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The widespread adoption of electric vehicles (EVs) is crucial for decarbonising transportation and achieving
global net-zero goals. However, a significant challenge in this transition is ensuring equitable access to charging
infrastructure, particularly when addressing the simultaneous charging needs of urban residents and rural
visitors in urban areas. This is a critical aspect often overlooked in existing literature. This study formulates
the problem of implementing a charging system for urban areas that can support both urban and rural users as a
multi-objective integer linear programming (ILP) model. This approach uniquely achieves fairness by reducing
congestion in urban charging systems to ensure sufficient charging capacity for rural residents visiting the
area. Specifically, the expected mean waiting time for all users is minimised. Concurrently, the travel distance
for urban residents to their assigned charging stations is also minimised, thereby ensuring sufficient charging
capacity for rural residents visiting the area. An ILP solver was employed to evaluate the proposed model
across various problem instances, including a detailed case study of Cardiff city, UK. Results demonstrate the
significant advantages of this assignment model: for a simulated scenario with 36 charging stations in Cardiff’s
urban centre, the model reduced the mean waiting time by approximately 7 min per user (from 16.6 to 9.6 min)
and decreased the average travel distance for urban users by 2.25 km (from 3.6 to 1.35 km) compared to a
baseline approach. Further experiments across different charging station densities consistently showed that
the optimisation model reduced mean waiting times by up to 12.8 min and average travel distances by up to
3.3 km. This research provides a robust, data-driven framework that enables more equitable and efficient EV
charging infrastructure planning, facilitating a truly inclusive transition to electric vehicles for both urban and
rural communities.

1. Introduction Significant distinctions exist in the transition to EVs between rural

and urban areas, creating an urban/rural divide. For example, the

Decarbonisation is becoming increasingly important worldwide. The
UK government, for instance, emphasises decarbonisation and has in-
troduced policies such as the Net Zero Strategy, aiming to decarbonise

rural population in the UK is more reliant on private transport than
those living in urban areas. Urban residents typically have greater

all UK economic sectors by 2050 (Government, 2021a). Specific poli-
cies, such as the Road to Zero, outline a strategy for cleaner road
transport, focusing on the transportation sector (Government, 2021b).

The UK government has introduced a ban on the sale of new
petrol and diesel cars by 2035 (Government, 2021c). As such, the UK’s
transportation sector has begun the process of transitioning away from
conventional petrol and diesel vehicles, internal combustion engine
vehicles (ICEVs), towards electric vehicles (EVs). Given recent advance-
ments in environmentally friendly battery manufacturing (Krajinska,
2021), this transition to EVs plays a vital role in the UK’s overall net-
zero goal, which aims to balance greenhouse gas emissions with their
removal from the atmosphere.
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access to public transport. The rural population also tend to travel
further distances to access services. For example, in Wales, the num-
ber of charging stations in rural areas is small compared to urban
areas (Welsh Government, 2020). This means a person’s location affects
the feasibility of transitioning to an EV. Rural residents may struggle
with convenient vehicle charging, while urban residents typically have
easier access to public charging stations.

Beyond infrastructure availability, the urban/rural divide is also
defined by potential pricing differences. Rural EV users, who are more
likely to have off-street parking, can often take advantage of discounted
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overnight home charging rates. This raises questions about how ur-
ban EV users, who may depend more on public charging, can be
ensured equitable access to charging options close to home and work
without incurring penalties due to higher public charging tariffs or
peak-time pricing. Therefore, location affects not only the convenience
of transitioning to an EV but also the financial implications of doing so.

While a significant body of work has focused on the optimal place-
ment of EV charging stations (He et al., 2018; Giménez-Gaydou et al.,
2016; Bitencourt et al., 2021), there is limited research on the fair
and efficient assignment of users to existing infrastructure, particu-
larly with a focus on urban-rural disparities. Existing fairness-focused
studies either model general transportation equity (He et al., 2019) or
prioritise agent-level preferences in assignment without accounting for
congestion effects (Lesca et al., 2019; Aziz et al., 2015). This urban—
rural disparity in infrastructure and adoption has been increasingly
recognised as a key challenge in EV deployment (Maybury et al., 2022;
Kukutschka and Schmitt, 2021). These socioeconomic and pricing dis-
parities complicate equitable access, underscoring the importance of
fairness in the planning and allocation of charging infrastructure (Hop-
kins et al., 2023; Charlier and Hogan, 2023). This paper responds
to these gaps by proposing a novel assignment model that explicitly
incorporates fairness metrics tied to user queuing time and charging
station accessibility. In contrast to traditional location optimisation,
this model focuses on how users should be allocated to existing charg-
ing infrastructure in a way that reduces congestion while addressing
regional inequalities. Unlike existing studies that mainly optimise for
proximity or minimise travel cost (Giménez-Gaydou et al., 2016; He
et al., 2018), our method introduces user prioritisation and demand
balancing under shared infrastructure constraints, enabling a more
equitable user experience.

To achieve a transition to EVs that is fair for all vehicle users, it is
essential to account for the differences between rural and urban areas
in any mathematical model that optimises the transition. However,
a research gap exists in this area. While some articles mention the
disparity in EV adoption between rural and urban areas, few models
explicitly account for it, and it is rarely their primary focus (Maybury
et al., 2022). Moreover, prior models rarely incorporate queuing theory
to account for wait times at charging stations — a critical factor in
shared urban environments (Cao et al., 2022; Said and Mouftah, 2019).
Current models that incorporate fairness often do so in the context of
allocation or assignment problems, but few explicitly integrate queuing
dynamics and the urban-rural divide in EV charging (Aziz et al., 2015;
He et al.,, 2019). Thus, the unique contribution of this study is to
propose a mathematical model that optimises the UK’s transition to
EVs with a focus on the urban/rural divide. It is worth noting that
this urban/rural divide is not unique to EVs and has existed in other
technological transitions, such as the transition to high-speed internet
access. Furthermore, more research is needed on how urban areas can
facilitate the charging needs of both residents and visitors (Charly
et al., 2023). The equitable rollout of charging stations is a well-
established research topic, playing an important part in the transition
to EVs (Hopkins et al., 2023). However, existing works typically do
not consider this urban/rural divide. Our model fills this research gap
by combining fairness-aware user assignment with congestion-sensitive
queuing theory, offering a replicable and adaptable approach for infras-
tructure providers and policymakers. This focus aims to ensure fairness
in the UK’s transition to EVs. The measure of fairness used in this study
is access to charging stations plus the waiting times for users to charge
their EVs at these charging stations. Waiting times and queuing effects
have been shown to significantly impact user satisfaction and system
efficiency in EV charging contexts (Cao et al., 2022; Vandet and Rich,
2022).

We formulate the problem of creating a fair integrated urban/rural
EV charging system as a mathematical optimisation problem. The
optimisation problem in question is an assignment problem focusing
on fairness and integrates queuing theory. The main objective of the
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optimisation problem is to minimise the average queue time in the
system with an optimal assignment of urban users to shared charging
stations, where the queue time is the time spent waiting in a queue
to charge an EV. It is hypothesised that optimising this assignment
and implementing the optimal solution will reduce system congestion.
This would then ensure rural residents visiting urban areas can charge
their EVs in a desirable manner. Hence this is the aspect of ‘fairness’
that is considered in this model. More specifically, the measure of
fairness is the time a user must wait in a queue to charge their EV.
This is achieved by assigning each urban resident to a priority charging
station which acts as their home charging station and does not incur
any additional fees. It is assumed that the charging station locations
are already optimised or predetermined. Therefore, this problem is
distinct from the well-researched facility location problem (Farahani
and Hekmatfar, 2009; Cornuéjols et al., 1983; Corcoran and Gagarin,
2021). This distinction holds even in the context of charging station
location optimisation (He et al., 2018; Giménez-Gaydou et al., 2016;
Bitencourt et al., 2021). While location optimisation is a critical field,
this study uniquely focuses on optimally assigning users to existing
stations with fairness and queuing time as primary criteria (Cao et al.,
2022; Said and Mouftah, 2019).

The novelty of our contribution lies in this shift from optimising in-
frastructure locations to optimising equitable infrastructure access. We
demonstrate that this approach can better serve both system efficiency
and fairness goals, especially under scenarios of limited infrastructure
expansion. Our framework is designed to support evidence-based pol-
icymaking by evaluating how different assignment rules, congestion
pricing, or charging demand forecasts impact urban-rural equity in
real-world settings.

The key contributions of this work are as follows:

Introduces a novel multi-objective ILP model that explicitly ac-
counts for urban-rural fairness by minimising queuing times and
travel distances.

Generates optimal assignments of users to charging stations in ur-
ban areas, enabling fair access through implementable strategies
for shared home charging.

Integrates queuing models to manage system congestion and eval-
uate the impact of policies like congestion charges. This inte-
gration addresses a critical gap in modelling EV infrastructure
fairness (Cao et al., 2022; Vandet and Rich, 2022).

Enables scenario analysis using charging station density varia-
tions to guide future expansion and investment decisions.

Offers practical utility for city planners, policymakers, and in-
frastructure providers through clear outputs and policy-relevant
levers.

Ensures equitable charging access for rural EV users by balancing
urban congestion and infrastructure usage.

Adapts to varying data spatial resolutions (e.g., Census OAs),
station densities, and can be extended with more realistic arrival
patterns or charger specifications.

Opens pathways for exploring dynamic demand, individual-level
user modelling, richer charger features, and joint optimisation of
location and assignment.

The layout of the remainder of the paper is as follows. Section 2 pro-
vides an overview of related literature in the field. Section 3 describes
the methodology, including the model formulation and a description of
the proposed charging system. Section 4 presents an evaluation of the
proposed model with respect to both random and real world problem
instances by performing simulations with respect to both. Finally,
Section 5 will cover the model’s advantages, limitations, and practical
implications, while Section 6 will summarise the main contributions of
this research.
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2. Related work

Previous research has explored different aspects of the problem
considered in this study. As such, in this section, the main topics
reviewed will be fairness in optimisation problems, the urban/rural
divide in a transition to EVs, queuing theory related to EV charging,
and shared EV charging models.

Fairness has been considered in the context of many different op-
timisation problems. Although this study focuses on fairness in trans-
portation, it is a universal property that applies to many systems. The
fair assignment problem has been considered in previous studies, with
the definition of ‘fairness’ varying from field to field. Alfonsetti et al.
(2015) focused on optimising fairness, defined as ‘social benefit’, to
users whilst assigning them to car parking spaces. Lesca et al. (2019)
proposed a new method to solve a fair one-to-one assignment problem,
which is the problem of assigning » objects to n agents, with each agent
only having one object assigned to it. Aziz et al. (2015) considered the
fair assignment problem where fairness is incorporated by considering
agent preferences. Xu et al. (2016) consider fairness in cyberphysical
systems, defined as the average social benefit to agents.

The urban/rural divide discussed in Section 1 has not been the
main focus of any models concerning EV adoption in the past, but it
has been considered in a number of models. Jia et al. (2020) used
machine learning methods to build a prediction model focusing on
predicting EV demand across the United States. The urban/rural divide
was incorporated with a household related variable in the model,
“urban-rural”, which denoted whether the area in question is urban or
rural. Mulholland et al. (2018) developed a consumer choice model to
analyse the impacts of retracting low carbon transport subsidies. In this
study, the consumers were split into urban and rural categories using
a EuroStat 2014 regional dataset.

As mentioned in the introduction to this article, the model proposed
in this work uses a queuing theory model. Cao et al. (2022) devel-
oped a Cyber—Physical-Social System to introduce the consideration
of queuing theory in the users’ process of choosing an EV charging
station. Duan et al. (2022) proposed a user equilibrium traffic assign-
ment model, incorporating queuing theory to optimise the planning
scheme for charging service providers (CSPs). Kumar et al. (2022)
used a queuing model to predict charging demand. Vandet and Rich
(2022) derived an approximation of expected queuing time from queu-
ing theory in order to plan the optimal placement and sizing of EV
charging infrastructure. Said and Mouftah (2019) used a queuing model
to develop an EV charging management protocol. Lu and Hua (2015)
incorporated queuing theory in a location-sizing model to tackle the
constraint of number of EV charging spaces.

The concept of shared community charging models for EVs has
been widely considered in past research regarding EV adoption. Wang
et al. (2019) analysed the practicality of shared charging for EVs
using a dataset based on the Chinese city Shenzhen. Koc et al. (2019)
incorporated shared charging into the electric vehicle routing problem
(EVRP). The EVRP is the problem of optimising the routes of a fleet
of EVs based on EV-specific constraints, such as the driving range of
the EVs in question and available charging infrastructure of the focus
area. Gong et al. (2019) focused on identifying optimal locations for
shared charging stations. Zhang et al. (2023) focused on employing
shared charging stations to satisfy the demands of those living in multi-
unit dwellings (MUDs), such as apartment buildings, and produced a
model to minimise the total waiting time of the charging stations.

3. Methodology

The model developed in this work considers the different charac-
teristics between EV charging in rural and urban areas. There are two
different types of users considered: rural users residing in rural areas
and urban users residing in urban areas. It is assumed that rural users
have access to slow charging at home and limited fast charging close to
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their residence. Also, urban destinations may be a long distance away
depending on how far their homes are from the urban area in question
is. Therefore rural users will require access to charging stations at desti-
nations in urban areas. In contrast, it is assumed that urban users have
limited access to home charging due to a large number of people living
in apartment blocks and more populated residential areas, with less
space for parking and therefore EV charging. Therefore urban users will
have access to shared home charging, which is a public charging station
near the residence, prioritising the urban users that live nearby. Any
user may use any public charging station, but an additional ‘congestion
charge’ will be applicable to those urban users who are using a charging
station that is not their priority charging station. The purpose of this fee
is to incentivise charging behaviour, with respect to shared charging
in urban areas, that improves the experience of charging EVs for all
users. The charging system aims to minimise congestion at individual
urban charging stations. This provides rural users with the opportunity
to charge their EVs when visiting urban areas. Concurrently, it ensures
urban users are not disadvantaged, allowing them to charge their EVs
in a desirable manner, measured by minimal waiting times and distance
travelled to charge points.

The goal of this optimisation model is to contribute to achieving
fairness in the charging system. In this case, fairness is defined as
all users — urban and rural residents — being able to charge their
EV in a desirable manner. Therefore it is argued that minimising the
average queue time in the system, i.e reducing the congestion in the
system, contributes to fairness. This is because reduced congestion in
the overall system allows rural visitors from any direction to charge
their EV without having to wait a long time for a charger to be free.

The remainder of this section is structured as follows: an overview
of the model formulation is given in Section 3.1, where Table 1 contains
definitions of all variables and parameters of the model. In Section 3.2,
the objective function of the model is derived, and in Section 3.3, the
final ILP is formulated.

3.1. Model formulation overview

The main purpose of the model presented in this study is to reduce
congestion in an urban charging system. This ensures that sufficient
capacity remains for visiting rural residents to charge their EVs. There-
fore the problem of minimising congestion in an urban charging system
in a manner that is fair to all users is proposed, where congestion is
measured as the average queuing time. This problem is formulated as
an ILP assignment problem as follows. Groups of urban users living in
the same geographical region are assigned to charging station queues
corresponding to charging stations of pre-set locations. The assignment
of rural users to charging stations is not directly modelled or optimised.
Instead, the optimisation model produces a result that ensures fairness
for rural users visiting urban areas by guaranteeing available charging
capacity. This is achieved by minimising congestion in the system with
respect to shared charging in urban areas. This assignment is obtained
using an ILP optimisation model, which is now described.

The ILP model has assignment variables and is parameterised by
a number of constants, which are a function of the environment to
which the model is applied. The variables and parameters in question
are summarised in Table 1 and described as follows. The urban area
is partitioned into regions U = {uy,...,u,}, that have respective
populations S = {s,, ..., s,,}, corresponding to urban users residing at m
regions. These urban users are assigned to charging station queues Q =
{qi,....q,}, that have respective sizes P = {p,, ..., p,}, corresponding to
the set of n charging stations. The size of a charging station is defined
as the number of charge points at that station. Let D denote a distance
matrix containing values d;; corresponding to the shortest distance from
region u; to queue g;; the maximum distance between a user and its
assigned charging station, max,; the frequency with which an urban
resident charges their EV on average, f; the average time taken by
an urban user to charge their EV, #; and the number of hours a day
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Fig. 1. Flowchart illustrating the process of applying the assignment model to a given scenario with parameters U, S, O, P, W,, D, max,, f, t, h, 4, and ,,

defined in Table 1.

that the assignment is active for, 4, which allows the congestion control
measures to be in effect during times which the urban area may have a
significant number of visitors from rural areas needing to charge their
EVs. There is a set of decision variables, that is the assignment matrix
A={a; eNJie{l,...,m},j€{l,...,n}}, with elements representing
the number of users from region u; assigned to queue g;. Then the
charging station corresponding to queue g; becomes their shared home
charging station. To address road network congestion in residential
areas, there is an auxiliary variable representing the maximum number
of residents from area u; assigned to a single charging station, max;. The
ILP model formulation and optimisation process are illustrated in Fig.
1.

The practical applicability of the model is built upon several key
assumptions, designed to reflect realistic scenarios while ensuring com-
putational tractability. Firstly, this approach assumes that the set of
potential charging station locations aligns with existing car park infras-
tructure (demonstrated in Section 4), representing a pragmatic choice
for urban planning given available land and electrical grid connections.
Secondly, for the purpose of simulating varied infrastructure densities
and future growth, the variable 7 is introduced; a fraction of these car
parks designated as active charging stations. This allows for flexible sce-
nario analysis, from current limited infrastructure to future widespread
deployment. Thirdly, concerning user behaviour at charging stations,
we assume a First-Come-First-Served (FCFS) queuing discipline and that
EV arrivals approximate a Poisson process. While real-world arrival pat-
terns can exhibit more complexity (e.g., peak-hour surges), the Poisson
assumption is widely adopted in queuing theory for modelling ran-
dom arrival events and provides a robust basis for estimating average
waiting times, especially for aggregated demand analysis (Gross et al.,
2011; Allen, 2014). Lastly, to incentivise optimal charging behaviour
and manage demand, the system proposes a ‘congestion charge’ for
urban users opting for a non-assigned station. This mechanism reflects
common urban demand management strategies aimed at influencing
public resource utilisation.

This formulation is demonstrated on the following simple example,
which is a network of urban regions and charging stations, and can be
seen in Fig. 2. The network has nodes representing charging stations
in red and nodes representing regions of urban users in black. The set
of charging station queues is Q0 = {q,,¢,} and the set of regions of
users is U = {uy,u,,u3,uy,us}. It also has weighted edges where edge
weights represent d;;, the shortest path lengths between the regions
of urban users and charging stations. Suppose there are 8 charging
points at charging station 1, and 4 charging points at charging station

Table 1

Definitions of key parameters and decision variables used in the multi-
objective ILP model for a fair shared urban-rural charging system. Parameters
define the system’s static properties and user characteristics, while variables
represent the decisions optimised by the model.

Parameter Description

U={ylie{l,..,m}} Groups of urban users corresponding to m

regions

s; = population of urban group u;

Charging station queues corresponding to n

charging stations

p; = number of charge points at charging

station queue q;

W, Average waiting time in queue g;

D={d;lie(l,.. d;; = shortest distance from location i to

{1,...,n}} charging station j

max, The maximum acceptable value of the shortest
distance between the location of an urban user
and their assigned charging station

S={s;liell...m})
O={q;|lje{l,....n}}

P={(p1j€{l..n)}

f The frequency with which an urban resident
charges their EV

t The average time taken by an urban user to
charge their EV

h The number of hours a day that the assignment
is active for

Ay Ay Constants to determine the penalty associated
with the corresponding slack variables

Variable Description

A={a;li€fl,....m},j€ a;; = number of users from group «, assigned

{1,...,n}} to charging station queue g;
max; The maximum number of residents from area i
assigned to a single charging station

By, B, Slack variables

2,50 P = {p;,p,} = {8,4}. Suppose the regions of urban users have
populations 3, 4, 5, 3, 4 respectively, so .S = {3,4,5,3,4}.

From the network, we can obtain each shortest distance d;; from
urban region ; to queue g;. Then we form the matrix D of distances
d;; to input into the model:

5 8
8 7

D=9 3 (€9)
1 5
6 10

The objective of the model is to minimise the average queuing time
over the set of queues Q, the average distance between the regions
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Fig. 2. Simple network example demonstrating the ILP model’s inputs: black
nodes {u; — us} represent urban regions with populations S = {3,4,5,3,4},
red nodes {q,,q,} denote charging stations with capacities P = {8,4} charge
points, and weighted edges show the shortest travel distances d,;.

of users and their assigned charging stations d;;, and the sum of the
maximum number of urban residents assigned to each charging station
from any given area. The remainder of the formulation, including the
objective function derivation and the final ILP, is now described and
demonstrated on the simple example given above.

3.2. The objective function

The problem of performing a fair assignment of users to charging
station queues has three dimensions. The three dimensions in ques-
tion are queuing time, distance travelled, and road traffic congestion.
Each of these dimensions is modelled as an individual term in the
optimisation objective function. The first term of the objective function
minimises the average queue time in the urban charging system, and
aims to fulfil the main purpose of the model by reducing congestion
in the system to ensure there is capacity left for visiting rural resi-
dents to charge their EVs. The second term minimises the sum of the
distance between urban residents and their assigned charging station,
as it is preferable to charge a vehicle close to the home. The third
term minimises the sum of the maximum numbers of urban residents
assigned to each charging station from any given area. The purpose
of this term is to reduce road traffic congestion by ensuring a more
uniform distribution of charging station assignments from each area.
To achieve this, the maximum element of each row of the assignment
matrix is minimised, where each row corresponds to an assignment of
users from a particular area to charging stations.

The derivation of the average queue time in the charging system
is based on queuing theory concepts. It is assumed that the charging
stations follow a first come first served (FCFS) queuing system, where
there is one queue per charging station, and there are multiple ‘servers’,
where servers correspond to charging points at the charging station.
Each charging station queue is assumed to be a Poisson queue, where
arrivals are random and independent of each other. This is a common
and tractable assumption for modelling such systems in operations
research (Gross et al., 2011). Fig. 3 gives an example of the general
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process of a charging station queue. Let W, be the mean waiting time
in queue ¢;. Then the mean waiting time for a user is:

n
1
- ; W, 2

Recall that P = {p;,...,p,} is a set of integer values where p; is
the number of charging points at the charging station associated with
queue g;. Let h € [0,24] be a real value. This value represents the
number of hours per day a charging station requires measures to control
congestion. The measure in question encourages urban residents to
use their assigned charging station. This aims to minimise overall
congestion in the system. Let f be the average number of times per day
an electric vehicle owned by an urban user needs to be charged, and
t € R be the average time taken to charge an electric vehicle. Then each
queue g; € Q is served by a number of charge points p;. Additionally,
a number of urban residents, " | a;; € Z, are assigned to it. If a user
is assigned to a queue, the corresponding charging station acts as their
‘shared home charging station’. This station can then be used without
accruing any additional fees. Then the expected mean waiting time of
the system is as follows:

n n m n m
t Z L a;; z L a;;
1 E W, » lf—z =y E =l Y 3)
nia nhii P bj

=

The h? term in Eq. (3) reflects the non-linear impact of increasing a
charging station’s active congestion control hours on queuing time.
In multi-server queuing systems, such as the charging stations, wait-
ing times are highly sensitive to system utilisation. As utilisation ap-
proaches 100%, waiting times increase dramatically. The h variable
represents the hours per day during which congestion control measures
are active. It essentially acts as a proxy for the effective throughput
available to manage demand.

The second term of the objective function has the goal of minimising
the distance travelled by urban residents to their assigned charging
stations. Therefore the second term is the average distance between
each assignment of urban residents to charging stations as follows:

YLy X aiydy
mn

The third term of the objective function has the purpose of ensuring

a uniform assignment of urban users from a given area to the set of

charging stations. This is achieved by minimising the maximum value
of each set of assignment variables from a given area as follows:

i max, )
i=1

The objective function is therefore composed of the terms in
Egs. (3), (4) and (5).

4

3.3. Final ILP

The assignment matrix A models the assignment of groups of users
U to charging station queues Q as a multi-objective optimisation prob-
lem, where w, and w, provide the weighting factors of the 3 dimensions
of the objective function, as follows:

Min wl(zZ,fu ”)+w2 i=1 r:ll ij7ij

j=1 j n
m
+ (1= w; = wy)(Y, max) + A By + 4, B, (6a)
1
i=1
Zaijpj=Bl+ftsi, i=1,...,m, (6b)
J
Zai/’"’BZ:ij’ j=1...n, (6¢)
: 7i
z T i=1,....m, (6d)
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Fig. 3. Illustrative representation of the queuing process at a charging station with multiple charge points. This diagram conceptualises how vehicles (customers)
arrive, wait in a single queue, and are served by available charge points (servers), which forms the basis for calculating average waiting times in the optimisation

model’s objective function.

a; =0 if d;; > max, (6e)
a; 20, Vi, Vj (6f)
B;,B, >0 (68)

where the variables and parameters are defined in Table 1.

Constraints (6b) and (6¢) have the purpose of ensuring that there
is sufficient capacity to satisfy demand at the charging stations. Con-
straint (6d) ensures that every urban resident is assigned to a charging
station. Constraint (6e) ensures that urban residents are not assigned to
a charging station further than max, from their residence.

When this ILP is applied to the simple example in Fig. 2, the
resulting optimal assignment of groups of urban users to charging
stations is shown in Fig. 4. The number of urban users from each
group assigned to each charging station can be seen on the edges. For
example, from urban region 1, 2 users are assigned to charging station
1, and 1 user is assigned to charging station 2.

4. Results

In Section 1, it was hypothesised that the proposed model would
provide a fair result, where fairness is measured by ensuring low
waiting times for both rural and urban residents. In this section, the
hypothesis is evaluated empirically. Firstly, the data used for the re-
mainder of the article is introduced. Next, the method formulated
in Section 3 is applied to a case study of Cardiff City. The optimal
assignment of urban users to queues is obtained. Then the method is
applied to a number of random instances to test its scalability and the
results are recorded.

4.1. Data

The data sources used in the remainder of the article are Open-
StreetMap (OSM) (Haklay and Weber, 2008) and the Office for National
Statistics (ONS) (U.K. Government, 2021). The motivation for the use
of these data sources is that they are free and open for the entire UK.
Each of the data sources is now described in turn.

OpenStreetMap

OSM is a free, open source map of the world, created and con-
tributed to by volunteers, made possible by a collaborative editing
software. For the purpose of this study, a map of the street network of
Cardiff City Centre was downloaded from OSM, and used to construct
a graphical representation of street networks, where nodes are street
intersections or dead-ends, and edges represent the street segments
between these nodes. OSM data was retrieved using the Python package
OSMnx (Boeing, 2022).

Fig. 4. Optimal assignment of urban user groups to charging stations resulting
from the Integer Linear Programming (ILP) model applied to the simple
network example. Black nodes {u; — us} represent urban user regions, red
nodes {q,,q,} are charging stations, and the numerical edge weights indicate
the optimised number of users assigned from each urban region to a specific
charging station.

Office for National Statistics

The ONS is the UK’s national statistical institution which gath-
ers, analyses and publishes statistical data covering a wide range of
economical, social and demographic issues. In this study, ONS data
was utilised to partition Cardiff City Centre into output areas (OAs),
which is a small geographical unit created by the ONS to provide a
standardised geographic framework for the collection and analysis of
small area statistics in the UK. OAs are the lowest area of geographical
region for census statistics, and therefore allowed for the finest level of
analysis in the optimisation model. Each OA consists of approximately



L. Maybury et al.

Q
72>

{0

N
W
0
'I/"I
O
A Sll’l'

&
2
7

A\\‘“\“}»‘s\

Fig. 5. Geographical street network of Cardiff city centre, extracted from
OpenStreetMap (OSM) for the case study analysis. This network, covering an
area within 1100 m of the city’s centre, provides the underlying infrastructure
for modelling EV charging station placement and user assignment within the
optimisation framework.

125 households, and contains a population of approximately 300 (Gov-
ernment, 2001). The average area of the OAs in the data used in this
study is approximately 0.065 km?.

To incorporate population parameters, car ownership data was also
obtained from ONS (Office for National Statistics, 2022), as those who
do not own a car will not need to be assigned to a charging station, and
therefore can be omitted from the model. Each OA was then assigned
a population parameter, detailed in Section 4.2.

4.2. Case study: Cardiff City Centre

To apply the method to a real-world scenario, Cardiff’s urban centre
was selected as the study area. Cardiff, the capital city of Wales,
is chosen as a study area following the Welsh Government’s recent
statement emphasising the importance of the uptake of EVs in carrying
out the Net Zero Plan (Senedd Research, 2023). For the purpose of
the study, a street network was modelled using a graph, where nodes
represent locations and edges represent paths between locations. As
such, a street network of Cardiff was created from OSM using the
Python package OSMnx (Boeing, 2022), which can be seen in Fig. 5.
This street network is a bounding box of size 1100 m from centre point
(51.479363, —3.176703).

Using ONS Census data for Wales, the area considered was parti-
tioned into OAs, shown in Fig. 6. Potential charging station locations
were assumed to be car park locations obtained from Ordnance Survey
Points of Interest (Ordnance Survey (GB), 2022). To simplify computa-
tions, residents of each OA were assumed to reside at the centre point of
the OA. The centre points considered are population weighted centroids
(PWCs) obtained from ONS. PWCs were calculated using a polygon
median centroid algorithm in ArcGIS 10.0, and give a centroid value
less influenced by outliers than usual centroid algorithms which give
the mean spatial centroid. Fig. 7 shows the street network with car
park locations corresponding to potential charging station locations in
red and PWC points in blue.

Each OA, corresponding to a region of urban users, was assigned
a population parameter based on the ONS car ownership data (Office
for National Statistics, 2022). Recall each group of users in region u;
has population s;. Let H, denote the number of households in region
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Fig. 6. Geographical partitioning of Cardiff city centre into Census Output
Areas (OAs), utilised as distinct urban user regions for the EV charging model.
These OAs, derived from ONS Census data, represent the smallest geographical
units for statistical analysis in the UK, allowing for a fine-grained spatial
representation of urban user groups within the optimisation framework.
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Car park locations

Fig. 7. Street network of Cardiff city centre overlaid with key locations
for the EV charging optimisation study. The red points indicate potential
charging station locations, derived from Ordnance Survey Points of Interest
data (specifically car parks). The blue points represent population-weighted
centroids (PWCs) of the Output Areas, serving as the assumed residence points
for urban users in the model.

u; with n cars. While the car ownership data accounts for households
with up to three cars, our model extends this to a maximum of ten cars
per household to ensure completeness. Then:

2 10
si=yn-H,+Y 3 H, %)
n=0 n=3

It is assumed that people travel along the shortest path between
their home and charging stations. The shortest distance between each
PWC and each charging station is calculated and stored as a distance
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matrix d;;. The graphical network indicating the distances in d;; is
added onto the street map as an overlay network.

To approximate the potential number of chargers n; at each queue
q;, a random array containing values between 5 and 150 is used. Based
on survey data, it is assumed that urban residents charge their vehicle
0.5 times a day (Zuo, 2019), therefore f = 0.5. It is also assumed that
there are significantly less rural visitors to the urban area in the night
time, and so there is a need to minimise congestion in the system for
12 h a day, therefore #» = 12. It is assumed that the average time spent
charging an EV for an urban resident is four hours, therefore r = 4.

Urban residents are assigned to charging stations which then be-
come their ‘shared home charging station’. Rural residents are not
assigned to a charging station and are therefore able to choose the
charging station most convenient for them during visits to the urban
area.

4.2.1. Optimisation

The assignment of urban residents to charging stations is obtained
by running the ILP using Gurobi optimisation software (Gurobi Opti-
mization, 2022), which employs a branch and cut algorithm to solve
individual problem instances (Mitchell, 2002).

A solver time limit of 600 s is implemented. If an optimal solution is
not found within this timeframe, the best feasible solution obtained so
far (the incumbent solution) is returned. The quality of this solution
is assessed using the optimality gap, which quantifies how close the
incumbent solution is to the theoretical optimum. This is defined as
follows:

Z; - Z;
Optimality Gap (%) = M x 100% (8)

incumbent

where Z;,.umbent 1S the objective value of the best feasible solution
found, and Zy,,q is the best known bound on the optimal value (a
lower bound in this case as it is a minimisation problem). The opti-
mality gap is automatically reported by the Gurobi solver, providing a
measure of how close the returned solution is to optimality at the point
of solver termination.

The third term in Eq. (5) was implemented using Gurobi function
max_(), which calculates the maximum value of a set of decision
variables.

It is proposed that this optimal assignment could be used to inform
a charging policy based on financial incentives. For example, in order
to minimise the overall congestion in the system by encouraging urban
residents to use their assigned home charging station, additional fees
are introduced for urban residents choosing to charge at a charging
station which is not their assigned home charging station. Alternatively,
urban residents can use their assigned ‘shared home charging station’
at a discounted rate. Rural residents incur no extra fee and are able to
charge at any charging station which is convenient upon their visit to
the urban area.

4.2.2. Results

As the set of potential charging station locations is equal to the set
of existing car park locations, a random partition of car park locations
is used to create a set of charging station locations to ensure a realistic
ratio of charging stations to users. This is achieved by considering a
random fraction r € [0, 1] of car parks from the car park data and
setting these car parks as charging station locations.

The outputs of the model are the objective function value, which
includes the expected mean waiting time in the charging system in
minutes, the average distance between an urban user and their assigned
charging station, and an assignment matrix demonstrating how many
urban residents from each urban area are assigned to each charging
station. As this assignment matrix is too large to display, the results of
the model are demonstrated by running it once as shown in Section 3.3,
and once with a baseline model where a number of constraints are
removed. The baseline model runs without the considerations of the
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Fig. 8. Spatial distribution of potential EV charging station locations (red) and
urban population weighted centroid (PWC) points (blue) within the Cardiff city
centre street network, representing a scenario where 50% (z = 0.5) of existing
car park locations are designated as charging stations for the optimisation
model.

Table 2

Comparative performance of the proposed optimisation model against a base-
line model for a scenario with = = 0.5 (50% car parks as charging stations).
The table presents key outcome metrics: the mean expected waiting time (in
minutes) for users in the charging system and the average travel distance (in
kilometres) between urban users and their assigned charging stations.

Scenario Mean waiting time Mean distance
Optimisation model 9.6 mins 1.35 km
Baseline model 16.6 mins 3.6 km

expected mean waiting time and the distance between urban users
and their assigned charging stations in the objective function. The
mean waiting time and average distance between urban users and their
assigned charging station are then compared for both models.

For the instance shown in Fig. 8, where ¢ = 0.5, there are 315
urban regions and 36 charging stations considered. The populations of
the urban areas, corresponding to car ownership data, range between 0
and 255. The number of charging points at the charging stations range
between 13 and 148.

For = = 0.5, Table 2 shows the results of the model implemented
as shown in Section 3.3 and the results of the baseline model. It can
be seen that with the baseline model, the mean waiting time is 7 min
longer per user, and the distance between an urban resident and their
assigned charging station is 2.25 km further away on average. This is
a more desirable result for urban users, as they have to queue for less
time on average to charge their vehicle, and also have to travel less
distance to their assigned charging station. It is also a more desirable
result for rural users visiting the urban area as the charging system is
less congested and they have to queue for less time on average to charge
their vehicle.

Further, this comparison of results from the optimisation model vs
the baseline model can be repeated in experiments where a random
fraction = € [0,1] of car park locations are assumed to be charging
stations. The results of these experiments are recorded in Table 3. The
results of this experiment support the hypothesis that the optimisation
model achieves reduced congestion in the charging system by minimis-
ing the mean waiting time, and also ensures that urban users do not
have to travel as far to their assigned charging station. Furthermore,
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Table 3

Detailed comparison of the proposed optimisation model’s
performance versus the baseline model across varying charg-
ing station densities, represented by the fraction z of car parks
designated as charging stations (ranging from 0.1 to 1.0). The
table presents the mean expected waiting time (in minutes)
for users and the average travel distance (in kilometres) for
urban users to their assigned charging stations for each =

value.
7/scenario Optimisation Baseline model
model
1.0 4.8 mins 8.2 mins
1.3 km 4.6 km
0.9 5.6 mins 8.3 mins
1.3 km 4.4 km
0.8 6.1 mins 10 mins
1.3 km 4.2 km
0.7 7.2 mins 10.5 mins
1.3 km 4.0 km
0.6 7.1 mins 12.3 mins
1.3 km 3.9 km
0.5 9.6 mins 16.6 mins
1.35 km 3.6 km
0.4 10.2 mins 17.2 mins
1.3 km 3.5 km
0.3 17.7 mins 22.3 mins
1.7 km 3.4 km
0.2 19.5 mins 29.6 mins
1.5 km 3.3 km
0.1 38.2 mins 51 mins
1.6 km 3.4 km

this experiment could be useful for a predictive analysis. Whilst it may
be unrealistic to assume that all car parks, or a large number of car
parks, in an urban area contain charge points at present, the number of
charge points is expected to increase in the coming years as the roll out
of EVs and subsequent expansion of charging infrastructure continues.

4.3. Analysis of random instances

To evaluate the scalability of the proposed method, in this section
the model is applied to a number of random problem instances of
increasing size. For a given number of urban areas m and charging
stations n we define a corresponding random problem instance using
the following approach. Values m and n are varied, whilst the other
parameters are set as follows: f = 0.5, h = 12, t+ = 1. max, varies
where max, € [1.5,2.5]. P varies with p; € Z,p; € [1,50]. D varies
with d;; €R,d;; €10,3]. S varies with s; € Z,s; € [1,200].

For each pair of varied parameters (m,n), a corresponding random
model is created and executed 10 times. In Table 4, the number of
optimal solutions found is recorded, along with the average expected
waiting time over the 10 executions in minutes. If there are no optimal
solutions found, a dash (‘~’) is recorded in place of the average expected
waiting time.

5. Discussion
5.1. Advantages and limitations of the proposed model

This proposed multi-objective ILP model offers several significant
advantages for advancing equitable and efficient EV charging infras-
tructure planning. The primary advantage is its unique focus on achiev-
ing fairness through congestion reduction, explicitly accounting for the
distinct charging needs of both urban residents and rural visitors. By
minimising average queuing times across the entire system, the model
directly addresses a critical problem for EV users and ensures that urban
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infrastructure can adequately serve transient rural demand without
imposing undue waiting burdens. This explicit modelling of the urban—
rural dynamic for equitable access represents a novel contribution, as
existing literature often overlooks this specific aspect.

Furthermore, the model concurrently minimises travel distances for
urban residents to their assigned shared home charging stations. This
enhances convenience for daily use and reduces unnecessary vehicle
miles travelled, aligning with broader sustainable mobility objectives.
The model’s ability to generate optimal assignment plans for urban
users provides a clear, actionable road-map for city planners and sys-
tem operators, translating directly into implementable strategies. Its
inherent flexibility to incorporate varying charging station densities
(via the r parameter) makes it a powerful predictive analysis tool
for future infrastructure planning, enabling proactive decision-making
as EV adoption continues to grow. The robust integration of queuing
theory provides a data-driven framework for quantitatively assessing
and managing congestion.

Despite these strengths, the model has certain limitations that de-
lineate avenues for future research. A key aspect is the current reliance
on aggregated urban resident data based on Census OAs, which is a
pragmatic choice given individual-level privacy concerns. While ef-
fective for macroscopic planning, this aggregation could potentially
obscure finer-grained individual user behaviours. Similarly, assuming
Poisson arrivals for charging stations is a standard and computation-
ally tractable approach in queuing theory, but may not fully capture
the complex temporal variations of real-world peak-hour demand. For
example, there may be busier time periods during lunch hours or after
the workday. Future enhancements could explore more sophisticated
arrival distributions or incorporate time-varying parameters to reflect
fluctuating demand patterns. Another challenge encountered was the
inherent difficulty in obtaining granular data on the specific charging
patterns of rural EV users visiting urban areas. This lack of detailed data
limits a precise quantification of how much additional rural demand the
optimised system can accommodate, although the model’s congestion
reduction still ensures capacity for them. Lastly, the model’s reliance on
a ‘congestion charge’ as a financial incentive to guide user behaviour
suggests that future work could explore the effectiveness and impact of
different financial or non-financial incentive mechanisms.

5.2. Practical implications and stakeholder utility

This optimisation scheme is primarily designed with the potential
to provide tangible benefits for city planners, local authorities, urban
mobility departments, and charging infrastructure providers. Its prac-
tical outcomes offer direct utility in both the strategic planning and
operational management of public EV charging networks, focusing on
an inclusive transition to electric vehicles.

» Optimal User Assignment for Fair Access: The model provides
a clear, actionable output: the assignment matrix (q; j). This indi-
cates precisely how many urban residents from each geographical
area should be ‘assigned’ to specific public charging stations as
their ‘shared home charging stations’. City planners can use this
to structure and implement local charging schemes, potentially
through digital platforms or community incentive programs that
encourage equitable access for all users.

Informed Infrastructure Sizing and Investment: By treating the
number of charging points (p;) as a variable parameter, the model
allows stakeholders to perform ‘what-if’ analyses. City planners
can use this framework to determine the optimal number of
charge points required at different charging locations to meet pro-
jected demand while meeting target waiting times. This directly
guides investment decisions and infrastructure roll-out strategies.
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Table 4
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Scalability analysis of the proposed optimisation model across varied problem instance sizes
(urban areas, m, and charging stations, n). For each configuration, the table reports the
number of optimal solutions found, the number of infeasible solutions, and the average
expected waiting time (in minutes) over 10 independent executions, demonstrating the

model’s performance and solvability.

m n 5 10 20 50 100 200
100 6, 4, 28 10, 0, 18.1 10, 0, 9.3 10, 0, 3.9 10, 0, 1.9 10, 0, 1.1
200 3, 7, 102.2 10, 0, 42.9 10, 0, 23.3 10, 0, 7.1 10, 0, 3.4 10, 1, 1.8
300 4, 6, 117.7 10, 0, 59 10, 0, 27.9 10, 0, 10.7 10, 0, 5.3 10, 0, 2.8
400 2, 8, 56.3 10, 0, 73.1 10, 0, 35.8 10, 0, 16 10, 0, 6.6 10, 0, 3.3
500 1,9, 131 10, 0, 105.2 10, 0, 41.4 10, 0, 16.7 10, 0, 9.4 10, 0, 4
600 1, 9, 240.5 10, 0, 100.5 10, 0, 59.9 10, 0, 24.3 10, 0, 10 10, 0, 4.8
700 1, 9, 230.1 10, 0, 94.2 10, 0, 69.2 10, 0, 25.1 10, 0, 11 10, 0, 5.9
800 0, 10, - 10, 0, 131.7 10, 0, 64.1 10, 0, 26.9 10, 0, 11.4 10, 0, 6
900 0, 10, - 10, 0, 130 10, 0, 81.4 10, 0, 29.7 10, 0, 13.8 10, 0, 6.2
1000 0, 10, - 10, 0, 194 10, 0, 86.6 10, 0, 29.1 10, 0, 17.4 10, 0, 7.1

- Effective Congestion Management Strategy: The model quan-
tifies the impact of policies, such as the proposed ‘congestion
charge’, on reducing overall system congestion. Stakeholders can
leverage these insights to design dynamic pricing models or pri-
ority access policies that encourage efficient use of charging re-
sources, especially during peak hours. This ensures critical avail-
ability for rural visitors who may not have alternative charging
options within the urban area.

Predictive Analysis for Future Growth: The comprehensive
experiments across varying ¢ values (Table 3) offer a powerful
predictive analysis tool. System operators and policymakers can
input projected future charging station densities or planned car
park conversions to forecast expected mean waiting times and
travel distances. This enables proactive infrastructure expansion
and resource allocation, preventing future bottlenecks and ensur-
ing preparedness for increasing EV adoption. For example, if a
policy goal is to maintain a mean waiting time below 10 min,
the model can indicate the minimum charging station density
required.

Quantifying and Ensuring Equity: Fundamentally, the model’s
most significant practical outcome is its ability to plan and man-
age a charging network that promotes equitable access. By strate-
gically reducing congestion and optimising urban user assign-
ments, the system ensures that rural residents visiting urban areas
are not unfairly disadvantaged by long queues or unavailable
chargers. This direct contribution to fairness facilitates a smoother
and more inclusive transition to EVs across all communities.

5.3. Future research directions

Building upon this work, several promising avenues for future re-
search emerge. One key area involves exploring the effects of dif-
ferent financial incentives on the success of congestion minimisation.
For instance, varying the proposed ‘congestion charge’ or investigat-
ing non-financial incentives could provide valuable insights into user
behavioural responses.

Further enhancing the model’s realism could involve incorporat-
ing temporal constraints to account for dynamic demand patterns
throughout the day, beyond the static average arrival rate. Addition-
ally, expanding the model’s functionality to include different charger
attributes, such as varying voltage ratings and charging speeds, would
enable a more nuanced optimisation of charger allocation.

While this study focuses on urban users at an aggregated level
(OA populations), future work could aim for a finer analysis using
individual-level data. However, this would need to carefully address po-
tential privacy concerns and computational challenges, possibly requir-
ing the adoption of heuristic-based methods to solve larger assignment
matrices.

Finally, while this study assumes a pre-set positioning of charging
stations (making it distinct from the facility location problem), future
research could consider a joint optimisation approach that simultane-
ously tackles both the optimal placement of new charging stations and
the user assignment problem presented here. This would offer a more
comprehensive framework for EV charging system design and planning.

6. Conclusion

This article developed a multi-objective ILP optimisation model,
integrating queuing theory, to address the fair assignment of users to
EV charging stations. The model’s primary aim is to minimise aver-
age queuing time within urban charging systems, ensuring sufficient
capacity for both urban residents and visiting rural EV users. Our
methodology effectively reduces congestion and optimises urban user
assignments to shared charging stations.

Applied to a real-world scenario like Cardiff, the model demon-
strated significant practical advantages. For instance, in a specific case
with 36 charging stations in Cardiff’s urban centre, the model notably
reduced mean waiting times for users and decreased average travel
distances for urban users compared to a baseline. Further experiments
consistently showed the model’s capability to reduce both waiting times
and travel distances across various charging station densities.

In essence, this research provides a robust, data-driven framework
for more equitable and efficient EV charging infrastructure planning. It
facilitates a genuinely inclusive transition to electric vehicles for both
urban and rural communities by optimising access and minimising wait
times, thereby promoting fairness in EV charging.
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