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ARTICLE INFO ABSTRACT

Keywords: We investigate the effects of compressibility in the propagation of shallow-water waves and extend the classical
Compressible shallow-water equations shallow-water equations to a compressible regime. Both non-dispersive and weakly-dispersive nonlinear waves
Weakly nonlinear water waves are then analysed with the help of the multiple scales method, ultimately leading to the studying of a Burgers

Weakly dispersive water waves and a Korteweg-deVries equation, respectively. A parametric study is conducted in order to investigate the

interplay of both nonlinearity and compressibility and assess how compressibility may alter the nonlinear
properties of the waves. In particular, parameters varied are the compressibility coefficient u, the amplitude
of the waves ¢ and the width of the initial wave profile ¢. In a non-dispersive regime, shock and rarefaction
waves form and interact one another leading to a progressive reduction of the wave amplitude in time. The
compressibility of the fluid x4 speeds up the shock formation, with beneficial effects in terms of wave amplitude
reduction. In a weakly dispersive regime, on the other hand, higher compressibility values may amplify the
initial perturbation, leading to the formation of a discrete number of solitons having amplitudes much greater
than the amplitude at the initial stage. The analysis presented in this work aims at improving our predictions
on the dynamics of nonlinear compressible shallow-water waves both in terms of wave amplitude variation
and propagation time. Among various applications, our enhanced models can notably improve the estimation
of tsunami arrival times and contribute to more accurate weather forecasts. Furthermore, the work presented
here lays the foundation for future experimental studies and assessments in this field.

1. Introduction a dispersive wave equation taking into account the effects of depth.
Boussinesq equations and subsequent models are all derived by depth-

Geophysical flows are large scale motions developing in oceans and averaging the incompressible Euler equations under the assumption
atmosphere. They typically occur over very large horizontal spatial of weak nonlinearity. Improved models giving rise to either classical

scales compared to their depths, so that vertical accelerations can
usually be neglected.

Mathematically, atmospheric and oceanic flows are modelled using
the shallow-water approximation [1], which allows to reduce the com-
plete three-dimensional Navier-Stokes equations to a two-dimensional
system of equations defined in terms of surface variables only, bringing

Burgers or Korteweg—deVries equations have been proposed by Su and
Gardner [6], Green and Naghdi [7] in the case of fully nonlinear
waves, and by Bonneton et al. [8], Brocchini [9], Kirby [10] when
dispersion is no more weak. Other physical mechanisms included in
shallow-water models comprise Earth rotation [11-13] and viscous

a huge advantage in terms of computational costs. The shallow-water dissipation [14,15].

equations also support the propagation of nonlinear waves, and possess All models previously mentioned have been derived under the

nice mathematical features—e.g. strictly hyperbolicity—useful to accu- assumption of considering the flow as incompressible. However, in

rately describe shock and rarefaction waves [2], tidal waves [3], and recent years, compressible effects have been shown to influence the

provide nonlinear analogues with systems in other fields [4]. propagation of ocean surface gravity modes through their nonlinear
However, the reduction in the mathematical complexity of the  resonant interaction with acoustic compressible modes propagating all

problem is replaced by a lack in the accuracy of the description of
wave motions within certain regimes; for example, dispersive effects
come into play very soon and need to be included in the models. The
first attempt to do so was carried out by Boussinesq [5], who derived

over the fluid layer. This coupling has been shown to be responsible
for the continuous exchange of energy among a small number of
linear modes [16-20], ultimately leading to a modest reduction in
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the amplitude of the gravity wave when the latter interacts with two
acoustic waves [21].

The main motivation behind the present work is to investigate the
effects of compressibility in the dynamics of weakly nonlinear shallow-
water waves. Following the statement in McWilliams’ book [11, pp.
47]: “Earth’s atmosphere has vertical profiles much closer to isothermal
than isentropic...”, as well as the works of Kadri and Akylas [17],
Longuet-Higgins [22], we assume all fluids considered in this work to
be barotropic and isothermal, such that the pressure varies linearly
with the density only, namely P = P(p) = P, + ¢*(p — p,), Where
¢ is the constant speed of sound, P, the atmospheric pressure and
p, the constant value of the density on the fluid’s free surface. We
are going to generalize the classical shallow-water equations to the
compressible case and, starting from the resulting system, derive two
reduced models that could be used in place of the full general equa-
tions. These two models are a compressible Burgers equation (CB),
for the modelling of non-dispersive, weakly nonlinear compressible
waves and a compressible Korteweg—deVries equation (CKdV), for the
modelling of weakly dispersive, weakly nonlinear compressible waves.
The focus of the paper is to evaluate the effects of both nonlinearity and
compressibility, thus a parametric study will be carried out to describe
different solutions and regimes of propagation of compressible shallow-
water waves. As it will be shown in the next sections, compressibility
can ultimately lead to quite substantial differences in the quantitative
prediction of shallow-water waves with respect to their incompressible
counterparts, hence improving our capacity of better capturing the dy-
namics of these type of phenomena. This could be also beneficial from a
more experimental perspective, in view of designing more accurate and
reliable risk assessment devices concerning the propagation of either
tsunamis or strong winds in the atmosphere.

The paper is organized as follows: in Section 2 we derive the
compressible shallow-water equations both in a non-dispersive and in a
weakly dispersive regime following the scaling by Johnson [23]. To this
end, we are going to extensively use the method of multiple scales [24—
26]. In Section 3 we conduct our parametric study and show results
for the derived models in both non-dispersive and weakly dispersive
regimes, and compare solutions with the corresponding incompressible
ones. Importance of both nonlinearity and compressibility will also
be shown, together with a convergence study on the reduced models.
Finally, in Section 4 we draw conclusions and possible future research
perspectives.

2. Problem definition and scaling

Let us consider a compressible, inviscid, barotropic fluid which
extends vertically from a rigid wall located at z = —h to an upper free
surface described by a function #(xy,?). Here x; denotes horizontal
spatial coordinates, so the position of each fluid particle can be defined
as x = xpy + z2. Similarly, the velocity, pressure and density fields
are defined as u = ugy(x,1) + u (x,02, P = P(x,t), p = p(x,1). The
governing equations are the compressible Euler equations expressing
conservation of horizontal and axial momentum, and conservation of
mass, respectively:

pouy + plug - Vug + puduy +Vy P =0, (1a)
pou, + p(uy - Vyu,)+ pudu, +0,P+gp=0, (1b)
0p+p(V-u)y+u-Vp=0, (1o

where V, expresses the gradient along the horizontal coordinates,
and g is the acceleration due to gravity. The fluid must satisfy a no-
penetration boundary condition u, = 0 at z = —h and two free surface
boundary conditions along the free surface itself

z=n, 2

with P, being the atmospheric constant pressure above the fluid layer.
Finally, the thermodynamic relationship P(p) = P,+c2(p—p,) is needed
to close the system.

P=P, and u,=0n+uy-Vyn, on
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We proceed to the non-dimensionalization of the differential prob-
lem above by defining three different length scales: A characterizing the
horizontal wavelength of the waves, h the depth of the fluid and a a
typical amplitude of the wave. Moreover, we consider waves travelling
with characteristic velocity 1/gh. Variables are then scaled as follows

Xy =AXyg, z=hzZ r= f
\Vgh
- - 3
_ - ~ ay/gh _ av/gh _
n=an; p=p.p; P=p,agP; uyg= g, u,= i,

where tilde symbol is used for non-dimensional variables. Upon sub-
stitution into the governing equations and boundary conditions—after
dropping the tilde symbol for readability—our general differential
problem in dimensionless form reads

pa,uH+e[p(uH~VH)uH+puZ()zuH]+VHP:0, (4a)

8* [pa,uz +epu - Vuz] +0,P+ ép =0, (4b)

0,p+eV- <pu) =0, (40)
1

Plp) =P, + —(p-1), (4d)
€n

P=P, and u,=0n+euy-Vyn, on z=en, (4e)

u,=0, on z=-1, (4f)

where we have defined the three parameters

gh
o= — €= —, =2_,
H 2

(5)

In particular, 6 measures the importance of dispersive effects associated
to the regime of propagation of the waves (i.e. shallow-water when § <«
1, deep-water when 6 > 1). Parameter ¢ is a measure of the nonlinearity
of the system; this is meaningful in shallow water, in contrast to deep
water where the nonlinearity is usually measured by the wave steepness
a/A. Parameter y measures the importance of compressibility effects
in the fluid and is a crucial parameter in the models we are going to
derive later on. It will be kept, in fact, as an arbitrary parameter so that
its importance can be directly measured in the new models derived.
This is justified from a mathematical point of view provided the new
models are consistent with those already established in the literature;
in our case, the incompressible models. An analogous approach can be
found in Johnson [23] on the treatment of capillarity effects. Note that
the dimensionless speed of sound in (4d) goes to infinity as 4 — 0, in
accordance with the incompressible limit.

2.1. Nonlinear, non-dispersive compressible shallow water waves 6> < e

When dispersive effects are negligible compared to nonlinear ef-
fects, the so-called shallow-water approximation holds and the con-
vective term in the axial momentum equation becomes negligible. It
immediately follows from (4b)

1 — peP,
> 0P=-yp- —"4 6)
€

1
6ZP = - z/)
which after imposing the dynamic boundary condition in (4e) yields
P(xy,z,t)=P, + 1 [e”("”z) - 1], and p(xpy,z,1) = eten=2) 7)
ue

Note that for 4 — 0 (¢ - ), Eq. (7) returns the more familiar linear
hydrostatic pressure contribution valid in the incompressible regime.
Now, let us define for notation brevity E = e#(1~?, Inserting (7) into
the horizontal momentum equation, we obtain

pue|duy + ey - Vyuy +euZ0ZuH]E+[ueVHn]E=O. (€))

As 5 does not depend on z, uy does not too, so after simplifying the
exponential term we get the final shallow-water momentum equation

Ouy +e(uy - Viuy +Vyn=0, 9



E. Zuccoli and U. Kadri

which is identical to the momentum equation in the incompressible
case.

Regarding the mass conservation equation, after computing the
derivatives and cancelling the common exponential factor, we are left
with

OLu, — puy, = —po — peuy - Vgn—Vy -ug = —f(xy,1), (10)

whose solution after imposing the no-penetration boundary condition
at z = —1 reads

Xyt .
u,(x,1) = SCn-1) [l—e"(”l)], with  f(xy,1) = pontueuy-Vyn+Vy-uy.
u

1D

Imposition of the additional kinematic boundary condition at the free
surface z = en produces—after exploiting the definition of f(xy,1)

o+ ey - Vyn) + ~(Vyy [t =] o, 12)
u

Eq. (12) is the new evolution equation for the free surface elevation. It
takes into account the effects of compressibility through the last term in
square brackets. Combining (9) and (12), the final compressible shallow
water equations (CSWE) read

oup +e(uy - Vyuyg +Vyn=0, (13a)

o+ ety - Vym+ S (V- w1 - eert] = o, (13b)
U

Note that system (13) is consistent with the corresponding incompress-

ible limit x — 0.

2.1.1. Reduced order wave propagation model 1

In this section we assume ¢ < 1 and obtain a reduced model by
means of a weakly nonlinear analysis. The parameter u is arbitrarily
fixed, so that an asymptotic expansion can be made around ¢ = 0 only.
Here we work with Egs. (13a)—(13b) in one spatial dimension x.

We start by Taylor-expanding the last term within square brackets
in (13b), obtaining:

w2
| = eHenth _ —e"‘[l — nen + Tn2+(‘)(e3)]. a4

Combining this with the momentum equation we have

ou+eudu+0n=0, (15a)

2
o + eud,n + 0xu(ci +eHen — ﬂe"‘%r]z) =0, (15b)

where ¢, = 1/(1 —e#)/u is the constant phase speed in compressible
shallow-water linear waves [27]. In order to make progress and study
the weakly nonlinear dynamics of the system, we apply the method of
multiple scales and introduce a slow time scale r = ¢t. For simplicity,
we just look for travelling waves moving to the right, i.e. we define the
characteristic coordinate & = x — ¢, and assume

u(x,t,7) =u(¢,7), and n(x,1,7)=n, 7). (16)
System (15) becomes

— €, 0zu+ 0s = —e(d,u+u05u), (17a)
2

25 _ et _, 5

—c,0en+ cﬂdgu = —e(drr/ +uden+e ”n65u> + Eye “n=0gu. (17b)
At this point we expand the unknowns in power series of ¢

and  7(&,7) = (&, 1) +em (&, D)+O(E),

18)

u(€, t) = ug(€, ) +eu (&, 7)+0(e?),

and plug them into (17). At leading order, the solution gives 5, =
A(¢, 7) together with uy, = A(¢,7)/c,, where A is still a function to be
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determined by solving the system at the next order. At order e, the
system to be solved reads

— €, 0zUy + 01 = —0 Uy — UyOgly, (19a)

= ¢, 01 + 5,240.5“1 = =07y — UyOgty — € 1y0zsug, (19b)

which after some algebra returns the amplitude equation

0, A+a(AGA=0, with a(u)= % (1 n Ze“). (20
H

Eq. (20) is a compressible Burgers equation for the fluid elevation
A(&,7) and can be solved either analytically and numerically using
standard methods for nonlinear hyperbolic equations. The effects of
compressibility have implications on the strength of the nonlinear term,
leading to changes in both the propagation speed and shape of the
wave.

2.2. Hyperbolic properties of the compressible shallow-water equations

We consider the system of Egs. (13) in one spatial dimension.
Following [2], it can be written in conservative form as

O,H +0,(vH) =0, (21a)

0,(H) + 0, [qu 1 (#- Dog + uH))], (21b)
u u

where H = (e#©"*D — 1)/, v = eu. We define the momentum per unit

volume m = vH and introduce the state vector w = (H,m)", so that

Egs. (21) can be compactly written as

dw+0, f(w) =0, (22)
where the flux function takes the form

_ m? 1 g T
fa)=(m =+ ;(H ~ % log +u)) (23)

This formulation ensures the entropy condition is satisfied in case of
shocks formation [2,28,29]. This is in accordance with the equivalent
statement that an entropy-satisfying solution can be seen as the limit of
the corresponding vanishing viscosity solution [30]. In Appendix C we
derive an energy equation for the Burgers model showing energy loss at
shock waves. Even though the energy equation can be generalized in
case of nonlinear hyperbolic systems following the derivation in [30,
pp. 7-10], this task falls outside the objectives of the present study,
so we do not provide such a generalization here. However, due to the
high accuracy between the full numerical solutions and the Burgers
solutions (this will be shown in the next sections), the derivation of
the energy equation for the Burgers model gives an exhaustive insight
and comprehension of the mechanisms involved in energy dissipation
occurring at shocks formation.

In order to study the hyperbolic properties of Egs. (21), it is conve-
nient re-write them in quasilinear form J,w + A(w)d, w = 0, where the
Jacobian matrix A(w) is defined as

< 0 1 > 8
= m? H m
ow “HZ + 1+uH 2;

The characteristic velocities of the system are given by the eigenvalues
of A(w), namely

H
) =m_ (2 _
1) =4 (l+;4H

H
1+uH

)1/2, and A,(w) = % + ( )1/2, (25)

whose corresponding right eigenvectors are
H

H
ri(w)= < 3 1/2>, and r,(w) = ( 3 1/2). (26)
n=(7im ) m+(1im )

Note that the eigensolutions for a nonlinear hyperbolic system depend
on the state variables H and m. The character of the nonlinear waves
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supported by the CSWE (21) is dictated by the so-called “nonlinearity
factor”

_ri(w) -V, 4(w) o
o (w) = — gz = 1,2, @7
with V,, = (dy.9,)" being the gradient operator along the state
variables (H,m). For the two eigenvalues and eigenfunctions of the
nonlinear system, we have

—x(— )" ! 0 V(H (28)
C"‘»2("’)‘+(1+NH) [Jr2(1+;4H)];é (H,m),

since | + uH = e#“*D > 0. Therefore both eigenvalues are gen-
uinely nonlinear and the system can support the propagation of either
shock and rarefaction waves, but not of contact discontinuities (un-
like for the classical gasdynamics equations [31]). These features can
be useful to study a Riemann problem for Eqgs. (21) whose solution
would consist in a combination of either two shocks, or one shock
together with one rarefaction, or two rarefactions. Despite the rele-
vant applications (e.g. dam-break-like problems, bores propagation),
the study of Riemann problems for Egs. (21) is out of scope of the
present work. Nevertheless, interested readers can find more details on
a similar model (isothermal ideal gasdynamics problem) in Fossati and
Quartapelle [32]

2.3. Nonlinear, weakly dispersive compressible shallow water waves 5* =
O(e)

In the previous section we derived models valid under the shallow
water approximation, i.e. when 6% < e. Now, we relax that assumption
by allowing 6> = O(e) in Eq. (4b), as well as the flow to be two-
dimensional u = u(x,z,0)% + w(x,z,0)2, P = P(x,z,1), p = p(x,z,1)
and 5 = n(x, 7). System (4) can then be re-written more compactly and
conveniently as

o+ e(udxu + wdzu) +0,q=0, (29a)
&2 [d,w+e(u6xw+ wdzw>] +0,q=0, (29b)
y[d,q + e(u@xq + wdzq) - w] +0u+0d,w=0, (29¢)
g=n, and w=0n+€udy, on z=ey, (29d)
w=0, on z=-1. (29e)

where the “new pressure” q is related to p via the transformation

log(p) = —pz + log(ue) + peq. (30)

2.3.1. Reduced order wave propagation model 2

Following [23, ch. 3], we take 6% = ¢ and introduce the slow time
scale 7 = et. After expanding the boundary conditions (29d) in Taylor
series around z = 0 and retaining terms of at most order ¢, we obtain
the problem

du+0,q+ €<0Tu +udu+ wﬁzu) =0, (31a)
0,q + ed,w =0, (31b)
0Zw—/4w+,ud,q+dxu+e/4(dfq+udxq+wdzq) =0, (310)

q=n—end,gq, and w=omn+ e(d,n +ud.n — nazw), on z=0,

(31d)
w=0, on z=-1I. (31e)
We now expand our unknowns in powers of e as
(u, 10, 4.1) = (g, W, Go. Mo) + €y, w1, g1 1) + O, (32)

so after collecting terms of the same order, the following two differen-
tial problems need to be solved:

Ol) : duy++0,.qy =0, (33a)
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9290 =0, (33b)
0,Wwy — pwy + 10,4 + o,y =0, (33¢c)
qo =1y, and wy=0my, on z=0, (33d)
wy=0, on z=-1. (33e)
O(e) 0y + 0,q = —0 Uy — U0, Uy — Wy0, U, (34a)
0,4, = —0,wy, (34b)
0,wy — pwy + uo,q + oy = —M(arqo +uy0,qy + woazqo),
(340)
qy =1y —ny0;qy, on z=0, (34d)
wy = 0,y + 0.1 + uyod y — nyd,wy, on z =0, (34e)
w; =0, on z=-1. (349

We again search for travelling wave solutions in the positive
x—direction, as in (16). The system at leading order readily returns

M. 2.0, 7) = AET). (%, 2.0,7) = - A7),
Cc
| ! (35
woy(x, z,t,7) = (— - C/A) [l - e”(“l)] 0: A.
¢,
Regarding the problem at order ¢, we can immediately integrate the
axial momentum equation, and after imposing the dynamic boundary
condition, we get the pressure distribution
1- MCZ M
“ [z— E (en - 1)]()§A+m. (36)
U U

q1¢,z,7) =

Now, from (34a) we can compute Jzu; as function of ¢, and insert
it into (34c). Using the dynamic and kinematic boundary conditions
(34d)-(34e) we end up with the following differential problem in w;
only

‘
wl=01A+[é+e”<c——ﬂcﬂ)]AaéA—cuafnl, on z=0,
(37b)
on z=-1, (37¢)

whose solution returns (after some algebra) the compressible Kort-
eweg—de Vries (CKdV) equation

0. A+ a() A0z A = p(H)3; A, (38)

with coefficients

aly) = ‘;_—”(1 +2€“>, (392)
Cu
00 =5 (mey = ) (1 =) 5 [l = e+ 0 =2pet] - caoby

Again, the model is consistent with its incompressible limit. In fact,
when 4 — 0, we have « = 3/2 and f# = -1/6 which yields the
incompressible KdV equation 9,4 + (3/2)A0:A + (1 /6)a§A = 0—see
e.g. [23, p.208].

3. Results

We solve both the complete differential problem (13) and the
reduced models (20)-(38), and make comparison between them. As
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Table 1

Typical values of the parameters and corresponding physical quantities of
interest (wave amplitude, wavelength, water depth) for laboratory, oceanic
and atmospheric conditions.

c[m/s] h[m] alm] Alm] e 5 "
Lab 1500 1.5 <0.6 10 <0.4 0.1  6.54-10°¢
Ocean 1500 4000 <1 10° <2.5-107*  0.04 0.01744
Atmosphere 343 20000 <2000 10° <0.1 02  1.6677

previously noted, u is treated as an arbitrary parameter within our
equations and the analysis is restricted to waves moving along the
single spatial coordinate x. We envision this study to be representative
of a broad class of phenomena involving the propagation of nonlinear
shallow-water waves in a generic fluid. This might include the mod-
elling and simulation of tsunamis, bores, rogue waves, atmospheric
gravity waves and weather predictions, among others. To investigate
the models discussed above and make comparisons between them,
we consider three representative physical environments: laboratory-
scale settings, the ocean, and the atmosphere. Typical values of the
parameters of interest for the three specific scenarios are summarized
in Table 1.

In order to validate results, both Egs. (13) and (20) are solved twice
using two different numerical methods: the method of lines (MOL) [33]
and a finite difference method with Roe’s numerical flux for nonlinear
hyperbolic systems [2]. Solutions coming from both methods have then
been compared and result in good agreement. However, the MOL is
more efficient as it allows to save computational time, as well as to
provide less dissipative solutions for longer times. Therefore, hereafter,
we show numerical results from the MOL simulations only. Further
details are contained in Appendix A. Eq. (38) is also solved using the
MOL.

3.1. Results for model 1: full numerical simulations

In this section we show results for the 1D compressible shallow
water Egs. (13). The initial conditions are taken in the form

n(x,00= e/, and u(x,0)=0, (40)

where ¢ defines the initial width of the surface perturbation normal-
ized by the horizontal wavelength. This parameter is varied in the
simulations spanning ¢ € [1/2z, L/2zA], with L defining the size of
the computational domain used in the three different environments,
i.e. L = [63,10°10°] [m] for the lab, ocean and atmosphere cases,
respectively. The other parameter being varied throughout the sim-
ulations is the dimensionless amplitude of the surface waves e. In
particular, for the lab environment we take ¢ € [0.001,0.4]. For the
ocean we take ¢ € [2.5 - 107%,0.1], whereas for the atmospheric
environment we take ¢ = [0.001,0.1]. The choice of gaussian initial
conditions is probably the simplest way to analyse and control the
wave dynamics, focussing on the interplay between nonlinearity and
compressibility. Regarding the maximum values of e considered, €, =
0.4 for the laboratory case represents well an average maximum wave
height achievable in standard laboratories. The choice of ¢, = 0.1 for
oceans, although being far too large in standard conditions, is mostly
dictated by two reasons: first, to see under which set of parameters
nonlinearity comes into play in ocean dynamics. Second, the need
to test the robustness of our models, especially in capturing shocks
formation. The same holds for atmospheric conditions, although in this
environment e ~ 0.1 is still possible in real situations.

In order to quantify the effects of both nonlinearity and compress-
ibility, we define the normalized L,-error between the linear solutions
ny = n(e = 0) and the corresponding nonlinear ones » on one hand, and
between # and the corresponding incompressible solutions #; = n(u = 0)
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Fig. 1. Snapshots at different times of the full numerical solutions computed
for three values of ¢. (a): lab, ¢ = 0.1, t =0, 1,...,6. (b): ocean, ¢ = 2.5 1074,
t = 0,1,...,10. (c): atmosphere, ¢ = 0.1, r = 0,1,...,10. The initial profiles
are displayed with a dash-dotted line and the breaking time is shown in blue.
(d): Arrival time of the wave at x = 7. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)

on the other, namely
L L
D.(t;¢,0, 1) =/ [, Cx, 50, ) — n(x, 15 €, G,M)I2dX// n, (x,0; 0, )| *dx,
0 0
(41a)

L L
Du(t;e, o, 1) = / [n,(x,t;€,0) —n(x, t;€, 0, ﬂ)lzdx// [n;(x,0; €, o)lzdx.
0 0
(41b)
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behaviour at the final simulation time as function of ¢ and e.

We start by showing typical solutions for each scenario, computed
for three values of ¢ and either ¢ = 2.5-10~* (Fig. 1(b)) or e = 0.1 (Fig.
1(a, c)). For panel (b) the dynamics is linear as e is extremely small
and the wave simply moves to the right without changing its shape and
speed. On the other hand, for panels (a) and (c), the overall dynamics
can be described as follows. As the initial wave profile starts propa-
gating, a rarefaction fan is generated. After a specific time (“breaking
time” ¢,), the wave undergoes a shock and becomes discontinuous. The
subsequent interaction between the shock wave and the rarefaction
wave ultimately yields a decrease in the overall amplitude of the
initial profile. This mechanism is present either when compressible
effects are negligible (lab scenario, Fig. 1(a)) and when compressible
effects become relevant (atmospheric scenario, Fig. 1(c)). Compress-
ibility brings forward the shock formation, so that its interaction with
the rarefaction fan is triggered earlier in both space and time, thus
providing a faster decrease in the amplitude of the wave. Additionally,
the arrival time of the wave at a shoreline (x = 7 for the case presented
in panel (d)) increases as function of y. In this regards, the inclusion of
compressibility effects results in a more efficient way to attenuate, as
well as slow down, the initial wave amplitude. A deeper insight into
these features is provided in Section 3.2 and in Appendix B, where
Burgers Eq. (20) is used to describe and compare these mechanisms,
both qualitatively and quantitatively.

Another feature that emerges from the full numerical solutions is
given by the importance of the initial width of the perturbation in
the formation of the shock wave. Similarly to what happens for the
compressibility parameter, the smaller the value of o, the sooner the

shock will form producing a faster decrease of the wave amplitude in
time.

More quantitatively, we show in Figs. 2 and 3 the error functions D,
and D, for the three environments. For each scenario, nonlinear effects
become non-negligible at times or order t ~ O(1/¢), in accordance with
the weakly nonlinear theory. It is interesting to notice though, that
the larger o, the more linear the behaviour of the waves within the
spatio-temporal domain of the problem. In particular, the nonlinearity
is almost absent for ¢ > 1. This does not necessarily mean that
mathematically a shock would not occur at larger o, but, for the specific
environments considered, the breaking time would be out of a realistic
time window. Regarding the effects of compressibility, the flow in
the laboratory environment can be considered incompressible, as the
error is at most of order ~107°. In the case of an ocean, the flow
can be considered weakly compressible (error of order ~10~2). For the
atmospheric case, the flow is fully compressible and the error is of order
one all over the range of parameters investigated. Within this range
the error seems to scale as . To verify this trend we plot in Fig. 4 the
L*-norm of the error between the compressible and the incompressible
solutions in the space-time domain £, = [-L, L] X (0,), with 7, = 8.
By fitting the numerical curve, we are also able to find the approximate
analytical expression
= ”"ll(;;?g:;wl) = —1.8066e~ 232384 1 002524 + 1.8066. (42)
When 0 < 4 < 1, the error goes as a linear function of y, while for y ~
O(1) the exponential part becomes dominant and decreases the slope
of the curve. Regarding the three specific environments considered, the
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comparison with the analytical expression (42).

atmosphere poses the most stringent limitations in using incompressible
equations. Thus, atmospheric surface waves should be modelled by
taking into account compressible effects, resulting in a considerable
variation of the wave properties. Nevertheless, even oceanic surface
waves can be influenced by compressibility over long spatio-temporal
scales, with improved estimation of arrival time and amplitude at
shorelines.

3.2. Results for model 1: comparison with Burgers equation

In this section we compare solutions coming from the full numerical
simulations with those coming from the compressible Burgers Eq. (20)

with initial condition 55(&,0) = 0.5¢=¢°/°". Even in this case, we define
the L,-error between the two families of solutions as

L L
DBurge,s(t:e,a,ﬂ)=/ In(x,t;a,u)—nB(x,t;e,a,ﬂ)lzdx// [n(x, T; 0, w)|*dx,
0 0
(43)

where 75(x, 1) = A(x —c,t, e7) coincides with the solutions from Burgers
equation and 7 is the time at which the splitting of the initial surface
profile into right-left travelling waves in the full numerical simulations
vanishes, and we can focus on tracking only the right-going one. Figs.
6-8 show comparison between the free surface elevation for the three
different environments at different times and for several values of both
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o and e. Again, we push the values of ¢ beyond those achievable in real
oceanic conditions so as to test the accuracy of the Burgers model. As
can be noted, the agreement is excellent all over the entire range of
parameters. The Burgers model is also capable of accurately capturing
the shock formation given any initial gaussian profile, and to correctly
follow the subsequent dynamics involving the interaction between a
shock and a rarefaction wave (as explained in Section 3.1). Fig. 9 shows
the L,-error between the two solutions as function of time, computed
for the most stringent case ¢ = 1/2z and different values of e. It can
be noted that at most it reaches values of order ~1072, confirming the
accuracy of Burgers solutions in describing the entire dynamics of these
type of waves.

Using the Burgers equation, we can additionally compute the ex-
act breaking time at which the shock occurs for the initial gaussian
profiles [34]. This is given by

1€, 0, 1) = #(ll) \/Z. (44)

The trend of the normalized breaking time a~!(u) is shown in Fig. 5.
As can be noted, there exists a local maximum for u ~ 0.53, however
for the three specific scenario considered in this work, this function is
lower in the atmospheric case (highly compressible flow) with respect
to the other two scenarios (weakly compressible flows).

Expression (44) contains most of the features already explained in
Section 3.1 and recalled hereafter. 1) The higher the nonlinear coeffi-
cient ¢, the sooner the shock forms. 2) The higher the compressibility
u, the sooner the shock forms. 3) The lower the width ¢ of the initial
profile, the sooner the shock forms. These features all lead to beneficial
effects in terms of amplitude reduction.

3.3. Results for model 2

In this section, we provide results concerning the propagation of
weakly nonlinear, weakly dispersive compressible waves, as described
by Eq. (38). The compressible KdV equation is solved again using the
method of lines (MOL). Our numerical scheme is first tested against two
cases: the exact soliton solution Ay (&, 7) = sech®|/3/4(¢ — 7/2)|, and
the double soliton solution computed in Trefethen [35, p. 112] using
a spectral collocation method. In Fig. 10 (left) we show time history
of the relative error between the exact soliton A, and our numerical
solution. The agreement is remarkable, with a maximum relative error
of 3.6 - 107*. In Fig. 10 (right) a comparison between the spectral
solution for the double soliton and that computed using the method
of lines is given at different times. As emerges from both panels, our
numerical method works well and we rely on it hereafter to perform a
broader set of computations.

The CKdV equation is solved using the same initial conditions
as those for the Burgers equation, namely 5(£,0) = 0.5~/ "2, with
variations in y, ¢, and 0. We compare the solutions obtained from
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the CB and CKdV models across the three different scenarios, as il-
lustrated in Fig. 11(a, b, ¢). In both laboratory and ocean scenarios,
the initial wave energy disperses into smaller amplitude oscillations,
leading to attenuation of the leading front as it propagates downstream.
Conversely, in the atmospheric case, the amplitude of the perturbation
slowly increases after initiation, ultimately resulting in the formation
of two solitons, with the leading one exhibiting a significantly larger
amplitude than the trailing one (Fig. 11(d)), in agreement with the-
oretical predictions [36]. Additionally, Fig. 11(d) confirms that high
compressibility values decrease the wave speed even in a weakly
dispersive regime.

These features can be formally justified by the presence of the
term ﬂ(mag on the right-hand side of Eq. (38). This additional term
contributes to a nonlinear dispersion relation (o = ¢,k + B(w)k?), and it
also enables the existence of soliton solutions. The differing behaviours
observed across the three environments stem from variations in the
importance of compressibility. Specifically, for non-negligible values of
the compressibility parameter u, solitons with increasing amplitudes
may form.

To quantify this mechanism and relate it to the parameters ¢ and o,
Fig. 12 presents the difference in maximum free surface deformation
as a function of ¢, computed within the simulation time window. The
figure shows that for ¢ = 0.001,0.01, 0.1, there exist values of ¢ for which
this difference is positive, indicating amplification of the initial profile.
This contrasts with the non-dispersive case, where larger values of o
delay shock formation and preserve the maximum wave amplitude at
its initial value.

Finally, it is worth mentioning that if the nonlinearity is sufficiently
strong or the initial profile is highly localized in space, the leading
soliton may undergo a dispersive shock [37]. However, this does not
occur within the range of parameters considered here for the three
different environments.

4. Conclusions

We have investigated the influence of fluid compressibility on the
propagation of weakly nonlinear shallow-water waves, extending the
classical shallow-water equations to incorporate compressibility ef-
fects. This extension enables a more accurate representation of wave
dynamics in scenarios where compressibility cannot be neglected.

Our analysis yields two primary sets of equations: (1) A non-
dispersive model that generalizes the traditional incompressible
shallow-water equations by accounting for compressibility. This model
is particularly suitable for analysing long-wavelength waves where
dispersive effects are minimal. (2) A weakly dispersive model that in-
corporates both compressibility and dispersion, providing a more com-
prehensive framework for studying wave phenomena where dispersion
plays a significant role.

These formulations provide a robust foundation for exploring the in-
tricate interplay between nonlinearity, compressibility, and dispersion
in shallow-water wave propagation. For both systems, we have derived
two reduced models to facilitate the analysis of their dynamics:

» The Burgers equation for non-dispersive waves, extending the
classical shallow-water equations by incorporating compressibil-
ity effects.

» The Korteweg-de Vries (KdV) equation for weakly dispersive
waves, capturing the balance between nonlinearity and dispersion
in a compressible fluid context.

A convergence study between the Burgers model and the full set
of compressible shallow-water equations was conducted to assess the
accuracy of the reduced model. The results demonstrated high fidelity,
even beyond the regime of weak nonlinearity (e.g., when the nonlin-
earity parameter ¢ is of order one, ¢ ~ (O(1)). This suggests that the
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reduced model remains effective in capturing the essential dynamics of
the system under stronger nonlinear conditions.

The primary conclusion of this study is that fluid compressibility
significantly influences the nonlinear propagation of shallow-water
waves, distinguishing it from the traditional incompressible assump-
tion. These differences manifest in both wave speed and amplitude. Our
analysis demonstrates that compressibility impacts non-dispersive and
weakly dispersive waves differently, necessitating distinct modelling
approaches for each case.

In the non-dispersive regime, higher values of the compressibility
parameter p accelerate the formation of shock waves and their interac-
tion with rarefaction waves, ultimately leading to wave breaking and
a reduction in amplitude. Overall, the wave is slowed down for higher
values of u and the arrival time at a given spatial location is higher.
Conversely, in the weakly dispersive regime, increased compressibility
can amplify the initial perturbation, resulting in the formation of a
discrete number of solitons. This phenomenon is particularly relevant
in atmospheric waves, where compressibility plays a central role. In
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contrast, for oceanic waves and surface waves generated in laboratory
settings, the flow is nearly incompressible. In such cases, an initial
perturbation tends to dissipate its energy into smaller trailing waves,
leading to a gradual decrease in amplitude. Regarding wave speed and
arrival time, the same trend as in the non-dispersive regime is observed
when dispersion is weak but non-negligible, with waves being slower
for higher values of u (Fig. 11(d)).

Other parameters, such as the dimensionless wave amplitude ¢ and
the width of the initial perturbation ¢, may influence the aforemen-
tioned dynamics. To quantify these effects on both types of waves, a
parametric study has been conducted. In the non-dispersive case, higher
values of ¢ and lower values of ¢ accelerate shock formation, leading
to beneficial results in terms of amplitude reduction. In the dispersive
case, greater values of both e and ¢ result in multiple solitons, each
exhibiting a peak significantly larger than the maximum amplitude of
the initial perturbation.

There remain opportunities to improve the models derived in this
work to achieve a more accurate description of shallow-water flow
dynamics and their applications in modelling real phenomena, such
as tsunamis. One possibility is to include the elasticity of the seabed,
obtaining a reduced system of equations that describe both the free
surface elevation of the fluid and that of the seabed. Another possibility
is to include Earth rotation. Additionally, conducting laboratory exper-
iments for the cases presented in this work would further contribute to
validating the developed theory.

Furthermore, investigating potential resonance mechanisms bet-
ween elastic and compressible-gravity modes would be both interesting
and beneficial from an applied perspective, with the aim of enhancing
the design and reliability of tsunami early warning systems.

Finally, a more theoretical avenue involves extending the validity
of the models presented herein to scenarios where dispersive and/or
nonlinear effects are no longer weak.
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Appendix A. Numerical methods for the compressible shallow wa-
ter equations

A.1. Roe’s numerical scheme

Consider the system of Egs. (13) in one spatial dimension. Follow-
ing [2], it can be written in conservative form as

0,H + 0, (vH) =0, (Ala)

,(vH) + 0, [U2H+ i(H— %log(l +/4H))], (A.1b)

where H = (e"™*) — 1)/u, v = eu and g € R is a coefficient
written here only for test purposes (g = 1 in the actual non-dimensional
compressible shallow-water Egs. (13)). We define the momentum per
unit volume m = vH and introduce the state vector w = (H,m)”, so
that Egs. (A.1) can be compactly written as

ow+ 0. f(w) =0, (A.2)
where the flux function takes the form

_ m2 1 g T
fw) = (m, =+ ;(H - S log1 + yH))) : (A.3)

To solve (A.2) we apply a finite-difference scheme with Roe’s numerical
flux [28,38].
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A.2. Method of lines

Another approach to solve system (13) is to introduce an artificial
viscous term of the form vafcu on the right-hand side of (13a) and
implementing the method of lines with a centred finite difference
discretization in space [39]. The artificial viscosity v is tuned in order to
properly capture the shocks formation and, at the same time, to avoid
dispersion and extreme dissipation. In particular, for the results shown
in Section 3.1, v = ydx, with y = 5 when ¢ = 1/2z and y = 1 in all
other cases.

The two numerical schemes have then been tested against “problem

A” contained in Hudson [40, pp. 4-6], giving both accurate and reliable
results, as shown in Fig. A.13. For such a test case, parameters are y = 0,
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e =1 and g = 9.81, whereas the initial conditions are

1, x<1/2,

A.4
x>1/2. @

m(x,0)=0, and H(x,0)= { 1

3
Each scheme is capable of capturing both shock and rarefaction waves
without introducing too much dissipation. The MOL, however, was
computationally faster and less dissipative for larger times (even for
computing linear solutions of (13)), hence we preferred to employ that
in the large parametric study conducted in Section 3.

Appendix B. Exact Burgers solution for a triangular wave

In this section we want to provide more insight and justification
for the features shown in the results Section 3.1 about the propa-
gation of weakly nonlinear, non-dispersive, compressible waves. To
carry out such objective, we study here the Burgers Eq. (20) subject
to a triangular wave initial condition, such that its solution can be
obtained analytically in closed form. Using the method of character-
istics [34], the exact solution can be split in two parts: the solution
valid before the formation of a shock, and the solution valid after that.
The point in space-time where the shock forms is given by (&,,7,) =
(0'\/;, 20\/;/ a(u)), where o is the non-dimensional wavelength of the
initial wave profile. So, the solution before the shock formation (r < 7;,)
reads:

0, &<-ov/x,
AE D) = o (B.1)
e
0, ¢£204/7
The solution after the shock formation (r > ;) reads:
0, &<-ov/x,
1 [ étov/x
A&, 1) =4 20\/;[“_%1]7 -0 ”S«?Sﬁs(TX (B.Z)
0, ¢&2>¢&(n),
where £,(7) is the shock path and is given by
1/2a(u) 204/ 7
1) = —o/m + 21712006 [ (1 + LiCis , T . (B.3)
50 \/—< 20\/2) a(p)

The complete space-time diagram is displayed in Fig. B.14(left), to-
gether with the solution at different times (right).

From this analysis, two features can be noted: as the wave is
initialized, a rarefaction fan starts propagating, with the characteristics
changing slopes smoothly. Simultaneously, the wave does not change
amplitude, but simply approaches a discontinuity point. When the
discontinuity is met, a shock wave occurs and starts interacting with
the rarefaction wave, producing an overall decreasing of the wave
amplitude in time. This simple exercise provides additional evidence
of the overall dynamics of more realistic waves discussed in Section 3.

Appendix C. Burgers energy equation at shock

Let us consider the compressible Burgers equation in quasilinear
form (20). Under the change of variables T = a(u)r and A(&,7(T)) =
@(&,T), it reduces to the standard Burgers equation

Or ¢+ oz =0, (cD
which can be re-written (after multiplying it by ¢) as
2 3
% PN\ _
or(L)+o(%) =0 (€.2)
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where § is the shock speed and ¢, are the finite values of ¢ just
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Fig. B.14. Triangular wave problem for Burgers equation. (Left): characteristics diagram, with the shock path & (r) shown in red. (Right): solution at different
times. Full lines: exact analytical solution. Dots: numerical solution using Roe’s scheme. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

After re-arranging the expression in square brackets, we obtain the final
energy equation

dE

Fril

1 3
12((”* @.) <0, (C.5)

since ¢_ > ¢, for shocks to occur [41]. Eq. (C.5) shows that energy
always decreases when a shock occurs.

Data availability

No data was used for the research described in the article.
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