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 A B S T R A C T

This study investigates the propagation of tsunami and acoustic–gravity waves at oceanic 
scales, accounting for the Earth’s curvature within a linear, potential flow framework. While 
local, near-field analyses often neglect Earth’s curvature and employ Cartesian or cylindrical 
coordinate systems, this work utilises spherical coordinates to examine wave behaviour over 
large distances. The analysis reveals that wave amplitudes experience a defocusing effect as 
they travel from the source (e.g., the Pole) toward the equator, followed by a focusing effect 
as they approach the antipodal point beyond the equator. A qualitative comparison is made 
with the 2022 Hunga Tonga–Hunga Ha’apai volcanic eruption in the South Pacific. The study 
models surface-gravity (tsunami) waves propagating through a compressible water layer, as 
well as atmospheric acoustic–gravity waves propagating through the air. The entire analysis is 
carried out within the framework of linear theory.

. Introduction

The seminal work by Yamamoto [1] proposed the use of low-frequency compression-type waves, known as acoustic–gravity 
aves, as potential precursors for tsunamis generated by submarine earthquakes. In the ocean, these waves propagate at the speed 
f sound in water, approximately 1500 m/s, significantly faster than the maximum phase speed of a tsunami. As such, they can 
arry valuable information about the source event which, if analysed in real time, could provide early insight into the size of the 
esulting tsunami. However, the solution presented by Yamamoto [1], and subsequently by others, was formulated in integral form 
nd limited to one dimension, which made practical application of the concept challenging.
To address this, Mei and Kadri [2] employed slender body theory to derive an analytical solution that links the geometry and 

ynamics of an effective seabed uplift with the resulting three-dimensional pressure field. This work was later extended by Williams 
t al. [3] to also account for the tsunami itself. Because the solution is analytical, the associated inverse problem, determining key 
ault parameters from pressure recordings, was also solved in a relatively straightforward manner [4].
Building on this foundation, Kadri et al. [5] developed an operational software package that incorporates these analytical 
odels along with machine learning algorithms. The analytical formulation enables sufficiently fast computations for real-time 
mplementation, as demonstrated in [5]. Nonetheless, a key limitation remains: the validity of the results is currently restricted 
o near-field sources. In several foundational studies, a Cartesian coordinate system has been employed [1,2,6,7]. The axes are 
nbounded and the origin is typically located either at the seabed or at the unperturbed liquid surface. In setting up such a Cartesian 
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Fig. 1. A tangent plane can approximate spherical geometry locally over a limited range. (a) A sphere with radius 𝑟𝑒 and a tangent plane 
incident at (𝑥, 𝑦, 𝑧) = (0, 0, 1). The length of the cyan arc in the figure is given by 𝑟𝑒𝜃 where 𝜃 is the polar angle and 𝜙 is the azimuthal angle. (b) 
Cross-section through 𝑥–𝑧 plane. The 𝛥𝑧 represents the difference between the tangent approximation and the actual curved surface.

coordinate system one assumption made is that a tangent plane to the sphere will remain a close approximation over the area of 
interest — see Fig.  1.

If 𝛥𝑧 in Fig.  1 is taken as a measure of error between the tangent plane approximation and the actual curved surface, then it is 
possible to derive a coarse value for how far a geodesic on the surface of the sphere can be travelled before the error exceeds some 
specified limit, for example 1% (which corresponds to 𝛥𝑍 = 0.01). Taking the Earth’s radius 𝑟𝑒 = 6371 km [8] the arc length from 
the point of tangency [(0, 1) in the 𝑥–𝑧 plane] to the 1% error point is given by 

𝐿 = 𝑟𝑒𝜃 = 𝑟𝑒

[

𝜋
2
− tan−1

(

1 − 𝛥𝑍
√

1 − (1 − 𝛥𝑍)2

)]

= 901.7 km. (1.1)

Thus, in the study of long-range propagation of acoustic–gravity waves and tsunamis, a deviation 1% from Cartesian is apparent after 
travelling approximately 900 km from the source. In addition, the error does not increase linearly with the distance travelled. For 
propagation in large bodies of water, such as the Pacific Ocean, these errors may be significant. To examine some of the consequences 
of moving to a global framework, where the Earth is modelled as a rigid sphere supporting a thin fluid layer of constant depth which 
represents either the ocean or the atmosphere, we employ spherical coordinates and solve the wave equation in these coordinates. 
The objective is to apply a correction due to Earth curvature to the propagation of tsunami and acoustic–gravity waves at oceanic 
scales, to be assessed in real-time. Thus, certain simplifications are necessary to allow cost-effective computations. These include 
approximations related to Earth’s elasticity, bathymetry, density and temperature variations in both air and water, as well as the 
neglect of nonlinear effects. The validity and limitations of these simplifications are further discussed in Section 4.2. Note that, 
without loss of generality, the analysis is primarily conducted with reference to the ocean as the fluid layer, while the atmospheric 
case is addressed only when relevant.

Two different length scales, corresponding to two regimes, in the near and far fields, are considered. In the near-field, also 
referred to as the inner region (see Fig.  2b), we adopt the water depth ℎ as the characteristic length scale. In this regime, the Earth’s 
curvature is neglected, and we consider the generation of acoustic–gravity waves and the tsunami due to an uplifting cylinder. 
For the near-field view we can use axisymmetric cylindrical coordinates as studied in [9]. In the far-field, also referred to as outer 
region, we take the radius of the Earth 𝑟𝑒 as the reference length scale. At the interface between the near-field and far-field regions, 
both the value and first derivative, of the velocity function on either side of the interface must match. These matching conditions 
are sufficient to establish the unknowns of the equations and admit a full solution.

The amplitude of the acoustic–gravity waves and tsunami undergo a modulation governed by the envelope of the theta function 
𝛩(𝜃). This function determines the degree of geometrical defocusing (i.e., attenuation) dependent upon how far around the spherical 
body the wave has travelled. For example, for a wave originating at the north pole, maximum defocusing occurs at the vicinity of 
the equator. Continued travel beyond the equator towards the south pole would then see a focusing effect as evidenced in [10]. 
Reflections, at or near, the poles have not been considered in this work. The envelope itself can be described by a modified form 
of Bernstein’s equation, which is discussed in Section 4.
2 



B. Williams et al. Wave Motion 140 (2026) 103643 
It should be noted that although we are working at a global scale in this study, we have not taken into account tidal effects. 
For acoustic–gravity waves, this should not pose a problem since their speeds are much greater than those of tides. However, for 
completeness, tidal effects should be included.

2. Formulation

The fluid layer is considered inviscid, homogeneous, of constant depth ℎ, residing in a gravitational field of constant magnitude 
𝑔 = 9.81 m s−2. The layer is supported by a rigid, solid, homogeneous, and isotropic sphere of fixed radius 𝑟𝑒. Spherical coordinates 
(𝑟, 𝜃, 𝜙) are employed, with the origin of coordinates taken to be the centre of the sphere (see Fig.  1a). The radial coordinate is 
denoted by 𝑟, the polar coordinate by 𝜃, and the azimuthal coordinate by 𝜙. Assuming irrotational flow the problem is expressed in 
terms of a velocity potential function for the liquid 𝜑. We make use of linearised, irrotational flow for the liquid. A representation 
of the flow domain is given in Fig.  1a. Taking into account the compressibility of the fluid – albeit small in the case of the water 
layer – and neglecting the gravitational potential term, 𝑔𝜑𝑧, the velocity potential is governed by the wave equation [11] 

∇2𝜑 − 1
𝑐2

𝜕2𝜑
𝜕𝑡2

= 0, 𝑟𝑒 ≤ 𝑟 ≤ 𝑟𝑒 + ℎ, 0 ≤ 𝜃 ≤ 𝜋, 0 ≤ 𝜙 ≤ 2𝜋, 𝑡 ≥ 0, (2.2)

where 𝑐 is the speed of sound in the fluid layer. When the Laplacian for spherical coordinates is applied the wave equation becomes 

𝜕2𝜑
𝜕𝑟2

+ 2
𝑟
𝜕𝜑
𝜕𝑟

+ 1
𝑟2 sin (𝜃)

𝜕
𝜕𝜃

(

sin (𝜃)
𝜕𝜑
𝜕𝜃

)

+ 1
𝑟2 sin2 (𝜃)

𝜕2𝜑
𝜕𝜙2

− 1
𝑐2

𝜕2𝜑
𝜕𝑡2

= 0, (2.3)

subject to boundary conditions. Following the derivations given in [12], at the free surface we have the combined kinematic and 
dynamic boundary condition 

𝜕2𝜑
𝜕𝑡2

+ 𝑔
𝜕𝜑
𝜕𝑟

= 0, 𝑟 = 𝑟𝑒 + ℎ. (2.4)

At the rigid seabed (inner and outer regions) the radial component of velocity in the fluid layer is zero 
𝜕
𝜕𝑟

𝜑 (𝑟, 𝜃, 𝜙, 𝑡)
|

|

|

|𝑟=𝑟𝑒
= 0. (2.5)

Since 𝜙 is an angular coordinate, solutions should be single-valued, i.e., unchanged as 𝜙 → 𝜙 + 2𝜋

𝜑 (𝑟, 𝜃, 𝜙, 𝑡) = 𝜑 (𝑟, 𝜃, 𝜙 + 2𝜋, 𝑡) . (2.6)

The rupture in the seabed is modelled in the same way as in [9]. The model consists of a transient, uniform vertical uplift with a 
circular cross-section located at the seabed where the spherical coordinate 𝜃 = 0 (i.e., the north pole of the sphere) — see Fig.  2. 
There is no loss of generality in choosing the North Pole as the origin of the rupture since any other location on the sphere can be 
reached with a single rotation. Located immediately outside of the rising cylinder we have an annulus between radii 𝑅𝑐 (the wall of 
the cylinder) and 𝑅0. This annulus is designated the inner region and is made large enough to ensure the evanescent waves arising 
from the rupture have decayed away, but not so large as to introduce curvature errors.

3. Solutions

3.1. Short-range inner region

The tsunami will travel at speed 
√

𝑔ℎ, with time scale 
√

ℎ∕𝑔 and length scale ℎ. The acoustic–gravity waves will propagate with 
velocity 𝑐, time scale ℎ∕𝑐, and length scale ℎ. Let 𝜉 =

√

𝑔ℎ∕𝑐 be a dimensionless parameter that quantifies the influence of gravity 
relative to compressibility, representing the ratio of gravity wave speed to sound wave speed. Then with hat circumflex denoting 
non-dimensional parameters the wave equation (2.3) becomes 

𝜕2𝜑̂
𝜕𝑟̂2

+ 2
𝑟̂
𝜕𝜑̂
𝜕𝑟̂

+ 1
𝑟̂2 sin 𝜃

𝜕
𝜕𝜃

(

sin 𝜃
𝜕𝜑̂
𝜕𝜃

)

+ 1
𝑟̂2 sin2 𝜃

𝜕2𝜑̂
𝜕𝜙2

− 𝜉2
𝜕2𝜑̂
𝜕𝑡2

= 0. (3.7)

In the limit as 𝜉 → 0 (i.e., 𝑐 → ∞), the last term in the wave equation (3.7) becomes negligible and the equation reduces to the 
incompressible Laplace equation, which is acceptable when analysing pure surface-gravity waves in the ocean. Now let ℎ∕𝑟𝑒 = 𝜖 ≪ 1, 
and 𝑟 = 𝑟𝑒 +𝑍, with 0 ≤ 𝑍 ≤ ℎ, then the non-dimensional forms become 

𝑟̂ = 1
𝜖
+ 𝑍̂, 𝑍̂ = 𝑍

ℎ
. (3.8)

Substituting (3.8) in the wave equation (3.7) gives 
𝜕2𝜑̂
𝜕𝑍̂2

+ 2𝜖
𝜕𝜑̂
𝜕𝑍̂

+ 𝜖2

sin 𝜃
𝜕
𝜕𝜃

(

sin 𝜃
𝜕𝜑̂
𝜕𝜃

)

+ 𝜖2

sin2 𝜃
𝜕2𝜑̂
𝜕𝜙2

− 𝜉2
𝜕2𝜑̂
𝜕𝑡2

= 0. (3.9)

For small 𝜃 (near-field solution), we have 
𝜕2𝜑̂

+ 2𝜖
𝜕𝜑̂

+ 𝜖2 𝜕𝜑̂
+ 𝜖2

𝜕2𝜑̂
+ 𝜖2 𝜕2𝜑̂

− 𝜉2
𝜕2𝜑̂

= 0. (3.10)

𝜕𝑍̂2 𝜕𝑍̂ 𝜃 𝜕𝜃 𝜕𝜃2 𝜃2 𝜕𝜙2 𝜕𝑡2

3 
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Fig. 2. Representation of the seabed rupture as an uplifting cylinder of radius 𝑅𝑐 . Surrounding the cylinder is an annulus of outer radius 𝑅0. 
Solutions involve matching function values and first derivatives of the velocity potential at 𝑅0. (a) Uniform cylindrical uplift at the seabed of a 
compressible ocean of constant depth ℎ. (b) Top view of rupture regions. The black disc is the uplifting cylinder, the surrounding grey annulus 
is the inner region, and everything outside of it at radius larger than 𝑅0 is referred to as the outer region.

Here 𝜃 ≪ 1, but not 𝜙. From Fig.  1a we see that the arc length from the north pole is given by 𝑅 = 𝜃𝑟𝑒. For small 𝜃 we have 
sin(𝜃) ≈ 𝜃, 𝜃 = 𝑅∕𝑟𝑒 ≡ 𝜖𝑅̂ with 𝑅̂ = 𝑅∕ℎ being the arc length scaled to the fluid layer thickness. Thus 

𝜕2𝜑̂
𝜕𝑍̂2

+ 2𝜖
𝜕𝜑̂
𝜕𝑍̂

+ 1
𝑅̂

𝜕𝜑̂
𝜕𝑅̂

+
𝜕2𝜑̂
𝜕𝑅̂2

+ 1
𝑅̂2

𝜕2𝜑̂
𝜕𝜙2

− 𝜉2
𝜕2𝜑̂
𝜕𝑡2

= 0. (3.11)

For waves propagating in the water layer, where 𝑔ℎ∕𝑐2 ∼
(

ℎ∕𝑟𝑒
)1∕2, we can express 𝜉2 = (𝜖1∕2). Conversely, for atmospheric 

propagation, 𝜉 = (1). Assuming axisymmetric propagation, we set 𝜕∕𝜕𝜙 = 0. Thus, to leading order in 𝜖, the near-field solution 
reduces to symmetric cylindrical coordinates 

𝜕2𝜑̂
𝜕𝑍̂2

+ 1
𝑅̂

𝜕𝜑̂
𝜕𝑅̂

+
𝜕2𝜑̂
𝜕𝑅̂2

− 𝜉2
𝜕2𝜑̂
𝜕𝑡2

= 0, (3.12)

along with the boundary conditions. At the surface 
𝜕2𝜑̂
𝜕𝑡2

+
𝜕𝜑̂
𝜕𝑍̂

= 0. (3.13)

At the seabed there is a no-penetration condition (the vertical velocity is zero): 
𝜕𝜑̂
𝜕𝑍̂

= 𝑊̂0(𝑅̂, 𝑡), (3.14)

where 𝑊̂0 is the vertical velocity of the cylinder given by 

𝑊̂0 =
𝜁0
𝜏


(

𝑅̂𝑐
2 − 𝑅̂2

)


(

𝑡(𝜏 − 𝑡)
)

, (3.15)

where 𝜁0 is the final vertical displacement of the cylinder,  is the Heaviside function, and 𝜏 is the duration of the vertical motion.
The continuity conditions between the inner and outer regions are given by 

𝜑̂in||𝑅̂0
= 𝜑̂out||𝜃0=𝜖𝑅̂0

, (3.16)

𝜕
𝜕𝑅̂

𝜑̂in
|

|

|

|𝑅̂0

= 𝜕𝜃
𝜕𝑅̂

𝜕
𝜕𝜃

𝜑̂out = 𝜖 𝜕
𝜕𝜃

𝜑̂out
|

|

|

|𝜃0=𝜖𝑅̂0

. (3.17)

The point at which the matching takes place in the continuity equations is 𝑅0 on the LHS of the continuity equations where 
𝜑̂ = 𝜑̂𝑖𝑛(𝑅̂, 𝑍̂, 𝑡) and its equivalent 𝜃0 = 𝜖𝑅̂0 on the RHS where 𝜑̂𝑜𝑢𝑡 = 𝜑̂𝑜𝑢𝑡(𝑡, 𝜃).

The velocity potential 𝜑̂𝑖𝑛 appearing in the continuity conditions is already known in integral form from [9] and will be referenced 
in the following text as the cylindrical solution: 

𝜑̂𝑖𝑛(𝑅̂, 𝑍̂, 𝑡) =

4𝑅̂𝑐𝑊̂0 ∫

∞

0

𝜇̂0 cosh(𝜇̂0𝑍̂) sin (𝜔̂𝜏∕2)
𝜔̂𝑞0

[

sinh(2𝜇̂0) + 2𝜇̂0
]

[

𝑌0(𝑞0𝑅̂) cos
(

𝜔̂𝑡 − 𝜔̂𝜏
2

)

− 𝐽0(𝑞0𝑅̂) sin
(

𝜔̂𝑡 − 𝜔̂𝜏
2

)]

𝐽1(𝑞0𝑅̂𝑐 )d𝜔̂

+4𝑅̂𝑐𝑊̂0

∞
∑

∫

∞ 𝜇̂𝑛 cos(𝜇̂𝑛𝑍̂) sin (𝜔̂𝜏∕2)
[ ]

[

𝑌0(𝑞0𝑅̂) cos
(

𝜔̂𝑡 − 𝜔̂𝜏 ) − 𝐽0(𝑞𝑛𝑅̂) sin
(

𝜔̂𝑡 − 𝜔̂𝜏 )] 𝐽1(𝑞𝑛𝑅̂𝑐 )d𝜔̂

(3.18)
𝑛=1 𝜔̂𝑛 𝜔̂𝑞𝑛 sin(2𝜇̂𝑛) + 2𝜇̂𝑛 2 2

4 
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where 𝜇̂𝑛 are the eigenvalues and 𝑞𝑛 are wave numbers, with mode numbers 𝑛 (𝑛 = 0, 1, 2,…) – that are often omitted for brevity – 
𝐽𝑚, 𝑌𝑚 (𝑚 = 0, 1) are Bessel functions with subscripts denoting the type of the Bessel function. The first term in (3.18) corresponds to 
the contribution of the tsunami (the zeroth mode), with 𝜇0 real and positive. Thus, the potential exponentially decays with depth, 
as expected. On the other hand, the second term comprises a countable infinity of acoustic modes, with eigenvalues 𝜇𝑛. Unlike 
the tsunami, these modes exhibit an oscillatory behaviour across ℎ, while come of them are progressive in space in 𝑅, others are 
evanescent as will be further discussed in the following dispersion relation section.

Note, that there is a 𝑍 dependency in the inner region, since the characteristic length scale is ℎ, and thus 𝑍̂ = (1). On the 
other hand, for the outer region the characteristic length scale is 𝑟𝑒, i.e., 𝛥𝑍 ≡ ℎ ≪ 𝑟𝑒. Thus the dependency in the 𝑍 direction is 
negligible for the outer region. This miss-match is handled by setting 𝑍 = ℎ in the inner region when considering surface waves 
and integrating over 𝑍 in the inner region when considering acoustic–gravity waves.

Assume 𝜑̂(𝑍̂, 𝑅̂, 𝑡) = 𝜁 (𝑍̂)𝜌(𝑅̂)𝛶 (𝑡) and substitute into (3.12) to give, after re-arranging, 
1
𝜁
d2𝜁
d𝑍̂2

+ 1
𝜌𝑅̂

d𝜌
d𝑅̂

+ 1
𝜌
d2𝜌
d𝑅̂2

=
𝜉2

𝛶
d2𝛶
d𝑡2

= constant ≡ −𝑘̂2𝑠 , (3.19)

⟹ 𝛶 (𝑡) = 𝐴1 cos

(

𝑘̂𝑠
𝜉
𝑡

)

+ 𝐴2 sin

(

𝑘̂𝑠
𝜉
𝑡

)

, (3.20)

with 𝑘̂𝑠 a wave-number. From (3.19), and following Hendin and Stiassnie [9] we have 
1
𝜌𝑅̂

d𝜌
d𝑅̂

+ 1
𝜌
d2𝜌
d𝑅̂2

= −
(

1
𝜁
d2𝜁
d𝑍̂2

+ 𝑘̂2𝑠

)

= 𝑞2, (3.21)

where 𝑞2 is the separation constant between 𝑅̂ and 𝑍̂. The separation produces a set of two ODEs, 
d2𝜁
d𝑍̂2

+
(

𝑘̂2𝑠 + 𝑞2
)

𝜁 = 0,
d2𝜌
d𝑅̂2

+ 1
𝑅̂
d𝜌
d𝑅̂

− 𝑞2𝜌 = 0. (3.22)

The solution in the 𝑍̂ direction is 

𝜁 (𝑍̂) = 𝐵1 cos
(

𝜇̂𝑍̂
)

+ 𝐵2 sin
(

𝜇̂𝑍̂
)

, 𝜇̂ =
√

𝑘̂2𝑠 + 𝑞2, (3.23)

which is in agreement with Hendin and Stiassnie [9].
The solution in the radial direction is a linear combination of the Bessel functions 𝐽0 and 𝑌0 [13] 

𝜌(𝑅̂) = 𝐶1𝐽0(i𝑞𝑅̂) + 𝐶2𝑌0(i𝑞𝑅̂). (3.24)

Note that Eq.  (3.18) is valid only outside the cylindrical region (see Fig.  2b), requiring that 𝑅̂ > 𝑅̂𝑐 . Therefore, in the limit as 
𝑅̂ → 0, we have 𝑅̂𝑐 → 0, implying that 𝜑̂in → 0. Consequently, the solution becomes valid for all 𝑅̂ > 𝑅̂𝑐 .

3.2. Dispersion relation

The dispersion relation can be derived without knowledge of the function 𝜌(𝑅̂). The method shown here utilises Eqs. (3.20) and 
(3.23), along with 𝜑(𝑍̂, 𝑅̂, 𝑡) = 𝜁 (𝑍̂)𝜌(𝑅̂)𝛶 (𝑡), and reverts back to dimensional quantities for the calculation. Let 𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝐶1, 𝐶2
be constants then 

𝛶 (𝑡) = 𝐴1 cos

(

𝑘̂𝑠
𝜉
𝑡

)

+ 𝐴2 sin

(

𝑘̂𝑠
𝜉
𝑡

)

⟹ 𝛶 (𝑡) = 𝐴1 cos (𝜔𝑡) + 𝐴2 sin (𝜔𝑡) ,
𝑘̂𝑠
𝜉
𝑡 = 𝑘𝑠𝑐𝑡 = 𝜔𝑡, (3.25)

𝜁 (𝑍̂) = 𝐵1 cos
(

𝜇̂𝑍̂
)

+ 𝐵2 sin
(

𝜇̂𝑍̂
)

⟹ 𝜁 (𝑍) = 𝐵1 cos (𝜇𝑍) + 𝐵2 sin (𝜇𝑍) . (3.26)

Application of the boundary conditions for the surface (𝑍 = ℎ) and the bottom boundary condition (𝑍 = 0) 
𝜕2𝜑
𝜕𝑡2

+ 𝑔
𝜕𝜑
𝜕𝑍

= 0
|

|

|

|𝑍=ℎ
,

𝜕𝜑
𝜕𝑧

= 0
|

|

|

|𝑍=0
, (3.27)

results in the dispersion relation 
𝜔2 = −𝑔𝜇 tan(𝜇ℎ). (3.28)

Rearrangement of the expression for 𝜇 from (3.23), and examination of the roots of the dispersion relation (3.28), produces three 
categories

(i) Single imaginary root 𝜇 = i𝜇0, ⟹ 𝑞0 = i|𝑞0| = i
√

𝑘2𝑠 + 𝜇2
0 = i

√

𝜔2

𝑐2
+ 𝜇2

0 , (3.29)

(ii) Finite number of real roots 𝜇𝑛,  when 𝜇2
𝑛 < 𝜔2

𝑐2
, ⟹ 𝑞𝑛 = i|𝑞𝑛| = i

√

𝜔2

𝑐2
− 𝜇2

𝑛 , (3.30)

(iii) Infinite number of real roots 𝜇𝑛,  when 𝜇2
𝑛 > 𝜔2

2
⟹ 𝑞𝑛 =

√

𝜇2
𝑛 −

𝜔2

2
. (3.31)
𝑐 𝑐
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Category (i) corresponds to surface-gravity waves (tsunamis), which are progressive in the radial direction 𝑅 and decay 
exponentially with depth 𝑍. Category (ii) represents progressive acoustic–gravity modes that are oscillatory in 𝑍. Finally, category 
(iii) includes evanescent acoustic–gravity modes that decay exponentially in 𝑅 and can therefore be neglected in far-field (outer 
region) calculations.

For the tsunami 𝑛 = 0 and acoustic–gravity modes 𝑛 = 1,… , 𝑁 the wave numbers and 𝑞𝑛 are purely imaginary and so the argument 
of the Bessel functions, in the inner region, becomes real indicating oscillating, progressive modes. When 𝑛 = 𝑁 + 1,…∞, 𝑞𝑛 is real 
and in that case we have the modified Bessel functions representing non-progressive evanescent modes. Thus, the expression for 
the near-field region is in agreement with Hendin and Stiassnie [9], with the solution given by (3.18). In the incompressible limit, 
𝑐 → ∞, the tsunami eigenvalue reduces exactly to the wavenumber, indicating that no correction due to compressibility is present. 
In this regime, progressive acoustic modes cease to exist, as expected. Conversely, the mathematical limit 𝑐 → 0 corresponds to a 
vacuum, where the physical problem becomes ill-posed, since neither gravity nor acoustic waves can exist or propagate in such a 
medium.

3.3. Long range outer region

To tackle the far-field solution re-scale lengths by the characteristic length scale 𝑟𝑒, and time, by the time scale 𝜖−1
√

ℎ∕𝑔. Now 
𝑟̄𝑒 = 1, and ̄ℎ ≡ (𝜖). Since 0 ≤ 𝑍̄ ≤ ℎ̄, it follows that 𝑍̄ = (𝜖). Under this non-dimensional setting 𝑟 = 𝑟𝑒+𝑍 becomes ̄𝑟 = 1+(𝜖) and 
𝜕∕𝜕𝑟̄ = 0. Physically, this means that in the far-field waves only propagate at the surface of earth, i.e., the ocean or the atmosphere 
has a negligible length compared to the radius of the earth. The small angle approximation is no longer valid in the far-field. 
Substituting into the wave equation (2.3), whilst maintaining the axial symmetry from the inner region, i.e., 𝜕∕𝜕𝜙̄ = 0, then to the 
leading order we obtain 

1
sin (𝜃)

𝜕
𝜕𝜃

(

sin (𝜃)
𝜕𝜑̄
𝜕𝜃

)

− 𝜉2
𝜕2𝜑̄
𝜕𝑡2

= 0. (3.32)

3.4. Constructing the outer solution

Take the function 𝜑̄ = 𝐴
(

𝑇̄ , 𝛽
)

𝛩(𝜃)e−i𝜔̄𝑡 where 𝑇̄ = 𝜎
(

𝑡 − 𝜏∕2
)

, 𝛽 = 𝜎𝜃 and 𝜎 ≪ 1. We seek to demonstrate that the function 
𝐴(𝑇̄ , 𝛽) appearing in the ansatz solution 𝜑̄ to (3.32) is equivalent to the long-range version of the solution for the inner region 
cylindrical solution which is already known from [9] and appears in (3.18). Since the propagation in the outer-region can be 
represented as an evolving envelope at the surface of the sphere (i.e., no 𝑍 or 𝑟 dependency) the approach solution for the tsunami 
and the acoustic–gravity waves would be in principle the same solution. Thus, for the sake of brevity consider only the tsunami 
(𝑍 = ℎ) contribution from the propagating parts of (3.18), i.e., the first line 

𝜑̄𝑖𝑛(𝑅̄, 𝑡) = 4𝑅̄𝑐𝑊̄0 ∫

∞

0

𝜇̄0 cosh(𝜇̄0ℎ̄) sin (𝜔̄𝜏∕2)
𝜔̄𝑞0

[

sinh(2𝜇̄0ℎ̄) + 2𝜇̄0ℎ̄
]

[

𝑌0(𝑞0𝑅̄) cos
(

𝜔̄𝑡 − 𝜔̄𝜏
2

)

− 𝐽0(𝑞0𝑅̄) sin
(

𝜔̄𝑡 − 𝜔̄𝜏∕2
)

]

𝐽1(𝑞0𝑅̄𝑐 )d𝜔̄. (3.33)

Long-range approximations for the Bessel functions in (3.33) can be expressed following equation (10.7.8) of [14] as 

𝐽0
(

𝑞0𝑅̄
)

=

√

2
𝜋𝑞0𝑅̄

cos
(

𝑞0𝑅̄ − 𝜋
4

)

, 𝑌0
(

𝑞0𝑅̄
)

=

√

2
𝜋𝑞0𝑅̄

sin
(

𝑞0𝑅̄ − 𝜋
4

)

. (3.34)

With these approximations substituted into (3.33) along with the trigonometric identity sin (𝑋 − 𝑌 ) = sin (𝑋) cos (𝑌 ) − cos (𝑋) sin (𝑌 )
we have 

𝜑̄𝑖𝑛(𝑅̄, 𝑡) = 4𝑊̄0𝑅̄𝑐 ∫

∞

0

𝜇̄0 cosh(𝜇̄0ℎ̄) sin (𝜔̄𝜏∕2)
𝜔̄𝑞0

[

sinh(2𝜇̄0ℎ̄) + 2𝜇̄0ℎ̄
]

√

2
𝜋𝑞0𝑅̄

sin
[

−𝜔̄
(

𝑡 − 𝜏
2

)

+ 𝑞0𝑅̄ − 𝜋
4

]

𝐽1(𝑞0𝑅̄𝑐 )d𝜔̄. (3.35)

Substitute 𝜑̄ = 𝐴
(

𝑇̄ , 𝛽
)

𝛩(𝜃)e−i𝜔̄𝑡 into (3.32) to give 

𝜎 cot(𝜃)𝛩𝜕𝐴
𝜕𝛽

+ cot(𝜃)𝐴𝑑𝛩
𝑑𝜃

+ 2𝜎 𝜕𝐴
𝜕𝛽

𝑑𝛩
𝑑𝜃

+ 𝐴𝑑2𝛩
𝑑𝜃2

+ 𝜉2
[

2i𝜎𝜔̄𝛩 𝜕𝐴
𝜕𝑇̄

+ 𝜔̄2𝛩𝐴
]

= (𝜎2). (3.36)

Collecting leading order terms, and applying the change of variable 𝑤 = cos(𝜃), (3.36) can be re-written as 

(1 −𝑤2)d
2𝛩
d𝑤2

− 2𝑤d𝛩d𝑤 + 𝜉2𝜔̄2𝛩 = 0. (3.37)

This is a Legendre equation which has solutions that are a linear combination of the Legendre functions 𝑃𝜆(𝑤) and 𝑄𝜆(𝑤), where 𝜆
is the degree of the Legendre function. Thus with 𝐸1, 𝐸2 as integration constants to be determined we have 

𝛩(𝑤) = 𝐸1𝑃𝜆(𝑤) + 𝐸2𝑄𝜆(𝑤), 𝜆 = 1
2

√

4𝜉2𝜔̄2 + 1 − 1
2
, 𝑤 = cos(𝜃). (3.38)

Collecting terms at the next order, (𝜎) and after some re-arrangement, we find 𝜕𝐴∕𝜕𝑇  can be written in terms of 𝜕𝐴∕𝜕𝛽 as follows 

𝜕𝐴 = i cot(𝜃)𝛩 + 2𝜕𝛩∕𝜕𝜃 𝜕𝐴 . (3.39)

𝜕𝑇̄ 2𝜉2𝜔̄𝛩 𝜕𝛽
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Fig. 3. Plots of 𝑞0(𝜔), using the full dispersion relation (solid line); Eq. (3.44) (dashed line); approximate expression (3.45) derived in [15] 
(dotted line).

The equation 𝜕𝐴∕𝜕𝑇̄ = i𝜕𝐴∕𝜕𝛽 has solutions of the form 𝐴(𝑇̄ , 𝛽) = 𝑓 (i𝑇̄ + 𝛽), where 𝑓 is some arbitrary function. The solution of 
(3.39) is of the form 

𝐴(𝑇̄ , 𝛽) = 𝑓 (𝑥), 𝑥 ≡
(

i cot(𝜃)𝛩 + 2𝜕𝛩∕𝜕𝜃
2𝜉2𝜔̄𝛩

𝑇̄ + 𝛽
)

, (3.40)

and again 𝑓 (𝑥) is some arbitrary function. Let 
𝑃𝜆0 = 𝑃𝜆(cos 𝜃0), 𝑄𝜆0 = 𝑄𝜆(cos 𝜃0), 𝑃𝜆0+1 = 𝑃𝜆+1(cos 𝜃0), 𝑄𝜆0+1 = 𝑄𝜆+1(cos 𝜃0),

𝑃𝜆 = 𝑃𝜆(cos 𝜃), 𝑄𝜆 = 𝑄𝜆(cos 𝜃), 𝑃𝜆+1 = 𝑃𝜆+1(cos 𝜃), 𝑄𝜆+1 = 𝑄𝜆+1(cos 𝜃),
(3.41)

with 
𝜕𝛩
𝜕𝜃

=
(𝜆 + 1) sin(𝜃)
cos2(𝜃) − 1

[

𝐸1

(

cos(𝜃)𝑃𝜆 − 𝑃𝜆+1

)

+ 𝐸2

(

cos(𝜃)𝑄𝜆 −𝑄𝜆+1

)]

. (3.42)

Then the sine term with square brackets in (3.35) can be written in the form 𝑓 (𝑥) = sin[𝑎𝑥+𝑏] with 𝑎 = 𝑞0∕𝜎 and 𝑏 = −𝜋∕4. Assuming 
that 𝜏 ≪ 𝑡, reverting from (𝑇̄ , 𝛽) to (𝜎𝑡, 𝜎𝜃) we obtain 

𝑞0
𝜎

[

i cot(𝜃)𝛩 + 2𝜕𝛩∕𝜕𝜃
2𝜉2𝜔̄𝛩

]

𝜎𝑡 = −𝜔̄𝑡, and
𝑞0
𝜎
(𝜎𝜃) = 𝑞0𝑅̄. (3.43)

From (3.29), (𝜎 ≠ 0), and with 𝑞0 numerically positive (so we are able to drop the magnitude bars) we have 

𝑞0 (𝜔̄) =
2𝜉2𝛩

cot(𝜃)𝛩 + 2𝜕𝛩∕𝜕𝜃
𝜔̄2, 𝑅̄ = 𝜃. (3.44)

In what follows, we revert to the dimensional formulation. As numerical verification of the relationship between 𝑞0 and 𝜔 in (3.44), 
Fig.  3 compares values for 𝑞0 obtained from solving the dispersion relation at the matching point 𝜃0, against values given by (3.44) 
and an approximate expression from [15] (equation number 5.33) and written here as (3.45). 

𝑞0 =
𝜔

√

𝑔ℎ

(

1 + 𝜔2ℎ
6𝑔

)

. (3.45)

The values for 𝑞0 obtained from (3.44) remain close to the dispersion relation solution as far as 𝜔 = 0.6 rads−1. Thus, 𝜑𝑜𝑢𝑡 can now 
be written as 

𝜑𝑜𝑢𝑡(𝑡, 𝜃) = 𝐴(𝑅, 𝑡)
[

𝐸1𝑃𝜆 + 𝐸2𝑄𝜆
]

e−i𝜔𝑡, 𝑅 = 𝜃𝑟𝑒 (3.46)

where 𝐴(𝑅, 𝑡) can be written following (3.35) since we require equality at the interface between inner and outer regions.

3.5. Continuity between inner and outer regions

The initial conditions are determined by the particular rupture conditions studied. The near-field solution is given by (3.18), 
which is assumed to be the source of the velocity potential. Matching at 𝑅  then ensures a smooth transition between the cylindrical 
0
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solution of the inner region and the long-range spherical coordinates of the outer region. The velocity potential functions on either 
side of 𝑅0 must match in both value and first derivative at 𝑅0

𝜑𝑖𝑛(𝑅, 𝑡)||𝑅0
= 𝜑𝑜𝑢𝑡(𝑡, 𝜃)||𝜃0=

𝑅0
𝑟𝑒

, (3.47)

𝜕
𝜕𝑅

𝜑𝑖𝑛(𝑅, 𝑡)
|

|

|

|𝑅0

= 1
𝑟𝑒

𝜕
𝜕𝜃

𝜑𝑜𝑢𝑡(𝑡, 𝜃)
|

|

|

|𝜃0=
𝑅0
𝑟𝑒

. (3.48)

3.6. Determining the unknown constants

The known velocity potential 𝜑𝑖𝑛(𝑅, 𝑡) for the inner region now has to satisfy the continuity conditions (3.47) and (3.48) with 
the outer region. The matching is carried out at a distance 𝑅0 from the centre of the cylinder and at time 𝑡0 = 𝑅0∕

√

𝑔ℎ (the arrival 
time of the tsunami at the distance 𝑅0). The actual value chosen for 𝑅0 is a compromise between being far enough away from the 
rising cylinder in order for the evanescent waves to decay away, while not being so far as to introduce curvature issues — see (1.1) 
for the upper limit. Allowing a distance of five times the water depth (5ℎ km) for evanescent wave decay, in addition to the cylinder 
radius (𝑅𝑐 km) gives the lower limit (5ℎ + 𝑅𝑐). Therefore 𝑅0 km is chosen to satisfy these constraints. Increasing this radius up to 
the upper limit of (1.1) would retain the inner solution for longer before the defocusing effects begin. Conversely decreasing the 
radius would begin the defocusing earlier. Given the radius of the earth, the overall effect of relocating 𝑅0 on defocusing/ focusing 
would be negligible.

The first continuity condition gives 

𝛷 ≡ 𝜑𝑖𝑛(𝑅0, 𝑡0) = 𝐴(𝑡0, 𝑅0)
[

𝐸1𝑃𝜆0 + 𝐸2𝑄𝜆0

]

e−i𝜔𝑡0 , 𝜃0 =
𝑅0
𝑟𝑒

. (3.49)

The second continuity condition then gives 

𝛷𝑅 ≡ 𝜕
𝜕𝑅

𝜑𝑖𝑛
|

|

|

|𝑡0 ,𝑅0

= 𝜕𝜃
𝜕𝑅

𝜕
𝜕𝜃

𝜑𝑜𝑢𝑡
|

|

|

|𝑡0 ,𝜃0
, 𝜕𝜃

𝜕𝑅
= 1

𝑟𝑒
. (3.50)

To obtain the left-hand side of (3.50) differentiate (3.33) with respect to 𝑅 to give 

𝛷𝑅 = 4𝑅𝑐𝑊0 ∫

∞

0

𝜇0 cosh(𝜇0ℎ) sin (𝜔𝜏∕2)
𝜔
[

sinh(2𝜇0ℎ) + 2𝜇0ℎ
]

[

−𝑌1(𝑞0𝑅0) cos
(

𝜔𝑡0 −
𝜔𝜏
2

)

+ 𝐽1(𝑞0𝑅0) sin
(

𝜔𝑡0 −
𝜔𝜏
2

)]

𝐽1(𝑞0𝑅𝑐 )d𝜔. (3.51)

To obtain the right-hand side of (3.50) use 
1
𝑟𝑒

𝜕
𝜕𝜃

𝜑𝑜𝑢𝑡
|

|

|

|𝑡0 ,𝜃0
= 1

𝑟𝑒
𝜕
𝜕𝜃

{

𝜎 𝜕
𝜕𝛽

𝐴 (𝑇 , 𝛽)
[

𝐸1𝑃𝜆0 + 𝐸2𝑄𝜆0

]

+𝐴 (𝑇 , 𝛽)
(𝜆 + 1) sin(𝜃0)
cos2(𝜃0 − 1)

[

𝐸1 cos(𝜃0)𝑃𝜆0 + 𝐸2 cos(𝜃0)𝑄𝜆0 − 𝐸1𝑃𝜆0+1 − 𝐸2𝑄𝜆0+1

]

}

e−i𝜔𝑡
(3.52)

Eqs. (3.49), (3.50) form a set of simultaneous equations in unknowns 𝐸1 and 𝐸2 which can be solved to give 

𝐸1 = −

((

−𝛷 (𝜆 + 1)𝑄𝜆0+1 +𝑄𝜆0

(

𝛷 (𝜆 + 1) cos
(

𝜃0
)

+ sin
(

𝜃0
)

𝑟𝑒𝛷𝑅
)

)

− sin
(

𝜃0
)

𝑟𝑒𝛷𝑅𝑄𝜆0

)

ei𝜔𝑡0

𝛷 (𝜆 + 1)
(

𝑃𝜆0𝑄𝜆0+1 −𝑄𝜆0𝑃𝜆0+1

) , (3.53)

𝐸2 =

((

−𝛷 (𝜆 + 1)𝑃𝜆0+1 + 𝑃𝜆0

(

𝛷 (𝜆 + 1) cos
(

𝜃0
)

+ sin
(

𝜃0
)

𝑟𝑒𝛷𝑅
)

)

− sin
(

𝜃0
)

𝑟𝑒𝛷𝑅𝑃𝜆0

)

ei𝜔𝑡0

𝛷 (𝜆 + 1)
(

𝑃𝜆0𝑄𝜆0+1 −𝑄𝜆0𝑃𝜆0+1

) , (3.54)

with 𝐸1 and 𝐸2 now determined (3.46) can be reduced by cancellation of the e±i𝜔𝑡0  terms to 

𝜑𝑜𝑢𝑡(𝑡, 𝜃) = 𝐴(𝑅, 𝑡)
[

𝐸1𝑃𝜆 + 𝐸2𝑄𝜆
]

, 𝑅 = 𝜃𝑟𝑒. (3.55)

Note that it is not necessary to assign numerical values to 𝜎 since the terms cancel out during the derivations. Taking the fluid 
density to be 𝜌, the surface elevation and dynamic pressure can be derived from 

𝜂 = −1
𝑔
𝜕
𝜕𝑡
𝜑𝑜𝑢𝑡(𝑡, 𝜃), 𝑃 = −𝜌 𝜕

𝜕𝑡
𝜑𝑜𝑢𝑡(𝑡, 𝜃). (3.56)

4. Results and discussion

Many studies of tsunami and acoustic–gravity wave propagation use Cartesian or cylindrical coordinates. However, the curvature 
of the Earth unavoidably introduces errors for points far removed from the source. In this paper, we have considered an axially 
symmetric rupture occurring at the north pole and studied the propagation over the surface of the sphere. The Earth system 
is modelled as a thin fluid layer of constant depth overlying a rigid sphere, facilitating real-time tsunami assessment through 
acoustic–gravity waves in the ocean or atmosphere. Consequently, the solution must be computationally efficient.
8 



B. Williams et al. Wave Motion 140 (2026) 103643 
Table 1
Constants and parameters used in surface elevation comparison of Fig.  5.
 Constant Description Value  
 𝑔 Acceleration due to gravity 9.81 m s−2  
 𝑟𝑒 Radius of earth 6371 km  
 𝑅𝑐 Radius of cylindrical rupture 40 km  
 𝑅0 Radius of inner region 120 km  
 𝑐 Speed of sound in water 1500 m s−1 
 𝑊0 Uplift velocity 0.1 m s−1  

Fig. 4. Plot of theta function (3.38) (grey), upper and lower limits ±1 (red), and approximate envelope function (4.57) (black). North pole 
(rupture origin) is located at 𝜃 = 0, matching point at 𝜃 = 𝜃0 = 𝑅0∕𝑅𝑒 = 0.01884, maximum defocusing occurs at 𝜃 = 𝜋∕2, antipodal matching 
point is at 𝜃 = 𝜋 − 𝜃0, and the South pole is at 𝜃 = 𝜋.  (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.)

To achieve this goal we split our studies into two regions (inner and outer) with different scales in each. By employing a suitable 
scaling for the inner region (the near-field), we were able to show that the situation is exactly analogous to that studied in an earlier 
work [9]. This correspondence allowed us to take an established integral solution (3.18) as our desired initial velocity potential, 
valid for the region outside of the uplifting cylinder, but within some arbitrary radius 𝑅0. The radius 𝑅0 is chosen to be far enough 
from the rupture for the evanescent waves to decay, though close enough so that curvature effects can be ignored. In the studied 
numerical examples a value of 120 km is taken to satisfy these requirements.

For the outer region (𝑅 > 𝑅0) the scaling was changed to reflect the reference length scale switching from ℎ to 𝑟𝑒 thus providing 
a far-field perspective. We found that the amplitude derived in the cylindrical solution is multiplied by 𝛩(𝜃) when moving to the 
spherical case. The function 𝛩(𝜃) governs the defocusing/focusing behaviour of the wave-forms due to the spherical geometry 
involved. The action of 𝛩(𝜃) is as follows: 𝛩(𝜃) begins with a value of 1 at 𝜃0 since the amplitudes of the cylindrical solution and 
the spherical solution must match at this radius. Then, as 𝜃 increases, we see a decrease in amplitude (defocusing) as 𝜃 approaches 
𝜋∕2. From this point 𝛩(𝜃) begins to increase in magnitude (focusing effect) until the value of 1 is again attained at 𝜃 = 𝜋 − 𝜃0.

Since 𝛩(𝜃) multiplies the cylindrical solution then the amplitude of the cylindrical solution is modulated by 𝛩(𝜃) as the waves 
propagate over the surface of the sphere, first defocusing as they approach the equator 𝜃 = 𝜋∕2, and then focusing again as 
they near the South pole 𝜃 = 𝜋. The acoustic–gravity waves resulting from the second term in (3.18), would undergo similar 
defocusing/focusing. A plot of 𝛩(𝜃) is shown in Fig.  4. Note that 𝛩(𝜃) is only valid in the range 𝜃0 ≤ 𝜃 ≤ (𝜋 − 𝜃0). If calculations are 
carried out using the outer velocity potential for distances not falling within this range, then amplification of the surface elevation can 
be reported. The function 𝛩(𝜃) applies to any disturbance whose source aligns with the scaling assumptions used in the derivation. 
Accordingly, we present amplitude corrections for waves originating from a cylindrical source, from fault ruptures (both rectangular 
and 2D transect representations). Some of these waves are derived directly from our analytical formulation, while others come from 
numerical simulations that are then adjusted using 𝛩(𝜃). Detailed information on the numerical model is provided in Appendix  A.

The envelope governing the changing magnitude of 𝛩(𝜃) can be closely approximated by a modified form of a result found 
in [16] and attributed to Bernstein. The modification involves a re-scaling of Bernstein’s original result by a constant 𝐾: 

|𝛩(𝜃)| ≤ 𝐾
√

2
𝜋𝜆

(

1 − cos2 𝜃
)− 1

4 , 𝐾 =
√

𝜋𝜆
2

(

1 − cos2 𝜃0
)

1
4 . (4.57)

The black traces in Fig.  4 were obtained with (𝐾 = 8.68). As a numerical example, we take those parameters listed in Table  1 
which reproduce Figure 5.2 from [9]. The aim is to compile a side-by-side comparison of the tsunami contribution of the cylindrical 
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Fig. 5. Comparison between the surface elevation from (3.18), against (3.56) which uses spherical coordinates. Cylindrical solution is a red dash 
trace, whereas spherical solution is a blue solid trace. (a) Distance from source 120 km. This is the matching point. (b) Distance from source 
1000 km as in [9] (c) Distance from source 10000 km. Near the maximum defocusing point.  (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)

solution, against the solution for 𝜂 generated by (3.56), which utilises spherical coordinates. Comparisons are made at three distances 
from the source, namely 120 km (the matching point), 1000 km (as in Figure 3 of Hendin and Stiassnie [9]), and 10000 km (which 
corresponds to 𝜃 ≈ 𝜋∕2). The resulting surface elevation wave-forms are found in Fig.  5.

4.1. Energy considerations

A heuristic argument can be made to explain the form of the theta function envelope (4.57) based on energy considerations. In 
a circular wavefront, the energy of the wave spreads out as the wave travels away from the source. For a circular wavefront, the 
wavefront is an expanding circle in two dimensions. As the wave travels outward, the circumference of the circle increases, which 
means the energy is spread over a larger area. The energy density decreases as the wavefront expands. Since the total energy is 
conserved (assuming no losses), the energy density which is proportional to the square of the amplitude, is inversely proportional 
to the circumference of the circle, i.e., 𝜂2 ∝ [2𝜋𝑟𝑒 sin(𝜃)]−1. Thus 𝜂 ∝

(

1 − cos2(𝜃)
)−1∕4 which is in agreement with (4.57).

4.2. Assumptions/limitations

Having described the spherical solution, (3.55), some of the underlying assumptions and limitations of the model can be 
discussed. The model consists of a constant depth water layer covering a rigid sphere with no protruding land masses — ‘‘a water 
world’’. In practice, the water depth is not constant, with many deep trenches, sea-mounts, and land masses dispersed over the 
surface of the approximately spherical earth. The land masses in particular would break up the uniform film of water covering the 
sphere into distinct oceans. This alone is enough to introduce reflection/refraction effects unaccounted for in the model. The model 
does not take into account any dissipative mechanisms such as friction, and with the sphere being considered rigid, no elastic effects 
of the seabed are considered either. Elasticity is known to be significant [11,17], and Appendix  B provides a detailed evaluation of 
its influence relative to compressibility and background density. Also, a more realistic model of the Earth system would require the 
rotation of the planet to be taken into account (Coriolis forces) along with the tidal forces generated by the moon and (to a lesser 
extent) the sun.
10 
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Fig. 6. (a) A transect from the HTHH eruption location (20◦33′11.5′′S, 175◦23′02.8′′E) to the CTBTO hydrophone station H11S1 (18◦30′29.8′′N, 
166◦42′01.0′′E) spans approximately 4790 km. The panels illustrate results from a hypothetical event: a rapid 10 m sea surface elevation change 
over a 100 km width, initiated at the HTHH location. This is an idealised scenario and does not represent the actual eruption event. The average 
ocean depth along the transect is approximately 5200 m; (b) and (d) show sea surface elevation changes over 7 h under a flat Earth assumption 
with constant 5200 m depth—(b) from the current model (Section 3), (d) from a numerical model Appendix  A; (c) and (e) are the same as (b) 
and (d), respectively, but with a spherical Earth assumption. (f) and (g) are similar to (d) and (e), respectively, but include realistic variable 
bathymetry. (h) presents time series of surface elevation along the transect 5 h after initiation for scenarios (b)–(g).(i) shows time series at a 
point 2500 km from the origin for the same scenarios. Panels (h) and (i) illustrate the impact of bathymetric variability and Earth geometry (flat 
vs. spherical) on wave arrival time and modulation.
11 
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Fig. 7. Bottom pressure changes for the same scenario as in Fig.  6 are shown over time (1 h) and space: (a) under a flat Earth assumption with 
constant 5200 m depth; (b) the same as (a) but with a spherical Earth assumption; (d) similar to (a) but over realistic variable bathymetry; 
and (e) similar to (b) but with realistic bathymetry. Panels (c) and (f) show time series of bottom pressure changes along the transect 1 h after 
initiation, for scenarios (a) and (b) in (c), and for scenarios (d) and (e) in (f). Panels (c) and (f) highlight the effects of Earth curvature and 
bathymetry variability on acoustic signal characteristics.

4.3. Sensitivity to compressibility, variable bathymetry, and sound speed

We further investigated the properties of surface and acoustic gravity waves through detailed numerical modelling (see Appendix 
A for more details on the numerical scheme applied), considering both constant and variable water depth, and using both flat and 
spherical Earth assumptions. To create a scenario representative of a real-world application, we selected the location of the Hunga 
Tonga–Hunga Ha’apai (HTHH) eruption and a nearby hydrophone station, approximately 4700 km apart. It is important to note 
that this is a hypothetical scenario and does not replicate the actual 2022 HTHH event; rather, it uses the eruption site as the source 
location for idealised modelling purposes. The locations of the two points and the extracted transect are shown in Fig.  6a. The 
average ocean depth along this transect is approximately 5200 m.

The generated wave is initiated by an instantaneous sea bottom movement over a width of 100 km, lasting for 10 s, with a 
vertical velocity of 1 m/s. The model employed in these scenarios is based on the formulation presented in [18], Section 3, where 
a weakly compressible (first-order approximation of fluid density and pressure), inviscid, and irrotational fluid is considered. The 
sound speed can be specified explicitly or assumed to approach infinity to represent an incompressible fluid, and the depth profile 
can be variable. We conducted simulations under the following scenarios, using both flat assumptions, and applied the 𝛩(𝜃) function 
to obtain a spherical correction:

1. Incompressible ocean over constant depth,
2. Incompressible ocean over variable depth,
3. Compressible ocean over constant depth,
12 
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Fig. 8. Surface gravity waves and bottom pressure waves for different sound speeds along a constant-depth transect (5200 m) and with Spherical 
Earth assumption (using the 𝛩(𝜃) function), as in Fig.  6: (a) surface gravity waves with sound speed 𝑐 = 1450 m∕s, and (b) with 𝑐 = 1570 m∕s; (d) 
bottom pressure waves with 𝑐 = 1450 m∕s, and (e) with 𝑐 = 1570 m∕s. Panel (c) shows time series of bottom pressure changes along the transect 
1 h after initiation, comparing 𝑐 = 1450 m∕s (grey line) and 𝑐 = 1570 m∕s (black line). Panel (f) shows the time series of both bottom pressure 
(grey and black) and surface gravity waves (red and magenta) recorded 50 km away from the generation zone for.  (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)

4. Compressible ocean over variable depth,
5. Compressible ocean over constant depth with a sound speed of 1450 m/s,
6. Compressible ocean over constant depth with a sound speed of 1570 m/s.

First, the theoretical development presented in Section 3, illustrated in the second row of Fig.  6, is validated against the numerical 
experiments shown in the third row and described in Appendix  A. This comparison assumes a flat bottom with an average depth of 
5200 m along the transect, as shown in panel (a). Results are provided for both the flat Earth approximation (panels b and d) and 
the spherical Earth configuration (panels c and e). The flat bottom solution, derived from the analytical formulation, can be obtained 
rapidly which offers substantial computational advantages over resource-intensive numerical models. As such, it serves as a practical 
reference for evaluating the suitability of flat-bottom assumptions in operational applications. Following this initial validation, the 
flat bottom scenario is compared with the variable depth case (fourth row) to assess the impact of bathymetric complexity.

For Scenarios 1 and 2, the spatio-temporal evolution of surface waves in an incompressible ocean is analysed, as shown in Fig. 
6. Panels (d) and (f) illustrate the effects of variable bathymetry, which modify both the structure and modulation of the wave field. 
Comparisons between the left-hand panels (b–f) and the corresponding right-hand panels (c–g) highlight the differences between flat 
and spherical Earth assumptions under both constant-depth (second and third rows) and variable-depth (bottom row) conditions. 
Panel (h) presents a snapshot of the surface waves 5 h after the simulation begins, integrating spatial patterns from panels (b) 
through (g). This snapshot reveals the influence of bathymetric variation on wave modulation, the damping effects introduced 
by Earth curvature, and the degree of agreement between constant and variable depth solutions, particularly within the range of 
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1500 km to 4500 km from the source. Finally, panel (i) shows the time series of surface elevation recorded 2500 km from the source, 
displaying notable differences in wave arrival time and amplitude. These results further highlight the importance of accounting for 
both bathymetry and Earth’s geometry in accurate wave modelling.

Examining the transect shown in panel (a), the presence of irregular topography – including a shallow region near the source and 
a deep trench within the first 1000 km – led to variations in arrival time, following the depth-dependent phase speed relationship 
for an incompressible ocean over a rigid bottom, as illustrated in Fig.  B.11.

Scenarios 3 and 4 are compared in Fig.  7, with a focus on the properties of bottom pressure acoustic gravity waves (AGWs). The 
left-hand side panels correspond to the constant depth case, while the right-hand side panels illustrate the effects of depth variability 
on AGW behaviour. The top panels present the results under a flat Earth assumption, whereas the middle panels show the results 
considering Earth curvature.

The bottom panels display a snapshot of the along-transect bottom pressure signal taken 1 h after the initiation of the simulation, 
with the left panel representing the constant depth case and the right panel showing the variable depth case. Notably, the inclusion 
of Earth curvature leads to a damping effect, where wave amplitudes gradually decrease as the waves propagate farther from the 
source. This attenuation is due to the geometric spreading of the wave energy over a curved surface, which is absent in flat Earth 
simulations.

In addition to the effects of Earth curvature, bottom variability significantly influences AGW characteristics. Variations in 
bathymetry modify the modulation patterns of the propagating waves and shift the dominant (carrying) frequencies. In the case 
of a flat bottom, the wave modes and frequency content follow the well-defined dispersion relationship for mode 𝑛 given by 
Eq. (4.58), whereas over a variable bottom, the governing relationships become more complex and spatially dependent. Bathymetric 
irregularities introduce local changes in phase speed, causing partial reflections and refractions of the wave energy. These processes 
lead to interference patterns, spectral broadening, and complex waveform structures along the transect. Consequently, the bottom 
variability plays a key role in shaping the spectral and temporal properties of the bottom pressure signals observed at distant 
locations. 

𝑓𝑛 =
(2𝑛 − 1)𝑐

4ℎ
, 𝑛 = 1, 2,… (4.58)

Overall, the comparison highlights that both Earth curvature and bathymetric variability play critical roles in shaping AGW 
properties. Neglecting either effect would result in notable inaccuracies when predicting the propagation, amplitude, and frequency 
content of acoustic gravity waves over oceanic scales.

Comparing scenarios 1–4, particularly for surface gravity waves, highlights the influence of ocean compressibility on phase speed 
reduction. This reduction in phase speed (∼4 min over 4700 km length scale), in turn, alters the surface wave modulation patterns 
and shifts the peak arrival times, consistent with the behaviour discussed earlier.

Finally, to investigate the impact of sound speed on wave propagation, we considered two extreme values representative of 
oceanic conditions, where the sound speed can vary spatially due to temperature and salinity, particularly with latitude. Specifically, 
we selected sound speeds of 1450 m/s and 1570 m/s, corresponding to cold and warm water extremes, respectively. We performed 
simulations using a compressible ocean model over a flat bottom, keeping all other parameters the same.

The results are shown in Fig.  8. Panels (a) and (b) present the surface gravity wave responses for sound speeds of 1450 m/s and 
1570 m/s, respectively. The comparison indicates that changes in sound speed have a negligible effect on surface waves, with only 
a slight reduction in phase speed observed — approximately a 0.2% difference. This marginal effect is consistent with the fact that 
surface gravity wave dynamics are primarily governed by gravity and depth, with compressibility effects being secondary at these 
scales, and become important in transoceanic scale simulations.

In contrast, the bottom pressure signals exhibit a more noticeable sensitivity to sound speed variation. Panels (d) and (e) show 
the bottom pressure fields for the two cases, revealing changes in both amplitude and waveform structure. A closer inspection, 
provided in panel (c), shows a snapshot of the spatial distribution of bottom pressure one hour after simulation initiation, where 
phase lags and amplitude differences between the two cases become apparent.

Panel (f) further illustrates these differences by showing time series records of both long gravity waves and bottom pressure 
signals, taken 50 km away from the generation zone. The results highlight a larger amplitude in the bottom pressure signal for the 
lower sound speed case (1450 m/s), whereas the surface gravity wave signals remain nearly identical between the two sound speed 
scenarios (red and magenta lines in panel f).

It is important to note that, in reality, ocean sound speed varies continuously with both depth (vertically) and location 
(horizontally) due to changes in salinity and temperature. While this study focused on two extreme cases with constant sound 
speeds to highlight potential impacts in idealised scenarios, the natural horizontal and vertical variability of sound speed remains 
a critical factor.

4.4. Hunga Tonga–Hunga Ha’apai eruption

The axially symmetric, cylindrical rupture model developed in [9], coupled with the global extent of the results obtained in this 
paper suggest a qualitative comparison may be made with the HTHH eruption studied in [10]. The HTHH volcanic eruption of 15th 
January 2022 was one of the largest of the last 30 years and generated concentric, propagating atmospheric acoustic–gravity waves 
that radiated outwards globally from the source.

The HTHH eruption was modelled in [10] as a moving atmospheric source, coupled to the ocean surface, able to transfer energy 
into the ocean via a triad resonance mechanism [10]. For comparison purposes, we regard the volcanic eruption as an uplifting 
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Table 2
Constants and parameters used in the HTHH qualitative model.
 Constant Description Value  
 𝑔 Acceleration due to gravity 9.81 m s−2 
 𝑟𝑒 Radius of earth 6371 km  
 𝑅𝑐 Radius of cylindrical rupture 1100 m  
 𝑅0 Radius of inner region 120000 m 
 𝜌𝑎 Air density 1.2 kgm−3  
 𝑐 Speed of sound in air 343 m s−1  
 𝑊0 Uplift velocity 400 m s−1  
 𝑛 Acoustic mode 1  
 𝜏 Uplift duration 0.2 s  

Fig. 9. Progression of acoustic–gravity waves generated by point source model of the HTHH 2022 eruption. (a) Circular wavefront shortly after 
the eruption, (b) Wavefront has now travelled almost halfway around the world. This is just before maximum defocusing is achieved. (c) Just 
after maximum defocusing, the wavefront is now past the halfway point and is beginning to focus again. (d) The wavefront has reached its 
antipodal point over North Africa and has focused here.

cylinder moving in a low-density fluid (the atmosphere). The parameters used for the comparison are those found in Figure 7 
of Omira et al. [10], and reproduced in Table  2. The explosive nature of the event is reflected in the supersonic uplift velocity 
and short duration. Our model is that of a point source, rather than a moving source, as in [10], and no coupling (resonance) 
with the liquid layer is considered. These constraints limit our comparison to be qualitative only. Fig.  9 shows the progression 
of the acoustic–gravity wavefront at four distinct times. Fig.  9(a) is just after the eruption, and shows the circular wave-front of 
the acoustic–gravity waves as pictured in the satellite imagery of Figure 1 [10]. Fig.  9(b) and (c) represent the acoustic–gravity 
wave’s progression just before, and just after, the point of maximum defocusing respectively. Fig.  9(d) has the acoustic–gravity 
wave focusing at its antipodal point lying over North Africa. The defocusing is apparent in the less intense acoustic–gravity wave 
in Fig.  9(b) and (c) when compared to Fig.  9(a) and (d) — see supplementary video.

4.5. Rectangular fault source

In this section, we apply the 𝛩 function to a rectangular fault. Although the earlier derivation pertains to a cylindrical source, at 
far-field distances, the curvature of a wavefront segment – be it tsunami or acoustic–gravity waves – becomes negligible. This allows 
the curvature correction to be applicable to arbitrary wavefronts. To illustrate the effect of Earth’s curvature on the dispersion of 
the leading acoustic–gravity wave amplitude envelope |𝐴1|, we consider a fault measuring 40 km in width and 800 km in length, 
undergoing vertical motion at 0.1 m/s for 10 s, following the example discussed by Mei and Kadri [2]. The solution for 𝐴1 can be 
found in equation (5.10) of their work. Fig.  10 presents the spatial evolution of the leading acoustic mode’s envelope for a flat Earth 
model (a) and a spherical Earth model (b). At a distance of 8000 km, the amplitude experiences an approximate 60% reduction due 
to Earth’s curvature (c).

The methodology presented herein offers a computationally efficient correction for long-range wave propagation calculations, 
accounting for Earth’s curvature. This approach is particularly valuable for real-time applications, such as tsunami assessment based 
on acoustic signals [5], where rapid analysis is crucial and waiting for more detailed, computationally intensive models is not 
feasible. However, it is essential to apply these findings judiciously and with a comprehensive understanding of their limitations. 
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Fig. 10. Comparison of the amplitude envelope of the leading acoustic mode |𝐴1| in the 𝑥–𝑦 plane: (a) flat Earth model; (b) spherical Earth 
model. (c) Far-field comparison of acoustic amplitude envelopes at 𝑥 = 8000 km: flat Earth (dashed line) versus spherical Earth (solid line).

In scenarios where bathymetric variations are significant, additional corrections may be necessary. For instance, employing Green’s 
function methods or other energy conservation techniques can help compensate for localised changes due to bathymetry, enhancing 
the accuracy of the model in complex terrains.

The work presented in this paper could be extended in a number of ways. One of which could be the development of a 
computational fluid dynamics (CFD) validation model. The assumptions of constant depth, solid and rigid sphere, no tides, and 
no rotation discussed earlier could make validation using recorded data difficult. Experiments using water tanks are also of no help 
due to the global scale and curvature involved. Once the CFD model had been set up, and the focusing/defocusing effects verified, 
then other assumptions could be investigated. Elasticity, tides, rotation (Coriolis), and dissipation would all be candidates for further 
study. Also, the small correction due to Earth’s geometry being closer to an oblate spheroid rather than a perfect sphere could be 
included.

5. Conclusions

In this work we present an analytical framework to account for Earth’s curvature in models of long-range tsunami and acoustic–
gravity wave propagation, addressing a key limitation of near-field models that rely on Cartesian or cylindrical coordinates. By 
matching a near-field cylindrical solution to a far-field spherical solution through a two-scale asymptotic approach, we derived the 
function 𝛩(𝜃), which is a solution to Legendre’s equation, that analytically captures the geometrical defocusing of wave amplitudes as 
they travel toward the equator and their subsequent refocusing toward the antipode. The result is a simple, direct, computationally 
efficient correction factor that links the source dynamics to far-field wave evolution using only global geometric considerations. 
This correction can be implemented in operational models for large-scale applications (due to its low computational cost), offering 
an alternative to fully numerical methods that are significantly more resource-intensive — which resonates with recent findings 
on the significance of simpler models and how they can outperform deep learning in climate prediction [19]. Importantly, we 
also quantified this curvature-induced effect in relation to other physical processes with comparable influence, including ocean 
compressibility, seabed elasticity, background density structure, bathymetric variability, and sound speed gradients.
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The validity and practicality of the proposed correction were tested against a range of physical parameters. In an idealised 
constant-depth scenario, the analytical model’s prediction of amplitude decay was validated against numerical simulations, revealing 
a pronounced defocusing effect at distances approaching 10,000 km (Fig.  5). The investigation was then extended to more complex 
cases, showing that while Earth’s curvature is a dominant factor in far-field amplitude decay, causing approximately 60% reduction 
for a rectangular fault source at 8000 km (Fig.  10), other factors play important roles. In particular, ocean compressibility, 
seabed elasticity, and background density introduce significant, period-dependent reductions in wave phase speed, while variable 
bathymetry primarily affects waveform modulation and arrival time (Figs.  6, 7, B.11, B.12). Furthermore, our analysis demonstrated 
that variations in sound speed (from 1450 to 1570 m/s) have a negligible influence on surface gravity waves but a more noticeable 
effect on bottom pressure amplitudes and phase shifts (Fig.  8).

Finally, the model qualitatively reproduced the global propagation pattern of atmospheric waves from the 2022 Hunga Tonga–
Hunga Ha’apai eruption, including the observed defocusing and antipodal focusing behaviour (Fig.  9). While the theoretical 
framework is based on simplified assumptions – such as constant depth, uniform background structure, and idealised wave sources 
– our comparative analysis highlights the limitations of these assumptions and identifies conditions under which other physical 
effects may become more influential than Earth’s curvature. For instance, bathymetric variability can significantly affect wave 
modulation, while for long-period waves, processes such as ocean compressibility, seabed elasticity, and background density 
gradients can alter phase speed — effects that may outweigh geometric spreading. Nevertheless, this work provides not only a 
robust theoretical foundation for understanding geometrical spreading on a sphere, but also a practical, first-order correction that 
has been quantitatively assessed relative to other key physical processes. As such, it represents a valuable component for integration 
into real-time tsunami assessment systems, where both computational efficiency and physical accuracy are essential.
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Appendix A. Numerical model

The numerical model is based on the governing equation for the velocity potential 𝜑(𝑥, 𝑦, 𝑧, 𝑡): 
𝜕2𝜑
𝜕𝑡2

− 𝑐2
(

∇2
ℎ𝜑 − 𝜑𝑧𝑧

)

= 0, −ℎ ≤ 𝑧 ≤ 0 (A.1)

Here, 𝑐 is the sound speed, and ℎ is the local water depth, which may vary spatially. The operator ∇ℎ represents the horizontal 
gradient, and subscripts on dependent variables denote partial derivatives. The system is subject to combined kinematic and dynamic 
boundary conditions applied at the free surface, 

𝜕2𝜑
𝜕𝑡2

+ 𝑔𝜑𝑧 = 0, 𝑧 = 0 (A.2)

where 𝑔 is the gravitational acceleration, and the impermeable (but possibly moving) bottom, 𝑧 = −ℎ: 

𝜙𝑧(𝑥, 𝑡) =

⎧

⎪

⎨

⎪

⎩

𝜁0
𝜏
, 0 ≤ 𝑡 ≤ 𝜏, 0 ≤ 𝑥 ≤ 𝑏

0, 𝑡 > 𝜏 or 𝑥 > 𝑏,
𝑧 = −ℎ (A.3)

where 𝜁0 is the total residual bottom displacement, 𝜏 is the total duration of the motion, and 𝑏 is the displacement length. 
Additionally, the wave field must satisfy an outgoing radiation condition at large distances. To enforce this, we apply the Sommerfeld 
radiation condition along an artificial boundary placed sufficiently far from the wave source region.

We employed the finite element solver in COMSOL Multiphysics [20], using unstructured triangular meshes. The model geometry 
is imported from a transect extracted using bathymetric data from the GEBCO Digital Elevation Model (DEM) [21]. Time integration 
is performed using an implicit scheme based on the generalised-Alpha method, which ensures numerical stability and convergence 
over variable-resolution meshes. Full details are provided in [18].
17 



B. Williams et al. Wave Motion 140 (2026) 103643 
Fig. B.11. Left-hand side panels: (a) Phase speed of surface waves as a function of water depth (0–10 km) and wave period (1 min to 3 h) 
from an incompressible ocean and rigid bottom dispersion relation as benchmark. Panels (b) through (e) show the relative changes in phase 
speed due to individual physical effects: (b) ocean compressibility (OC), (c) Earth’s elasticity (EE), (d) background density (BD) in the ocean, 
and (e) background density in the solid Earth. Right-hand side panels provide a detailed zoom-in view: Panel (f) shows phase speed for a fixed 
wave period of 30 min across depths from 0 to 10 km, and panel (h) presents the corresponding relative changes in phase speed due to ocean 
compressibility, Earth elasticity, and background density in both ocean and Earth; (g) phase speed at a fixed water depth of 4 km across wave 
periods from 1 min to 3 h; (g) the corresponding relative change in phase speed for panel (i), highlighting the impact of various physical factors. 
Notably, the effects of ocean compressibility and background ocean density approach asymptotic behaviours of −𝑀2∕2 and 𝑀2∕4, respectively, 
where 𝑀 =

√

𝑔ℎ∕𝑐 is a Mach number based on the linear long-wave speed for an incompressible surface gravity wave.

Appendix B. Ocean compressibility, seabed elasticity, & background density

To evaluate the influence of ocean compressibility, Earth’s elasticity, and background density (𝑔𝜙𝑧 terms) on wave propagation, 
we conducted a series of analyses that quantify each factor’s relative contribution across a broad spectrum of wave types and 
18 
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Fig. B.12. Phase speed of (a) surface gravity waves and (b) acoustic waves, derived using the dispersion relation for a compressible ocean 
overlying an elastic half-space, incorporating background density profiles for both the ocean and the solid Earth. Arrival times for (c) surface 
gravity waves are shown with 30-min contours, and (d) acoustic waves with 300-s contours. The surface wavefronts are computed for a 30-
minute-period wave, while acoustic propagation is modelled for a 5-second-period signal, both using the solution of dispersion relation given by 
Eq. 2 of Abdolali et al. [11]. The source location is marked by a yellow star, corresponding to the HTHH eruption.  (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)

conditions. For calculating wave travel times over long distances on a global spherical domain, we employed a shortest-path 
algorithm based on Dijkstra’s method [5]. This algorithm accounts for the propagation of two distinct wave types generated by 
a single source: (1) surface gravity waves and (2) acoustic–gravity waves. To determine the phase speeds of these waves, we solved 
the dispersion relation for a compressible ocean overlaying an elastic half-space Earth, incorporating background density in both 
the ocean and Earth’s interior. This comprehensive approach ensures that the model accurately reflects the physical characteristics 
influencing wave propagation.

Fig.  B.11 illustrates the resulting phase speeds for varying water depths (0 to 10 km) and wave periods ranging from 15min
to 3 h, encompassing the typical range of tsunami wave periods. Phase speeds are derived using the dispersion relation solutions 
from [11], and relative changes are computed to isolate the effects of individual physical parameters. Panel (a) in Fig.  B.11 presents 
the benchmark solution based on the classical dispersion relation for an incompressible ocean over a rigid seafloor. This serves as a 
reference case and corresponds with results produced by conventional numerical models. Panels (b) through (e) display the relative 
changes in phase speed arising from ocean compressibility, Earth’s elasticity, and background density. The results demonstrate a 
noticeable reduction in wave speed due to compressibility and elasticity, particularly at longer wave periods, while the inclusion of 
background density leads to a slight increase in phase speed. In the shallow water limit, ocean compressibility reduces the phase 
19 
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speed by approximately 𝑀2∕2, where 𝑀 =
√

𝑔ℎ∕𝑐 is the acoustic Mach number. Conversely, the inclusion of the gravitational 
potential term 𝑔𝜙𝑧 leads to a phase speed increase of approximately 𝑀2∕4 in shallow water. These effects, when combined with 
Earth curvature, result in a significant change in propagation speed (slowdown) and arrival time at transoceanic scales [11,22].

A more detailed view is provided on the right-hand side of Fig.  B.11, illustrating the variation in relative phase speed for two 
scenarios: (1) a fixed average water depth of 4 km across a range of wave periods, and (2) waves with a 30min period over water 
depths ranging from 0 to 10 km.

The Earth and ocean parameters employed in this study are as follows: water density (𝜌𝑤 = 1020 kg∕m3), Earth density (𝜌𝑒 =
2750 kg∕m3), sound speed in water (𝑐 = 1500 m/s), shear wave speed in Earth (𝑐𝑠 = 2750 m/s), and compressional wave speed 
in Earth (𝑐𝑝 = 6300 m/s). These values represent standard conditions for a compressible ocean overlying an elastic Earth and are 
essential for solving the dispersion relation governing both surface and acoustic–gravity wave propagation.

Once the solutions for varying depths are computed, Dijkstra’s algorithm is applied to calculate the arrival times of wave fronts, as 
shown in Fig.  B.12. Panel (a) displays the phase speeds obtained by solving the dispersion relation, including ocean compressibility, 
Earth’s elasticity, and background density (Eq. 2; [11]), for both the surface wave and the first acoustic mode, incorporating all 
relevant parameters. Panel (b) shows the computed arrival times of the surface gravity wavefront, while panel (c) presents the 
phase speed of the first acoustic mode. Finally, panel (d) illustrates the arrival times of the acoustic wavefront.

Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.wavemoti.2025.103643.

Data availability

Data will be made available on request.
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