pa-
per provides an overview of recent advances in logic-
based entity resolution, with a particular focus on the
LACE framework, first introduced at PODS’22 and sub-
sequently extended with additional features (IJCAI’23,
KR’23) and equipped with an answer set programming-
based implementation (KR’24, KR’25).

1 Introduction

Entity resolution (ER) is a key data quality task
that seeks to identify distinct constants that refer
to the same real-world entity [54]. A wide range
of ER approaches have been proposed, differing in
their assumptions, the nature of the data they han-
dle, and the techniques they employ [21]. In the
context of relational databases, ER has tradition-
ally focused on matching records based on field-
level similarity [47], which is why it is also known as
record linkage [35|. For example, in a bibliographic
database, two author records might be matched if
their email addresses are similar. A more expressive
and general approach, known as collective ER |9,
24], performs joint resolution of entity references or
values of multiple types across multiple tables. For
instance, merging two author entities may lead to
the inference that their associated paper IDs should
also be merged. Most existing approaches to ER fo-
cus on single-pass matching of tuples within a single
table or between a pair of tables, and machine learn-
ing methods have obtained remarkable results [41]
for such settings. On the other hand, declarative
methods based on logical rules and constraints are
able to capture and exploit relational dependen-
cies, making them well-suited for handling complex
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multi-relational settings arising in collective ER.

In this paper, we examine declarative approaches
to collective entity resolutiorﬂ with a particular fo-
cus on the LACE framework. We designed LACE
to satisfy three natural desiderata: being collec-
tive, declarative, and justifiable. Specifically, our ap-
proach (i) supports complex interdependencies be-
tween merges of different entities, (ii) adopts a declar-
ative language based on logical rules and constraints,
and (iii) provides clear justifications for why two
constants are considered to represent the same en-
tity. While the collective and declarative aspects
have received considerable attention in the litera-
ture, the notion of justifiability remains relatively
underexplored, despite being a crucial step toward
building more advanced explanation capabilities and,
ultimately, more responsible technologies |42].

As a declarative language, LACE shares several
design principles with existing logic-based frame-
works. Inspired by the Dedupalog framework [2], it
employs both hard and soft rules to specify condi-
tions under which pairs of constants must or may
be merged. For instance, statements such as every
paper has a single corresponding author and confer-
ences with similar names are likely to be the same
can be naturally expressed using hard and soft rules,
respectively. Beyond rules, LACE specifications can
also include denial constraints [7], which ensure the
consistency of the resulting instance by restricting
inadmissible combinations of merges. For exam-
ple, one may enforce that an author’s name can
appear only once in the list of authors of a paper.
In line with entity resolution approaches based on
matching dependencies (MDs) [8}/27,[32] and their
extensions, such as relational MDs [4,[5] or entity-
enhancing rules (REEs) [24133], LACE adopts a dy-
namic semantics in which rule bodies are evaluated
over the evolving instance, i.e., the instance result-
ing from merges that have already been derived.

1For a more extensive discussion of ER methods, the
interested reader is referred to [21].



The dynamic semantics is key to obtaining a collec-
tive yet justifiable framework: merges can trigger
additional merges, potentially in a recursive man-
ner, while still guaranteeing that all merges occur-
ring in a solution are justified, in the sense that it is
possible to trace back how each merge was obtained
via a sequence of rule applications.

Another important design consideration concerns
the nature of the constants being merged. When
constants represent entity references (e.g., author
names or paper 1Ds), a global semantics, where all
occurrences of matched constants are merged (not
just those directly involved in deriving the match)
is particularly well suited. In contrast, when deal-
ing with data values, a local merging semantics, one
that considers the context in which a value occurs,
is often more appropriate. For example, some oc-
currences of ‘J. Smith’ may refer to ‘Joe Smith’,
while others may correspond to ‘Jane Smith’; merg-
ing all instances globally in such cases would lead to
incorrect resolutions. Various efforts have already
been dedicated to studying both approaches. For
instance, MDs provide a principled logical formal-
ism for merging values [8,27,/32], adopting a local
semantics. On the other hand, Dedupalog, MRLs,
and the declarative framework for entity linking |17]
(henceforth referred to as EL) rely on a global se-
mantics. Despite substantial work on each of these
approaches, most existing frameworks focus on one
or the other. This was also the case for the LACE
framework, which initially only supported global
merges of entity references [11] but was subsequently
extended [13]| to also handle local merges of data
values. Note that, contemporaneously to LACE, the
CERQ framework supporting both local and global
merges was independently developed [26].

Another distinction among logic-based approaches
to ER lies in the nature of their solutions or outputs.
A key aspect in this regard is whether the approach
produces a single solution or a set of alternative so-
1utionsE| As in the EL approach [17], we consider
not just one solution but a space of preferred so-
lutions. In LACE, this space arises naturally from
the role of denial constraints, which restrict which
merges can co-occur, thereby introducing meaning-
ful choices. Also in line with EL, we can naturally
define the notions of certain and possible merges,
referring respectively to those merges that appear
in all, or in some, of the preferred solutions.

2Here, a solution can be roughly viewed as a set of
constant pairs that are judged to refer to the same en-
tity. Naturally, outside logic-based approaches, solu-
tions may take other forms, for example, expressing the
likelihood that two constants refer to the same entity.

We argue that the successful adoption of any ER
framework depends on the availability of an accom-
panying implementation. To this end, we have de-
veloped the answer set programming (ASP)-based
systems ASPEN and ASPENT, grounded in the foun-
dational result that LACE solutions can be faithfully
encoded as ASP stable models. ASPENT supports
the full range of LACE features and further extends
the framework by exploring various optimality cri-
teria; not only prioritizing solutions that maximize
the number of merges (w.r.t. set inclusion), but also
enabling other natural forms of preference.

Organization After reviewing the necessary back-
ground in Section [2} we introduce in Section [3] the
fundamentals of LACE, including its syntax, seman-
tics, properties, and alternative optimality criteria.
In Section [d] we define the central decision prob-
lems and analyse their computational complexity.
Section [5] discusses the practical implementation of
LACE using the answer set programming systems
ASPEN and ASPENT. In Section@ we present RE-
PLACE, a holistic framework that integrates ER and
repairing. Section [7] overviews the broader land-
scape of logic-based ER approaches. Finally, Sec-
tion [§] offers perspectives for future work.

2 Preliminaries

Databases We assume that constants are drawn
from three infinite and pairwise disjoint sets: a set
O of object constants (or objects), serving as refer-
ences to real-world entities (e.g. paper and author
ids), a set V of value constants (or values) from
the considered datatypes (e.g. strings for names of
authors and paper titles, dates for time of publica-
tion), and a set TID of tuple identifiers (tids).

A (database) schema S consists of a finite set of
relation symbols, each having an associated arity
k € N and type vector {O,V}*. We use R/k € S
to indicate that the relation symbol R from S has
arity k, and denote by type(R,i) the ith element
of R’s type vector. If type(R,i) = O (resp. V), we
call 7 an object (resp. value) position of R.

An S-database is a finite set D of facts of the
form R(t,c1,...,ck), where R/k € S, t € TID, and
¢; € type(R, 1) for 1 <14 < k. We require that each
t € TID occurs in at most one fact of D. Abus-
ing notation, we will sometimes use ¢ to refer the
unique fact with tid ¢ and use t[j] for the constant
in the jth position of ¢ (tid arguments occupy posi-
tion 0, and ‘regular’ arguments of R/k are in posi-
tions 1,...,k). The set of constants (resp. objects)
occurring in D is denoted Dom(D) (resp. Obj(D)),
and the set Cells(D) of (value) cells of D is defined
as {(t,7) | t € D,t[I] € V}.



Queries We consider conjunctive queries (CQs) of
the form ¢(x) = Jy.p(x,y), where x and y are dis-
joint tuples of variables, and ¢(x,y) is a conjunction
of relational atoms R(ug,u1,...,ux), where R/k €
S,ug € TIDUxUy, and for every 1 <i < k: u; €
OUVUxUy and u; € OUV implies u; € type(R,1).
When formulating entity resolution rules and con-
straints, we shall also consider extended forms of
CQs that may contain inequality atoms or atoms
built from a set of binary similarity relations. Note
that such atoms will not contain the tid position
and have a fixed meaningﬂ Moreover, we impose a
standard safety condition: each variable occurring
in an inequality or similarity atom must also occur
in some relational atom (in a value position, in the
case of similarity atoms). As usual, the arity of ¢(x)
is the length of x, and queries of arity 0 are called
Boolean. Given an n-ary query ¢(x1,...,%,) and
n-tuple of constants ¢ = (cy,...,¢,), we denote by
g[c] the Boolean query obtained by replacing each
x; by ¢;. We denote by vars(q) (resp. cons(q)) the
set of variables (resp. constants) in ¢. and will use
set notation for queries when convenient.

Constraints Our framework will also employ de-
nial constraints (DCs) |7,28] which take the form
Jy.p(y) — L, where Jy.p(y) is a Boolean CQ
with inequalities, whose relational atoms use rela-
tion symbols from the considered schema S. DCs
notably generalize the well-known class of functional
dependencies (FDs). To simplify the presentation,
we sometimes omit the quantifiers from DCs.

3 LACE Framework

In this section, we present LACEEL a Logical Ap-
proach to Collective Entity resolution, designed to
satisfy the desiderata laid out in Section [I}

3.1 Syntax of LACE

In LACE, rules are used to describe conditions under
which two constants must or may be identified (we
use the term ‘merge’ to speak of identified pairs).
These come in two flavours, depending on whether
the considered constants are objects or values.

Rules for Objects To formalize the resolution of ob-
ject pairs (i.e., references to real-world entities) that
denote the same underlying entity, we employ hard

3Similarity relations are typically defined by applying a
similarity metric, e.g. edit distance, and keeping those
pairs of values whose score exceeds a given threshold.
“We present here the version of LACE from [13|, which
extends the original LACE framework [11] to support
local merges of values, rather than only global merges
of objects, as was the case in [11]. Note that this version
of the framework is referred to as Lace™ in [13].

and soft rules for objects (over a schema §), which
take respectively the following forms:

q(z,y) = EqO(z,y) q(z,y) -—» EqO(z,y)

where ¢(x,y) is a CQ whose atoms may use relation
symbols from S as well as similarity relations and
whose free variables x and y occur only in object po-
sitions. Intuitively, the above hard (resp. soft) rule
states that (o01,02) being an answer to ¢ provides
sufficient (resp. reasonable) evidence for concluding
that o; and os refer to the same real-world entity.
Note that rules for objects use a special relation
symbol EqO (not in schema §) in the rule head.

Rules for Values To formalize local identifications
between distinct representations of the same infor-
mation, we introduce hard and soft rules for values,
which take respectively the following forms:

a(ze,ye) = EqQV ({24, 4), (Yt J))
Q(Z‘t,yt) - EqV(<xt, 7;>a <yt7.]>)

where ¢(zt,y:) is a CQ whose atoms may use rela-
tion symbols from the considered schema S as well
as similarity relations, variables x; and y; each oc-
cur once in ¢ in position 0 of (not necessarily dis-
tinct) relational atoms with relations R, € S and
R, € S, respectively, and ¢ and j are value positions
of R, and R,, respectively. Intuitively, such a hard
(resp. soft) rule states that a pair of tids (¢y,t2)
being an answer to g provides sufficient (resp. rea-
sonable) evidence for concluding that the values in
cells (z,i) and (y:,j) are non-identical representa-
tions of the same information. Rules for values use
head relation EqV (not in S and distinct from EqO).

To refer to a generic (hard or soft) rule, we use the
arrow symbol — (which can stand for = or --»).
For the sake of brevity, we usually omit existential
quantifiers of variables in rule bodies.

ER Specifications In addition to rules for indicat-
ing mandatory or likely merges, LACE specifications
may also include denial constraints, which serve to
define what counts as a legal (or consistent) database
and can help to block incorrect merges.

DEFINITION 1. A LACE entity resolution (ER)
specification X for schema S takes the form ¥ =
(o, Ty, A), where T'o =T9 UT'? is a finite set of
hard and soft rules for objects, I'vy =17 UT'Y is a
finite set of hard and soft rules for values, and A is
a finite set of denial constraints, all over S.

EXAMPLE 1. The schema Sex, database Dey, and
ER specification Yex = (L. TV Ay of our run-
ning ezample are given in Figure[dl Informally, the



denial constraint 01 is an FD saying that an au-
thor id is associated with at most one author name,
while the constraint 6o forbids the existence of a pa-
per written by the chair of the conference in which
the paper was published. The hard rule py states that
if two author ids have the same name and the same
institution, then they refer to the same author. The
soft rule of states that authors who wrote a paper
in common and have similar names are likely to be
the same. Finally, the hard rule py locally merges
similar names associated with the same author id.

3.2 Semantics of LACE Specifications

As the aim is to identify pairs of objects (resp. oc-
currences of values) that denote the same real-world
entity (resp. represent the same value), we will be
interested in solutions taking the form of a pair of
equivalence relations (E,V), over the sets Obj(D)
and Cells(D) respectively, giving the merged pairs
of objects and value cells. To satisfy our desiderata,
we must ensure that the set of merges present in a
solution can be justified by appealing to the rules
and is coherent w.r.t. the expressed constraints. The
idea will thus be to define solutions in terms of se-
quences of rule applications that lead to a database
satisfying all hard rules and denial constraints. Im-
portantly, rule bodies and constraints will be eval-
uated with respect to the database induced by the
current pair of equivalence relations, in order to ex-
ploit the previously derived object and cell merges.

To make this formal, we need to clarify the no-
tion of ‘induced database’ obtained by modifying
the initial database to ‘implement’ a given set of
merges. We might be tempted to simply pick a rep-
resentative from each equivalence class and replace
every constant with its representative. While such
an approach can be used to treat global merges of
(as was done in [11]), it cannot account for the local
nature of cell-level merges of values. For this reason,
we shall work with an extended form of database,
where the arguments are sets of constants.

DEFINITION 2. Given an S-database D, equiva-
lence relation E over Obj(D), and equivalence rela-
tion V' over Cells(D), we denote by Dg v the (ex-
tended) database induced by D, E, and V', which
is obtained from D by replacing:

e cach tid t with the singleton set {t},
e each occurrence of o€ Obj(D) by {0’ |(0,0") € E},

e each value in a cell (t,i) € Cells(D) with the set
of values {t'[i'] | ({t,1),(t',i')) € V}.

It remains to specify how queries in rule bodies
and constraints are to be evaluated over such in-
duced databases. First, we need to say how similar-
ity predicates are extended to sets of constants. We
propose that C7 = (5 is satisfied whenever there are
c1 € Cq and ¢y € Cs such that ¢; = ¢, since the
elements of a set provide different possible represen-
tations of a value. Second, we must take care when
handling join variables in value positions. Requir-
ing all occurrences of a variable to map to the same
set is too strong, e.g. it forbids us from matching
{J. Smith, Joe Smith} with {J. Smith}. We require
instead that the intersection of all sets of constants
assigned to a given variable is non-empty.

DEFINITION 3. A Boolean query q (possibly con-
taining similarity and inequality atoms) is satisfied
in Dg v, denoted Dg v = q, if there exists a func-
tion h : vars(q) U cons(q) — 2P°™P)\ {9} and func-
tions gr : {0,...,k} — 2P°o™(D) for each k-ary rela-
tional atom m € q, such that:

1. for every a € cons(q), h(a) = {a}, and for every
z € vars(q), h(z) is the intersection of all sets
gr(4) such that z is the ith argument of ;

2. for every relational atom m = R(ug, u1,...,ux) €

¢, R(9x(0),9x(1),...,9x(k)) € Dy, and for
every 1 <i <k, if u; € cons(q), then u; € g(i);

3. for every atom z # 2’ € q: h(z) Nh(z') = 0;

4. for every atom u = u' € q: there exist ¢ € h(u)
and ¢’ € h(u') such that c =~ c.

For non-Boolean queries, the set q(Dg,v) of an-
swers to q(x) contains tuples ¢ s.t. Dg v = ¢c].

Observe that the functions g, make it possible
to map different occurrences of the same variable z
to different sets of constants, with Point 1 ensuring
these sets have a non-empty intersection, h(z). It is
this intersected set, storing the common values for
z, that is used to evaluate inequality and similar-
ity atoms. Note that when a constant ¢ occurs in
a relational atom, the set assigned to the position
where ¢ occurs must contain c.

The preceding definition of satisfaction of queries
straightforwardly extends to constraints and rules:

e Dpy = 3y.p(y) — Liff Dpyv [~ 3y.o(y)
e Dpv = q(z,y) = EqO(z,y) iff ¢(Dp,v) C E

® Dpyv F q(wi,yt) — EqV((z¢, ), (Y, 7)) iff
(t1,t2) € ¢(Dg,v) implies ({(t1,1), (t2,7)) € V,

where symbol — may be either = or --». We write
DE,V ': A iff DE,V ': A for every A\ € A.



Author(tid, aid, name, inst) Wrote(tid, aid, pid)

Paper(tid, pid, title, conf, chr)

tid | aid name inst tid | aid | pid tid | pid title conf |chr
ti1 ]| a1 J. Smith |Sapienza tia| a1 | p1 to | p1 | Logical Framework for ER |PODS’21 | ag
ta | ag | Joe Smith | Oxford tis| as | p1 t10| p2 | Rule-based approach to ER | ICDE’19 | a4
ts | as | J. Smith NYU tig| as | p2 t11 | p3 | Query Answering over DLs | KR’22 | a4
ty | as | Joe Smith NYU ti7]| ag | p3 ti2| pa | CQA over DL Ontologies |IJCAI'21| ay
ts | as | Joe Smith |Sapienza tis| a7 | ps t13| ps | Semantic Data Integration | AAAT’22 | ag
te | ag Min Lee CNRS tio] a7 Pa

t- | an M. Loo UTokyo t20 | as | pa d1 =Author(t, a,n,i) AAuthor(t',a,n’,i'YAn #n' — L
ts | ag | Myriam Lee| Cardiff tor | as | ps do =Paper(t, p, ti, c,a) A Wrote(t',a,p) — L

p; = Author(t, z,n,i) A Author(¥,y,n,i) = EqO(x,y)
p} = Author(t, a,n,i) A Author(t',a,n’,i') An ~n’ = EqV((t,2), (t',2))
= Author(t,z,n,i) A Author(t',y,n’,i") An ~n’ A Wrote(t”, z, p) A Wrote(t"',y, p) --» EqO(z,y)

Figure 1: Schema S, database Dy, and specification ¥, = (I'Q, TV | A

<) with T = {p9,0¢}, TV, = {p}},

ex? ex?

and Ag = {d1,02}. Similarity relation = is defined so names of authors ay, as, as, as, and a5 are all pairwise
similar, and the names of ag and ag are both similar to the name of a7 (but not similar to each other).

With these notions in hand, we can formally de-
fine solutions to an ER specification and dataset.
The definition employs the notation EqRel(P,.S),
giving the least equivalence relation on set S that
contains all pairs in P (i.e. minimally extending P
to satisty reflexivity, symmetry, and transitivity).

DEFINITION 4. Given an ER specification ¥ =
(To, Ty, A) over schema S and an S-database D,
we call (E,V) a candidate solution for (D,X) if it
satisfies one of the following three conditions:

e £ = EqRel(, Obj(D)) and V = EqRel(, Cells(D))

o F = EqRel(E" U {(0,0)},0bj(D)), where (E', V)
is a candidate solution for (D,X) and (o, 0) €
4(Dp,v) for some q(z,y) — EqO(z,y) € T'o

o V = EqRel(V' U {((t,7),(t',i))}, Cells(D)), for a
candidate solution (E, V') for (D,X) and (t,t') €
a(Dp,v) s.t. q(ze, ye) = EqV (2, i), (ye, 1) € v

If additionally Dgyv = T9 UTY UA, then we call
(E,V) a solution for (D,%). We use Sol(D,X) for
the set of solutions for (D,X).

Observe that by construction, every merge oc-
curring in a solution can be justified by providing
the sequence of rule applications and closure opera-
tions [11] that led to the merge being incorporated
into the solution (alternatively, such steps may be
presented as a proof tree, as formalized and illus-
trated in the long version of [56]). Importantly, as
rule bodies do not involve any kind of negation (in
particular, no #-atoms), ‘later’ merges cannot inval-
idate the reasons for performing an ‘earlier’ merge.

We note that a database-specification pair may
admit zero, one, or several solutions. The absence
of solutions arises from constraint violations (either
initially present or introduced by the hard rules)
which cannot be repaired solely through permitted
merges. The existence of multiple solutions is due
to some combinations of merges not being possi-
ble without violating the constraints, leading to a
choice of which possible merges to include. We re-
turn to our running exampld’| to illustrate solutions
and the utility of local merges:

EXAMPLE 2. Starting from database Dey, we can
apply the soft rule of to merge author ids a1 and
as (more formally, we minimally extend the initial
trivial equivalence relation E to include (a1, az)).
The resulting induced instance is obtained by replac-
ing all occurrences of a1 and as by {a1,as}. Note
that the constraint 61 is now violated, since t; and
to match on aid, but have different names. If lo-
cal merges were not permitted (as was the case in
the original LACE framework), this would prevent
(a1,a2) from belonging to any solution. However,
thanks to the hard rule for values py, we can resolve
this wviolation. Indeed, pY is applicable and allows
us to (locally) merge the names in facts t1 and to.
The new induced database contains {J. Smith, Joe
Smith} in the name position of t1 and ta, but the
names for ts, tq, t5 remain as before. Note the im-
portance of performing a local rather than a global
merge: if we had grouped J. Smith with Joe Smith
everywhere, this would force a merge of az with ay

5Additional examples of LACE specifications and solu-
tions can be found in |11}/12}[56}/57].



due to the hard rule p§, which would in turn vi-
olate &2, again resulting in no solution containing
(a1,a2). Following the local merge of the names of
t1 and ta, the hard rule p¢ becomes applicable and
allows us (actually, forces us) to merge (globally)
author ids a1 and as. We let (Eex, Vex) be the equiv-
alence relations obtained from the preceding rule ap-
plications. As the database induced by (Eex, Vex)
satisfies all hard rules and constraints, (Fex, Vex) is
a solution. Another solution is the pair of trivial
equivalence relations, since the initial database Dey
satisfies the constraints and hard rules.

Rather than considering all solutions, it is natural
to restrict attention to the ‘best’ ones. We shall
therefore focus on solutions that are maximal w.r.t.
set inclusion, i.e. derive as many merges as possible
subject to the constraints. Alternative optimality
criteria can also be considered, see Section

DEFINITION 5. The set MaxSol(D,X) of maxi-
mal solutions for (D,X) contains those (E,V) €
Sol(D, X)) for which there is no solution (E', V') €
Sol(D, X)) with EUV C E'UV".

EXAMPLE 3. The solution (FEe,Vex) described in
E:z:ample is not maximal as the soft rule o can be
applied to get (ag,ar) or (ar,ag). Notice, however,
that it is not possible to include both merges, other-
wise by transitivity, ag,ar,as would all be replaced
by {ae, ar, as}, which would violate denial 61 due to
paper ps. We have two maximal solutions: the first
extends (Fex, Vex) with (ag,a7) and the correspond-
ing pair of names cells ({tg,2), (t7,2)) (due to p}),
and the second extends (Eex, Vex) with (a7, as) and
the corresponding name cells ((ts,2), (t7,2)) (via p}

3.3 Properties of the Framework

We briefly highlight some interesting properties of
the LACE framework.

Simulating Hard Rules We can show that hard rules
can be simulated by soft rules in combination with
denial constraints, provided that we allow denial
constraints to use atoms with similarity relations.
Specifically, a hard rule p° = ¢(z,y,2) =EqO(z,y)
can be replaced by a soft rule 5,0 = p(z,y,2) --+
EqO(z,y) and DC d,0 = p(z,y,2) ANz #y — L.
SimﬂarIY7 pv = Cp(xt,yt, ) = EqV(<It7 > <ytaj>)
replaced by o0 = @(24, Y1, 2) --» EqQV ({24, ), (Y1, 7))
and 0,0 = ©(T4,Yt,2) N U, i F Uy, ; — L, with
Ug,,i (resp. uy, ;) the ith (resp. jth) argument of
the atom in @(xy, y¢, z) with tid z; (resp. y).

THEOREM 1. Consider an ER specification ¥ =
(9 UT9, Ty UTY, AY over S, and define ¥/ as the

specification (I'f_ ,Th A" with T . = T'%U
{ope | p? € I3}, Thy = TS U{ope | p” € T},
and A" = AU{s, | pe 'y UL} }. Then Sol(D, %) =

Sol(D,Y) for each S- database D.

Local Can Simulate Global Interestingly, we can
show that it is possible to simulate global merges of
objects using local value merges. To formulate the
result, we will use Sy for the schema with the same
relations as S but with all object positions changed
to value positions, and use Dy for the dataset D but
with all object constants treated as value constants.

THEOREM 2. For every ER specification X = (T'o,
FV,A> over schema S, there exists a specification
= (0,15, A) over Sy s.t. for every S-database D:
SoI(Dv, ) = {0,V UVE) | (E,V) € Sol(D, %)},
where Vip = {((t,4), (', ) | (¢[i],¥'[5]) € E}.

PROOF SKETCH. Every rule ¢(z,y) — EqO(z,y)
is replaced by a rule q(z¢, y:) — EqV({x4, %), (yt, ),
where (x,7) (resp. (yt, 7)) is any position that con-
tains x (resp. y) in ¢. Additionally, we include all
rules P(zs,ul™?, z,ul ) A Py, vt 2 v§+1) =
EqV({(x¢,1), (ys,5)) such that ui~! abbreviates the
tuple of distinct variables wy,...,u;—; (likewise for
uf, viTh vfﬂ) and ¢ and j are object positions
of P/k and P’/¢ w.r.t. the original schema §. [

Note that there can be no analogous translation
from local to global, for the simple reason that the
equivalence relation for objects cannot distinguish
between different occurrences of a same constant.

3.4 Alternative Optimality Criteria

While focusing on solutions with a C-maximal set
of merges is arguably reasonable, there are other
natural optimality criteria that can be used instead.
For example, we may want to give more importance
to a merge that is supported by multiple rules, or
compare solutions based upon soft rule violations.
To formalize these criteria, we will use the notion of
active pair: (0,0") (resp. ((t,4), (t',i'))) is active in
Dgyv wart. q(z,y) — EqO(z,y) (vesp. q(z¢,y:) —
EqV((xt, > <yt7 >)) if (07 0/) € q(DE,V) (resp. (t7t/)
€ Dgyv). We then define ap(D, E,V,T') as the set
of all (, p) such that pair p is active in Dg y w.r.t.
rule p € I'. Our proposed optimality criteria are
obtained by associating each solution (E,V) with
one of the following sets (using I" for I'o UT'y):

EQ(E,V)=FEUV

sp(E,V) ={(u,p) €ap(D,E,V.I') [p€ EUV}
AB(E,V) ={p[(p,p)€ap(D,E,V.I'),u g EUV}
VIO(E,V) = {(u,p) € ap(D, E,V.T') | p g EUV}



Observe that sp(E,V) refines EQ(F,V) by indi-
cating the supporting rules for merges. Likewise,
AB(E,V) gives only the active but absent pairs,
while VIO(E, V') records which soft rules the absent
pair violates. The resulting optimality criteria are:

e maxES/maxEC: maximize EQ(E, V)
e maxSS/maxSC: maximize sSp(E, V)
e minAS/minAC: minimize AB(E,V)
e minVS/minVC: minimize VIO(E, V)

where the final S (resp. C) indicates comparison us-
ing set inclusion (resp. set cardinality). For exam-
ple, a solution (E,V) is minVC-optimal if there is
no other solution (E’, V') such that vio(E", V') <
VIO(E, V). Note that maxES-optimal solutions cor-
respond to the maximal solutions of Definition
It can be shown that the optimality criteria give
rise to different sets of optimal solutions, except for
maxES and maxSS, which actually coincide. Thus,
there are overall seven distinct optimality criteria.

4 Complexity Results

In this section, we analyze the computational com-
plexity of the main decision problems associated
with the framework. Since the database size is typi-
cally order of magnitude larger than the other com-
ponents, we focus on the data complexity measure,
i.e. the complexity w.r.t. the size of the database D
(and also (E, V) for those problems that require it).
We start with the solution recognition problem
(REC): decide if a given (E, V') belongs to Sol(D, ¥).
To solve this problem, it is enough to verify that
Dgyv ET9UT) UA and that (E,V) is a candi-
date solution for (D,X). The latter can be done
by starting with the empty set of merges and then
repeatedly applying the rules in ¥ to check whether
some o € E UV can be added to the current set.

THEOREM 3. REC is P-complete.

By contrast, the problem of deciding whether there
exists a solution (EXISTENCE) is intractable.

THEOREM 4. EXISTENCE is NP-complete.

PROOF SKETCH. The upper bound is trivial: guess
(E,V) and check if it is a solution for (D, ¥).

The lower bound is by reduction from the 3CNF
problem. Consider ¢ = ¢; A ... A ¢, over the vari-
ables x1,...,2,, where ¢; = ¢;1 V {; 2V {;3. De-
note by x; ; the variable of ¢; ;, and set s; ; = t if
éi,j = T j and Sij = f if &7]‘ = Tq,j5- We encode gf)

with a database comprising the following facts:
{V(tg,, @) |1 <i<n}u
{Prec(tp,,z;, xiy1) | 1 <i < n}U
{Rs, 151,805 (e Tin, a2, wi3) | 1 <d <mju
{FV(ts,x1), LV (t;,2y), T (t1,1), F(to,0)}U
{Q(tq,,0), Q(tq,, 1), Ciltey, 1), Calte,, c2)}

For instance, a clause of the form ¢; = 2,V -z, VI,
is represented as Ry (tc,, %k, T, 2w). The fixed
ER specification Y3cnr has soft rules V(t1,z) A
Q(ta,y) N FV(ts,z) --» EqO(z,y), V(t1,x) A
Q(t2,y) A Prec(ts, zp, ) A Q(ta,zp) --» EqO(z, y),
and Cl(tl,ZL') AN Cg(tg,y) AN Q(tg, Z) AN LV(t4,Z> -
EqO(z,y). The first two allow variables to merge
with either 0 or 1. Once every variable has been as-
signed a truth value, the third rule merges c¢; and cs.
The DCs in ¥3cnr ensure the merges yield a proper
truth assignment (F(t1,y) A T'(t2,y) — L) not vi-
olating any clause (R (t1,y1,y2,y3) A F(t2,y1) A
T(ts,y2) A F(ts,y3) — L, and similarly for other
clause types). Finally, Cy(t1,y1) A Ca(t2,y2) A1 #
y2 — L requires ¢; and ¢y to be merged, which
means a truth assignment is generated. O

Another central problem is deciding whether
(E,V) € MaxSol(D,%¥) (MAXREC). The coNP
upper bound is easy (guess (E’,V’), check that
(E", V'Y € Sol(D,X) and EUV C E'UV’), and
a coNP lower bound can be obtained by slightly
extending the one for EXISTENCE. The basic
idea is to introduce a new fact C(t*,e,e’) and
new soft rule C(¢,z,y) — EqO(z,y). The first
soft rule is then replaced by V(t1,x) A Q(t2,y) A
FV(ts,x) A C(ts,2,2) --» EqO(z,y), allowing
1 to merge with either 0 or 1 (and enabling
such merges for later variables) only if e and
e/ have been previously merged. As a result,
(EqRel(0, Obj(D?)), EqRel(, Cells(D?))) is a maxi-
mal solution for (D?, ¥4onp) iff ¢ is unsatisfiable.

THEOREM 5. MAXREC is coNP-complete.

Other key tasks involve formal reasoning over
the maximal solutions of a database-specification
pair. We start with two tasks that enable a cred-
ulous form of reasoning: deciding whether (i) a
given merge « is such that o € (E,V) for some
(E,V) € MaxSol(D,Y) (PossMERGE) and (i7) a
given CQ ¢ and tuple c is such that ¢ € ¢(Dg v)
for some (E,V) € MaxSol(D, ¥) (PossANSs).

THEOREM 6. Both POSSMERGE and POSSANS
are NP-complete.

PROOF SKETCH. The upper bounds are based on
guessing (F,V) and then checking that (E,V) €



Sol(D, ¥) and @ € EUV (resp. ¢ € ¢(Dg,y)). Obvi-
ously, if « € (E, V) (resp. ¢ € ¢(Dg,v)) for (E,V) €
Sol(D, X), then o € (€,V) (resp. ¢ € ¢(Dg,y)) for
some (£,V) € MaxSol(D,¥) with EUV C EUV.
For the lower bounds, consider the specification ob-
tained from the one in the proof of Theorem [4] by
removing the last denial constraint. Then, (c1,c2)
is a possible merge (resp. (¢1) is a possible answer
to g(x) = Cy(x) A Ca(x)) iff ¢ is satisfiable. O

We now investigate a skeptical form of reason-
ing through the decision problems CERTMERGE and
CERTANS, defined as POSSMERGE and POSSANS,
respectively, but with the additional requirement
that a € (E,V) for all (E,V) € MaxSol(D,Y) in
the case of CERTMERGE, and that ¢ € ¢(Dg,y) for
all (E,V) € MaxSol(D, X) in the case of CERTANS.
This problem can be solved by guessing (E, V'), and
then checking (F, V) € MaxSol(D, ¥) and a ¢ EUV
(resp. ¢ € q(Dg,v)), which puts the problems in IT5.
The main difference with POSSMERGE and Pos-
SANS is that one needs to check that the guessed
pair is a mazimal solution, not just a solution.

THEOREM 7. Both CERTMERGE and CERTANS
are I15-complete.

All of our lower bounds hold already for fixed
ER specifications having only rules for objects, and,
moreover, they can be adapted to apply to ER spec-
ifications using only FDs as denial constraints.

We now consider the case of restricted specifica-
tions, i.e. ER specifications whose DCs do not use
inequality atoms. Such #-free DCs are widely used
in ontologies, e.g. to express class disjointness, and
are available in popular ontology languages such as
DL-Lite [19]. While the results in Theorems|3|and|[f]
apply already to restricted ER specifications, the
other tasks become easier under standard complex-
ity assumptions. Intuitively, this is because con-
straint violations are preserved under merges.

THEOREM 8. For restricted ER specifications,
EXISTENCE and MAXREC are P-complete, while
CERTMERGE and CERTANS are coNP-complete.

For the other optimality criteria discussed in Sec-
tion [3.4] we studied the complexity of recognizing
optimal solutions [57]. The next result shows that
this problem is coNP-complete for all the optimality
criteria, just as in the case of maxES (Theorem [5)).

THEOREM 9. For all defined optimality criteria,
recognition of optimal solutions is coNP-complete.

Interestingly, for restricted ER specifications,
while the problem is P-complete for the optimal-
ity criteria based on set-inclusion (as for maxES,

see Theorem , the problem remains intractable
for the optimality criteria based on set cardinality.

THEOREM 10. For restricted ER specifications,
recognition of optimal solutions is P-complete
(resp. coNP-complete) for all the optimality crite-
ria based on set inclusion (resp. set cardinality).

5 LACE Implementation

In order to explore the practical interest of LACE,
we have implemented the framework using answer
set programming (ASP), a well-studied paradigm
for declarative problem solving [43|. The suitability
of employing ASP for tackling data quality tasks
has been previously demonstrated by work on data
cleaning with (relational) MDs [4./5] and consistent
query answering [25]/45].

5.1 ASP Encoding of LACE specifications

Given an ER specification 3, the ASP encoding of ¥
is a program Ily; containing an ASP rule for each
(hard or soft) rule in . Predicates eqo and eqv are
used to store merges of objects and values respec-
tively, and additional rules are used to ensure that
eqo and eqv are equivalence relations.

Rather than providing the full encoding, which
requires introducing quite a lot of notation, we shall
describe the main ideas underlying the encoding. A
hard rule for objects will have head atom eqo(X,Y),
enforcing that X and Y are merged. A soft rule
for objects can be elegantly encoded using a choice
rule (in ASP parlance) whose head {eqo(X,Y)} al-
lows but does not require that eqo(X,Y’) is made
true when the rule body holds. Rules for values
are instead use head atom eqv(T,I,7T’,J) to en-
code merges of cells, again with choice rules used to
capture the semantics of soft rules for values.

The translation of LACE rule bodies into the cor-
responding ASP rule bodies is a bit more involved,
as we need to simulate the effect of evaluating the
rule body over the induced instance. This is ac-
complished by instantiating every variable position
with a distinct variable, then using adding eqo and
eqv to enforce that the required positions ‘join’ in
the induced database. The encoding of rule bodies
must also ensure that similarity atoms are evaluated
using the common set of values for the compared
variables (cf. Definition [3)).

As the following result shows, the stable models
of the ASP program capture LACE solutions:

THEOREM 11. For every database D and spec-
ification ¥ = (To,Ty,A): (E,V) € Sol(D,X)
iff E = {(a,b) | eqo(a,b) € M} and V =



{((t,3), (t',i")) | equ(t,i,t',i") € M} for a stable
model M of (s, D).

5.2 Similarity Computation

Differently from the original ASP encoding in [11],
similarity relations are implemented with a predi-
cate sim;(X,Y,.S), where X and Y are instantiated
with the constants to be assessed for similarity, and
S with a similarity score. This allows the same sim-
ilarity measure to be used in different rules with dif-
ferent thresholds (specified using comparison atoms,
e.g. S > 95, in the rule body). In the specifications
used in our evaluation, we employ similarity atoms
based upon Levenshtein distance for numerical con-
stants, Jaro-Winkler distance for short strings, and
TF-IDF cosine score for long textual values.

A key challenge is how to efficiently evaluate the
sim; atoms, since the input dataset does not contain
sim; facts, which must instead be computed via ex-
ternal functions (e.g., string similarity measures).
A naive approach is to precompute the set of all
facts sim;(c, d, s) where ¢ and d are compatible val-
ues and s = f;(c,d), with f; the function underlying
the relation sim;. Although this only needs polyno-
mially many function calls in |D|, it is prohibitively
costly on even moderately-sized databases.

This led us to explore a more sophisticated strat-
egy for similarity computation 56|, which exploits
the program structure to better identify which pairs
of facts need to be compared. Roughly speaking,
this is achieved by considering different simplifica-
tions of the original program, coupled with online
calls to the external functions. The empirical evalu-
ation conducted in [56] shows that this strategy can
achieve substantial improvements in runtime and
memory efficiency, especially on larger datasets.

5.3 ASPEN and ASPEN*

The systems ASPEN [56] and ASPEN" [57] imple-
ment the LACE framework, employing the ASP en-
coding described in Section and exploiting the
capabilities of the clingo ASP solver [36] to gen-
erate and reason about ER solutions. By utilizing
the diverse reasoning modes available in clingo,
ASPEN can produce one or more (maximal) solu-
tions as well as other relevant merge sets, like the
set of possible merges and an approximation of the
set of certain merges. Explainability is achieved
through integration with xclingo [18], which en-
ables the generation of proof trees that justify in-
dividual merges by explicitly tracing the rule appli-
cations that led to a merge being derived.
ASPEN" extends ASPEN’s functionality by in-
troducing support for local merges, thereby en-

abling context-specific value resolution in addition
to global merges. Furthermore, ASPEN' imple-
ments the set of optimality criteria described in Sec-
tion[3:4] allowing the selection of preferred solutions
according to various optimality criteria. This opti-
mization capability is realized through the asprin
framework |15L[16], which provides declarative pref-
erence handling within ASP.

5.4 Experiments
ASPEN and ASPEN' are publicly availabld)

and experimental results show strong performance
across real-world ER benchmarks and synthetic
data, each with ground truth merges. Both systems
have been evaluated against existing open-source
systems, Magellan and Jed AT [38l|48], that support
rule-based ER, which we take as our baselines.

Effectiveness and Scalability Across all datasets,
ASPEN and ASPENT achieved consistently higher
F1 scores than the baseline systems, with per-
formance gaps of up to 86% on multi-relational
datasets where traditional ER approaches perform
poorly. These quality gains, however, came with
a cost in computational efficiency: both baselines
were significantly faster than the ASP-based ones.
The scalability analysis indicates that runtime is
sensitive to several factors. Increasing the data size
or the duplicate ratio, or reducing the similarity
thresholds, leads to substantial slowdowns. In ex-
treme cases, these variations caused up to a 300-fold
increase in execution time. This reflects the higher
computational complexity of the ASP-based ap-
proach, particularly under parameter settings that
expand the search space of possible merges.

Impact of Local Merges With global semantics
alone, ASPEN programs often admit no solution
when all natural FDs were included in specifica-
tions, especially in noisy datasets. ASPEN", by
supporting local semantics, accommodated all FDs
and achieved higher-quality results, even outper-
forming ASPEN in cases where both could sat-
isfy the constraints. Overall, this analysis shows
that local semantics provides greater robustness
to data variability and constraint interactions, en-
abling more complete and accurate ER solutions.

Optimality Criteria On datasets with few null val-
ues and little variation in values, criteria that max-
imize the number of merges (maxE and maxS)
achieved the highest F1 scores because they focus
on coverage. On noisier datasets, criteria that min-
imize rule violations (minA and minV) performed

Shttps://github.com /zl-xiang/Aspen



better, as their emphasis on precision reduced in-
correct merges. In all settings, solutions based on
set inclusion were usually faster to compute, while
solutions based on the number of merges were often
closer to the gold standard. The improvement in
quality from using the latter often required signif-
icantly higher computation times, making the for-
mer more suitable when resources are limited.

6 Combining ER with Repairs

Real-world databases may suffer from multiple data
quality issues. Some constraint violations may re-
sult from the use of different constants for the same
entity, and thus may be resolved through merging
constants, but others may stem from the presence
of erroneous facts and can only be resolved by re-
pairing the data, i.e. removing or modifying facts. A
pipeline approach, applying ER and repairing meth-
ods in sequence, may miss useful synergies. For ex-
ample, by merging two constants, we may resolve an
FD violation without the need to delete facts, while
conversely, deleting incorrect facts may enable some
desirable merges. This suggests the interest of de-
veloping holistic approaches to jointly deduplicating
and repairing data, an idea which was been advo-
cated in [23]/34] but remains little explored.

These considerations motivated us to propose the
REPLACE framework [12|, an extension of LACE
that allows for both merge and fact deletion op-
erations. Fact deletions make it possible to obtain
meaningful solutions when Sol(D, ) = @, but also
to discover additional merges that were blocked due
to constraint violations. The REPLACE framework
employs the same form of specifications as LACE,
but redefines the notion of solution, which now takes
the fornﬂ (R, E,V), with E| V equivalence relations
as before and R is a set of facts to delete from D.

DEFINITION 6. Given a specification ¥ over S
and S-database D, we call (R, E, V) a REP-solution
for (D,%) if RC D and (E,V) € Sol(D\R, ¥).

Similarly to LACE, we naturally prefer solutions
that contain more merges. However, we also want
to retain as much information as possible, hence
should minimize fact deletions, as is done when
defining repairs. These two criteria may conflict,
as deleting more facts may enable more merges.
This lead us to consider three natural ways to com-
pare REP-solutions: give priority to maximizing

"As REPLACE [12] extends the original LAcE frame-
work [11], it only supports global merges. Definition
|§| adapts the notion of solution from [12]| to accommo-
date local merges. It can be verified that the complexity
results in |12] hold also for this modified definition.

merges (MER), give priority to minimizing dele-
tions (DEL), or adopt the Pareto principle and ac-
cord equal priority to both criteria (PAR). Using
X € {MER, DEL, PAR} for comparison, we obtain
the set Sol¥*" (D, %) of <x-optimal REP-solutions.

It is easily verified that we always have
Solyi (D, X) C Solgir (D, %) and Soler (D, %) C
Solp=P(D, X2), while the converse inclusions do not
hold in general. We further observe that (), E, V) €
SolpE(D, %) iff (B, E,V) € Solg(D,¥) iff
(E,V) € MaxSol(D,¥). Thus, maximal solutions
in LACE are special cases of <pg- and =<par-
optimal solutions (an analogous property does not
hold for =<pgr). REP-solutions can also be re-
lated to the subset repairs employed in consis-
tent query answering [3}/7,[20]. Indeed, if we con-
sider (D, ¥) with ¥ = (0,0, A), then Solr (D, %),
SolyEP(D, %2), and SolpEF(D,Y) coincide and con-
tain only solutions of the form (R, trivE, trivCells),
with trivE and trivCells the trivial equivalence re-
lations over Obj(D) and Cells(D). It is readily
verified that (R, trivE, trivCells) € Soli” (D, %) =
SolFEP(D, X)) = SolR2 (D, %) iff D\ R is a repair.

The complexity analysis of REPLACE carried out
in 12| reveals that in almost all cases, the addi-
tion of delete operations to LACE does not affect
the complexity of recognizing (maximal / optimal)
solutions or certain and possible answers.

7 Overview of Logic-Based ER Methods

As a foundational and multifaceted task in com-
puter science, entity resolution has been tackled us-
ing a variety of different approaches, including prob-
abilistic models, (deep) learning techniques, and
logical methods [21]. In this section, we provide a
brief overview of logic-based approaches to ER and
related problemsﬂ We will compare these works
by considering (i) which ER problem is tackled and
what constitutes a solution, (ii) what kind of rules
and/or constraints are employed, (iii) the nature
of the semantics (static vs. dynamic, local and/or
global merges), and (iv) the existence of an accom-
panying implementation.

Dedupalog |2| was the first logic-based framework
targeting collective ER. It employs soft and hard
datalog-style rules and also allows for rules with
negated heads, to indicate likely non-merges. Dedu-
palog allows for recursive rules, but due to the static
semantics, it is unclear how to extract a non-circular
derivation of produced merges. The semantics can
be characterized as global, as solutions in Dedu-

8 A detailed account of early logic-based approaches and
their precursors can be found in Chapter 4 of [29].



palog define equivalence relations over entity refer-
ences from designated relations. Solutions are re-
quired to satisfy all hard rules and should minimize
violations of soft rules. However, for efficiency rea-
sons, the Dedupalog system (not publicly available)
generates a single approximately optimal solution.
Matching dependencies (MDs) specify conditions
under which pairs of attribute values in database
facts must be matched [|27}[2932], i.e., made equal.
Formally, an MD is an expression of the form

Ri[X1] ~ Ry[Xa] — Ri[Vi] = Ry[Ya),

which states that if the projections of an Rj-fact
t; and an Rs-fact to onto attributes )?1 and )Z'g
are pairwise similar, then the Yj-value of ¢; and
the Ys-value of t5 must be made equal. Relational
MDs [4,/5] generalize MDs by allowing additional
atoms in the body, supporting collective scenarios.
(Relational) MDs are equipped with a dynamic se-
mantics: when the body condition is satisfied, val-
ues are (locally) updated to ensure satisfaction of
the head. In [8], this is formalized using a chase-
like procedure that repairs violations of MDs, us-
ing matching functions to determine the resulting
value when two values are matched (rather than
using the set of merged constants). Although (re-
lational) MDs can be viewed as hard constraints
(since they must be satisfied), the order in which
rules are applied affects the outcome, as value mod-
ifications may lead to multiple possible solutions.

More recently, entity-enhancing rules (REEs)
have been introduced [33|, which extend both rela-
tional MDs and (conditional) functional dependen-
cies by incorporating machine learning predicates
and attribute-value comparisons. In the context of
entity resolution, REEs focus on the global match-
ing of tuple IDs through a chase-like procedure,
which if successful, yields a unique updated data
instance in which all REEs are satisfied (REEs are
thus treated as hard rules). Although the frame-
work can infer (in)equalities among tuple cells, the
presence of multiple representations of a data value
is regarded as an error that must be resolved by
the end user. Aside from entity resolution, REEs
can also be used for other data quality tasks, like
conflict resolution and data imputation.

The recently proposed CERQ framework [26]
considers ER in the setting of knowledge bases
consisting of facts, tuple-generating dependen-
cies (tgds), and equality-generating dependencies
(egds). Intuitively, the egds act as hard rules for ob-
jects and values, and the tgds support (open-world)
inference of new facts. The chase-based semantics is
dynamic and supports both local and global merges,

where the notion of instance takes a very similar
form to our notion of induced database (having, in
particular, sets of values in value positions). In-
terestingly, although developed independently, the
semantics for the satisfaction of queries and rules
over instances with sets of constants shares the same
principle adopted in LACE. As the CERQ frame-
work does not consider soft rules and denial con-
straints, it is possible to define the notion of univer-
sal solution as the preferred output (which can be
used to support conjunctive query answering when
the chase terminates). Finally, we mention that the
CERQ framework does not have an implementation.

A declarative framework for entity linking (EL)
based upon link-to-source constraints was presented
in |17]. In contrast to ER, whose aim is to infer
which entities that correspond to the same real-
world object, this work is concerned with discov-
ering other kinds of binary relations linking pairs
of entities. As a result, link relations are not con-
strained to equivalence relations, and it is not ev-
ident how one can force relations to act as equiv-
alence relations to adapt the framework to handle
collective ER (in particular, recursive ER scenarios,
cf. discussion in [11]). The static semantics charac-
terizes a space of maximal solutions, from which
notions of certain and possible links are defined.

There have also been several efforts to develop
practical systems for ER based upon declarative
formalisms. Prominent examples include the open-
source systems Magellan [38] and JeDAT [48], which
address simpler ER settings that match tuples from
a pair of tables (or within a single table). Both
systems support syntactically simple rules, formu-
lated as single-pass conditions based on similarity
measures between attribute values of tuple pairs.
ERBlox [5] is a system for collective ER based
upon relational MDs. It represents one of the
earliest efforts to combine machine learning tech-
niques with declarative approaches to ER. In partic-
ular, ERBlox employs ML techniques to construct
a classifier that identifies blocks of duplicate can-
didates, over which MDs are subsequently applied
for entity resolution. More recently, building on the
REE framework, the industrial-scale data-cleaning
system Rock |6] has been developed to address a
range of data quality issues, including collective
ER. These systems address scalability challenges
through blocking strategies and/or parallelization
and offer further functionalities to simplify usage,
e.g. user interfaces, default settings, debugging, use
of external KBs, support for semi-structured or un-
structured data. They also showcase the interest of
combining ML and declarative approaches.



8 Perspectives

We have briefly surveyed recent developments in
logic-based entity resolution, as exemplified by the
LACE framework. Key foundational and concep-
tual advances include: a differentiated treatment
of object and value merges using global and local
semantics, the use of dynamic semantics to enable
justifiability in the presence of recursive rules, and
the consideration of a space of (optimal) solutions,
which can be explored using certain and possible
merges and query answers. Valuable insights have
also been gained from experimenting with imple-
mentations of logic-based ER, underscoring the im-
portance of dedicated optimisations and the inter-
est of combining logical and ML methods. Despite
these important advances, many interesting founda-
tional and practical questions remain to be tackled.
We mention a few items high on our agenda:

Representation of Query Answers One of the
original motivations for developing LACE and its
successor REPLACE was to be able to evaluate
queries w.r.t. a space of (REP-)solutions, in the
spirit of consistent query answering. Note however
that it is not at all obvious how best to present
query results in a way that makes clear which con-
stants have been merged and avoids returning dis-
tinct yet equivalent answer tuples. For example, if
we pose the query Jv.P(v,z,y) to a database con-
taining P(t, ¢1,c2) and P (¢, c3, c4), with (¢1, ¢3) and
(ca, cq) certain object merges, then we get four cer-
tain answers: (c1,¢2), (c1,c4), (c3,¢2), and (c3,¢q).
However, we would tempted to return instead a
single answer tuple consisting of sets of constants:
({c1,¢3},{ca,c4}). This idea motivated the notion
of most informative (certain or possible) answers
[12], but the definition only handles global merges
and lacks a practical algorithm.

Different Forms of Explanations The notions
of justification and proof trees that have been de-
fined for LACE [11,/56] can be used to explain to
users how a given merge was obtained in a given
solution. It would be interesting however to con-
sider additional forms of explanations that concern
the whole space of (maximal or optimal) solutions.
For example, how can we justify why a given merge
(or answer) is certain, or why a possible merge (or
answer) is not certain? Some first ideas for how to
formalize such explanations might be gleaned from
prior work on explaining query (non)answers under
repair-based semantics [10].

Integration with Ontologies It would also be rel-
evant to extend LACE to the setting of ontology-
based data access [51,/58], in which an ontology

is used to provide a convenient vocabulary for
query formulation and to specify domain knowl-
edge, which can be exploited when answering
queries. To the best of our knowledge, the only work
that has considered entity resolution in the context
of ontologies is the recent work on CERQ [26]. How-
ever, it is non-trivial to incorporate soft ER rules
and denial constraints into the latter framework.
Moreover, there are other interesting questions to
explore, such as how to accommodate mappings
that link the data to the ontology and which may in-
volve the creation of new entity-referring constants.

Implementation of Holistic Approaches We
plan to build upon ASPEN to develop an imple-
mentation of the REPLACE framework, also draw-
ing inspiration from existing ASP-based implemen-
tations of consistent query answering [25,45|. The
computation of certain answers to queries, which
has not yet been incorporated into ASPEN, is an
important functionality that will require care to im-
plement due to its higher complexity (I15).

Scalability While our experiments show that AS-
PEN can successfully handle some real-world ER
scenarios, scalability remains an issue. We plan to
explore the potential of employing specialized data
structures or custom procedures for handling equiv-
alence relations, as has been considered for Data-
log reasoners [46,/52]. As parallelization has been
successfully employed in some rule-based ER sys-
tems [24], another promising direction is developing
parallel algorithms, building on prior work in par-
allel Datalog reasoning |1,[50] and ASP solving [37].

Learning ER Specifications A major barrier to
adopting logic-based approaches is the difficulty of
obtaining accurate ER rules. Most existing work
on rule learning for ER targets single-pass match-
ing rules within one or two tables [39,}40,/53|, al-
though there has been some relevant recent re-
search on discovering entity-enhancing rules [30/31].
Moreover, the related questions of learning con-
junctive queries [14,[55] and mining database con-
straints [22}/44149] have also been extensively inves-
tigated. In addition to learning ER specifications,
it is also interesting to continue to explore the use of
machine-learning methods for tuning specifications
(e.g. setting the score thresholds for similarity rela-
tions) and for obtaining more informative similarity
measures (cf. use of ML predicates in [24]).
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