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 A B S T R A C T

We investigate the effects of compressibility in the propagation of shallow-water waves and extend the classical 
shallow-water equations to a compressible regime. Both non-dispersive and weakly-dispersive nonlinear waves 
are then analysed with the help of the multiple scales method, ultimately leading to the studying of a Burgers 
and a Korteweg–deVries equation, respectively. A parametric study is conducted in order to investigate the 
interplay of both nonlinearity and compressibility and assess how compressibility may alter the nonlinear 
properties of the waves. In particular, parameters varied are the compressibility coefficient 𝜇, the amplitude 
of the waves 𝜖 and the width of the initial wave profile 𝜎. In a non-dispersive regime, shock and rarefaction 
waves form and interact one another leading to a progressive reduction of the wave amplitude in time. The 
compressibility of the fluid 𝜇 speeds up the shock formation, with beneficial effects in terms of wave amplitude 
reduction. In a weakly dispersive regime, on the other hand, higher compressibility values may amplify the 
initial perturbation, leading to the formation of a discrete number of solitons having amplitudes much greater 
than the amplitude at the initial stage. The analysis presented in this work aims at improving our predictions 
on the dynamics of nonlinear compressible shallow-water waves both in terms of wave amplitude variation 
and propagation time. Among various applications, our enhanced models can notably improve the estimation 
of tsunami arrival times and contribute to more accurate weather forecasts. Furthermore, the work presented 
here lays the foundation for future experimental studies and assessments in this field.
1. Introduction

Geophysical flows are large scale motions developing in oceans and 
atmosphere. They typically occur over very large horizontal spatial 
scales compared to their depths, so that vertical accelerations can 
usually be neglected.

Mathematically, atmospheric and oceanic flows are modelled using 
the shallow-water approximation [1], which allows to reduce the com-
plete three-dimensional Navier–Stokes equations to a two-dimensional 
system of equations defined in terms of surface variables only, bringing 
a huge advantage in terms of computational costs. The shallow-water 
equations also support the propagation of nonlinear waves, and possess 
nice mathematical features—e.g. strictly hyperbolicity—useful to accu-
rately describe shock and rarefaction waves [2], tidal waves [3], and 
provide nonlinear analogues with systems in other fields [4].

However, the reduction in the mathematical complexity of the 
problem is replaced by a lack in the accuracy of the description of 
wave motions within certain regimes; for example, dispersive effects 
come into play very soon and need to be included in the models. The 
first attempt to do so was carried out by Boussinesq [5], who derived 
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a dispersive wave equation taking into account the effects of depth. 
Boussinesq equations and subsequent models are all derived by depth-
averaging the incompressible Euler equations under the assumption 
of weak nonlinearity. Improved models giving rise to either classical 
Burgers or Korteweg–deVries equations have been proposed by Su and 
Gardner [6], Green and Naghdi [7] in the case of fully nonlinear 
waves, and by Bonneton et al. [8], Brocchini [9], Kirby [10] when 
dispersion is no more weak. Other physical mechanisms included in 
shallow-water models comprise Earth rotation [11–13] and viscous 
dissipation [14,15].

All models previously mentioned have been derived under the 
assumption of considering the flow as incompressible. However, in 
recent years, compressible effects have been shown to influence the 
propagation of ocean surface gravity modes through their nonlinear 
resonant interaction with acoustic compressible modes propagating all 
over the fluid layer. This coupling has been shown to be responsible 
for the continuous exchange of energy among a small number of 
linear modes [16–20], ultimately leading to a modest reduction in 
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the amplitude of the gravity wave when the latter interacts with two 
acoustic waves [21].

The main motivation behind the present work is to investigate the 
effects of compressibility in the dynamics of weakly nonlinear shallow-
water waves. Following the statement in McWilliams’ book [11, pp. 
47]: ‘‘Earth’s atmosphere has vertical profiles much closer to isothermal 
than isentropic...’’, as well as the works of Kadri and Akylas [17],
Longuet-Higgins [22], we assume all fluids considered in this work to 
be barotropic and isothermal, such that the pressure varies linearly 
with the density only, namely 𝑃 = 𝑃 (𝜌) = 𝑃a + 𝑐2(𝜌 − 𝜌𝑎), where 
𝑐 is the constant speed of sound, 𝑃a the atmospheric pressure and 
𝜌𝑎 the constant value of the density on the fluid’s free surface. We 
are going to generalize the classical shallow-water equations to the 
compressible case and, starting from the resulting system, derive two 
reduced models that could be used in place of the full general equa-
tions. These two models are a compressible Burgers equation (CB), 
for the modelling of non-dispersive, weakly nonlinear compressible 
waves and a compressible Korteweg–deVries equation (CKdV), for the 
modelling of weakly dispersive, weakly nonlinear compressible waves. 
The focus of the paper is to evaluate the effects of both nonlinearity and 
compressibility, thus a parametric study will be carried out to describe 
different solutions and regimes of propagation of compressible shallow-
water waves. As it will be shown in the next sections, compressibility 
can ultimately lead to quite substantial differences in the quantitative 
prediction of shallow-water waves with respect to their incompressible 
counterparts, hence improving our capacity of better capturing the dy-
namics of these type of phenomena. This could be also beneficial from a 
more experimental perspective, in view of designing more accurate and 
reliable risk assessment devices concerning the propagation of either 
tsunamis or strong winds in the atmosphere.

The paper is organized as follows: in Section 2 we derive the 
compressible shallow-water equations both in a non-dispersive and in a 
weakly dispersive regime following the scaling by Johnson [23]. To this 
end, we are going to extensively use the method of multiple scales [24–
26]. In Section 3 we conduct our parametric study and show results 
for the derived models in both non-dispersive and weakly dispersive 
regimes, and compare solutions with the corresponding incompressible 
ones. Importance of both nonlinearity and compressibility will also 
be shown, together with a convergence study on the reduced models. 
Finally, in Section 4 we draw conclusions and possible future research 
perspectives.

2. Problem definition and scaling

Let us consider a compressible, inviscid, barotropic fluid which 
extends vertically from a rigid wall located at 𝑧 = −ℎ to an upper free 
surface described by a function 𝜂(𝒙𝐻 , 𝑡). Here 𝒙𝐻  denotes horizontal 
spatial coordinates, so the position of each fluid particle can be defined 
as 𝒙 = 𝒙𝐻 + 𝑧𝒛̂. Similarly, the velocity, pressure and density fields 
are defined as 𝒖 = 𝒖𝐻 (𝒙, 𝑡) + 𝑢𝑧(𝒙, 𝑡)𝒛̂, 𝑃 = 𝑃 (𝒙, 𝑡), 𝜌 = 𝜌(𝒙, 𝑡). The 
governing equations are the compressible Euler equations expressing 
conservation of horizontal and axial momentum, and conservation of 
mass, respectively: 
𝜌𝜕𝑡𝒖𝐻 + 𝜌(𝒖𝐻 ⋅ ∇𝐻 )𝒖𝐻 + 𝜌𝑢𝑧𝜕𝑧𝒖𝐻 + ∇𝐻𝑃 = 0, (1a)

𝜌𝜕𝑡𝑢𝑧 + 𝜌(𝒖𝐻 ⋅ ∇𝐻𝑢𝑧) + 𝜌𝑢𝑧𝜕𝑧𝑢𝑧 + 𝜕𝑧𝑃 + 𝑔𝜌 = 0, (1b)

𝜕𝑡𝜌 + 𝜌(∇ ⋅ 𝒖) + 𝒖 ⋅ ∇𝜌 = 0, (1c)

where ∇𝐻  expresses the gradient along the horizontal coordinates, 
and 𝑔 is the acceleration due to gravity. The fluid must satisfy a no-
penetration boundary condition 𝑢𝑧 = 0 at 𝑧 = −ℎ and two free surface 
boundary conditions along the free surface itself 
𝑃 = 𝑃𝑎, and 𝑢𝑧 = 𝜕𝑡𝜂 + 𝒖𝐻 ⋅ ∇𝐻𝜂, on 𝑧 = 𝜂, (2)

with 𝑃𝑎 being the atmospheric constant pressure above the fluid layer. 
Finally, the thermodynamic relationship 𝑃 (𝜌) = 𝑃𝑎+𝑐2(𝜌−𝜌𝑎) is needed 
to close the system.
2 
We proceed to the non-dimensionalization of the differential prob-
lem above by defining three different length scales: 𝜆 characterizing the 
horizontal wavelength of the waves, ℎ the depth of the fluid and 𝑎 a 
typical amplitude of the wave. Moreover, we consider waves travelling 
with characteristic velocity 

√

𝑔ℎ. Variables are then scaled as follows 

𝒙𝐻 = 𝜆𝒙̃𝐻 ; 𝑧 = ℎ𝑧̃; 𝑡 = 𝜆
√

𝑔ℎ
𝑡;

𝜂 = 𝑎𝜂̃; 𝜌 = 𝜌𝑎𝜌̃; 𝑃 = 𝜌𝑎𝑎𝑔𝑃 ; 𝒖𝐻 =
𝑎
√

𝑔ℎ
ℎ

𝒖̃𝐻 ; 𝑢𝑧 =
𝑎
√

𝑔ℎ
𝜆

𝑢̃𝑧,

(3)

where tilde symbol is used for non-dimensional variables. Upon sub-
stitution into the governing equations and boundary conditions—after 
dropping the tilde symbol for readability—our general differential 
problem in dimensionless form reads 
𝜌𝜕𝑡𝒖𝐻 + 𝜖

[

𝜌(𝒖𝐻 ⋅ ∇𝐻 )𝒖𝐻 + 𝜌𝑢𝑧𝜕𝑧𝒖𝐻
]

+ ∇𝐻𝑃 = 0, (4a)

𝛿2
[

𝜌𝜕𝑡𝑢𝑧 + 𝜖𝜌𝒖 ⋅ ∇𝑢𝑧
]

+ 𝜕𝑧𝑃 + 1
𝜖
𝜌 = 0, (4b)

𝜕𝑡𝜌 + 𝜖∇ ⋅
(

𝜌𝒖
)

= 0, (4c)

𝑃 (𝜌) = 𝑃𝑎 +
1
𝜖𝜇

(𝜌 − 1), (4d)

𝑃 = 𝑃𝑎, and 𝑢𝑧 = 𝜕𝑡𝜂 + 𝜖𝒖𝐻 ⋅ ∇𝐻𝜂, on 𝑧 = 𝜖𝜂, (4e)

𝑢𝑧 = 0, on 𝑧 = −1, (4f)

 where we have defined the three parameters 

𝛿 = ℎ
𝜆
, 𝜖 = 𝑎

ℎ
, 𝜇 =

𝑔ℎ
𝑐2

. (5)

In particular, 𝛿 measures the importance of dispersive effects associated 
to the regime of propagation of the waves (i.e. shallow-water when 𝛿 ≪
1, deep-water when 𝛿 ≫ 1). Parameter 𝜖 is a measure of the nonlinearity 
of the system; this is meaningful in shallow water, in contrast to deep 
water where the nonlinearity is usually measured by the wave steepness 
𝑎∕𝜆. Parameter 𝜇 measures the importance of compressibility effects 
in the fluid and is a crucial parameter in the models we are going to 
derive later on. It will be kept, in fact, as an arbitrary parameter so that 
its importance can be directly measured in the new models derived. 
This is justified from a mathematical point of view provided the new 
models are consistent with those already established in the literature; 
in our case, the incompressible models. An analogous approach can be 
found in Johnson [23] on the treatment of capillarity effects. Note that 
the dimensionless speed of sound in (4d) goes to infinity as 𝜇 → 0, in 
accordance with the incompressible limit.

2.1. Nonlinear, non-dispersive compressible shallow water waves 𝛿2 ≪ 𝜖

When dispersive effects are negligible compared to nonlinear ef-
fects, the so-called shallow-water approximation holds and the con-
vective term in the axial momentum equation becomes negligible. It 
immediately follows from (4b)

𝜕𝑧𝑃 = −1
𝜖
𝜌 ⇒ 𝜕𝑧𝑃 = −𝜇𝑃 −

1 − 𝜇𝜖𝑃𝑎
𝜖

, (6)

which after imposing the dynamic boundary condition in (4e) yields 

𝑃 (𝒙𝐻 , 𝑧, 𝑡) = 𝑃𝑎 +
1
𝜇𝜖

[

𝑒𝜇(𝜖𝜂−𝑧) − 1
]

, and 𝜌(𝒙𝐻 , 𝑧, 𝑡) = 𝑒𝜇(𝜖𝜂−𝑧). (7)

Note that for 𝜇 → 0 (𝑐 → ∞), Eq. (7) returns the more familiar linear 
hydrostatic pressure contribution valid in the incompressible regime. 
Now, let us define for notation brevity 𝐸 = 𝑒𝜇(𝜖𝜂−𝑧). Inserting (7) into 
the horizontal momentum equation, we obtain 
𝜇𝜖

[

𝜕𝑡𝒖𝐻 + 𝜖(𝒖𝐻 ⋅ ∇)𝒖𝐻 + 𝜖𝑢𝑧𝜕𝑧𝒖𝐻
]

𝐸 +
[

𝜇𝜖∇𝐻𝜂
]

𝐸 = 0. (8)

As 𝜂 does not depend on 𝑧, 𝒖𝐻  does not too, so after simplifying the 
exponential term we get the final shallow-water momentum equation 
𝜕 𝒖 + 𝜖(𝒖 ⋅ ∇ )𝒖 + ∇ 𝜂 = 0, (9)
𝑡 𝐻 𝐻 𝐻 𝐻 𝐻
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which is identical to the momentum equation in the incompressible 
case.

Regarding the mass conservation equation, after computing the 
derivatives and cancelling the common exponential factor, we are left 
with 

𝜕𝑧𝑢𝑧 − 𝜇𝑢𝑧 = −𝜇𝜕𝑡𝜂 − 𝜇𝜖𝒖𝐻 ⋅ ∇𝐻𝜂 − ∇𝐻 ⋅ 𝒖𝐻 ≡ −𝑓 (𝒙𝐻 , 𝑡), (10)

whose solution after imposing the no-penetration boundary condition 
at 𝑧 = −1 reads 

𝑢𝑧(𝒙, 𝑡) =
𝑓 (𝒙𝐻 , 𝑡)

𝜇

[

1−𝑒𝜇(𝑧+1)
]

, with 𝑓 (𝒙𝐻 , 𝑡) = 𝜇𝜕𝑡𝜂+𝜇𝜖𝒖𝐻 ⋅∇𝐻𝜂+∇𝐻 ⋅𝒖𝐻 .

(11)

Imposition of the additional kinematic boundary condition at the free 
surface 𝑧 = 𝜖𝜂 produces—after exploiting the definition of 𝑓 (𝒙𝐻 , 𝑡)

𝜕𝑡𝜂 + 𝜖(𝒖𝐻 ⋅ ∇𝐻𝜂) + 1
𝜇
(∇𝐻 ⋅ 𝒖𝐻 )

[

1 − 𝑒−𝜇(𝜖𝜂+1)
]

= 0. (12)

Eq.  (12) is the new evolution equation for the free surface elevation. It 
takes into account the effects of compressibility through the last term in 
square brackets. Combining (9) and (12), the final compressible shallow 
water equations (CSWE) read 

𝜕𝑡𝒖𝐻 + 𝜖(𝒖𝐻 ⋅ ∇𝐻 )𝒖𝐻 + ∇𝐻𝜂 = 0, (13a)

𝜕𝑡𝜂 + 𝜖(𝒖𝐻 ⋅ ∇𝐻𝜂) + 1
𝜇
(∇𝐻 ⋅ 𝒖𝐻 )

[

1 − 𝑒−𝜇(𝜖𝜂+1)
]

= 0. (13b)

 Note that system (13) is consistent with the corresponding incompress-
ible limit 𝜇 → 0.

2.1.1. Reduced order wave propagation model 1
In this section we assume 𝜖 ≪ 1 and obtain a reduced model by 

means of a weakly nonlinear analysis. The parameter 𝜇 is arbitrarily 
fixed, so that an asymptotic expansion can be made around 𝜖 = 0 only. 
Here we work with Eqs. (13a)–(13b) in one spatial dimension 𝑥.

We start by Taylor-expanding the last term within square brackets 
in (13b), obtaining: 

1 − 𝑒−𝜇(𝜖𝜂+1) = 1 − 𝑒−𝜇
[

1 − 𝜇𝜖𝜂 +
𝜇2𝜖2

2
𝜂2 + (𝜖3)

]

. (14)

Combining this with the momentum equation we have 

𝜕𝑡𝑢 + 𝜖𝑢𝜕𝑥𝑢 + 𝜕𝑥𝜂 = 0, (15a)

𝜕𝑡𝜂 + 𝜖𝑢𝜕𝑥𝜂 + 𝜕𝑥𝑢
(

𝑐2𝜇 + 𝑒−𝜇𝜖𝜂 − 𝜇𝑒−𝜇 𝜖
2

2
𝜂2
)

= 0, (15b)

 where 𝑐𝜇 =
√

(1 − 𝑒−𝜇)∕𝜇 is the constant phase speed in compressible 
shallow-water linear waves [27]. In order to make progress and study 
the weakly nonlinear dynamics of the system, we apply the method of 
multiple scales and introduce a slow time scale 𝜏 = 𝜖𝑡. For simplicity, 
we just look for travelling waves moving to the right, i.e. we define the 
characteristic coordinate 𝜉 = 𝑥 − 𝑐𝜇𝑡 and assume 

𝑢(𝑥, 𝑡, 𝜏) = 𝑢(𝜉, 𝜏), and 𝜂(𝑥, 𝑡, 𝜏) = 𝜂(𝜉, 𝜏). (16)

System (15) becomes 

− 𝑐𝜇𝜕𝜉𝑢 + 𝜕𝜉𝜂 = −𝜖
(

𝜕𝜏𝑢 + 𝑢𝜕𝜉𝑢
)

, (17a)

− 𝑐𝜇𝜕𝜉𝜂 + 𝑐2𝜇𝜕𝜉𝑢 = −𝜖
(

𝜕𝜏𝜂 + 𝑢𝜕𝜉𝜂 + 𝑒−𝜇𝜂𝜕𝜉𝑢
)

+ 𝜖2

2
𝜇𝑒−𝜇𝜂2𝜕𝜉𝑢. (17b)

 At this point we expand the unknowns in power series of 𝜖

𝑢(𝜉, 𝜏) = 𝑢0(𝜉, 𝜏)+𝜖𝑢1(𝜉, 𝜏)+(𝜖2), and 𝜂(𝜉, 𝜏) = 𝜂0(𝜉, 𝜏)+𝜖𝜂1(𝜉, 𝜏)+(𝜖2),

(18)

and plug them into (17). At leading order, the solution gives 𝜂0 =
𝐴(𝜉, 𝜏) together with 𝑢 = 𝐴(𝜉, 𝜏)∕𝑐 , where 𝐴 is still a function to be 
0 𝜇

3 
determined by solving the system at the next order. At order 𝜖, the 
system to be solved reads 

− 𝑐𝜇𝜕𝜉𝑢1 + 𝜕𝜉𝜂1 = −𝜕𝜏𝑢0 − 𝑢0𝜕𝜉𝑢0, (19a)

− 𝑐𝜇𝜕𝜉𝜂1 + 𝑐2𝜇𝜕𝜉𝑢1 = −𝜕𝜏𝜂0 − 𝑢0𝜕𝜉𝜂0 − 𝑒−𝜇𝜂0𝜕𝜉𝑢0, (19b)

 which after some algebra returns the amplitude equation 

𝜕𝜏𝐴 + 𝛼(𝜇)𝐴𝜕𝜉𝐴 = 0, with 𝛼(𝜇) = 𝑒−𝜇

2𝑐𝜇

(

1 + 2𝑒𝜇
)

. (20)

Eq.  (20) is a compressible Burgers equation for the fluid elevation 
𝐴(𝜉, 𝜏) and can be solved either analytically and numerically using 
standard methods for nonlinear hyperbolic equations. The effects of 
compressibility have implications on the strength of the nonlinear term, 
leading to changes in both the propagation speed and shape of the 
wave.

2.2. Hyperbolic properties of the compressible shallow-water equations

We consider the system of Eqs. (13) in one spatial dimension. 
Following [2], it can be written in conservative form as 

𝜕𝑡𝐻 + 𝜕𝑥(𝑣𝐻) = 0, (21a)

𝜕𝑡(𝑣𝐻) + 𝜕𝑥
[

𝑣2𝐻 + 1
𝜇

(

𝐻 − 1
𝜇
log(1 + 𝜇𝐻)

)]

, (21b)

 where 𝐻 = (𝑒𝜇(𝜖𝜂+1) − 1)∕𝜇, 𝑣 = 𝜖𝑢. We define the momentum per unit 
volume 𝑚 = 𝑣𝐻 and introduce the state vector 𝒘 = (𝐻,𝑚)𝑇 , so that 
Eqs. (21) can be compactly written as 

𝜕𝑡𝒘 + 𝜕𝑥𝒇 (𝒘) = 0, (22)

where the flux function takes the form 

𝒇 (𝒘) =
(

𝑚, 𝑚
2

𝐻
+ 1

𝜇

(

𝐻 −
𝑔
𝜇
log(1 + 𝜇𝐻)

))𝑇
. (23)

This formulation ensures the entropy condition is satisfied in case of 
shocks formation [2,28,29]. This is in accordance with the equivalent 
statement that an entropy-satisfying solution can be seen as the limit of 
the corresponding vanishing viscosity solution [30]. In Appendix  C we 
derive an energy equation for the Burgers model showing energy loss at 
shock waves. Even though the energy equation can be generalized in 
case of nonlinear hyperbolic systems following the derivation in [30, 
pp. 7–10], this task falls outside the objectives of the present study, 
so we do not provide such a generalization here. However, due to the 
high accuracy between the full numerical solutions and the Burgers 
solutions (this will be shown in the next sections), the derivation of 
the energy equation for the Burgers model gives an exhaustive insight 
and comprehension of the mechanisms involved in energy dissipation 
occurring at shocks formation.

In order to study the hyperbolic properties of Eqs. (21), it is conve-
nient re-write them in quasilinear form 𝜕𝑡𝒘 +𝑨(𝒘)𝜕𝑥𝒘 = 0, where the 
Jacobian matrix 𝑨(𝒘) is defined as 

𝑨(𝒘) =
𝜕𝒇 (𝒘)
𝜕𝒘

=

(

0 1
− 𝑚2

𝐻2 + 𝐻
1+𝜇𝐻 2 𝑚

𝐻 .

)

(24)

The characteristic velocities of the system are given by the eigenvalues 
of 𝑨(𝒘), namely 

𝜆1(𝒘) = 𝑚
𝐻

−
( 𝐻
1 + 𝜇𝐻

)1∕2
, and 𝜆2(𝒘) = 𝑚

𝐻
+
( 𝐻
1 + 𝜇𝐻

)1∕2
, (25)

whose corresponding right eigenvectors are 

𝒓1(𝒘) =

(

𝐻

𝑚 −
(

𝐻3

1+𝜇𝐻

)1∕2

)

, and 𝒓2(𝒘) =

(

𝐻

𝑚 +
(

𝐻3

1+𝜇𝐻

)1∕2

)

. (26)

Note that the eigensolutions for a nonlinear hyperbolic system depend 
on the state variables 𝐻 and 𝑚. The character of the nonlinear waves 
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supported by the CSWE (21) is dictated by the so-called ‘‘nonlinearity 
factor’’ 
𝜔𝑖(𝒘) =

𝒓𝑖(𝒘) ⋅ ∇𝒘𝜆𝑖(𝒘)
𝐻1∕2

, 𝑖 = 1, 2, (27)

with ∇𝒘 = (𝜕𝐻 , 𝜕𝑚)𝑇  being the gradient operator along the state 
variables (𝐻,𝑚). For the two eigenvalues and eigenfunctions of the 
nonlinear system, we have 

𝜔1,2(𝒘) = ∓
( 1
1 + 𝜇𝐻

)1∕2[
1 + 1

2(1 + 𝜇𝐻)

]

≠ 0 ∀(𝐻,𝑚), (28)

since 1 + 𝜇𝐻 = 𝑒𝜇(𝜖𝜂+1) > 0. Therefore both eigenvalues are gen-
uinely nonlinear and the system can support the propagation of either 
shock and rarefaction waves, but not of contact discontinuities (un-
like for the classical gasdynamics equations [31]). These features can 
be useful to study a Riemann problem for Eqs. (21) whose solution 
would consist in a combination of either two shocks, or one shock 
together with one rarefaction, or two rarefactions. Despite the rele-
vant applications (e.g. dam-break-like problems, bores propagation), 
the study of Riemann problems for Eqs. (21) is out of scope of the 
present work. Nevertheless, interested readers can find more details on 
a similar model (isothermal ideal gasdynamics problem) in Fossati and 
Quartapelle [32]

2.3. Nonlinear, weakly dispersive compressible shallow water waves 𝛿2 =
(𝜖)

In the previous section we derived models valid under the shallow 
water approximation, i.e. when 𝛿2 ≪ 𝜖. Now, we relax that assumption 
by allowing 𝛿2 = (𝜖) in Eq.  (4b), as well as the flow to be two-
dimensional 𝒖 = 𝑢(𝑥, 𝑧, 𝑡)𝒙̂ + 𝑤(𝑥, 𝑧, 𝑡)𝒛̂, 𝑃 = 𝑃 (𝑥, 𝑧, 𝑡), 𝜌 = 𝜌(𝑥, 𝑧, 𝑡)
and 𝜂 = 𝜂(𝑥, 𝑡). System (4) can then be re-written more compactly and 
conveniently as 
𝜕𝑡𝑢 + 𝜖

(

𝑢𝜕𝑥𝑢 +𝑤𝜕𝑧𝑢
)

+ 𝜕𝑥𝑞 = 0, (29a)

𝛿2
[

𝜕𝑡𝑤 + 𝜖
(

𝑢𝜕𝑥𝑤 +𝑤𝜕𝑧𝑤
)]

+ 𝜕𝑧𝑞 = 0, (29b)

𝜇
[

𝜕𝑡𝑞 + 𝜖
(

𝑢𝜕𝑥𝑞 +𝑤𝜕𝑧𝑞
)

−𝑤
]

+ 𝜕𝑥𝑢 + 𝜕𝑧𝑤 = 0, (29c)

𝑞 = 𝜂, and 𝑤 = 𝜕𝑡𝜂 + 𝜖𝑢𝜕𝑥𝜂, on 𝑧 = 𝜖𝜂, (29d)

𝑤 = 0, on 𝑧 = −1. (29e)

 where the ‘‘new pressure’’ 𝑞 is related to 𝜌 via the transformation 
log(𝜌) = −𝜇𝑧 + log(𝜇𝜖) + 𝜇𝜖𝑞. (30)

2.3.1. Reduced order wave propagation model 2
Following [23, ch. 3], we take 𝛿2 = 𝜖 and introduce the slow time 

scale 𝜏 = 𝜖𝑡. After expanding the boundary conditions (29d) in Taylor 
series around 𝑧 = 0 and retaining terms of at most order 𝜖, we obtain 
the problem 
𝜕𝑡𝑢 + 𝜕𝑥𝑞 + 𝜖

(

𝜕𝜏𝑢 + 𝑢𝜕𝑥𝑢 +𝑤𝜕𝑧𝑢
)

= 0, (31a)

𝜕𝑧𝑞 + 𝜖𝜕𝑡𝑤 = 0, (31b)

𝜕𝑧𝑤 − 𝜇𝑤 + 𝜇𝜕𝑡𝑞 + 𝜕𝑥𝑢 + 𝜖𝜇
(

𝜕𝜏𝑞 + 𝑢𝜕𝑥𝑞 +𝑤𝜕𝑧𝑞
)

= 0, (31c)

𝑞 = 𝜂 − 𝜖𝜂𝜕𝑧𝑞, and 𝑤 = 𝜕𝑡𝜂 + 𝜖
(

𝜕𝜏𝜂 + 𝑢𝜕𝑥𝜂 − 𝜂𝜕𝑧𝑤
)

, on 𝑧 = 0,

(31d)

𝑤 = 0, on 𝑧 = −1. (31e)

 We now expand our unknowns in powers of 𝜖 as 
(𝑢,𝑤, 𝑞, 𝜂) = (𝑢0, 𝑤0, 𝑞0, 𝜂0) + 𝜖(𝑢1, 𝑤1, 𝑞1, 𝜂1) + (𝜖2), (32)

so after collecting terms of the same order, the following two differen-
tial problems need to be solved: 
(1) ∶ 𝜕 𝑢 + +𝜕 𝑞 = 0, (33a)
𝑡 0 𝑥 0

4 
𝜕𝑧𝑞0 = 0, (33b)

𝜕𝑧𝑤0 − 𝜇𝑤0 + 𝜇𝜕𝑡𝑞0 + 𝜕𝑥𝑢0 = 0, (33c)

𝑞0 = 𝜂0, and 𝑤0 = 𝜕𝑡𝜂0, on 𝑧 = 0, (33d)

𝑤0 = 0, on 𝑧 = −1. (33e)

(𝜖) ∶ 𝜕𝑡𝑢1 + 𝜕𝑥𝑞1 = −𝜕𝜏𝑢0 − 𝑢0𝜕𝑥𝑢0 −𝑤0𝜕𝑧𝑢0, (34a)

𝜕𝑧𝑞1 = −𝜕𝑡𝑤0, (34b)

𝜕𝑧𝑤1 − 𝜇𝑤1 + 𝜇𝜕𝑡𝑞1 + 𝜕𝑥𝑢1 = −𝜇
(

𝜕𝜏𝑞0 + 𝑢0𝜕𝑥𝑞0 +𝑤0𝜕𝑧𝑞0
)

,

(34c)

𝑞1 = 𝜂1 − 𝜂0𝜕𝑧𝑞0, on 𝑧 = 0, (34d)

𝑤1 = 𝜕𝑡𝜂1 + 𝜕𝜏𝜂0 + 𝑢0𝜕𝑥𝜂0 − 𝜂0𝜕𝑧𝑤0, on 𝑧 = 0, (34e)

𝑤1 = 0, on 𝑧 = −1. (34f)

 We again search for travelling wave solutions in the positive
𝑥−direction, as in (16). The system at leading order readily returns 

𝜂0(𝑥, 𝑧, 𝑡, 𝜏) = 𝐴(𝜉, 𝜏), 𝑢0(𝑥, 𝑧, 𝑡, 𝜏) =
1
𝑐𝜇

𝐴(𝜉, 𝜏),

𝑤0(𝑥, 𝑧, 𝑡, 𝜏) =
( 1
𝜇𝑐𝜇

− 𝑐𝜇
)[

1 − 𝑒𝜇(𝑧+1)
]

𝜕𝜉𝐴.
(35)

Regarding the problem at order 𝜖, we can immediately integrate the 
axial momentum equation, and after imposing the dynamic boundary 
condition, we get the pressure distribution 

𝑞1(𝜉, 𝑧, 𝜏) =
1 − 𝜇𝑐2𝜇

𝜇

[

𝑧 − 𝑒𝜇

𝜇

(

𝑒𝜇𝑧 − 1
)]

𝜕2𝜉𝐴 + 𝜂1. (36)

Now, from (34a) we can compute 𝜕𝜉𝑢1 as function of 𝑞1 and insert 
it into (34c). Using the dynamic and kinematic boundary conditions 
(34d)–(34e) we end up with the following differential problem in 𝑤1
only 

𝜕𝑧𝑤1 − 𝜇𝑤1 =
(

𝜇𝑐𝜇 − 1
𝑐𝜇

)(1 − 𝜇𝑐2𝜇
𝜇

)[

𝑧 − 𝑒𝜇

𝜇

(

𝑒𝜇𝑧 − 1
)]

𝜕3𝜉𝐴

+
(

𝜇𝑐𝜇 − 1
𝑐𝜇

)

𝜕𝜉𝜂1

−
(

𝜇 + 1
𝑐2𝜇

)

𝜕𝜏𝐴 − 1
𝑐𝜇

(

𝜇 + 1
𝑐2𝜇

)

𝐴𝜕𝜉𝐴, (37a)

𝑤1 = 𝜕𝜏𝐴 +
[ 1
𝑐𝜇

+ 𝑒𝜇
( 1
𝑐𝜇

− 𝜇𝑐𝜇
)]

𝐴𝜕𝜉𝐴 − 𝑐𝜇𝜕𝜉𝜂1, on 𝑧 = 0,

(37b)

𝑤1 = 0, on 𝑧 = −1, (37c)

 whose solution returns (after some algebra) the compressible Kort-
eweg–de Vries (CKdV) equation 
𝜕𝜏𝐴 + 𝛼(𝜇)𝐴𝜕𝜉𝐴 = 𝛽(𝜇)𝜕3𝜉𝐴, (38)

with coefficients 
𝛼(𝜇) = 𝑒−𝜇

2𝑐𝜇

(

1 + 2𝑒𝜇
)

, (39a)

𝛽(𝜇) = 𝑒−𝜇

2

(

𝜇𝑐𝜇 − 1
𝑐𝜇

)(

1 − 𝜇𝑐2𝜇
) 1
𝜇3

[

(𝑒𝜇 − 1)(𝑒𝜇 + 1) − 2𝜇𝑒𝜇
]

. (39b)

Again, the model is consistent with its incompressible limit. In fact, 
when 𝜇 → 0, we have 𝛼 = 3∕2 and 𝛽 = −1∕6 which yields the 
incompressible KdV equation 𝜕𝜏𝐴 + (3∕2)𝐴𝜕𝜉𝐴 + (1∕6)𝜕3𝜉𝐴 = 0—see 
e.g. [23, p.208].

3. Results

We solve both the complete differential problem (13) and the 
reduced models (20)–(38), and make comparison between them. As 
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Table 1
Typical values of the parameters and corresponding physical quantities of 
interest (wave amplitude, wavelength, water depth) for laboratory, oceanic 
and atmospheric conditions.
 𝑐 [m/s] ℎ [m] 𝑎 [m] 𝜆 [m] 𝜖 𝛿 𝜇  
 Lab 1500 1.5 ≤0.6 10 ≤0.4 0.1 6.54 ⋅ 10−6 
 Ocean 1500 4000 ≤1 105 ≤2.5 ⋅ 10−4 0.04 0.01744  
 Atmosphere 343 20000 ≤2000 105 ≤0.1 0.2 1.6677  

previously noted, 𝜇 is treated as an arbitrary parameter within our 
equations and the analysis is restricted to waves moving along the 
single spatial coordinate 𝑥. We envision this study to be representative 
of a broad class of phenomena involving the propagation of nonlinear 
shallow-water waves in a generic fluid. This might include the mod-
elling and simulation of tsunamis, bores, rogue waves, atmospheric 
gravity waves and weather predictions, among others. To investigate 
the models discussed above and make comparisons between them, 
we consider three representative physical environments: laboratory-
scale settings, the ocean, and the atmosphere. Typical values of the 
parameters of interest for the three specific scenarios are summarized 
in Table  1.

In order to validate results, both Eqs. (13) and (20) are solved twice 
using two different numerical methods: the method of lines (MOL) [33] 
and a finite difference method with Roe’s numerical flux for nonlinear 
hyperbolic systems [2]. Solutions coming from both methods have then 
been compared and result in good agreement. However, the MOL is 
more efficient as it allows to save computational time, as well as to 
provide less dissipative solutions for longer times. Therefore, hereafter, 
we show numerical results from the MOL simulations only. Further 
details are contained in Appendix  A. Eq.  (38) is also solved using the 
MOL.

3.1. Results for model 1: full numerical simulations

In this section we show results for the 1D compressible shallow 
water Eqs. (13). The initial conditions are taken in the form 

𝜂(𝑥, 0) = 𝑒−𝑥
2∕𝜎2 , and 𝑢(𝑥, 0) = 0, (40)

where 𝜎 defines the initial width of the surface perturbation normal-
ized by the horizontal wavelength. This parameter is varied in the 
simulations spanning 𝜎 ∈ [1∕2𝜋,𝐿∕2𝜋𝜆], with 𝐿 defining the size of 
the computational domain used in the three different environments, 
i.e. 𝐿 = [63, 106, 106] [m] for the lab, ocean and atmosphere cases, 
respectively. The other parameter being varied throughout the sim-
ulations is the dimensionless amplitude of the surface waves 𝜖. In 
particular, for the lab environment we take 𝜖 ∈ [0.001, 0.4]. For the 
ocean we take 𝜖 ∈ [2.5 ⋅ 10−4, 0.1], whereas for the atmospheric 
environment we take 𝜖 = [0.001, 0.1]. The choice of gaussian initial 
conditions is probably the simplest way to analyse and control the 
wave dynamics, focussing on the interplay between nonlinearity and 
compressibility. Regarding the maximum values of 𝜖 considered, 𝜖max =
0.4 for the laboratory case represents well an average maximum wave 
height achievable in standard laboratories. The choice of 𝜖max = 0.1 for 
oceans, although being far too large in standard conditions, is mostly 
dictated by two reasons: first, to see under which set of parameters 
nonlinearity comes into play in ocean dynamics. Second, the need 
to test the robustness of our models, especially in capturing shocks 
formation. The same holds for atmospheric conditions, although in this 
environment 𝜖 ≃ 0.1 is still possible in real situations.

In order to quantify the effects of both nonlinearity and compress-
ibility, we define the normalized 𝐿2-error between the linear solutions 
𝜂𝐿 ≡ 𝜂(𝜖 = 0) and the corresponding nonlinear ones 𝜂 on one hand, and 
between 𝜂 and the corresponding incompressible solutions 𝜂 ≡ 𝜂(𝜇 = 0)
𝑖

5 
Fig. 1. Snapshots at different times of the full numerical solutions computed 
for three values of 𝜎. (a): lab, 𝜖 = 0.1, 𝑡 = 0, 1,… , 6. (b): ocean, 𝜖 = 2.5 ⋅ 10−4, 
𝑡 = 0, 1,… , 10. (c): atmosphere, 𝜖 = 0.1, 𝑡 = 0, 1,… , 10. The initial profiles 
are displayed with a dash-dotted line and the breaking time is shown in blue. 
(d): Arrival time of the wave at 𝑥 = 7. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this 
article.)

on the other, namely 

𝐷𝜖(𝑡; 𝜖, 𝜎, 𝜇) = ∫

𝐿

0
|𝜂𝐿(𝑥, 𝑡; 𝜎, 𝜇) − 𝜂(𝑥, 𝑡; 𝜖, 𝜎, 𝜇)|2d𝑥

/

∫

𝐿

0
|𝜂𝐿(𝑥, 0; 𝜎, 𝜇)|

2d𝑥,

(41a)

𝐷𝜇(𝑡; 𝜖, 𝜎, 𝜇) = ∫

𝐿

0
|𝜂𝑖(𝑥, 𝑡; 𝜖, 𝜎) − 𝜂(𝑥, 𝑡; 𝜖, 𝜎, 𝜇)|2d𝑥

/

∫

𝐿

0
|𝜂𝑖(𝑥, 0; 𝜖, 𝜎)|

2d𝑥.

(41b)
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Fig. 2. Error function 𝐷Lab
𝜖 , 𝐷Ocean

𝜖 , 𝐷Atm
𝜖  for the three scenarios. Left panels: logarithmic behaviour in time for 𝜎 = 1∕2𝜋 and different 𝜖. Right panels: error 

behaviour at the final simulation time as function of 𝜎 and 𝜖.
We start by showing typical solutions for each scenario, computed 
for three values of 𝜎 and either 𝜖 = 2.5 ⋅ 10−4 (Fig.  1(b)) or 𝜖 = 0.1 (Fig. 
1(a, c)). For panel (b) the dynamics is linear as 𝜖 is extremely small 
and the wave simply moves to the right without changing its shape and 
speed. On the other hand, for panels (a) and (c), the overall dynamics 
can be described as follows. As the initial wave profile starts propa-
gating, a rarefaction fan is generated. After a specific time (‘‘breaking 
time’’ 𝑡𝑏), the wave undergoes a shock and becomes discontinuous. The 
subsequent interaction between the shock wave and the rarefaction 
wave ultimately yields a decrease in the overall amplitude of the 
initial profile. This mechanism is present either when compressible 
effects are negligible (lab scenario, Fig.  1(a)) and when compressible 
effects become relevant (atmospheric scenario, Fig.  1(c)). Compress-
ibility brings forward the shock formation, so that its interaction with 
the rarefaction fan is triggered earlier in both space and time, thus 
providing a faster decrease in the amplitude of the wave. Additionally, 
the arrival time of the wave at a shoreline (𝑥 = 7 for the case presented 
in panel (d)) increases as function of 𝜇. In this regards, the inclusion of 
compressibility effects results in a more efficient way to attenuate, as 
well as slow down, the initial wave amplitude. A deeper insight into 
these features is provided in Section 3.2 and in Appendix  B, where 
Burgers Eq. (20) is used to describe and compare these mechanisms, 
both qualitatively and quantitatively.

Another feature that emerges from the full numerical solutions is 
given by the importance of the initial width of the perturbation in 
the formation of the shock wave. Similarly to what happens for the 
compressibility parameter, the smaller the value of 𝜎, the sooner the 
6 
shock will form producing a faster decrease of the wave amplitude in 
time.

More quantitatively, we show in Figs.  2 and 3 the error functions 𝐷𝜖
and 𝐷𝜇 for the three environments. For each scenario, nonlinear effects 
become non-negligible at times or order 𝑡 ∼ (1∕𝜖), in accordance with 
the weakly nonlinear theory. It is interesting to notice though, that 
the larger 𝜎, the more linear the behaviour of the waves within the 
spatio-temporal domain of the problem. In particular, the nonlinearity 
is almost absent for 𝜎 ≥ 1. This does not necessarily mean that 
mathematically a shock would not occur at larger 𝜎, but, for the specific 
environments considered, the breaking time would be out of a realistic 
time window. Regarding the effects of compressibility, the flow in 
the laboratory environment can be considered incompressible, as the 
error is at most of order ∼10−6. In the case of an ocean, the flow 
can be considered weakly compressible (error of order ∼10−2). For the 
atmospheric case, the flow is fully compressible and the error is of order 
one all over the range of parameters investigated. Within this range 
the error seems to scale as 𝜇. To verify this trend we plot in Fig.  4 the 
𝐿2-norm of the error between the compressible and the incompressible 
solutions in the space–time domain 𝛺𝑡 = [−𝐿,𝐿] × (0, 𝑡𝑓 ), with 𝑡𝑓 = 8. 
By fitting the numerical curve, we are also able to find the approximate 
analytical expression 
‖𝜂 − 𝜂𝑖‖

(analytical)
𝐿2(𝛺𝑡)

= −1.8066𝑒−2.3258𝜇 + 0.0252𝜇 + 1.8066. (42)

When 0 ≤ 𝜇 ≪ 1, the error goes as a linear function of 𝜇, while for 𝜇 ≃
(1) the exponential part becomes dominant and decreases the slope 
of the curve. Regarding the three specific environments considered, the 
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Fig. 3. Error function 𝐷Lab
𝜇 , 𝐷Ocean

𝜇 , 𝐷Atm
𝜇  for the three scenarios. Left panels: logarithmic behaviour in time for 𝜎 = 1∕2𝜋 and different 𝜖. Right panels: error 

behaviour at the final simulation time as function of 𝜎 and 𝜖.
Fig. 4. Trend of the error ‖𝜂 − 𝜂𝑖‖𝐿2(𝛺𝑡) between compressible and incompressible solutions. Left: plot on a log–log scale. Right: plot on a linear scale and 
comparison with the analytical expression (42).
atmosphere poses the most stringent limitations in using incompressible 
equations. Thus, atmospheric surface waves should be modelled by 
taking into account compressible effects, resulting in a considerable 
variation of the wave properties. Nevertheless, even oceanic surface 
waves can be influenced by compressibility over long spatio-temporal 
scales, with improved estimation of arrival time and amplitude at 
shorelines.

3.2. Results for model 1: comparison with Burgers equation

In this section we compare solutions coming from the full numerical 
simulations with those coming from the compressible Burgers Eq. (20) 
7 
with initial condition 𝜂𝐵(𝜉, 0) = 0.5𝑒−𝜉2∕𝜎2 . Even in this case, we define 
the 𝐿2-error between the two families of solutions as 

𝐷Burgers(𝑡; 𝜖, 𝜎, 𝜇) = ∫

𝐿

0
|𝜂(𝑥, 𝑡; 𝜎, 𝜇) − 𝜂𝐵(𝑥, 𝑡; 𝜖, 𝜎, 𝜇)|

2d𝑥
/

∫

𝐿

0
|𝜂(𝑥, 𝑡; 𝜎, 𝜇)|2d𝑥,

(43)

where 𝜂𝐵(𝑥, 𝑡) ≡ 𝐴(𝑥− 𝑐𝜇𝑡, 𝜖𝜏) coincides with the solutions from Burgers 
equation and 𝑡 is the time at which the splitting of the initial surface 
profile into right-left travelling waves in the full numerical simulations 
vanishes, and we can focus on tracking only the right-going one. Figs. 
6–8 show comparison between the free surface elevation for the three 
different environments at different times and for several values of both 
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Fig. 5. Trend of the normalized breaking time 𝛼−1(𝜇) according to Eq.  (44).

𝜎 and 𝜖. Again, we push the values of 𝜖 beyond those achievable in real 
oceanic conditions so as to test the accuracy of the Burgers model. As 
can be noted, the agreement is excellent all over the entire range of 
parameters. The Burgers model is also capable of accurately capturing 
the shock formation given any initial gaussian profile, and to correctly 
follow the subsequent dynamics involving the interaction between a 
shock and a rarefaction wave (as explained in Section 3.1). Fig.  9 shows 
the 𝐿2-error between the two solutions as function of time, computed 
for the most stringent case 𝜎 = 1∕2𝜋 and different values of 𝜖. It can 
be noted that at most it reaches values of order ∼10−2, confirming the 
accuracy of Burgers solutions in describing the entire dynamics of these 
type of waves.

Using the Burgers equation, we can additionally compute the ex-
act breaking time at which the shock occurs for the initial gaussian 
profiles [34]. This is given by 

𝑡𝑏(𝜖, 𝜎, 𝜇) =
𝜎

𝜖𝛼(𝜇)

√

2𝑒. (44)

The trend of the normalized breaking time 𝛼−1(𝜇) is shown in Fig.  5. 
As can be noted, there exists a local maximum for 𝜇 ≃ 0.53, however 
for the three specific scenario considered in this work, this function is 
lower in the atmospheric case (highly compressible flow) with respect 
to the other two scenarios (weakly compressible flows).

Expression (44) contains most of the features already explained in 
Section 3.1 and recalled hereafter. 1) The higher the nonlinear coeffi-
cient 𝜖, the sooner the shock forms. 2) The higher the compressibility 
𝜇, the sooner the shock forms. 3) The lower the width 𝜎 of the initial 
profile, the sooner the shock forms. These features all lead to beneficial 
effects in terms of amplitude reduction.

3.3. Results for model 2

In this section, we provide results concerning the propagation of 
weakly nonlinear, weakly dispersive compressible waves, as described 
by Eq.  (38). The compressible KdV equation is solved again using the 
method of lines (MOL). Our numerical scheme is first tested against two 
cases: the exact soliton solution 𝐴ex(𝜉, 𝜏) = sech2

[

√

3∕4(𝜉 − 𝜏∕2)
]

, and 
the double soliton solution computed in Trefethen [35, p. 112] using 
a spectral collocation method. In Fig.  10 (left) we show time history 
of the relative error between the exact soliton 𝐴ex and our numerical 
solution. The agreement is remarkable, with a maximum relative error 
of 3.6 ⋅ 10−4. In Fig.  10 (right) a comparison between the spectral 
solution for the double soliton and that computed using the method 
of lines is given at different times. As emerges from both panels, our 
numerical method works well and we rely on it hereafter to perform a 
broader set of computations.

The CKdV equation is solved using the same initial conditions 
as those for the Burgers equation, namely 𝜂(𝜉, 0) = 0.5𝑒−𝜉2∕𝜎2 , with 
variations in 𝜇, 𝜖, and 𝜎. We compare the solutions obtained from 
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the CB and CKdV models across the three different scenarios, as il-
lustrated in Fig.  11(a, b, c). In both laboratory and ocean scenarios, 
the initial wave energy disperses into smaller amplitude oscillations, 
leading to attenuation of the leading front as it propagates downstream. 
Conversely, in the atmospheric case, the amplitude of the perturbation 
slowly increases after initiation, ultimately resulting in the formation 
of two solitons, with the leading one exhibiting a significantly larger 
amplitude than the trailing one (Fig.  11(d)), in agreement with the-
oretical predictions [36]. Additionally, Fig.  11(d) confirms that high 
compressibility values decrease the wave speed even in a weakly 
dispersive regime.

These features can be formally justified by the presence of the 
term 𝛽(𝜇)𝜕3𝜉  on the right-hand side of Eq.  (38). This additional term 
contributes to a nonlinear dispersion relation (𝜔 = 𝑐𝜇𝑘+ 𝛽(𝜇)𝑘3), and it 
also enables the existence of soliton solutions. The differing behaviours 
observed across the three environments stem from variations in the 
importance of compressibility. Specifically, for non-negligible values of 
the compressibility parameter 𝜇, solitons with increasing amplitudes 
may form.

To quantify this mechanism and relate it to the parameters 𝜖 and 𝜎, 
Fig.  12 presents the difference in maximum free surface deformation 
as a function of 𝜎, computed within the simulation time window. The 
figure shows that for 𝜖 = 0.001, 0.01, 0.1, there exist values of 𝜎 for which 
this difference is positive, indicating amplification of the initial profile. 
This contrasts with the non-dispersive case, where larger values of 𝜎
delay shock formation and preserve the maximum wave amplitude at 
its initial value.

Finally, it is worth mentioning that if the nonlinearity is sufficiently 
strong or the initial profile is highly localized in space, the leading 
soliton may undergo a dispersive shock [37]. However, this does not 
occur within the range of parameters considered here for the three 
different environments.

4. Conclusions

We have investigated the influence of fluid compressibility on the 
propagation of weakly nonlinear shallow-water waves, extending the 
classical shallow-water equations to incorporate compressibility ef-
fects. This extension enables a more accurate representation of wave 
dynamics in scenarios where compressibility cannot be neglected.

Our analysis yields two primary sets of equations: (1) A non-
dispersive model that generalizes the traditional incompressible
shallow-water equations by accounting for compressibility. This model 
is particularly suitable for analysing long-wavelength waves where 
dispersive effects are minimal. (2) A weakly dispersive model that in-
corporates both compressibility and dispersion, providing a more com-
prehensive framework for studying wave phenomena where dispersion 
plays a significant role.

These formulations provide a robust foundation for exploring the in-
tricate interplay between nonlinearity, compressibility, and dispersion 
in shallow-water wave propagation. For both systems, we have derived 
two reduced models to facilitate the analysis of their dynamics:

• The Burgers equation for non-dispersive waves, extending the 
classical shallow-water equations by incorporating compressibil-
ity effects.

• The Korteweg–de Vries (KdV) equation for weakly dispersive 
waves, capturing the balance between nonlinearity and dispersion 
in a compressible fluid context.

A convergence study between the Burgers model and the full set 
of compressible shallow-water equations was conducted to assess the 
accuracy of the reduced model. The results demonstrated high fidelity, 
even beyond the regime of weak nonlinearity (e.g., when the nonlin-
earity parameter 𝜖 is of order one, 𝜖 ∼ (1)). This suggests that the 
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Fig. 6. Comparison between solutions coming from the full numerical simulations of Eqs. (13) and those coming from Burgers Eq. (20) for the lab scenario 
(𝜇 = 6.54 ⋅ 10−6). The blue-dotted line represents the initial profile for the full numerical simulation. The red-dotted curve represents the initial profile for the 
Burgers simulation. The profiles are shown at different times, with a black arrow indicating the direction of increasing times. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. Comparison between solutions coming from the full numerical simulations of Eqs. (13) and those coming from Burgers Eq. (20) for the ocean scenario 
(𝜇 = 0.01744). The blue-dotted line represents the initial profile for the full numerical simulation. The red-dotted curve represents the initial profile for the Burgers 
simulation. The profiles are shown at different times, with a black arrow indicating the direction of increasing times. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)
reduced model remains effective in capturing the essential dynamics of 
the system under stronger nonlinear conditions.

The primary conclusion of this study is that fluid compressibility 
significantly influences the nonlinear propagation of shallow-water 
waves, distinguishing it from the traditional incompressible assump-
tion. These differences manifest in both wave speed and amplitude. Our 
analysis demonstrates that compressibility impacts non-dispersive and 
weakly dispersive waves differently, necessitating distinct modelling 
approaches for each case.
9 
In the non-dispersive regime, higher values of the compressibility 
parameter 𝜇 accelerate the formation of shock waves and their interac-
tion with rarefaction waves, ultimately leading to wave breaking and 
a reduction in amplitude. Overall, the wave is slowed down for higher 
values of 𝜇 and the arrival time at a given spatial location is higher. 
Conversely, in the weakly dispersive regime, increased compressibility 
can amplify the initial perturbation, resulting in the formation of a 
discrete number of solitons. This phenomenon is particularly relevant 
in atmospheric waves, where compressibility plays a central role. In 
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Fig. 8. Comparison between solutions coming from the full numerical simulations of Eqs. (13) and those coming from Burgers Eq. (20) for the atmosphere 
scenario (𝜇 = 1.6677). The blue-dotted line represents the initial profile for the full numerical simulation. The red-dotted curve represents the initial profile for the 
Burgers simulation. The profiles are shown at different times, with a black arrow indicating the direction of increasing times. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.)
contrast, for oceanic waves and surface waves generated in laboratory 
settings, the flow is nearly incompressible. In such cases, an initial 
perturbation tends to dissipate its energy into smaller trailing waves, 
leading to a gradual decrease in amplitude. Regarding wave speed and 
arrival time, the same trend as in the non-dispersive regime is observed 
when dispersion is weak but non-negligible, with waves being slower 
for higher values of 𝜇 (Fig.  11(d)).

Other parameters, such as the dimensionless wave amplitude 𝜖 and 
the width of the initial perturbation 𝜎, may influence the aforemen-
tioned dynamics. To quantify these effects on both types of waves, a 
parametric study has been conducted. In the non-dispersive case, higher 
values of 𝜖 and lower values of 𝜎 accelerate shock formation, leading 
to beneficial results in terms of amplitude reduction. In the dispersive 
case, greater values of both 𝜖 and 𝜎 result in multiple solitons, each 
exhibiting a peak significantly larger than the maximum amplitude of 
the initial perturbation.

There remain opportunities to improve the models derived in this 
work to achieve a more accurate description of shallow-water flow 
dynamics and their applications in modelling real phenomena, such 
as tsunamis. One possibility is to include the elasticity of the seabed, 
obtaining a reduced system of equations that describe both the free 
surface elevation of the fluid and that of the seabed. Another possibility 
is to include Earth rotation. Additionally, conducting laboratory exper-
iments for the cases presented in this work would further contribute to 
validating the developed theory.

Furthermore, investigating potential resonance mechanisms bet-
ween elastic and compressible-gravity modes would be both interesting 
and beneficial from an applied perspective, with the aim of enhancing 
the design and reliability of tsunami early warning systems.

Finally, a more theoretical avenue involves extending the validity 
of the models presented herein to scenarios where dispersive and/or 
nonlinear effects are no longer weak.
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Appendix A. Numerical methods for the compressible shallow wa-
ter equations

A.1. Roe’s numerical scheme

Consider the system of Eqs. (13) in one spatial dimension. Follow-
ing [2], it can be written in conservative form as 

𝜕𝑡𝐻 + 𝜕𝑥(𝑣𝐻) = 0, (A.1a)

𝜕𝑡(𝑣𝐻) + 𝜕𝑥
[

𝑣2𝐻 + 1
𝜇

(

𝐻 −
𝑔
𝜇
log(1 + 𝜇𝐻)

)]

, (A.1b)

 where 𝐻 = (𝑒𝜇(𝜖𝜂+1) − 1)∕𝜇, 𝑣 = 𝜖𝑢 and 𝑔 ∈ R is a coefficient 
written here only for test purposes (𝑔 = 1 in the actual non-dimensional 
compressible shallow-water Eqs. (13)). We define the momentum per 
unit volume 𝑚 = 𝑣𝐻 and introduce the state vector 𝒘 = (𝐻,𝑚)𝑇 , so 
that Eqs. (A.1) can be compactly written as 

𝜕𝑡𝒘 + 𝜕𝑥𝒇 (𝒘) = 0, (A.2)

where the flux function takes the form 

𝒇 (𝒘) =
(

𝑚, 𝑚
2

𝐻
+ 1

𝜇

(

𝐻 −
𝑔
𝜇
log(1 + 𝜇𝐻)

))𝑇
. (A.3)

To solve (A.2) we apply a finite-difference scheme with Roe’s numerical 
flux [28,38].
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Fig. 9.  Logarithmic 𝐿2-error between full numerical solutions and Burgers 
solutions computed at 𝜎 = 1∕2𝜋 and different 𝜖. (a): lab environment. (b): 
ocean environment. (c): atmospheric environment.

A.2. Method of lines

Another approach to solve system (13) is to introduce an artificial 
viscous term of the form 𝜈𝜕2𝑥𝑢 on the right-hand side of (13a) and 
implementing the method of lines with a centred finite difference 
discretization in space [39]. The artificial viscosity 𝜈 is tuned in order to 
properly capture the shocks formation and, at the same time, to avoid 
dispersion and extreme dissipation. In particular, for the results shown 
in Section 3.1, 𝜈 = 𝛾d𝑥, with 𝛾 = 5 when 𝜎 = 1∕2𝜋 and 𝛾 = 1 in all 
other cases.

The two numerical schemes have then been tested against ‘‘problem 
A’’ contained in Hudson [40, pp. 4–6], giving both accurate and reliable 
results, as shown in Fig.  A.13. For such a test case, parameters are 𝜇 = 0, 
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𝜖 = 1 and 𝑔 = 9.81, whereas the initial conditions are 

𝑚(𝑥, 0) = 0, and 𝐻(𝑥, 0) =

{

1, 𝑥 ≤ 1∕2,
1
2 , 𝑥 > 1∕2.

(A.4)

Each scheme is capable of capturing both shock and rarefaction waves 
without introducing too much dissipation. The MOL, however, was 
computationally faster and less dissipative for larger times (even for 
computing linear solutions of (13)), hence we preferred to employ that 
in the large parametric study conducted in Section 3.

Appendix B. Exact Burgers solution for a triangular wave

In this section we want to provide more insight and justification 
for the features shown in the results Section 3.1 about the propa-
gation of weakly nonlinear, non-dispersive, compressible waves. To 
carry out such objective, we study here the Burgers Eq. (20) subject 
to a triangular wave initial condition, such that its solution can be 
obtained analytically in closed form. Using the method of character-
istics [34], the exact solution can be split in two parts: the solution 
valid before the formation of a shock, and the solution valid after that. 
The point in space–time where the shock forms is given by (𝜉𝑏, 𝜏𝑏) =
(𝜎
√

𝜋, 2𝜎
√

𝜋∕𝛼(𝜇)), where 𝜎 is the non-dimensional wavelength of the 
initial wave profile. So, the solution before the shock formation (𝜏 < 𝜏𝑏)
reads: 

𝐴(𝜉, 𝜏) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, 𝜉 < −𝜎
√

𝜋,
1

2𝜎
√

𝜋

[

𝜉+𝜎
√

𝜋

1+ 𝛼(𝜇)
2𝜎

√

𝜋
𝜏

]

, −𝜎
√

𝜋 ≤ 𝜉 ≤ 𝛼(𝜇)𝜏∕2,

1
2𝜎

√

𝜋

[

𝜎
√

𝜋−𝜉

1− 𝛼(𝜇)
2𝜎

√

𝜋
𝜏

]

, 𝛼(𝜇)𝜏∕2 ≤ 𝜉 ≤ 𝜎
√

𝜋,

0, 𝜉 ≥ 𝜎
√

𝜋.

(B.1)

The solution after the shock formation (𝜏 ≥ 𝜏𝑏) reads: 

𝐴(𝜉, 𝜏) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝜉 < −𝜎
√

𝜋,
1

2𝜎
√

𝜋

[

𝜉+𝜎
√

𝜋

1+ 𝛼(𝜇)
2𝜎

√

𝜋
𝜏

]

, −𝜎
√

𝜋 ≤ 𝜉 ≤ 𝜉𝑠(𝜏),

0, 𝜉 ≥ 𝜉𝑠(𝜏),

(B.2)

where 𝜉𝑠(𝜏) is the shock path and is given by 

𝜉𝑠(𝜏) = −𝜎
√

𝜋 + 21−1∕2𝛼(𝜇)𝜎
√

𝜋
(

1 +
𝛼(𝜇)𝜏
2𝜎

√

𝜋

)1∕2𝛼(𝜇)
, 𝜏 ≥

2𝜎
√

𝜋
𝛼(𝜇)

. (B.3)

The complete space–time diagram is displayed in Fig.  B.14(left), to-
gether with the solution at different times (right).

From this analysis, two features can be noted: as the wave is 
initialized, a rarefaction fan starts propagating, with the characteristics 
changing slopes smoothly. Simultaneously, the wave does not change 
amplitude, but simply approaches a discontinuity point. When the 
discontinuity is met, a shock wave occurs and starts interacting with 
the rarefaction wave, producing an overall decreasing of the wave 
amplitude in time. This simple exercise provides additional evidence 
of the overall dynamics of more realistic waves discussed in Section 3.

Appendix C. Burgers energy equation at shock

Let us consider the compressible Burgers equation in quasilinear 
form (20). Under the change of variables 𝑇 = 𝛼(𝜇)𝜏 and 𝐴(𝜉, 𝜏(𝑇 )) =
𝜑(𝜉, 𝑇 ), it reduces to the standard Burgers equation 

𝜕𝑇𝜑 + 𝜑𝜕𝜉𝜑 = 0, (C.1)

which can be re-written (after multiplying it by 𝜑) as 

𝜕
(𝜑2 )

+ 𝜕
(𝜑3 )

= 0. (C.2)
𝑇 2 𝜉 3
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Fig. 10. Left: relative error between the exact soliton solution 𝐴ex and the corresponding numerical solution as function of time. Right: comparison of the double 
soliton solution in Trefethen [35, p. 112] computed using the MOL (full lines) and a collocation spectral method (x markers).
Fig. 11. (a)–(b)–(c): comparison between Burgers and KdV solutions in lab, 
ocean and atmospheric conditions, respectively, for 𝜖 = 0.1. Full lines: com-
pressible Burgers; dashed lines: compressible KdV. (d): comparison of CKdV 
solutions at a larger time 𝑡 = 100 for the three scenarios. Dash-dotted line 
represents the initial condition.
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Fig. 12. Difference between the final maximum amplitude (𝑡𝑓 = 10) and the 
initial maximum amplitude for atmospheric waves as function of the initial 
perturbation width 𝜎, for three values of 𝜖.

Fig. A.13. Comparison between exact and numerical solutions for ‘‘problem 
A’’ in Hudson [40]. Initial condition is given by (A.4), with parameters 𝜖 = 1, 
𝜇 = 0 and 𝑔 = 9.81. Solutions are plotted at time 𝑡 = 0.1.

Assuming a shock wave occurs, we integrate Eq. (C.2) along 𝜉 ∈
(−∞,+∞) on both sides of the shock, obtaining 
d
d𝑇 ∫

+∞

−∞

𝜑2

2
d𝜉 + 𝑆̇

2
(𝜑2

+ − 𝜑2
−) +

1
3
(𝜑3

− − 𝜑3
+) = 0, (C.3)

where 𝑆̇ is the shock speed and 𝜑± are the finite values of 𝜑 just 
after and before the shock, respectively. We define the energy 𝐸 =
d
d𝑇 ∫ +∞

−∞
𝜑2

2 d𝜉, and, recalling that 𝑆̇ = 𝜑++𝜑−
2  [34], Eq. (C.3) becomes 

d𝐸 = −(𝜑 − 𝜑 )
[

−1 (𝜑 + 𝜑 )2 + 1 (𝜑2 + 𝜑 𝜑 + 𝜑2 )
]

. (C.4)

d𝑇 − + 4 − + 3 − − + +
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Fig. B.14. Triangular wave problem for Burgers equation. (Left): characteristics diagram, with the shock path 𝜉𝑠(𝜏) shown in red. (Right): solution at different 
times. Full lines: exact analytical solution. Dots: numerical solution using Roe’s scheme. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)
After re-arranging the expression in square brackets, we obtain the final 
energy equation 
d𝐸
d𝑇

= − 1
12

(𝜑− − 𝜑+)3 < 0, (C.5)

since 𝜑− > 𝜑+ for shocks to occur [41]. Eq.  (C.5) shows that energy 
always decreases when a shock occurs.
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