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Abstract

Assessing seismic vulnerability is a critical step in evaluating the resilience of existing
buildings, and fragility curves are widely used to quantify the probability of damage
under varying levels of seismic intensity. However, traditional methods for generating
these curves often rely on generalized assumptions that may not accurately capture the
seismic behavior of diverse building types within a region. This limitation is particu-
larly evident for non-engineered masonry buildings, which typically lack standardized
designs. Their irregular and informal construction makes them difficult to assess using
conventional approaches. Transformer-based models, a type of machine learning (ML)
technique, offer a promising alternative. These models can identify patterns and relation-
ships in available data, making them well suited for developing seismic fragility curves
with improved efficiency and accuracy. While transformers are relatively new to civil
engineering, their application to seismic fragility assessment has been largely unexplored.
This study presents a pioneering effort to apply transformer models for deriving fragility
curves for non-engineered masonry buildings. A comprehensive dataset of 646 masonry
buildings observed in Malawi is used to train the models. The transformers are trained
to predict the probability of four damage states: Light Damage, Severe Damage, Near
Collapse, and Collapse based on Peak Ground Acceleration (PGA). The performance of
the transformer-based approach is compared with other ML methods, demonstrating its
strong potential for more efficient and accurate seismic fragility assessment. Future work
could adopt the proposed methodology and extend the approach by incorporating larger
datasets, additional regional contexts, and alternative ML techniques to further enhance
predictive performance.

Keywords: transformer; machine learning; seismic vulnerability; fragility curves;
masonry structures

1. Introduction
Evaluating seismic vulnerability in non-engineered buildings is not only essential, but

also particularly challenging, especially in seismically active developing regions where
such buildings are widespread. Such buildings often lack formal engineering design and
exhibit irregular construction practices, making it difficult to reliably assess their seismic
performance using conventional methods. Fragility curves are a key tool in seismic risk
assessment, offering probabilistic estimates that quantify the likelihood that a structure
exceeds specific damage thresholds due to seismic forces [1]. These curves are widely used
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in the assessment of seismic risk, the estimation of loss, and the formulation of policies for
the reduction and management of disaster risk.

Extensive efforts have been made to compile databases of fragility curves for in-
frastructure and buildings worldwide, providing critical tools to assess seismic risk.
Nirandjan et al. [2] conducted a systematic review, creating a centralized database of
more than 1510 vulnerability and fragility curves for critical infrastructure, including
energy, transport, water, waste, telecommunications, health, and education systems ex-
posed to natural hazards. Rota et al. [3] derived fragility curves from 30 years of Ital-
ian post-earthquake survey data, processing over 91,000 building inspection records
across 23 typologies. The Global Earthquake Model, through the OpenQuake platform
(https://www.globalquakemodel.org/ (accessed on 16 April 2025)), has developed an
online vulnerability database that integrates fragility, vulnerability, and damage-to-loss
functions with quality rating systems [4]. Di Ludovico et al. [5] specifically addressed the
vulnerability of school buildings, developing fragility curves for Italian reinforced concrete
and masonry schools using 2037 records from the 2009 L’Aquila earthquake.

Collectively, these studies demonstrate the importance of standardized fragility
data for infrastructure resilience planning. However, applying these methods to de-
veloping countries and non-engineered constructions remains a significant challenge.
Non-engineered buildings often exhibit irregular geometry, heterogeneous materials,
and lack standardized design, while empirical data on seismic performance are scarce.
Ahmad et al. [6] developed analytical frameworks for low-strength reinforced concrete
structures commonly found in developing countries, incorporating realistic material mod-
els and stochastic capacity parameters. Khalfan et al. [7] highlighted the near absence of
fragility curves for non-engineered residential buildings due to limited post-earthquake
damage records and ground motion data. Novelli et al. [8] addressed this gap by de-
riving fragility curves for 646 non-engineered masonry buildings in Malawi through
structural surveys and laboratory tests, revealing substantially higher vulnerability than
previously estimated from international datasets. Khalfan [9] similarly emphasized the
need for region-specific fragility assessments for non-engineered and unreinforced masonry
houses in Indonesia. These studies underscore the difficulty of generating reliable fragility
curves for non-engineered constructions in data-scarce, high-risk regions. Dai et al. [10]
developed fragility functions for reinforced concrete columns with different levels of
corrosion, finding that increased corrosion reduced fragility medians and substantially
raised exceedance probabilities, supporting seismic loss and resilience assessments of
aging structures. Yu et al. [11] conducted a time-dependent seismic fragility analysis of
aging reinforced concrete structures in coastal areas, accounting for varying distances
from the coastline, and showed that closer proximity to the coast accelerates corrosion and
significantly increases seismic vulnerability.

Although there are numerous scientifically grounded methods for vulnerability as-
sessment and fragility curve derivation, they often require intricate computations, detailed
structural modeling, and extensive field and laboratory data collection [12–16]. As a re-
sult, the application of these methods, particularly in low-resource environments, poses
significant challenges, mainly due to the lack of reliable data.

To overcome these obstacles, this study introduces the use of machine learning (ML)
models, especially transformer architectures, as innovative tools to streamline and auto-
mate the development of fragility curves. Using comprehensive data sets and leveraging
previous modeling efforts, the proposed ML models aim to directly predict the parameters
of the fragility curve based on the characteristics of the building and the seismic input.
These models will incorporate critical variables, including geometry, material properties,

https://www.globalquakemodel.org/
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building typology, and failure modes, and will output either damage state probabilities or
fragility curve parameters.

The integration of ML into fragility assessment offers advantages: reduced reliance
on detailed structural modeling, faster evaluation of large stocks, and applicability in
data-scarce regions [17–20]. By identifying complex patterns in the available data, ML
models can predict structural responses and damage probabilities without fully detailed
physical models, streamlining the assessment process while maintaining reliability.

This study proposes a robust ML-based framework for deriving seismic fragility
curves for non-engineered buildings. The framework enables the estimation of damage
probabilities across a range of damage states, from light damage to collapse, under varying
seismic intensities. This research builds on data collected during the PREPARE project in
Malawi. Previous work by the authors primarily evaluated the probability of building col-
lapse using ML, highlighting the high vulnerability of non-engineered masonry buildings
in data-scarce, high-risk regions. However, that study did not address the full spectrum
of seismic damage. The current research extends this approach by systematically incor-
porating structural parameters from detailed field surveys, including both material and
geometric characteristics that influence seismic performance, to develop fragility curves for
multiple damage states. Features are pre-processed, encoded, and filtered for relevance to
damage probabilities at different Peak Ground Acceleration (PGA) levels. Predictive ML
models are then trained and rigorously evaluated for accuracy. The ultimate goal is to apply
these models to estimate building damage probabilities under unobserved or hypothetical
seismic scenarios, providing a data-driven, scalable, and efficient methodology for com-
prehensive seismic vulnerability assessment. This approach addresses the limitations of
the previous Malawi-focused study and the broader challenges posed by limited empirical
data in regions dominated by non-engineered construction.

Ultimately, this study establishes a scalable ML-based framework for fragility esti-
mation in non-engineered buildings, contributing to disaster preparedness and resilience
in seismic regions. The key objectives are to (i) compare ML models across four damage
states, (ii) derive fragility curves that integrate building characteristics and seismic intensity
without detailed simulations, and (iii) introduce transformer-based models for the first time
in this context. The main contributions include demonstrating transformers’ potential,
providing a scalable data-driven framework, and extending prior ML studies to cover the
full spectrum of seismic damage.

2. Soft Computing Approaches for Seismic Vulnerability and
Fragility Modeling

Evaluating and monitoring the seismic behavior of buildings is crucial to improve their
structural resilience and developing effective mitigation strategies. Traditional analytical
and numerical methods, while accurate, are often time-intensive and computationally
demanding [21]. This has sparked the interest of researchers in proposing various ap-
proaches, particularly those utilizing soft computing techniques, to streamline seismic
risk and vulnerability assessments. The application of ML models, as one of the soft
computing techniques in this context, offers a promising pathway for identifying dam-
age patterns and predicting seismic performance of existing reinforced concrete, as well
as non-engineered structures that lack adequate engineering and seismic, or even basic
structural considerations.

ML models learn from historical data to make predictions or classifications, making
them suitable for seismic vulnerability assessment [22]. The effectiveness and performance
of ML models are significantly dependent on the quality and completeness of the input
data, typically structured as predictor and response variables [23].
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In the context of seismic assessment, predictor variables often include key building
characteristics such as structural typology, material properties, geometry, and construction
quality that significantly affect a structure’s response to ground motion. These character-
istics determine how a building behaves under different levels of seismic intensity and,
consequently, its probability of reaching various damage states. Due to the high cost and
complexity of detailed numerical simulations and field assessments, ML models are a
viable alternative for tasks such as identifying vulnerability through the development of
fragility curves for different damage states, predicting structural response, and supporting
seismic risk assessment [17,24].

There are many recent studies that have demonstrated the application of ML in predict-
ing structural responses and classifying damage in buildings and infrastructures [25–27].
The application of ML models has been employed to assess the vulnerability of RC elements
such as shear walls, infilled frames, and beam–column joints, but also to optimize and ana-
lyze the fragility of masonry-infilled RC and steel frames [28,29]. In the context of ML-based
approaches for the evaluation of damage to unreinforced masonry and non-engineered
buildings, Chomacki et al. [30] used Bayesian belief networks to assess damage to masonry
buildings affected by mining environments. Rezaie et al. [31] employed K-Nearest Neigh-
bors (KNN) for the evaluation of damage in rubble stone masonry piers, and Siam et al. [32]
developed a framework for the prediction of performance and classification of damage
in reinforced masonry shear walls. Harirchian et al. [33] applied multiple ML techniques
to non-engineered masonry buildings, with Random Forest achieving low errors (MAPE
17.674%; RMSE 0.0617). Kazemi et al. [34] employed Artificial Neural Networks and Ex-
treme Gradient Boosting to model reinforced concrete structures, reducing computational
effort while maintaining accuracy. Zain & Dackermann [35] demonstrated the applicability
of ML to school buildings in high-intensity seismic zones. Transformer-based models,
a recent advancement in deep learning, offer additional advantages for seismic fragility
assessment due to their ability to capture long-range dependencies and complex nonlinear
relationships. Chen et al. [36] introduced DamFormer, a Transformer-based architecture for
multitemporal remote sensing damage assessment, while Y. Chen et al. [37] applied Trans-
former and Informer networks for post-earthquake structural damage prediction, outper-
forming recurrent and convolutional networks. Soleimani-Babakamali & Esteghamati [38]
utilized encoder–decoder models to estimate seismic demand from pushover analyses,
achieving an 84% R2 accuracy and facilitating the rapid derivation of fragility functions for
building inventories.

In addition to ML approaches, other soft computing techniques have been explored to
assess seismic vulnerability and fragility not only in terms of damage patterns or levels at
the individual building level, but also across broader building typologies, supporting risk
analysis at the neighborhood or city scale. Other techniques, such as fuzzy logic [39–42]
and multi-criteria decision-making frameworks [43–45] have shown promising results in
handling the inherent uncertainties and complexities of seismic performance evaluation.
These techniques are particularly effective in scenarios where precise data is limited or
expert judgment plays a significant role. Their ability to model nonlinear relationships and
incorporate qualitative factors makes them valuable tools in the broader context of seismic
risk analysis.

Comprehensive ML-based studies that address both seismic response and damage
prediction, particularly in terms of estimating the probability of different damage levels,
remain limited, especially for non-engineered buildings. Existing applications often focus
primarily on collapse scenarios, without accounting for the full range of damage states that
may occur across different building typologies at specific levels of ground shaking, such
as PGA. This gap is largely due to the limited integration of field data and experimental
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data, as well as the resource-intensive nature of numerical simulations required to model
structural performance across multiple damage thresholds for the development of fragility
curves. As a result, fragility curves are frequently derived using simplified assumptions,
such as treating buildings of the same typology as having uniform material properties
and construction quality, adopting generic capacity curves instead of detailed models, or
neglecting secondary structural and non-structural components. These assumptions reduce
computational demands and compensate for data scarcity, but they inevitably limit the
precision of predicted damage states and may oversimplify the diversity of real-world
structural behavior.

3. Methodology and Data
The fragility curves represent the probability of reaching different building damage

states: Light Damage (LD), Severe Damage (SD), Near Collapse (NC), and Collapse (C). For
probabilistic assessment, LD and SD are treated as distinct damage states, while exceedance
probabilities are reported for NC and C at 16%, 50%, and 84%, reflecting varying confidence
levels in the likelihood of reaching or exceeding these states. These curves were derived
using ML following the procedure outlined below:

• Feature Selection: Structural parameters influencing seismic response were identified
from field survey data, collected during the PREPARE project;

• Data Pre-processing: Categorical and ordinal structural parameters (variables) were
encoded numerically for ML compatibility;

• Parameter Filtering: Among these features, those with high relevance to collapse
probability under different PGA levels were retained;

• Dataset Splitting: The data was divided into training and test sets to build and evaluate
predictive models;

• Model Training: Selected ML algorithms were trained on the prepared dataset;
• Performance Assessment: Model accuracy was evaluated using appropriate metrics;
• Application: Trained models were used to estimate collapse probabilities under un-

known seismic scenarios.

Figure 1 presents a general flowchart illustrating the process from data collection to
result interpretation and the prediction of fragility curves in this study. The selection of the
most suitable ML algorithm was carried out by training and testing various ML techniques
using all features from the input datasets. In this study, a single model with multiple inputs
and multiple outputs was employed. Accordingly, each ML model used 21 input features
and predicted 8 outputs.

3.1. Input Parameter

The dataset utilized in this research is taken from information gathered and analyzed
over a three-year span within the framework of the PREPARE project (https://www.bristol.
ac.uk/engineering/research/international-development/natural-disasters/prepare-africa/
(accessed on 1 January 2024)). The PREPARE initiative aims to enhance seismic risk pre-
paredness and resilience in East African nations, with particular emphasis on tailoring
strategies to local construction practices. The data collection comprises 323 residential build-
ings, with two walls evaluated in each, resulting in a total of 646 walls that were inspected
and assessed on-site. These assessments were conducted in various locations throughout
Malawi, including Salima, Blantyre, Lifidzi, and Golomoti. Detailed data and their distribu-
tions have been presented in previous studies [33,46,47]. The dataset contains 21 observed
characteristics for each individual wall surveyed within the buildings. These variables, as
presented in Table 1, capture essential structural characteristics relevant to assessing seismic
vulnerability. The parameters include the fundamental period of vibration of the building,

https://www.bristol.ac.uk/engineering/research/international-development/natural-disasters/prepare-africa/
https://www.bristol.ac.uk/engineering/research/international-development/natural-disasters/prepare-africa/
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which is crucial for dynamic analysis. Information on the quality of wall connections on
both the right and left sides is also provided, as they play a significant role in influencing
overall structural performance. Further geometric attributes, such as wall height, length,
and thickness, are documented, along with the cumulative area of wall openings, including
doors and windows. These contribute to understanding the wall’s capacity and potential
weaknesses. Details on the construction materials are also part of the dataset, including the
masonry type (e.g., unfired or fired bricks), the dimensions of the bricks (height and length),
and the degree of overlap (staggering) between them. The type of mortar, distinguishing
between concrete and mud, was also recorded due to its impact on strength and durability.
The configuration of the surrounding structure is captured through measurements such as
the length of adjacent perpendicular walls and the number of internal walls, both parallel
and perpendicular to the examined wall, as well as relative to the rear side. These features
offer insight into the building’s layout and connectivity.

Data Collection 
(PREPARE Project)

Data Pre-Processing and
 Feature Selection

Model Training (7 ML-Models): 
- Transformer
- DT

- SGD   - KNN     - XGBoost
- LR      - LSTM

80% Data for Training and 20% for Test

Model Evaluation

Best Model Selection

Interpret Results and Predict 
Fragility Curves

Figure 1. Overview of the workflow from data collection to fragility curve prediction.

Table 1. Feature descriptions with units or types.

No. Description Unit/Type

1 Structural fundamental period s
2 Right wall connection quality good/bad (categorical)
3 Left wall connection quality good/bad (categorical)
4 Total area of openings (windows/doors) m2

5 Wall thickness mm
6 Wall length m
7 Wall height m
8 Type of masonry used fired/unfired (categorical)
9 Height of bricks mm
10 Length of bricks mm
11 Brick staggering (overlap) mm
12 Type of mortar used concrete/mud (categorical)
13 Length of wall perpendicular to inspected wall m
14 No. of internal walls perpendicular to inspected wall number
15 No. of internal walls parallel to inspected wall number

16 No. of internal walls perpendicular to back & parallel to
inspected wall number

17 Type of roof thatched/metallic (categorical)
18 Orientation of roof parallel/orthogonal
19 Presence of gable yes/no (binary)
20 Height of gable m
21 Spandrel height m
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Roof characteristics were also surveyed, including the roofing material, orientation rel-
ative to the wall under investigation, and the presence and height of architectural elements
like gables and spandrels. Together, these variables present a robust representation of the
walls’ material, geometric, and structural properties. The dataset serves as a foundation for
applying data-driven approaches to model seismic fragility, using a methodology consistent
with that established in previous studies [47].

In a previous study by Harirchian et al. [33], principal component analysis was
applied to assess feature importance and ranking for the same dataset. In the current study,
the focus is on comparing the predictive performance of different ML algorithms rather
than feature selection. Additionally, the dataset has a moderate dimensionality and has
been pre-processed well, which reduces multicollinearity and ensures that all features are
informative. For these reasons, principal component analysis or other feature reduction
techniques were not applied, as they fall beyond the scope of this study.

As part of a larger assessment of structural vulnerability, an experimental program was
conducted to determine the mechanical characteristics of construction materials commonly
used in the region, as documented in previous studies [48,49]. It includes collecting and
testing representative samples from the buildings surveyed in the venue. By evaluating
various properties of the material, including compressive strength and material consistency,
the study aimed to gain a deeper understanding of how these materials impact the seismic
performance of unreinforced structures.

3.2. Output Parameter

The information collected from field inspections and material testing formed the
basis for generating static pushover (SPO) curves for a total of 646 individual walls. This
approach extends the methodology originally introduced by D’Ayala [50], which models
the structural response through simplified mechanical models. SPO analysis captures the
inelastic behavior of each wall when subjected to increasing lateral loads, serving as a
critical step in estimating the seismic demand and performance limits of buildings. These
results led to the subsequent development of fragility curves that relate seismic intensity to
the likelihood of damage in the observed buildings.

In this study, SPO2IDA [51] is used to transform SPO curves into Incremental Dynamic
Analysis (IDA) curves. This transformation is based on a validated procedure in which
the SPO curve, representing the structural capacity in terms of spectral acceleration versus
displacement, is converted into an IDA backbone curve that reflects nonlinear response
under a suite of ground motions. Specifically, three IDA curves are obtained, corresponding
to the 16th, 50th, and 84th percentiles of the record-to-record variability, which captures
the uncertainty in structural response (e.g., FEMA 1997). The spectral acceleration values
derived for each limit state are subsequently converted to PGA using a scaling relationship
based on the Boore et al. [52] ground motion prediction Equation. This approach ensures
that PGA adequately captures the structural demand while remaining consistent with
widely adopted practices for masonry buildings.

Novelli et al. [8,16] derived the fragility curves for Malawi that express the probability
that a structure will reach or exceed specific damage states, such as light, severe, near
collapse, and collapse, as a function of seismic intensity, typically measured in terms of
PGA. In their study, they have proposed a structured, multi-step methodology to derive
these curves, which serve as the outputs used in the present research:

1. Structural and Material Data Collection:
Detailed surveys were conducted on 323 buildings (646 façades) to record their geo-
metric characteristics, construction typologies, and other relevant structural attributes.
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Simultaneously, laboratory tests were conducted to determine the mechanical proper-
ties of materials, including masonry units and mortar.

2. Failure Mode Identification: The Failure Mechanism Identification and Vulnerability
Evaluation method (FaMIVE) [50,53] was employed to identify the governing failure
modes for each façade. These included out-of-plane, in-plane, gable, and strip fail-
ures, determined based on the physical configuration and material characteristics of
the structures.

3. Static Pushover (SPO) Modelling: Each façade was idealized as a single-degree-of-
freedom (SDOF) system, and SPO curves were developed under three behavioral
assumptions: (a) instability driven by geometry, (b) limited post-elastic deformation
capacity, and (c) gradual strength degradation.

4. Incremental Dynamic Analysis (IDA): The SPO curves were transformed into IDA
curves using the SPO2IDA method, allowing the modeling of dynamic structural
response under increasing levels of seismic excitation.

5. PGA Derivation: Spectral acceleration values at various damage thresholds, obtained
from IDA, were translated into corresponding PGA values using a suitable ground
motion prediction equation.

6. Fragility Curve Construction: Finally, lognormal fragility functions were fitted to the
PGA values associated with each damage state. For nonlinear behaviors (e.g., near
collapse and collapse), variability due to different ground motion records was incor-
porated. In contrast, for more linear states (light and moderate damage), deterministic
thresholds were applied across façades.

In this study, these fragility curves are leveraged as the basis for developing an
ML-driven prediction framework. The proposed ML models aim to bypass the more
complex intermediate steps, namely failure mode identification, SPO development, and
IDA simulation, and instead learn direct relationships between input features (such as
geometry, material strength, and building typology) and fragility parameters. The models
are trained to estimate the median PGA (µ) and standard deviation (β) associated with each
damage state, effectively condensing the conventional process into a more efficient pipeline
that jumps from data collection (Step 1) directly to fragility estimation (Steps 5–6). This
approach holds promise in significantly accelerating seismic risk assessments, particularly
in regions where time, resources, and engineering expertise are limited.

3.3. Data Preparation

Effective data preparation is crucial for optimizing the performance of ML algo-
rithms, as the quality and consistency of the data significantly impact the model’s learning
capabilities [54]. In this study, data pre-processing involved standardizing the features us-
ing the StandardScaler, which adjusts the data by centering it around the mean and scaling
it to have unit variance. Subsequently, the data set was divided into two subsets: 80% of
the data (516 samples) was used to train the model, while the remaining 20% (130 samples)
were reserved for testing. The training data, which include known outputs, allows the
model to learn patterns and fine-tune its parameters. The 20% test data are used to evaluate
the performance of ML models on data that is new and unknown, which have not been
seen during training.

4. Model Implementation and Validation
Seven ML models, including K-Nearest Neighbors (kNN), Linear Regression (LR),

Stochastic Gradient Descent (SGD), Decision Tree (DT), Long Short-Term Memory (LSTM),
Extreme Gradient Boosting (XGBoost), and Transformer architecture, have been employed
in this study to predict fragility curves of buildings. The implementation was carried out
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using Python 3.13.3, leveraging key libraries such as Scikit-learn 1.6.1, Pandas 2.3.1, NumPy
2.2.6, Matplotlib 3.10.3, Seaborn 0.13.2, and Torch 2.7 for data handling, visualization, and
model development in a controlled virtual environment to ensure reproducibility. A concise
introduction to each model is provided in the following section.

4.1. K-Nearest Neighbors (KNN)

KNN is a simple, instance-based learning algorithm that classifies data points based
on the majority class of their nearest neighbors. It is non-parametric and effective for small
datasets and can face difficulties with large datasets [55].

4.2. Linear Regression (LR)

LR is one of the simple yet powerful statistical methods for modeling the relationship
between a dependent variable and one or more independent variables. It fits a straight
line to the data by minimizing the difference between predicted and actual values. In
addition to being easy to interpret and computationally efficient, LR only assumes a linear
relationship and can struggle with complex, nonlinear patterns or outliers [56,57].

4.3. Stochastic Gradient Descent (SGD)

One of the efficient optimization algorithms used for large-scale linear classification
and regression problems. It updates the model parameters iteratively based on a subset of
the training data, offering fast convergence [58,59].

4.4. Decision Tree (DT)

A tree-structured model that splits data into subsets according to the feature values,
making decisions through a series of if–else rules. It is intuitive, easy to interpret, and
suitable for classification and regression tasks [60].

4.5. Long Short-Term Memory (LSTM)

A type of recurrent neural network designed to capture long-term dependencies in
sequential data by using memory cells and gating mechanisms. It is widely applied in tasks
such as time-series forecasting and natural language processing [61,62].

4.6. Extreme Gradient Boosting (XGBoost)

An efficient and scalable implementation of gradient boosting that builds an ensemble
of decision trees. It is known for its high predictive accuracy, regularization techniques,
and ability to handle large-scale structured data [63,64].

4.7. Transformer

The Transformer, well known for its significant impact in natural language processing,
is applied in this study in a novel context to predict fragility curves of buildings. The
significant ability of the Transformer to handle large and diverse input data makes it
an ideal choice for this study, where traditional models may struggle to extract deep
patterns from extensive structural parameters. Therefore, by implementing this powerful
self-attention mechanism, the model effectively captures complex relationships in a multi-
dimensional feature space and large-sized database [65,66].

It should be noted that the Transformer model is a high-capacity model and may
overfit when trained on small datasets. To reduce the risk of overfitting in this context, the
following measures were applied:

• Early Stopping: Training was monitored with patience of 10 epochs to prevent overtraining.
• Regularization: Weight decay (1 × 10−4) was incorporated into the Adam optimizer

to penalize large weights.
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• Learning Curve Analysis: Training and validation losses were tracked across epochs,
showing that the validation loss remained stable and did not diverge notably from the
training loss.

4.8. Model Evaluation Metrics

It is vital to assess the performance of ML models in predicting fragility curves. There-
fore, three commonly used regression metrics, including mean square error (MSE), root
mean square error (RMSE), and mean absolute percentage error (MAPE) were employed.

• MSE: Measures the average of the squared differences between predicted and actual
values; fewer values are better.

• RMSE: As the root of MSE, it gives an interpretable error metric in the same unit as
the target variable.

• MAPE: Shows the prediction error as a percentage, making it easier to understand the
accuracy of the model relative to the actual values.

These metrics offer a comprehensive view of each model’s predictive accuracy and
deviation from the true outcomes [67].

5. Results and Discussion
5.1. Correlation Between Input and Output Features

The correlation matrix, as shown in Figure 2, provides valuable and important infor-
mation on the relationship between building features and the results of seismic fragility
curves. It is worth noting that wall thickness and connection quality (Left Connection,
Right Connection) exhibit strong positive correlations with most output variables, indicat-
ing their critical role in enhancing structural resistance during earthquakes. In contrast, the
PGA exhibits a strong negative correlation with fragility thresholds, indicating that build-
ings with longer periods (typically more flexible) are more susceptible to seismic damage.
Moderate correlations were observed for parameters such as the total opening area and
the height of the story, suggesting that geometric characteristics also influence structural
performance, albeit to a lesser extent. Features such as gable configuration and brick di-
mensions exhibit low or negligible correlations, suggesting a limited impact on fragility
in this dataset. These findings help prioritize features for ML models and emphasize the
importance of structural design and dynamic behavior in assessing seismic vulnerability.

Figure 3 shows the SHAP (SHapley Additive exPlanations) values, which illustrate
the relative importance and directional impact of input features on the ML models used for
predicting building fragility. The results indicate that the structural fundamental period
is the most influential predictor, where higher values (shown in red) are associated with
positive SHAP values, thus increasing the probability of higher damage states. Similarly,
wall height, masonry type, and gable height contribute strongly to the model’s output,
confirming their critical role in seismic vulnerability. Features such as roof orientation,
wall thickness, connection quality, and the total area of openings exhibit moderate in-
fluence, with their effects varying depending on whether the feature values are high or
low. In contrast, brick dimensions, type of mortar, and roof type have minimal SHAP
contributions, suggesting a limited role in driving fragility predictions. Overall, the analy-
sis highlights that global structural and geometric parameters significantly influence the
prediction process, while localized material properties have a secondary effect. This not
only enhances the interpretability of the ML model but also supports targeted seismic
assessment and retrofitting strategies by identifying the features most responsible for shifts
in fragility curves.
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Figure 2. Correlation matrix of input features and output variables.

Figure 3. SHAP Analysis: Feature importance and directional impact on building fragility models.
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5.2. Performance of ML Methods

The seven ML models, kNN, LR, SGD, DT, LSTM, XGBoost, and Transformer, were
applied to the dataset, which includes field inspected buildings from Salima, Lifidzi,
Golomoti, and Blantyre in Malawi.

Since the primary focus of this study is on the Transformer model, and to avoid
excessive visual content, only the figures for its test data predictions are shown. However,
model evaluation metrics for all ML models are presented and discussed to support the
analysis. Figures 4–11 present the comparison between actual and predicted PGA (g)
values in various damage states for test data using the Transformer model. The results
indicate that all models demonstrated strong predictive performance, with predictions
closely aligned with the observed values. To avoid an excessive number of figures for the
training and testing results of different models across each damage state, the corresponding
figures for each model are provided in Appendix A (Figures A1–A13).

Figure 4. Actual and predicted values by Transformer for PGA-SD.

Figure 5. Actual and predicted values by Transformer for PGA-LD.
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Figure 6. Actual and predicted values by Transformer for PGA-84% NC.

Figure 7. Actual and predicted values by Transformer for PGA-50% NC.

Figure 8. Actual and predicted values by Transformer for PGA-16% NC.
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Figure 9. Actual and predicted values by Transformer for PGA-84% C.

Figure 10. Actual and predicted values by Transformer for PGA-50% C.

Figure 11. Actual and predicted values by Transformer for PGA-16% C.

Figure 12 shows the training and validation loss curves for the Transformer model
over 300 Epochs, using MSE as the loss function. It can be seen that both training and
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validation losses decrease steadily and converge to low values. It indicates that the model
effectively learned the underlying patterns in the data without overfitting. The very close
alignment between the training and validation curves suggests a strong generalization
to unseen data, which is essential for reliable predictions in practical applications. This
kind of behavior confirms that the chosen Transformer architecture, along with the training
configuration, is suitable for the regression task. Observing such a loss curve is a standard
practice in model evaluation, as it provides direct insights into model performance and
potential training issues such as underfitting or overfitting.

Figure 12. Training and validation loss curves of the Transformer model over 300 epochs using
MSE loss.

Figure 13 presents the RMSE values for each ML model at different levels of the PGA.
This allows for a detailed comparison and more granular assessment of how each model
behaves under varying seismic intensities.

However, given the number of combinations and the potential for visual clutter, a
summarized view of the results is also provided in Figure 14, which displays the mean
values of the error metrics (MAPE, RMSE, and MSE) for each model. This summary helps
prevent the need for multiple separate figures, improving visual clarity and making it
easier to interpret the overall performance trends of the models.

As illustrated, the Transformer model consistently achieves the lowest error values
in all three metrics, indicating superior predictive accuracy and generalizability. XGBoost
follows as the next best performer, showing strong predictive capability. LSTM, LR, and
DT exhibit similar intermediate performances, while SGD performs slightly worse than
these models in terms of MAPE and RMSE. The KNN model performs the worst, with the
highest error rates, suggesting a limited predictive capacity in this context. Compared to
the previous study with similar data [33], the Transformer achieved better performance,
reducing the MAPE from 17.674% to 14.325% and the RMSE from 0.0617 to 0.0384. Overall,
the results indicate that the Transformer model surpasses traditional ML approaches in
reliably predicting PGA. Although Transformers generally perform best with large datasets,
this study successfully applied the model to a relatively small dataset, demonstrating
its capability to derive fragility curves effectively. This novel application highlights the
feasibility of the model and its potential for broader use in future seismic vulnerability
assessments. Therefore, the use of the term Strong Potential in this study emphasizes the
superior predictive performance of the Transformer, as evidenced by lower MAPE and
RMSE values compared to other ML models. Furthermore, the model demonstrates robust
generalization across multiple output variables and effectively captures complex nonlinear
relationships within seismic vulnerability data. Although training times are slightly longer
and larger datasets are generally beneficial, the improved accuracy and ability of the model
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to model intricate interactions justify its designation as having a strong potential to derive
reliable fragility curves.

Figure 13. RMSE values for each ML model across different PGA levels (a) SD, (b) LD, (c) 84% NC,
(d) 50% NC, (e) 16% NC, (f) 84% C, (g) 50% C, and (h) 16% C.
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Figure 14. Mean values of error metrics (a) MAPE, (b) MSE, and (c) RMSE for different ML models.

Figure 15 illustrates the fragility curves corresponding to different levels of PGA and
damage states predicted by the Transformer model using the dataset. As expected, the
probability of collapse increases with higher levels of PGA. The steepness and position of
each curve reflect the relative vulnerability of each type of building. Buildings labeled with
“SD” and “LD” exhibit the most rapid increase in the probability of collapse at lower PGA
values, indicating greater fragility. In contrast, buildings classified under “C” (presumably
retrofitted or reinforced) exhibit high probabilities of collapse only at higher PGA levels,
particularly the 84% C curve, which shows the highest resistance. The distinction between
different percentiles (16%, 50%, and 84%) further demonstrates the variability in building
performance due to uncertainties in construction quality, design, and materials. In general,
the figure highlights that the characteristics of the building and the structural improvements
have a significant impact on the risk of collapse under seismic load.

Figure 15. Fragility curves generated by the Transformer model corresponding to different predicted
PGA levels based on the full dataset.

For better comparison and visual understanding of the Transformer model’s predic-
tions versus the actual PGA values, Figure 16 is presented. It displays the fragility curves
derived from the actual dataset alongside those predicted by the Transformer model using
the full dataset. As observed, the predicted PGA values closely align with the actual data,
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showing only minor deviations, which are slightly higher in some cases and slightly lower
in others. Overall, the predictions are highly consistent and fall within an acceptable range,
demonstrating the model’s reliability.

Figure 16. Fragility curves obtained using actual data set compared with predictions via Transformer
based on all features and different PGA (a) SD, (b) LD, (c) 84% NC, (d) 50% NC, (e) 16% NC, (f) 84% C,
(g) 50% C, and (h) 16% C.

6. Conclusions
Evaluating the seismic vulnerability of non-engineered masonry buildings in develop-

ing regions is crucial for minimizing risk to life and property in earthquake-prone areas.
These buildings often lack structural resilience, making them especially susceptible to dam-
age during seismic events. Given the extensive losses observed in past earthquakes, there
is a growing need for data-driven strategies to support effective retrofitting and mitigation
efforts. With the advancement of ML, new opportunities have emerged for seismic risk
assessment. In this study, seven algorithms (kNN, LR, SGD, DT, LSTM, XGBoost, and
Transformer) were trained on field-collected data from 646 masonry walls in Malawi to
estimate collapse probabilities and derive fragility curves.

Among all models, the Transformer achieved the best performance, producing fragility
curves that closely matched empirical data (Figure 16). Its capacity to capture complex non-
linear relationships distinguished it from the more conventional algorithms. Overall, the
results demonstrate that Transformer-based models are a promising tool for assessing seis-
mic fragility in non-engineered buildings. Their predictive accuracy and consistency with
observed trends support their potential for real-world application and broader deployment.

Although the dataset was limited to Malawi, the findings are broadly representative
of East African non-engineered masonry, where materials and construction practices are
comparable. Laboratory testing of local materials increased confidence in the fragility
curves, ensuring they capture regional structural behavior.

Future work could improve prediction performance by expanding datasets (more
surveyed buildings and seismic records), testing alternative ML models, and integrating
additional structural and environmental features relevant to target regions. These direc-
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tions will strengthen model robustness and advance data-driven approaches for seismic
vulnerability assessment.
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Figure A1. Actual and predicted values obtained from the LR model for the training dataset: (a) SD,
(b) LD, (c) 84% NC, (d) 50% NC, (e) 16% NC, (f) 84% C, (g) 50% C, and (h) 16% C.
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(c) (d)

(e) (f)

Figure A2. Cont.
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(g) (h)

Figure A2. Actual and predicted values obtained from the LR model for the test dataset: (a) SD,
(b) LD, (c) 84% NC, (d) 50% NC, (e) 16% NC, (f) 84% C, (g) 50% C, and (h) 16% C.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A3. Actual and predicted values obtained from the RF model for the training dataset: (a) SD,
(b) LD, (c) 84% NC, (d) 50% NC, (e) 16% NC, (f) 84% C, (g) 50% C, and (h) 16% C.

(a) (b)

Figure A4. Cont.
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(c) (d)

(e) (f)

(g) (h)

Figure A4. Actual and predicted values obtained from the RF model for the test dataset: (a) SD,
(b) LD, (c) 84% NC, (d) 50% NC, (e) 16% NC, (f) 84% C, (g) 50% C, and (h) 16% C.

(a) (b)

(c) (d)

(e) (f)

Figure A5. Cont.
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(g) (h)

Figure A5. Actual and predicted values obtained from the SGD model for the training dataset: (a) SD,
(b) LD, (c) 84% NC, (d) 50% NC, (e) 16% NC, (f) 84% C, (g) 50% C, and (h) 16% C.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A6. Actual and predicted values obtained from the SGD model for the test dataset: (a) SD,
(b) LD, (c) 84% NC, (d) 50% NC, (e) 16% NC, (f) 84% C, (g) 50% C, and (h) 16% C.

(a) (b)

Figure A7. Cont.
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(c) (d)

(e) (f)

(g) (h)

Figure A7. Actual and predicted values obtained from the KNN model for the training dataset:
(a) SD, (b) LD, (c) 84% NC, (d) 50% NC, (e) 16% NC, (f) 84% C, (g) 50% C, and (h) 16% C.

(a) (b)

(c) (d)

(e) (f)

Figure A8. Cont.
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(g) (h)

Figure A8. Actual and predicted values obtained from the KNN model for the test dataset: (a) SD,
(b) LD, (c) 84% NC, (d) 50% NC, (e) 16% NC, (f) 84% C, (g) 50% C, and (h) 16% C.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A9. Actual and predicted values obtained from the XGBoost model for the training dataset:
(a) SD, (b) LD, (c) 84% NC, (d) 50% NC, (e) 16% NC, (f) 84% C, (g) 50% C, and (h) 16% C.

(a) (b)

Figure A10. Cont.
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(c) (d)

(e) (f)

(g) (h)

Figure A10. Actual and predicted values obtained from the XGBoost model for the test dataset:
(a) SD, (b) LD, (c) 84% NC, (d) 50% NC, (e) 16% NC, (f) 84% C, (g) 50% C, and (h) 16% C.

(a) (b)

(c) (d)

(e) (f)

Figure A11. Cont.
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(g) (h)

Figure A11. Actual and predicted values obtained from the LSTM model for the training dataset:
(a) SD, (b) LD, (c) 84% NC, (d) 50% NC, (e) 16% NC, (f) 84% C, (g) 50% C, and (h) 16% C.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A12. Actual and predicted values obtained from the LSTM model for the test dataset: (a) SD,
(b) LD, (c) 84% NC, (d) 50% NC, (e) 16% NC, (f) 84% C, (g) 50% C, and (h) 16% C.

(a) (b)

Figure A13. Cont.
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(c) (d)

(e) (f)

(g) (h)

Figure A13. Actual and predicted values obtained from the Transformer model for the training
dataset: (a) SD, (b) LD, (c) 84% NC, (d) 50% NC, (e) 16% NC, (f) 84% C, (g) 50% C, and (h) 16% C.
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