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APOE stratified genome-wide association studies provide novel 

insights into the genetic etiology of Alzheimers’s disease. 
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Among the more than 90 identified genetic risk loci for late-onset Alzheimer’s disease (AD) and 

related dementias, the apolipoprotein E gene (APOE) ɛ2/ɛ3/ɛ4 polymorphism remains the 

longstanding benchmark for genetic disease risk with a consistently large effect across studies1-10. 

Despite this massive signal, the exact mechanisms for how ɛ4 increases and for how ɛ2 decreases 

dementia risk is not well-understood. Importantly, recent trials of anti-amyloid therapies suggest 

less efficacy and higher risks of severe side effects in ε4 carriers11-13, hampering the treatment of 

those with the highest unmet need. To improve our understanding of the genetic architecture of AD 

in the context of its main genetic driver, we performed genome-wide association studies (GWASs) 

stratified by ε4 and ε2 carrier status. Such insights may help to understand and overcome side 

effects, to impact clinical trial enrolment strategies, and to create the scientific basis for targeted 

mechanism-driven therapies in neurodegenerative diseases.  

(Introductory paragraph wordcount: 149 (max 150 words)) 
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The present work is the largest meta-analysis GWAS attempt to provide the most informative 

overview of the genetics of AD according to APOE ɛ2/ɛ3/ɛ4 stratification, bringing together 

European, Asian, Asian-American, African-American, and admixed American ancestry cohorts 

based on clinically diagnosed AD. The analysis strategy and included consortia and cohorts are 

described in Figure 1. Individuals were grouped in ɛ22+ε32, ε33 and ε44+ε43 strata to maximize 

statistical power and individuals with the ε42 genotype were excluded (Supplementary Tables 1-2). 

In the ɛ22+ε32 stratum, the meta-analysis was based on 2,734 AD cases, 71,167 controls and 

13,570,193 variants (Supplementary Table 3, Supplementary Figure 1), and no signals reached a 

genome-wide significance level of <5x10-8 (Supplementary Figure 2). In the ε33 stratum, the meta-

analysis was based on 24,033 AD cases, 363,161 controls and 17,127,662 variants (Supplementary 

Table 4, Supplementary Figure 1). Finally, in the ε44+ε43 stratum, the meta-analysis was based on 

29,122 AD cases, 164,206 controls and 14,672,059 variants (Supplementary Table 5, 

Supplementary Figure 1; Supplementary Tables 6-7 and Supplementary Figure 3 for substrata ε43 

and ε44).  

In total, 28 loci reached a genome-wide significance level in strata ε33 or ε44+ε33 only or in 

both (Figure 2, Table 1, Supplementary Figures 4-28). For the ten loci found in both strata, they are 

well known genetic risk loci associated with AD: CR1, BIN1, HLA, TREM2, PILRA, CLU, 

MS4A64, PICALM, APH1B, ABCA7. Nine loci were exclusively observed in the ε44+ε43 stratum, 5 

are known AD loci: SORL1, ADAM10, ACE, LILRA5, CASS4 and 4 loci are novel AD loci: 

HP1BP3, PTPRC, FAT4, DDHD1. Notably, DDHD1 is close to the FERMT2 locus, which is 

recognized as a genetic risk factor for AD. However, using conditional testing, we found that the 

DDHD1 signal is independent of FERMT2 (Figure 2, Supplementary Table 8). Finally, among the 9 

loci only reaching genome wide significance level in the ε33 stratum, 6 are known as AD risk loci: 

TMEM106B, SHARPIN, SPI1, GRN, MAPT, RBCK1, and 3 loci are novel: SCL50A1, NPAS3, 
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CHST9.  Of note, we also performed a meta-analysis restricted to the ε44 carriers. Only one well-

established locus (BIN1) was observed in the ε44 stratum including 5,814 AD cases, 14,415 

controls and 9,723,486 variants (Supplementary Table 7, Supplementary Figure 3). Forest plots 

across cohorts and strata are shown in Supplementary Figures 29-60. In addition, we applied 

clumping procedures and conditional testing to define potential independent signals within each 

locus detected in the ε33 and ε44+ε43 strata. This approach detected 5 loci presenting two 

independent signals (HLA-DRA, TREM2, PILRA, CLU, APH1B, Supplementary Table 8), details 

are specified in legend to Table 1. 

The present meta-analyses do not allow us to fully determine whether there is a significant 

difference between the signals observed in the ε33 and ε44+ε43 strata due to sample and statistical 

power variations. To address this issue, we performed both an additive and a dominant test of 

interaction between autosomal variants and the APOE strata using summary statistics from the 

different APOE strata (Table 2). When testing for a dominant APOE ε4 interaction (meta-analysis 

of differences between ε33 and ε44+ε43 in each cohort) we found 6 significant interactions, 3 

signals where the effect sizes were attenuated with the presence of an ε4 allele (SLC50A1, 

TMEM106B, NPAS3) (Table 2, Figure 3) and 3 signals where the effect sizes were augmented with 

the presence of an ε4 allele (HLA-DRA -1, CLU, DDHD1) (Table 2, Figure 4). Forrest plots of the 

effect differences across cohorts are shown in Supplementary Figures 61-62. In an additive mixed-

effect model we additionally identified SHARPIN as interacting with APOE ε4, where the effect 

size was attenuated with an increasing number of ε4 alleles (Table 2, Figure 3). Interaction 

sensitivity analyses are shown in Supplementary Table 9. 

We evaluated the 33 regions of interest in additional cohorts of East Asian (EAS) ancestry, 

representing Japanese (JADNI, CL, NP; EAS-JPN), Chinese (HKS; EAS-CHN), and Korean 

(GARD; EAS-KOR) populations, as well as in Asian American (ADSP-AAC), African American 
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(ADSP-AFR), and in admixed American (ADSP-AMR) multi-ancestry populations (Supplementary 

Table 10). Despite several limitations, i.e. difference in linkage structure between cohorts of 

different ancestries, limitation in statistical power and lead variants being different from the causal 

variants, similar signals could be observed for several variants (Supplementary Figures 63-93). The 

meta-analyzed results for HLA-DRA-1 and DDHD1 were similar in the East Asian cohorts 

compared with the European cohorts (Figure 5).  

For lead variant rs10131116 in DDHD1 a significant eQTL associated with decreased 

DDHD1 expression was observed in the ROSMAP dorsolateral prefrontal cortex (β=-0.098, eQTL 

p=1.67×10-5, n=560)6 and in the GTEx (v10) brain-putamen (basal-ganglia) (β=-0.23, eQTL 

p=3.6×10-5, n=253)14. We tested whether rs10131116 was associated with lower DDHD1 

expression according to APOE strata, and nominal p-values were 9×10-4 for ε33 and 7×10-3 for 

ε44+ε43 (Supplementary Table 11, Supplementary Figure 94). Further, a gene-based analysis 

confirmed several of the significant loci from the main stratified GWAS analysis (Figure 6). Also, 

in the ε44+ε43 stratum the known AD genes EPHA1, TCPN1 and BLNK and in the ε33 stratum the 

SLC24A4, INPP5D and SH2B2 (novel but close to the known loci SPDYE3/PILRA/TMEM225B) 

reached significance. ACE and SNX1 were significant in both the ε44+ε43 and ε33 strata, whereas 

PRAMEF1 was significant in the ε44 stratum and GFRA1 in the ε22 stratum (Figure 6, 

Supplementary Tables 12-15). Next, we performed a pathway enrichment analysis on the APOE 

stratified GWAS results from the eight European studies (Supplementary Tables 16 and 17). After 

correction for multiple testing in each stratum (q<0.05), 12 and 33 pathways reached statistical 

significance for the APOE ε33 and ε44+ε43 strata, respectively. Overall, pathways related to the 

complement and immune systems were overrepresented in the APOE ε44+ε44 stratum compared to 

the ε33 stratum, whereas amyloid and neurofibrillary tangle biology was highlighted in both strata.  

No pathway analysis reached statistical significance for the ε22+ε32 nor for the ε43 stratum. Lastly, 
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we performed a Summary-data-based Mendelian Randomization to test for potential effects of 

expression on AD that are shared by a causal variant for both APOE ε4 carriers (ε44+ε43) and non-

carriers (ε33). Four genes passed our significance threshold: STAG3 (PILRA locus) in the ε44+ε43 

stratum (Cortex) and LRRC37A, ARL17B and LRRC37A2 (MAPT locus) in the ε33 stratum 

(multiple brain regions) (Supplementary Table 18). 
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Discussion 

By conducting a comprehensive series of APOE stratified GWAS analyses, we identified a number 

of biologically plausible genomic signals that modify the effect of the strongest genetic AD risk 

variant to date - the APOE ε4 allele. Our findings may have substantial impact on how we use 

genetics in designing randomized clinical trials of future AD medicines and may fuel the 

development of novel targeted mechanism-driven therapies in neurodegenerative diseases.   

 

New genetic signals 

HP1BP3, SLC50A1, PTPRC, FAT4, NPAS3, DDHD1, and CHST9 from the variant based GWAS 

analysis and PRAMEF1 and GFRA1 from the gene-based analysis are novel genomic signals for 

AD risk, only appearing when stratified by APOE carrier status, and supported by significant 

interaction tests for SLC50A1, NPASS, and DDHD1, discussed in detail in paragraphs below. 

HP1BP3 encodes heterochromatin protein 1 binding protein 3 and is a regulator of cell cycle 

progression15. PTPRC encodes protein tyrosine phosphatase receptor type C also known as CD45 

that increasingly is understood to play a role in the innate immune system16,17. FAT4 encodes FAT 

atypical cadherin 4 and is a member of the cadherin superfamily, which represents a major group of 

cell-cell adhesion receptors, contributing to embryonic neuronal morphogenesis18. CHST9 encodes 

carbohydrate sulfotransferase 9, an enzyme that transfers sulphate to the 4-position of GalNAc. 

GalNAc4ST-1 and -2 transcripts are highly expressed in the pituitary gland and trachea19,20.  

PRAMEF1 encodes a protein PRAME family member 1 and has been associated with cancer21. 

GFRA1 encodes for GDNF family receptor alpha-1 which is a receptor for both Glial cell line-

derived neurotrophic factor (GDNF) and neurturin (NTN); both potent neurotrophic factors and key 

regulators of neuron survival and differentiation22. GDNF family receptor alpha-1 has been linked 

to the restoration of AD neuron survival23. 
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Genetic variants interacting significantly with APOE carrier status with attenuated effect size in 

ε4 carriers 

SLC50A1 is a novel AD signal that only emerges in the APOE ε33 stratum, and encodes solute 

carrier family 50 member 1, which is a sugar transporter for intercellular exchange and nutrition of 

pathogens24. The previously identified signal, TMEM106B 6 encodes the lysosomal type II 

transmembrane protein 106B, and residues of the protein have recently been shown to be 

amyloidogenic in an age dependent manner and in several neurodegenerative diseases including AD 

25. The presently identified lead hit is in the regulatory 3’UTR part of the gene and is in full LD (r2 

=0.99) with the previously reported rs1990622 variant – a variant that is associated with reduced 

expression of TMEM106B26,27 and with earlier age-at-onset of frontotemporal lobar degeneration in 

GRN mutation carriers. Both the TMEM106B and GRN signals are sufficiently strong to reach 

genome-wide significance level in our previous overall GWAS6, however the present APOE 

stratified analyses illustrate that these signals only manifest in the APOE ε33 context, although only 

TMEM106B reached statistical significance in the interaction test. Interestingly, TMEM106B and 

GRN were recently associated only with non-AD pathology in a comprehensive GWAS of multiple 

neuropathology endophenotypes of dementia28. Further aspects of pathophysiology are discussed in 

the Supplementary Note. NPAS3 encodes a neuronal transcription factor implicated in several 

neuropsychiatric conditions29 and is reported to have a regulatory function on the expression of 

reelin30. In adults, reelin binds to the ApoE-Receptor2 (apoER2) and the very low-density 

lipoprotein receptor (VLDLR) modulating AMPA and NMDA activity in the post-synaptic region, 

affecting APP processing and tau hyperphosphorylation, and competes with apoE in receptor 

binding31. Further, SHARPIN variants have been shown to affect NF-kB signalling in the nervous 

system, a central mediator of inflammatory and immune responses, and apoE is suggested to 
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interact with NF-kB signalling32,33. Additionally, we observed consistent directionality in all 

European cohorts, even though the interaction test did not reach statistical significance, suggesting 

that the effect of MAPT is attenuated in an ε4 context in agreement with a previous report34. Finally, 

Forrest plots of the effect differences for the significant interactions show similar directionality 

across cohorts.  

 

Genetic variants interacting significantly with APOE carrier status with augmented effect size in 

ε4 carriers 

The HLA region on chromosome 6 is highly complex. The present data add an extra layer to this 

complexity since we observed that one HLA locus associates with increased risk of AD in ε4 

carriers, but not in ε3 carriers, while another independent HLA locus associates with increased risk 

of AD in both strata. Further, in the present study we confirmed CLU as one of the strongest 

genomic signals for AD, and documented for the first time that this signal was substantially 

stronger in APOE ε4 carriers compared to ε33 carriers. We also identified a new independent signal 

within the FERMT2 locus, where the nearest gene is DDHD1 (distance 241,028 bp) which encodes 

a member of the Phospholipase A1 family important in lipid and phospholipid metabolism22. The 

fact that the rs10131116 DDHD1 variant in the present GWAS was associated with a decreased risk 

of AD specifically in APOE ε4 carriers together with the recent identification of the rs10131116 as 

an eQTL associated with decreased DDHD1 gene expression6,35, highlights DDHD1 as an 

interesting focus for drug discovery. DDHD1 is also in the same biological pathway as a genome-

wide significant known signal (PLCG2)6. Importantly, the HLA and DDHD1 signals were similar in 

European and Asian cohorts, despite differences in statistical power. Finally, Forest plots of the 

effect differences also here show similar directionality across cohorts. 
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Conclusion 

By performing the to date largest APOE stratified GWAS, we have identified novel as well as well-

established AD loci, where the effect is manifested specifically in an APOE ε4 carrier or in an ε33 

genotype context. These findings are supported by pathway analysis, highlighting distinct APOE 

carrier status dependent biological mechanisms. These insights have the potential to change our 

current understanding of the pathogenesis of AD and may have substantial impact on how we use 

genetics in designing future randomized clinical trials of emerging AD medicines.  

 

(Main text wordcount: 2000 (max 2000)) 
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Methods 
 

Populations 

We used the following European ancestry consortia/biobanks: European Alzheimer's Disease & 

Dementia BioBank (EADB), FinnGen, European Alzheimer's Disease Initiative (EADI), Bonn, 

Genome Research at Fundacio ACE (Gr@CE), Genetic and Environmental Risk in Alzheimer's 

Disease (GERAD), Alzheimer’s Disease Sequencing Project (ADSP), and UK Biobank (UKB). 

Additionally, we evaluated 33 regions of interest in cohorts of East Asian (EAS) ancestry, 

representing Japanese (JADNI, CL, NP; EAS-JPN), Chinese (HKS; EAS-CHN), and Korean 

(GARD; EAS-KOR) populations, as well as in Asian American (ADSP-AAC), African American 

(ADSP-AFR), and in native admixed American (ADSP-AMR) multi-ancestry populations. APOE 

genotype was determined by the imputed data using rs7412 and rs429358. Where directly 

genotyped data was available, samples with a mismatch between the imputed and genotyped APOE 

genotype were excluded. FinnGen R11 was used, excluding samples from the ADGEN study as 

they are embedded in the EADB. AD cases were defined by diagnosis or by use of AD medication 

(ATC code: N06D). Individuals diagnosed with other forms of dementia were excluded from the 

controls. In UKB only those defined as white British were included, and AD was defined as being 

diagnosed with AD from electronic medical records (EMR). No information regarding proxies was 

used in the AD definition or as exclusion criteria. In all datasets, controls younger than 60 years 

were excluded to better balance the age distributions in the cases and controls and to avoid the 

inclusion of young controls. All cases were kept. Written informed consent was obtained from study 

participants or, for those with substantial cognitive impairment, a caregiver, legal guardian, or other 

proxy. Study protocols for all cohorts were reviewed and approved by the appropriate institutional 

review boards. 
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Quality control and imputation 

A standard quality control was performed on the samples and variants in all datasets. The samples 

were imputed using the TOPMed except for ADSP and FinnGen (Supplementary Table 2). FinnGen 

was imputed with a Finnish whole-genome sequencing (WGS) reference panel (SiSu v4). Ancestry 

estimates and QC for UKB and ADSP were done using GenoTools36  

 

GWAS analysis 

Test of the association between clinical AD status and autosomal genetic variants were conducted 

separately in each cohort by means of logistic regression or mixed models using an additive genetic 

model. Three software implementations were used, SNPTEST 2.5.637, PLINK238 and REGENIE39 

and adjusted for sex, age, PCs and genotyping centers/batches when necessary (Supplementary 

Table 2). Sensitivity analyses were carried out in some datasets to check that adjusting for age did 

not introduce spurious findings. In SNPTEST we analyzed the genotype probabilities using the 

newml method. In PLINK2 and REGENIE dosages were used combined with the glm regression 

(Firth regression if failed convergence) in PLINK2 and Firth regression in REGENIE. For each 

dataset we filtered out variants with (a) missing data on the effect size, standard error or p-value, (b) 

an absolute effect above 5, (c) an imputation quality below 0.3, and (d) variants not fulfilling 

2×min(Ncases,Ncontrols)×MAF×info > 5 (an unbalanced MAC-info score), where info is imputation 

quality. A fixed-effect meta-analysis using an inverse-variance weighted as implemented in 

METAL v2020-05-05 was performed combining the results from each dataset. Variants were 

excluded if a heterogeneity p-value was below 5×10-8 or if variants did not pass quality control in at 

least two of the three major datasets (EADB-TOPMed, FinnGen, UKB). The genomic inflation 

factor was computed with a median approach after exclusion of the APOE region (44-46 Mb on 
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chromosome 19 in GRCh38) both for variants with MAF>1% and in the entire dataset. Manhattan 

plots were made using topr package40 (v.2.0.2) in R (v. 4.3.3). 

 

Definition of loci 

Around each variant with a p-value below 5×10-8, a region of ±500kb was defined per fixed-effect 

meta-analysis. We assumed the individual stratified GWASs as separate families of analyses when 

setting the p-value threshold. Most of the variants will be highly correlated across the strata except 

for those variants that interact with the APOE genotype which is expected to be a small minority of 

the total tested variants. Hence, if one was to consider all GWAS tests as belonging to the same 

family it would lead to a large increase in risk of Type II errors without much gain in controlling for 

Type I errors. We used the PLINK2 clumping procedure to define independent hits in each region. 

This procedure is iterative, starting with the variant with the lowest p-value in the respective region 

(the lead SNP). All variants within loci and in linkage disequilibrium (LD) with the lead variant (r2 

higher that 0.01) are assigned to the clump belonging to the lead SNP. If any variant with a p-value 

below 5x10-8 is unassigned to a clump in the respective region, the variant with the lowest p-value 

is found among the remaining variants and the clumping is repeated until all variants have been 

assigned a clump. LD in the EADB TOPMed imputed dataset was computed using high quality 

imputed dosages (imputation info>0.8). The clumping procedure was run in both the ε44+ε43 and 

ε33 GWAS results and the results for the respective loci were compared. Loci plots were generated 

using locuszoomr (v. 0.3.5) in R (v. 4.3.3). Forest plots of variant effects across APOE strata were 

generated using forestplotter (v. 1.1.2) in R (v. 4.3.3). The independence of several signals within a 

locus was tested by SNPTEST conditional analysis in the EADB TOPMed dataset. 

 

Interaction tests in APOE strata 
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Two different tests of interaction between autosomal variants and the APOE strata were performed 

using summary statistics results from the different APOE strata. P-value threshold for significance 

was determined using a Bonferroni correction for 33 regions of interest (including the 10 loci in 

common in both strata, the 9 loci found in each stratum and the 5 additional signals found in 5 of 

the 28 loci; p<0.05/33 regions of interest=0.0015). The first test analysed the effect difference 

between the ε44+ε43 and ε33 APOE strata. The effect difference was calculated in each cohort 

separately (∆𝛽𝑖 = 𝛽𝑖,𝜀44+𝜀43 − 𝛽𝑖,𝜀33 , i is the cohort, β is the autosomal effect estimated in the 

stratified GWASs), with the SE of the effect difference calculated as the square root of sum of 

squares of SE for the effects (𝑆𝐸∆𝛽𝑖 = √𝑆𝐸𝑖,𝜀44+𝜀43
2 + 𝑆𝐸𝑖,𝜀33

2 ). The effect differences were 

combined across studies in a fixed effect meta-analysis with an inverse-variance weighted approach 

(METAL v2020-05-05 software). The test was referred to as the dominant test because it tests if the 

presence of an ε4-allele changes the effect of the autosomal variant (independent of number of ε4-

alleles). Forest plots for the calculated effect difference in each cohort was provided to access the 

robustness of the interaction across the cohorts. The second test was a fixed effect model estimating 

the effect from the number of ε4 alleles: 𝛽𝑖𝑗 = 𝛾0 + 𝛾𝜀4𝑥𝑖𝑗 + 𝛾𝑐𝑜ℎ𝑜𝑟𝑡𝐶𝑖𝑗 + 𝜀𝑖𝑗 , where i is the cohort, 

j is the strata (ε33, ε43, ε44), βij is the autosomal effect, xij is the number of ε4-alleles (0,1,2), Cij is 

the cohort, ɣ0 is the intercept, ɣε4 is the effect of one ε4 allele, ɣcohort is the cohort effect and εij the 

error term. The second model was referred to as the additive model and was estimated using R 

(v.4.3.3) and Metafor package (v4.6.0).  

 We performed mixed effect sensitivity interaction models to test if the interaction results 

were prone to between-strata relatedness bias, which could be a potential bias in the FinnGen 

cohort. The models were specified as following. Dominant mixed effect model: 𝛽𝑖𝑘 = 𝛾0 + 𝛾𝑘𝑥𝑖𝑘 +

𝑢𝑖 + 𝜀𝑖𝑘 , where i is the cohort, k is the strata (ε33, ε44+ε43)  xik is the strata (ε33, ε44+ε43, 

categorical), ɣk is the strata effect (ɣε43+ε44 is the reference) and ui is the random effect. Additive 
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mixed model: 𝛽𝑖𝑗 = 𝛾0 + 𝛾𝜀4𝑥𝑖𝑗 + 𝑢𝑖 + 𝜀𝑖𝑗 , with the same notation as above. For the calculation of 

effect difference both the ε33 and ε44+ε43 effects should be available for a cohort to be included in 

the analysis. In the other models we included all available data, e.g. the ε44 GWAS in the Bonn 

cohort was not performed due to power, but the data from the Bonn ε33, ε43 and ε44+ε43 GWASs 

were included if the SNPs passed QC. 

 

Pathway analysis 

Pathway analyses were performed on each meta-analysis stratum result separately using FUMA 

v1.6.141. As requested by FUMA, all variants were annotated with an rsID using VEP release 112 

and then lifted to the GRCh37 assembly using Picard LiftoverVcf tool (v3.1.1)42. Variants having 

no rsID or failing the lift to the GRCh37 assembly were removed from the analysis. Remaining 

variants were then uploaded to FUMA and the pathway analysis was performed by MAGMA v1.08 

43 using two different windows to assign a variant to a gene: 0kb (main analysis) and a window of 

35kb upstream and 10kb downstream (second analysis). To account for multiple testing, we 

computed a false discovery rate (FDR, Benjamini-Hochberg) based on the number of genes 

included in the analysis. Pathways having a q-value<0.05 in either of the two windows were 

considered significant. 

 

eQTL analysis 

We performed an APOE stratified cis-eQTL mapping analysis (APOE ε33 (n=342) and APOE 

ε44+ε43 (n=130)) in the ROSMAP dorsolateral prefrontal cortex (DLPFC; n=560) cohort to 

investigate association of the lead variant in the DDHD1 locus (rs10131116) with the RNA 

expression of nearby genes in a 1 Mb window around the variant, following the methodology 

described as before6. For the APOE stratified cis-eQTL mapping, the genetic principal components 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 9, 2025. ; https://doi.org/10.1101/2025.05.07.25327065doi: medRxiv preprint 

https://doi.org/10.1101/2025.05.07.25327065
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

21 
 

(gPCs) and the gene expression Probabilistic Estimation of Expression Residuals (PEER) factors 

were calculated within the respective strata separately; and sex, first 3 gPCs, and PEER factors (first 

45 for APOE ε33 and first 15 for APOE ε44+ε43) were included as covariates. 

 

Summary data-based Mendelian Randomization 

Summary data-based Mendelian Randomization (SMR) was performed using the SMR software 

developed and maintained by the Yang Lab, with default parameters44,45. We used cis-eQTL data 

from 5 of the 7 regions in the MetaBrain Consortium dataset (cerebellum, cortex, basal ganglia, 

hippocampus, and spinal cord)46. We applied a significance threshold of pSMR_multi <6.12E-06, 

which corresponds to the Bonferroni-corrected value at α = 0.05 for 8,166 unique genes tested 

across all regions. Additionally, we filtered at a HEIDI p-value threshold of pHEIDI >0.01 to 

remove associations with inferred pleiotropy and only kept results where the number of SNPs 

included in the HEIDI tests was greater than 3 (nsnp_HEIDI >3). 
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Data availability 

Summary statistics will be made available upon publication through the European Bioinformatics 

Institute GWAS Catalog (https://www.ebi.ac.uk/gwas/). 

 

Code availability 

We used publicly available software for all analyses, referenced in the Methods section. 
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Table 1 

        APOE ε33 APOE ε44+ε43 

topmed_id a Chromosome Position b Ref Eff Rsid c Loci d Gene d EAF e OR (95% CI) f P-value g I2 h EAF e OR (95% CI) f P-value g I2 h 

chr1:20745474:C:T 1 20745474 C T rs2274119 HP1BP3 HP1BP3 0.072 1.02 (0.97-1.07) 0.402 0 0.072 1.15 (1.10-1.21) 1.33e-08 0 

chr1:155135691:G:A 1 155135691 G A rs12726330 SLC50A1 SLC50A1 0.038 1.23 (1.14-1.31) 1.09e-08 0 0.038 1.00 (0.93-1.07) 0.937 10.3 

chr1:198710886:G:A 1 198710886 G A rs12733073 PTPRC PTPRC 0.010 1.15 (1.02-1.30) 0.0272 0 0.010 1.46 (1.29-1.65) 1.63e-09 38.1 

chr1:207577223:T:C 1 207577223 T C rs679515 CR1 CR1 0.77 0.90 (0.88-0.93) 1.98e-11 42.0 0.70 0.87 (0.84-0.90) 1.44e-19 55.2 

chr2:127135234:C:T 2 127135234 C T rs6733839 BIN1 BIN1 0.38 1.14 (1.11-1.16) 1.22e-24 69.6 0.38 1.20 (1.17-1.23) 9.88e-46 58.3 

chr4:125059887:G:A 4 125059887 G A rs182938476 FAT4 FAT4 0.0021 1.34 (0.91-1.98) 0.136 0 0.0017 2.54 (1.83-3.54) 3.24e-08 10.9 

chr6:32411770:C:T 6 32411770 C T rs17208902 HLA-DRA i HLA-DRA -1 0.25 1.03 (1.00-1.06) 0.0409 0 0.26 1.11 (1.08-1.14) 4.82e-13 10.2 

chr6:32464090:G:T 6 32464090 G T rs9268888 HLA-DRA i HLA-DRA -2 0.54 0.93 (0.91-0.96) 4.57e-09 0 0.54 0.94 (0.92-0.96) 7.60e-07 54.3 

chr6:41161469:C:T 6 41161469 C T rs143332484 TREM2 i TREM2 -1 0.011 1.29 (1.16-1.44) 3.27e-06 15.9 0.011 1.43 (1.27-1.62) 9.11e-09 7.4 

chr6:41161514:C:T 6 41161514 C T rs75932628 TREM2 i TREM2 -2 0.0029 2.78 (2.12-3.66) 2.37e-13 0 0.0032 2.18 (1.66-2.85) 1.30e-08 42.2 

chr7:12242825:T:C 7 12242825 T C rs7805419 TMEM106B TMEM106B 0.38 0.91 (0.89-0.93) 4.14e-15 22.7 0.37 0.97 (0.94-0.99) 0.00898 46.4 

chr7:99590966:A:T 7 99590966 A T rs10257273 PILRA j TMEM225B 0.19 1.04 (1.01-1.07) 0.00549 18.3 0.19 1.09 (1.06-1.12) 4.99e-08 34.2 

chr7:100374211:A:G 7 100374211 A G rs1859788 PILRA j PILRA 0.65 1.07 (1.05-1.10) 3.00e-08 0 0.65 1.08 (1.06-1.11) 2.23e-09 39.2 

chr7:100386466:T:C 7 100386466 T C rs2906657 PILRA j PILRA 0.30 0.94 (0.91-0.96) 4.71e-07 0 0.30 0.92 (0.89-0.94) 3.39e-10 44.1 

chr8:27362470:C:T 8 27362470 C T rs73223431 CLU k PTK2B 0.37 1.06 (1.04-1.09) 7.41e-07 43.8 0.37 1.10 (1.07-1.13) 4.30e-14 0 

chr8:27610986:C:A 8 27610986 C A rs867230 CLU k CLU 0.57 1.08 (1.06-1.11) 5.32e-11 21.9 0.57 1.15 (1.12-1.18) 6.21e-27 0 

chr8:144103704:G:A 8 144103704 G A rs34173062 SHARPIN SHARPIN 0.075 1.19 (1.14-1.25) 7.77e-14 4.7 0.070 1.08 (1.02-1.14) 0.00462 20.2 
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        APOE ε33 APOE ε44+ε43 

topmed_id a Chromosome Position b Ref Eff Rsid c Loci d Gene d EAF e OR (95% CI) f P-value g I2 h EAF e OR (95% CI) f P-value g I2 h 

chr11:47358789:G:T 11 47358789 G T rs3740688 SPI1 SPI1 0.53 1.07 (1.04-1.09) 4.83e-08 0 0.53 1.04 (1.02-1.07) 0.00152 39.1 

chr11:60173126:T:A 11 60173126 T A rs7232 MS4A6A MS4A6A 0.34 0.91 (0.89-0.93) 7.67e-14 0 0.33 0.89 (0.86-0.91) 2.62e-19 44.9 

chr11:86113817:A:G 11 86113817 A G rs659023 PICALM PICALM 0.60 1.07 (1.04-1.10) 4.03e-08 43.8 0.58 1.11 (1.09-1.14) 2.27e-16 11.6 

chr11:121564878:T:C 11 121564878 T C rs11218343 SORL1 SORL1 0.034 0.89 (0.83-0.95) 0.000247 49.6 0.032 0.81 (0.75-0.87) 5.60e-09 0 

chr14:33428905:G:C 14 33428905 G C rs187023552 NPAS3 NPAS3 0.016 1.42 (1.26-1.61) 1.04e-08 0 0.015 0.98 (0.86-1.11) 0.722 82.6 

chr14:53394351:T:C 14 53394351 T C rs10131116 FERMT2 DDHD1 0.37 1.02 (1.00-1.05) 0.0416 43.0 0.37 0.93 (0.90-0.95) 6.61e-09 0 

chr15:58790588:T:G 15 58790588 T G rs347116 ADAM10 ADAM10 0.39 0.96 (0.94-0.98) 0.000904 0 0.40 0.93 (0.90-0.95) 1.11e-08 0 

chr15:63279621:C:T 15 63279621 C T rs75763893 APH1B k APH1B 0.13 1.12 (1.08-1.15) 2.22e-10 40.5 0.13 1.14 (1.10-1.18) 3.87e-12 32.6 

chr15:63407216:C:T 15 63407216 C T rs181364771 APH1B k LINC02568 0.028 1.27 (1.18-1.37) 1.34e-09 30 0.029 1.18 (1.09-1.28) 7.69e-05 21.8 

chr17:44352876:C:T 17 44352876 C T rs5848 GRN GRN 0.32 1.09 (1.07-1.12) 1.74e-12 0 0.32 1.05 (1.03-1.08) 0.000124 0 

chr17:46111701:A:G 17 46111701 A G rs7225002 MAPT MAPT H2 0.38 0.93 (0.91-0.95) 4.88e-10 36.4 0.39 0.97 (0.95-1.00) 0.0320 31.1 

chr17:63470201:G:A 17 63470201 G A rs8077276 ACE ACE 0.58 1.05 (1.03-1.08) 1.10e-05 0 0.58 1.09 (1.07-1.12) 3.45e-12 14.7 

chr18:27352028:C:A 18 27352028 C A rs544488330 CHST9 CHST9 0.0025 2.21 (1.70-2.88) 3.69e-09 70.1 0.0019 1.32 (0.85-2.06) 0.220 4.8 

chr19:1050875:A:G 19 1050875 A G rs12151021 ABCA7 ABCA7 0.64 0.91 (0.89-0.94) 1.47e-12 70.7 0.63 0.91 (0.89-0.94) 6.75e-11 16.6 

chr19:54304006:C:T 19 54304006 C T rs1761453 LILRA5 LILRA5 0.45 0.97 (0.95-0.99) 0.00965 48.8 0.45 0.93 (0.91-0.95) 8.53e-09 0 

chr20:413334:A:G 20 413334 A G rs1358782 RBCK1 RBCK1 0.70 1.08 (1.05-1.11) 4.73e-08 0 0.69 1.04 (1.01-1.07) 0.0101 0 

chr20:56449045:G:A 20 56449045 G A rs113221226 CASS4 CASS4 0.069 0.91 (0.87-0.96) 0.000188 37.8 0.063 0.84 (0.79-0.89) 4.34e-10 0 
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Table 1: Genome wide significant hits 
a) Topmed R2 identifier b) GRCh38 assembly. c) Reference single-nucleotide polymorphism (SNP) (rs) numbers, according to dbSNP build 156 d) Nearest protein-

coding or long intergenic non-protein coding RNA according to Ensembl release 111. e) Effect allele frequency f) Odds ratio (OR) and 95% confidence intervals (CI) 

calculated with respect to the effect allele. g) Two-sided raw P-values derived from a fixed-effect meta-analysis. h) Heterogeneity I2 statistics. i) In the HLA-DRA and 

TREM2 loci different independent variants reached genome wide significance level in the two strata. j) In the PILRA locus two different variants in the two strata 

reached genome wide significance and had the lowest p-value in the locus. However, the two variants were in linkage disequilibrium (r2>0.4). A third variant 

(rs10257273) also reached genome wide significance in the APOE ε44+ε43 strata and was independent from the lead variant (rs2906657). k) In the CLU and APH1B 

loci a second independent variant reached genome wide significance in one of the strata. 
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Table 2 

    Dominant interaction – effect difference Additive interaction – per ε4-allele 

topmed_id 
a)

 rsid 
b)

 Loci Gene 
c)

 ΔBeta
 d)

 SE P-value 
e)

 I2 
f)

 Het p-value 
g)

 Beta 
h)

 SE P-value I2 f) Het p-value 
g)

 

chr1:20745474:C:T rs2274119 HP1BP3 HP1BP3 -1 0.10 0.037 0.0070 0 0.96 0.069 0.028 0.014 22 0.19 

chr1:155135691:G:A rs12726330 SLC50A1 SLC50A1 -0.19 0.053 0.00029 0 0.69 -0.13 0.040 0.0013 40 0.070 

chr1:198710886:G:A rs12733073 PTPRC PTPRC 0.26 0.098 0.0093 9.8 0.35 0.16 0.075 0.036 0 0.63 

chr1:207577223:T:C rs679515 CR1 CR1 -0.034 0.023 0.14 45 0.092 -0.019 0.018 0.28 54 0.0030 

chr2:127135234:C:T rs6733839 BIN1 BIN1 0.058 0.019 0.0024 0 0.74 0.045 0.014 0.0020 60 0.00040 

chr4:125059887:G:A rs182938476 FAT4 FAT4 -1 0.44 0.32 0.16 0 0.69 0.47 0.28 0.093 0 0.63 

chr6:32411770:C:T rs17208902 HLA-DRA HLA-DRA -1 0.078 0.020 0.00011 0 0.59 0.057 0.016 0.00036 0 0.60 

chr6:32464090:G:T rs9268888 HLA-DRA HLA-DRA -2 0.0089 0.018 0.61 0 0.55 -0.0027 0.014 0.85 24 0.16 

chr6:41161469:C:T rs143332484 TREM2 TREM2 -1 0.098 0.085 0.25 0 0.74 0.087 0.070 0.22 7.5 0.37 

chr6:41161514:C:T rs75932628 TREM2 TREM2 -2 -0.29 0.20 0.16 8.3 0.36 -0.14 0.22 0.51 0 0.53 

chr7:12242825:T:C rs7805419 TMEM106B TMEM106B 0.065 0.018 0.00031 27 0.21 0.046 0.014 0.0011 49 0.0079 

chr7:99590966:A:T rs10257273 PILRA TMEM225B 0.040 0.022 0.073 48 0.064 0.042 0.017 0.017 9.7 0.33 

chr7:100386466:T:C rs2906657 PILRA PILRA -0.015 0.019 0.43 0 0.88 -0.014 0.015 0.34 40 0.036 

chr8:27362470:C:T rs73223431 CLU PTK2B 0.036 0.018 0.042 0 0.58 0.041 0.014 0.0042 0.17 0.46 

chr8:27610986:C:A rs867230 CLU CLU 0.060 0.018 0.00080 0 0.99 0.051 0.014 0.00028 0 0.49 

chr8:144103704:G:A rs34173062 SHARPIN SHARPIN -0.10 0.037 0.0049 47 0.080 -0.098 0.029 0.00078 15 0.29 

chr11:47358789:G:T rs3740688 SPI1 SPI1 -0.020 0.017 0.26 0 0.77 -0.021 0.014 0.12 0 0.58 

chr11:60173126:T:A rs7232 MS4A6A MS4A6A -0.030 0.019 0.11 44 0.087 -0.027 0.015 0.071 6.7 0.37 

chr11:86113817:A:G rs659023 PICALM PICALM 0.045 0.018 0.015 13. 0.33 0.039 0.015 0.0071 46 0.020 

chr11:121564878:T:C rs11218343 SORL1 SORL1 -0.079 0.050 0.12 33. 0.16 -0.096 0.041 0.019 18 0.25 

chr14:33428905:G:C rs187023552 NPAS3 NPAS3 -0.37 0.091 4.2e-05 46 0.17 -0.26 0.073 0.00032 65 0.034 
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    Dominant interaction – effect difference Additive interaction – per ε4-allele 

topmed_id 
a)

 rsid 
b)

 Loci Gene 
c)

 ΔBeta
 d)

 SE P-value 
e)

 I2 
f)

 Het p-value 
g)

 Beta 
h)

 SE P-value I2 f) Het p-value 
g)

 

chr14:53394351:T:C rs10131116 FERMT2 DDHD1 -0.10 0.018 1.1e-08 18. 0.29 -0.069 0.014 1.2e-06 32 0.088 

chr15:58790588:T:G rs347116 ADAM10 ADAM10 -0.034 0.018 0.068 0 0.74 -0.023 0.015 0.11 0 0.62 

chr15:63279621:C:T rs75763893 APH1B APH1B 0.017 0.026 0.51 0 0.64 0.017 0.021 0.41 12 0.30 

chr15:63407216:C:T rs181364771 APH1B LINC02568 -0.082 0.058 0.16 21 0.27 -0.067 0.047 0.15 30. 0.12 

chr17:44352876:C:T rs5848 GRN GRN -0.041 0.019 0.030 0 0.86 -0.034 0.015 0.021 0 0.98 

chr17:46111701:A:G rs7225002 MAPT MAPT H2 0.045 0.018 0.012 64 0.0075 0.032 0.014 0.025 34 0.066 

chr17:63470201:G:A rs8077276 ACE ACE 0.031 0.018 0.088 0 0.82 0.028 0.014 0.048 0 0.82 

chr19:1050875:A:G rs12151021 ABCA7 ABCA7 -0.012 0.019 0.52 0 0.89 0.012 0.015 0.43 55 0.0016 

chr19:54304006:C:T rs1761453 LILRA5 LILRA5 -0.036 0.018 0.046 0 0.61 -0.032 0.014 0.023 0 0.62 

chr20:413334:A:G rs1358782 RBCK1 RBCK1 -0.038 0.022 0.084 19 0.28 -0.029 0.017 0.095 0 0.79 

chr20:56449045:G:A rs113221226 CASS4 CASS4 -0.098 0.039 0.011 3.7 0.40 -0.058 0.031 0.061 2.9 0.42 

 

Table 2: Interaction testing results 

Results of interaction testing with a dominant and an additive fixed effect model on the summary data of the individual cohorts. The dominant model was a 

difference of effect analysis while the additive model included the number of ε4-allelles. Significant interactions (p-value < 0.0015) are in bold with the 

significant p-values underlined. a) Topmed R2 identifier b) Reference single-nucleotide polymorphism (SNP) (rs) numbers, according to dbSNP build 156 c) 

Nearest protein-coding or long intereneric non-coding RNA according to Ensembl release 111. d) ΔBeta is calculated as β43+44- β33. e) Two-sided raw P- values 

were derived from a fixed-effect meta-analysis. f) I2: I-statistics, residual heterogeneity of the unaccounted variability g) Het P-value: Test for residual 

heterogeneity. h) effect per one ε4-allele. 
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Figure 1: Flow chart of study 

Flow chart illustrating the included multi-ancestry cohorts and analysis strategies. 
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Figure 2: Miami plot of the APOE ε33 and ε44+ε43 strata. 

The Manhattan plot for the APOE ε44+ε43 strata is shown in blue in the upper part of the figure and for the APOE ε33 strata in orange in the lower 
part of the figure. Genome wide significant loci are annotated with the nearest gene (known loci in black and new in red). Two-sided raw P-values 
were derived from a fixed-effect meta-analysis. The red dashed lines show the genome-wide significant level (P=5×10-8). APOE: Apolipoprotein E 
gene.  

APOE ε44+ε43 

APOE ε33 
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Figure 3: Loci and forest plots for SLC50A1, TMEM106B, NPAS3, and SHARPIN where the 
effect attenuates with the APOE ε4 allele. 

Loci plots for SLC50A1 (A), TMEM106B (B), NPAS3 (C), SHARPIN (D) in APOE ε33 and APOE 
ε44+ε43 strata. Forest plots for the lead SNPs in the four APOE strata ε33, ε44+ε43, ε43 and ε44. In 
the forest plot each APOE strata is shown to visualize potential dominant or additive interaction. 
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Figure 4: Loci and forest plots for the three loci (HLA-DRA -1, CLU, DDHD1) where the effect 
is augmented with the APOE ε4 allele. 

Loci plots for HLA-DRA -1 (A), CLU (B), DDHD1 (C) in APOE ε33 and APOE ε44+ε43 strata. 
Forest plots for the lead SNPs in the four APOE strata ε33, ε44+ε43, ε43 and ε44. In the forest plot 
each APOE strata is shown to visualize potential dominant or additive interaction. 
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Figure 5: Multi-ancestry evaluation
A: Multi-ancestry results for lead variant in HLA-DRA locus. B: Multi-ancestry results for lead variant in 
DDHD1 locus. AAC: Asian American, AFR: African American, AMR: Admixed American, 
CHN: Hong-Kong Chinese, JPN: Japanese, KOR: Korean, EAS: East Asian ancestry meta-analysis, 
EUR: European ancestry meta-analysis.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 9, 2025. ; https://doi.org/10.1101/2025.05.07.25327065doi: medRxiv preprint 

https://doi.org/10.1101/2025.05.07.25327065
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6: Variant and gene-based significant loci
Venn-diagram of the genome-wide significant loci associated with AD, showing the overlap between APOE-strata and between 
variant based testing (main GWAS) and gene-based testing (MAGMA).
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