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Abstract

®

CrossMark

The scattering of light by cylindrical dielectrics is an old problem of wide interest. Most
existing works assume spatially non-dispersive dielectrics characterized by a dielectric constant
independent of wavenumber. Here we revisit the problem treating spatially dispersive
semiconducting cylinders. We calculate the extinction, absorption and scattering cross sections
as a function of the cylinder size and light frequency, depending on the properties of the cylinder
boundary. Our calculations are based on a recently proposed theory without the use of
additional boundary conditions. The results show that the cross sections strongly depend on how
the cylinder surface scatters polarization waves, especially for small cylinders of radius much

less than the light wavelength.

Keywords: Light scattering, spatially dispersive materials, additional boundary conditions

1. Introduction

The study of the scattering of electromagnetic waves by infin-
itely long dielectric cylinders has accumulated an extens-
ive literature [1], starting with Lord Rayleigh’s work over
a century ago [2]. It presents one of the few electromag-
netic problems where rigorous analytical solutions could be
obtained [3, 4]. More recently, the solutions were extended
to treat sharp plasmonic resonances [5] and charged dielectric
cylinders [6]. Beyond their fundamental importance, these rig-
orous solutions have also lent themselves to practical applic-
ations [7]. However, most existing works assume cylinders
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made of spatially non-dispersive dielectrics, which are char-
acterized by a dielectric constant independent of wave vector,
with few exceptions [8, 9].

Here we study light scattering by spatially dispersive cyl-
inders, e.g. a semiconducting cylinder near excitonic reson-
ances. As well known [10, 11], close to the excitonic reson-
ance the dielectric properties of a semiconductor are described
by spatially dispersive dielectric functions, which depend
on both frequency and wave vector. Such spatial dispersion
arises from the center-of-mass motions of the excitons. A
conceptual hurdle, first encountered by Pekar in 1957 [12],
relates to the polariton waves in the medium; As a res-
ult of spatial dispersion, these waves are admitted in more
than one propagating modes with the same frequency and
polarization. Consequently, the usual Maxwell’s boundary
conditions are insufficient for determining the amplitudes
of the scattered waves. As a way out, Pekar supplemented
Maxwell’s boundary conditions with additional boundary con-
ditions (ABCs), which have since been widely used [8, 9, 13].
However, the domain of validity of the ABC approach remains
obscure [11, 14-16] and alternative approaches have been

© 2025 The Author(s). Published by IOP Publishing Ltd
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proposed [17-29]. Recently [30, 31], we showed that ABCs
failed to capture the effects due to the propagation of polariz-
ation waves in thin films and ABC parameters devoid of phys-
ical meanings. Rather, a surface is physically characterized
by a surface scattering amplitude (SSA), whose form depends
on the microscopic material details and geometry. For planar
surfaces the SSAs have been calculated for a model dielec-
tric [31]. Here, the properties of SSAs for cylindrical sur-
faces are derived, and an explicit form is obtained for a simple
surface model, which is then used to study light scattering
by spatially dispersive cylinders. When implemented for cyl-
inders, the ABC parameter comes with unrealistic curvature
dependence.

The paper is organized as follows. In section 2, we describe
the system and derive the SSA for cylindrical surfaces, and
show that it is independent of cylinder curvature. In section 3,
the scattering of light by cylinders is solved analytically and, in
section 4, numerical illustrations are presented with material
parameters suitable for the semiconductor GaAs at low tem-
peratures. First the non-dispersive case is revisited to elucid-
ate the method; then the dispersive case is solved. Analytical
expressions for the cross sections are obtained in terms of the
scattering amplitudes. Connections with ABCs are discussed
in section 5 and the paper is concluded in section 6.

2. SSA for cylindrical walls

The cylinder under consideration has a radius p and is exten-
ded infinitely along its axis coinciding with the z-axis; see
figure 1. The dielectric response of the cylinder is described
by its susceptibility, S(x,x’), by which the polarization in the
cylinder is given by P(x) = [ d®x’ S(x,x’) E(x’), where E(x)
denotes the electric field that induces the polarization, while
x = (x,y,z) andx’ = (x’,y’,z’) are points in the cylinder. Here
and henceforth we assume that the electric field oscillates at
frequency w by the factor e 7/, which we omit for notational
simplicity. Here ¢ denotes time. Accordingly, the polarization
field (implicitly) bears the same oscillation factor and S(x,x’)
specifies the responses at frequency w. By virtue of the trans-
lational symmetry along the cylinder axis, we may assume
without loss of generality a plane wave with wavenumber k,
along the z-axis for the fields, i.e. P(x) = P(r)e'*? and E(x) =
E(r)e’=. One then finds P(r) = [d’r’ S(r,r’) E(r’), where
S(r,r’) = [dz S(r, v,z —2')e %) with S(r,¥',z — 2') =
S(x,x") displaying the z dependence explicitly, and r = (x,y)
and r’ = (x’,y’) are the projections of x and x’, respectively.
Dependence of S(r,r’) on k; is implicit.

Near the excitonic resonances of the semiconducting cylin-
der, S(r,r’) can be split into a spatially non-dispersive back-
ground contribution S,6%(r — r’), where S;, is a constant back-
ground susceptibility and 6%(r —r’) is the Dirac function in
2D, and the contribution S(r,r’) due to excitons. Hence

P(r) = S,E(r) + P(r), P(r):/dzr’g(r,r’) E(r').
ey

Z
4

Incident light
w

Figure 1. A dielectric cylinder of radius p extending along the
z-axis is illuminated by a light wave. r = (x,y) = r(cos#@,sin6).

According to the Lorentz oscillator model, which takes care of

the ground exciton state but neglects higher-energy states [15,

30], S(r,r’) satisfies the inhomogeneous Helmholtz equation,
- 0?

(al% + q2) S(l',l'/) = _4762 (l' - I'/) )

=K, @
T

where Q = \/2MA/h? and G = \/2M(w — we, +i7)/h with
A,w,.,M and 7 being the exciton longitudinal-transverse
splitting, transition energy, effective mass and damping rate,
respectively, and 7 is the reduced Planck constant.

Taking advantage of the rotational symmetry about the z-
axis, we write x = rcosf and y = rsiné, where r = |r| and 0 is
the polar angle, and § (r,r’) depends on 6 — 6’ rather than on
0 and 6’ separately. We expand

. ‘02 22 im(60—0")
S(r,r’):% 3 Sm(r,r/)e?,

m=—0o0

3

where, as can be shown by direct substitution of this expres-
sion into equation (2), S,,(r,r’) satisfies the inhomogeneous
Bessel equation (apart from a constant factor), i.e.

1 m*\ - 2i
(arz+rar+qzr2>5m(r,r/)—7rr/5(rr/). (4)

This equation can readily be solved. As in [30] and [31],
Sm(r,r") in general contains two parts,

Sm (r7rl) = Sm (r,r/) + 7?fmSm (I‘, ,0) Sm (P,”/) /Sm (Pvp) 5 (5)

where R, is a parameter characteristic of the cylinder surface
(see below), J,,(x) is the mth order Bessel function, and

B Jm(qr’)H,(nl)(qr), forr>r’

Sm r7r/ - b
(r,r’) {Hg,,l) (gr')dm(gr), forr'=r

(6)

where H) )(x) denotes the mth order Hankel function of the

first kind and Im(gq) > 0. Physically, S,,(r,7’) represents an
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Figure 2. Illustration of S,,(r, ') as given by equation (5).

out-going polarization wave generated by a source electric
field at 7 while the second term in equation (5) represents the
subsequent reflected polarization wave by the surface of the
cylinder [30, 31]; See figure 2 for an illustration. S,,(r,r’) is
the same as for an infinite homogeneous system, i.e. the out-
going free-space Green’s function.

The parameter R,, determines the relative amplitude for the
reflected polarization wave and fully characterizes the prop-
erty of the surface. In general, it is a function of p and 7/, i.e.
R = Ru(p,r"), whose form depends on the surface details.
The dependence on ' may be weak if the internal structure of
the excitons can be ignored. Here we model the surface as a
partially reflecting and partially absorbing sheath, by a para-
meter that characterizes the elastic scattering strength \; see
appendix for details. For such a surface model, R,, does not
depend on 1/, which is then left out hereafter. We find

ASw (p,p) Ly T
Rim(p) = —=—=———, with A= —p. @)
(°) 1= XS (p,p) 2
In the limit A — oo, this gives R,, = —1 corresponding to the

‘hard-wall’ condition, by which S,,(p,r’) = 0. On the other
hand, for A=0 the second term in equation (5) vanishes
(i.e. the so-called ‘dielectric approximation’), indicating a per-
fectly absorbing wall that thermalizes any incident polariz-
qtion waves. As R,, in equation (7) does not depend on #/,

Sm(r,r") becomes symmetric about r and #/, i.e. S,,(r,7’) =
S, (r',r). However, we should note that this is not a universal
feature.

In analogy to the case with a planar surface [30, 31], we
define the large-p limit of R,,(p) as the SSA, denoted by R,
for the cylinder wall, i.e. R = lim,_,o R (p). In this limit, the
dependence on p and m due to the curvature of the wall should
drop out (i.e. m/ p vanishes). Using the large-argument approx-
imation for Bessel and Hankel functions, one finds S,,,(p, p) ~
(1/7pg) (1 + (—1)"+'ie*??). For Im(q)p > 1, this becomes
Sm(p,p) = 1/7 pq and hence

A
C2g—i)\

Ru(p) =R

For GaAs [15], Im(q) ~ 10 um~! for w = w,, and this approx-
imation is valid if p is in excess of ~100 nm.

Also making use of the rotational symmetry, we expand the
fields as

9] imo o im
P(r) = _Z_ Pm<r>em7 E(r) = _Z_ Emmjﬁ
®)

3

where P,,(r) and E,,(r) are coefficients. Substituting these into
equation (1) and making use of equations (3), (5) and (6) yield

Pm(r):SbEm(r)—&—lSm(r), ©
where the excitonic contribution is given by
. c02 [P
P,(r)= %/ dr'r'S,, (r,r" ) E, ()
0
1Q2 Jm (qr) /p 1. ! !
—Ru(p dr'r'S, (p,r" YE, (r').
8 <)Jm(61p)o TS e
(10

equation (10) fully determines the spatially dispersive
responses of the cylinder (including boundary effects).

3. Light scattering by dielectric cylinders

For simplicity, we consider a light wave with wavenumber
ko = w/c, where c is the speed of light in vacuum, normally
incident upon the cylinder, i.e. k, = 0. Oblique incidence with
k. # 0 requires full treatment of the vector nature of the waves,
and will be dealt with elsewhere. Further, we let the incid-
ent wave be linearly polarized along the z-axis. Consequently,
both the electric field and the polarization field are directed
along the z-axis, E(r) = (0,0,E(r)), P(r) = (0,0,P(r)) and
P(r) = (0,0, P(r)). One may write E(r) as a superposition of
the incident field, E;,(r) = e!%*, and the scattered field [30]; In
Gaussian units,

E(r) = Ep (r)—47rk§/d2r’G(r—r’)P(r’), (11)

where the second term stands for the scattered field E(r)
(waves emanated by the electric polarization in the cylin-
der) and G(r —r”’) is the Green’s function of the Helmholtz
equation satisfying out-going wave boundary condition,

(R +K)G(r—r')=0*(r—r'). (12)
Again making use of rotational symmetry, we expand
00 eim(e—e/
Glr—r') = nY ~
(r=r)= > Gul(rr)—1 (13)
m=—o0
with the coefficient functions given by
7w | Iy (kor’ H,(n]) kor), forr>r'
Gu(r,r')== m(l() )/ (ko) , , (14
2i | Hy' (kor')Jy (kor), forr’' >=r

which is the same as the expression for S,,(r,r’) except for a
constant prefactor. Substituting the expansion (8) into (11), we
obtain

p
Ey(r)=Enm(r)— 47rk(2)/ dr'r'Gy (r,r" )Py ('), (15)
0

where Ei (1) = dpudm(kor) with d,, = i being the expansion
coefficients of the plane incident wave, i.e. Ei, (r) = ef07¢ost =
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> Einm(r)e™’. Now equation (15) closes (9) and (10). They
can be solved analytically, as shown below.

From an experimental point of view, it is particularly
interesting how much incident energy is absorbed by the
cylinder. For this purpose, we evaluate the Poynting vec-
tor S = (c/2)Re(E x B*), where B= —(i/ky)V X E is the
magnetic field. Considering that E = (0,0, E), we obtain B =
—(i/ko) (OyE, —O:E,0) and

=~ Im(E(r) (E (r) . B,E" (1), 0)).

S(r,0) e

(16)
The energy absorbed per unit time per unit length of the cyl-
inder, W,, is then given by the total energy flux through the
surface of a virtual cylinder of unit length concentric with but
having a larger radius than the actual cylinder [32], i.e.

27
Wa:—r()/ dHf-S(ro,G), (17)
0
where ry > p is the radius of the virtual cylinder and ¥ =
(cos,sin#,0) denotes the outward normal. One may let 7 be
very large. For any stable system, W, is positive and such sys-
tem is an energy sink (i.e. energy is absorbed not emitted). The
absorption cross section can now be written as o, = W, /|Sia|,
where S;, is the energy flux density carried by the incidence
beam and is obtained from equation (16) with Ei,(r) in place
of E(r). We have chosen Ej, with unit amplitude so the energy
density appears dimensionless and the cross sections o, and
o, have the dimension of length rather than area, as W, (W)
represent the energy absorbed (scattered) per unit time per unit
length (not just per unit time).
One finds Si, = (¢/2)(1,0,0). It follows that

Ua:;;olm[ i

0 m=—00

Ey (r)O:E, (r)] (18)

r=ro

In addition to o,, the scattering cross section oy is also of
experimental interest. o is the energy flux through the virtual
cylindrical surface carried by the scattered waves, obtained
from equation (18) with a sign change and E,,, (r) replaced with
E; u(r), where E; ,(r) is the scattered field amounting to the
second term in equation (15),

> Eeml(r

= ——Irn [

Finally, o, = 0, + o, is called the extinction cross section and
describes the total loss of energy flux per unit length along the
cylinder.

) O,EL, ( )] (19)

r=ry

3.1. The non-dispersive case: P(r) =0

We proceed to solve the coupled equations (9) and (15). As
an elucidation of the method, we first solve the non-dispersive
case having no excitonic contribution, P(r) = 0. Then P,,(r) =
SpE(r), which using equation (15) yields

Ey(r) = Einpm(r) — 47erk2/ dr'r'G,, (r,r"YE, (r'). (20)

Outside the cylinder, using expression (14) for G,,(r,r’),

En(r> p)=Einm(r) +Esm(r),with Es », (r) = amH! (kor)
(21
where a,, is given by
P
ay, = 2m*iSpkd / dr'r' g (kor') Ep (1) . (22)
0

To find the field inside the cylinder, we make the ansatz

E,(r< o (k1) 23)
where E,, is an amplitude and k is some wavenumber. The
ansatz is the cylindrical analog to the one we employed in [30]
for a planar surface. Substituting the ansatz into equation (20)
and after some algebra, one obtains [33]

k= \/ako,With e, =14+4nS,, 24)
showing that the wavenumber £ is given by the refractive index
\/€», Where ¢, is the dielectric constant, in agreement with the
extinction theorem [17]. In addition, one finds

2d,, 1

e (25)
0N (koo p)

m =

where we have introduced

AD (k,ko; p) = koH'L, (kop) Jn (kp) — kH (kop) i1 (kp) -
(26)

With this result and the ansatz, the integral in equation (22)
can be performed [33] to obtain

2/\m (k kO; )

TP ) .
am = p Em)\m (k7 kOvp)
AN (k. ko3 p)

> @

where we have introduced

AP (k ko3 p) = kodus1 (kop) I (kp) = K (kop) Tt (kp)

(28)

Note that the poles of a,,, which occur at A{ )(k,kog p) =0,
determine the cylindrical modes of the system [3].
To summarize, we have found that

. . #W ' (kr) forr<p
(D) =dn T A ki) ) oy o s
o (kor) — ST ko) (kor) forr>=p

(29)

We note that in the limit S, — 0 and hence k — ko,
ky "AY reduces to the Wronskian W[H,(,,1 )(z),Jm(z)] between
H,(nl)(z) and J,(z) evaluated at z=kop. Using the res-

It [33] W[H, HD (2),J(2)] = 2/(im2), we find A (ko, ko; p) =
mp. Meanwhile A (ko,ko; p) = 0. Thus, E,,(r) reduces to
Einm(r) everywhere for S, =0, signifying the absence of
scattering.
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3.2. The dispersive case: P(r) # 0

The equations to be solved are (9) and (15) supplemented
by (10). We combine (9) and (10) for the z-component, yield-
ing

2
P (r) = SpE, (r) + g /0 dr'r'S,, (r,r"YEy (r')

iQZ'Rm (P) P ’ ’ /
+W ~Jm(qr)~/0 dr'r’Sy (p,r' ) En (r').
(30)

This equation is to be solved together with equation (15).
Consistent with the mirror symmetry about the x — z plane, one
notes that E_,,,(r) = (—1)"E,(r) and P_,,(r) = (—1)"P,(r).

We proceed in the same way as we did for the non-
dispersive case. From equation (15), the electric field outside
the cylinder can be written as

= b, H (kor),
(31

Em (I‘ 2 P) = Ein,m (I‘) + Es,m (}’) ) Es,m (I")

where b,, is the coefficient for the scattered field, given by

P
by, = 277k / dr'r' 1, (kor"Y P (1) . (32)
0

Note that b_,, = b,, due to rotational symmetry. To find the
field inside the cylinder, we generalize the ansatz (23) to

D)= Enadn (kur), Pu(r < p) = S P (kur),
v 17 (33)

where the coefficients E,, , and P,,, are to be found self-
consistently together with the wavenumber k, with v num-
bering the solutions. One may note that E_,, , = E,, , ful-
filling rotational symmetry. Substituting the above ansatz into
equation (30) and performing the integrals [33], we find

1 @
Py = — 5 | Enus
’ (Sb+ 4 k2 > ’

where the quantity in the parenthesis represents the total polar-
izability for mode v, and

(34)

ZQ 2[R (ko) 4D (lngip)] =0, 39

where R, = Ro(p)Hp HSY (gp)/Jm(gp) contains the effects of
spatial dispersion at the boundary. Substituting the ansatz (33)
into equation (15) leads to

471'k2
Em,u = k2 kZPm vy (36)

which, when combined with equation (34), determines the
allowed values of k,, (see below), and

4 k 2id,y,
™

2
v kg —

Using equations (36) and (37) can be rewritten as

de
SN ki) B = 28 (37)

Cimp

In the above, the functions, /\5,} )(kl,,ko; p) and /\,(n2 ) (ky ko3 p),
are given by equations (26) and (28), respectively.

Equations (34)—(37’) can readily be solved. Combining
equations (34) and (36) produces

1 Q? A k2
1=(S+———— o,
(b+47rk%q2)k£k(2)

This equation was also reached in [30], where planar bound-
aries were studied. Indeed, it is the same as for an infinite
medium. The allowed values of k, are then a property of
the infinite medium regardless of the presence of boundaries,
consistent with the extinction theorem [17]. equation (38) is
even in k, so the solutions come in pairs, which we denote
as ki, ko, and k3 = —ky, ks = —k,. Their explicit expressions
can be found in [30]. Note that J,,(—k,r) = (—=1)"J,,(k,r).
Hence J,,(kir) and J,,(k3r) are not independent and neither
are Jy,(kar) and Jy,(ksr). We therefore restrict ourselves to
ki and ky, so that only four coefficients, E,, 1, En 2, Pm,1 and
P, 2, need to be determined. P, , can be obtained from E,, ,,
via equation (34), while E,,; and E,,, are determined by
equations (35) and (37°). We note that, in the absence of
excitonic contribution (i.e. Q@ =0), equation (35) is automat-
ically fulfilled and equation (37°) reproduces equation (25).

With the ansatz (33) and using equation (36), we can per-
form the integral in (32) to obtain the coefficient for the
scattered field,

(38)

kl/ ) k07 (39)

mua

ﬂ-pZA

which is reminiscent of a,, [cf equation (27)] for the non-
dispersive case. As is well known in wave scattering theory
(see, e.g. [34]) and already mentioned, the poles of b,, (or a,,
in the non-dispersive case) locate the electromagnetic modes
(resonances) of the system.

The cross sections can be expressed in terms of d, and
b,,. To this end, we take the limit o — oo in equations (18)
and (19). Using identities involving derivatives of the Bessel
and Hankel functions and their limiting forms at large argu-
ments [33], one can readily show that

O 2 > |bm‘2
o) =% Reli,p) ) a0

This result also applies to the non-dispersive case provided that
by, is replaced with a,, (see (27)), in which case one gets 0, = 0
if S, (hence k) is real and there is no absorption.
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4. Numerical illustrations

Equations (35) and (37°) can now be solved to obtain the coef-
ficients E,, ,,. We find

2d,, 1

my — T _ ) (41)
1mp /\7(”1) (kllako;p) 21/ 3/\(1) (kllakOv )
where 1 =2, 2 = 1, and the quantity
k2 _ 2 _m)\’(nz) k . )\’(nl) k .
T = 1 q R ( qu,p) + ( 27q7p) (42)

=k RN (ki q;0) + A (k1,q:p)

gives the ratio of E, | to E,, . These expressions can then be
substituted in (39) to obtain the scattering amplitudes

Hiee 2,
by, §

from which the cross sections can be obtained via (40).

In numerical demonstrations, the summation over m in
equation (40) needs a cut-off, i.e. |m| < m,.. Numerical con-
vergence is achieved as soon as m, exceeds pQ; See [35] for
arigorous proof. Note that 1/Q represents the smallest length
scale in the system.

In all of the numerical illustrations presented here, val-
ues for the physical parameters are adopted from refer-
ence [15], quoted here: ¢, = 12.66, A =0.086 meV, M =
4.7 x 1073 Kg, hwe, = 1514.8 meV and iy = 0.05 meV,
yielding Q! ~ 8.24 nm. These values were representative of
excitons in bulk GaAs. We normalize lengths (wave numbers)
by 1/0 (Q) and frequency by w,, for convenience. The cross
sections per unit length, o,, o and o,, are therefore normal-
ized by 1/Q as well. We then plot the dimensionless quantities,
Qo,, Qo and Qo, instead.

In figure 3 we show |r| alongside the wavenumber for
frequency near the exciton resonance w,,, as measured by
the detuning 6 = (w —wey)/A. It is seen that g approaches
ki for increasing § and consequently, from equation (42),

2 2
70| ox ‘32:2 | approaches zero leading to negligible E,, ;. On

;(n)(ku,ko, )
M (ks ) + 12 A (K, o p)

, (43)

the other hand, with decreasing 4, ¢ approaches k, and [7m]
approaches infinity, leading to negligible E,, ». This implies
that, at frequencies far away from w,,, one may keep only
the dominant mode and thus approximately restore the non-
dispersive case, whereby b,, reduces to a,,. However, in the
immediate proximity of w,, (i.e. |d| < 1), both modes are
important and the system is highly dispersive. Similar features
are also seen in 7),o.

For small cylinders with p less than or comparable to 1/0,
only the m = 0 component contributes significantly. Then o ~
ﬂko |bo|* and o, ~ %koRe(bo). In figure 4 we show the cross
sections for a cylinder with pQ = 1 at various values of the
scattering strength A. One may see that o, displays a step-like
rise as w increases beyond the exciton resonance frequency
wey. Also clear is that increasing A strongly suppresses o,.
These features seem more pronounced with smaller p. For
example, in figure 5 we show o, for pQ = 0.2, where the step-
like rise and the suppression due to large A in o, are very

=1, Q=0

1, A/Q =10
10, MQ =0

1010 10, A/Q = 10 |
20, NQ =0

=20, AQ = 10

:@105 B

100

-10 -5 5 10 15

-15

0
o
Figure 3. 7, the ratio of E,, | to E,, », against detuning

0 = (w — wex)/A at m=0 for various values of p and \. Also
shown are ki, k» and g.

clear. The suppression occurs because increasing A decreases
the polarization at the wall and consequently, the polarization
everywhere in the cylinder must be decreased as the polar-
ization varies little across the small radius. For small cylin-
ders, there is little scattering so absorption makes the chief
contribution to the extinction. Indeed, a small-p analysis of
by shows that o ~ p* while o, ~ p?. As shown in the middle
panel of figure 4, o, features a rounded singularity (a cusp)
at w = w,,, where ¢> would be zero if not for dissipation
(via ). This stems from the singular behaviors of H(()l)(qp)
(contained in R [cf equation (42)]) at small arguments, i.e.
H" (gp) ~ (2i/)In(gp/2) for small gp.

For cylinders with p greater than 1/Q yet still sufficiently
small so that the m = 0 component remains the most important
contribution, the step-like feature is superseded by a gradual
rise followed by some oscillations. Increasing A enhances
the oscillations but with diminishing impact as p increases.
These features are seen in figure 6, where we show the res-
ults for pQ = 10. Note that this value of p is only a tiny
fraction of the wavelength in vacuum, 27 /kg = 100/Q of
the incident light. Here we see that o, far exceeds o, and
makes the chief contribution to o,. Peaks show up in o, on
the shoulder with w > w,, of the frequency window. To each
peak, there corresponds a cusp in o,. These peaks are remin-
iscent of what occurs to planar structures such as slabs [30,
31] and they signify the repeated bounces of ring-shaped
polarization wave packets by the cylinder wall. The spa-
cing between successive peaks roughly equals 27 divided
by the time it takes for a wave packet to travel radially the
distance of p, i.e. 2w /(p/v,) = 27,/ p, where v, = dw/dg =

v/ 2h(w — wey) /M gives the group velocity of the wave packet.
Mathematically, this is understood as due to the oscillatory
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Figure 4. Cross sections, 04, 05 and o, versus 0 for p = 1/0 and
various scattering strength \.

nature of the cylindrical functions, H(()l) (gp) and Jy(gp) in the
argument pq. The oscillation period is approximately 27 for
individual functions but less (about halved) for their product.
For w < w,, no such peaks exist since the polarization waves
cannot propagate at these frequencies. i.e. g is mostly imagin-
ary with only a negligible real part.

For large cylinders with p in great excess of 1/0Q, the
cross sections display another type of peaks on top of those
due to bounces of polarization waves (which get increasingly
obscure with increasing p). These new peaks represent reson-
ances that originate from the m # 0 components of the polariz-
ation waves, which can be important as long as m is much less
than plq|. They appear for both w > w,, and w < w,,. Some
examples are shown in figure 7. While surface scattering (via
A) plays a less important role for larger cylinders, its influence
is still visible near w,,.

-5
4 x10 ' ' '
— Q=0
3l ——-MQ=5 <
bmz
g
1, . 4
0_7,,7,, — 1

Figure 5. Step-like rise and suppression of the absorption cross
section o, by increasing scattering strength A for small cylinders.

p=02/0.
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Figure 6. Same as figure 4 except that p = 10/Q. Oscillations on
the shoulder w > w, signify polarization waves bounced back and
forth at the wall (echo effect).

5. Discussions

We here briefly discuss the ABC approach. In that approach,
one might assume (i) that inside the cylinder E,,(r) and P,,(r)
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Figure 7. Cross sections, 0,4, 05 and o, versus ¢ at various cylinder radius p = 20/0Q,50/Q,100/Q and scattering strength . For large
cylinders, the components with m % 0 become pronounced leading to additional oscillations for both w > wey and w < wex.

take on the form prescribed in equation (33), and (ii) that the
coefficients P, , and E,, », are related in the same way as in
an infinite medium (i.e. equation (34)), and (iii) that the wave
numbers k,, are the same as for an infinite medium (i.e. determ-
ined by equation (38)). In this way, one would end up with
three unknowns for each angular number m: E,, i,E, » and
b,,. Note that the scattering amplitude b,, is the counterpart of
the reflection coefficient in the case of semi-infinite medium.
There are two Maxwell’s boundary conditions: the continu-
ity of E,,(r) and the continuity of the derivative of E,,(r) (or
equivalently the continuity of the tangential component of the
magnetic field), which are therefore inadequate to uniquely
determine the three unknowns. As a remedy, one would then
impose an ABC in the form that

0P (1) = EmP (1) (44)
for r = p, where P,,(r) denotes the excitonic contribution to
P, (r) and K 1s a parameter. Our theory allows us to cal-
culate both P, (r) and 0,P,(r) and hence to determine fy,.

Straightforward manipulations give

_ 2 ! o (45)
TP 14+ R (p)| Hu' (gp)

Km +qJ,,(ap) ,

where J),(z) = 0.Ju(z). This expression shows that
depends on p and m even in the limit of very large p.

Actually, for p— oo, H,(nl)(qp) ~¢er /. /p and J}(qp) ~
sin(gp — 7/4 —mn /2)//p, and thus k,, ~ 1/,/p. In contrast,
at least for the specific model in equation (7), R,,(p) becomes
independent of both p and m in this limit. In view of this, «,,
is not a useful parameter for experimental studies and should
not be interpreted as a surface property.

In [8] and [9], optical properties of spatially dispersive cyl-
inders were studied using Pekar’s ABC, i.e. Ism(p) =0, which
corresponds to A — oo (see figure 6 for a comparison). Results
similar to figure 6 with oscillations for § > 0 were obtained, but
their exciton model was not exactly the same as that used in
the present work and hence further comparison is not pursued
here.

Finally, one should not confound the SSA introduced here
with the so-called d parameters introduced by Feibelman [36],
which are also referred to as surface response functions some-
times. They have totally different physical meanings and are
irrelevant in the macroscopic limit; see the Supplemental
Material of [30] for further discussions.

6. Conclusions

We have reported a theory for the optical response of spatially
dispersive dielectric cylinders, exemplified for semiconduct-
ors at frequencies near an excitonic resonance. Consistent with
the general theory presented in our previous work, we show
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that the effects due to the cylinder wall are described by the
SSA R. We find that for small cylinders the scattering, absorp-
tion and extinction cross sections are highly sensitive to the
value of R (or equivalently the surface scattering strength \).
Our numerical results may be of experimental interest as they
are based on real material parameters, that of GaAs. The theory
may find practical application in nano-photonic devices based
on spatial and temporal dispersion effects [37, 38].

Data availability statement

The data cannot be made publicly available upon publication
because no suitable repository exists for hosting data in this
field of study. The data that support the findings of this study
are available upon reasonable request from the authors.

Appendix. model for equation (7)

Here we present a model for equation (7). We start with
equation (4). This equation is valid for r lying in the interior
of the cylinder [30, 31], where boundary scattering does not
exist. For simplicity, we account for such scattering by adding
Ad(r— p) to the equation, where X is a (generally complex)
constant parameter, and obtain

2i
mr

1 (rf r') ,
(A.1)

!

2+ 1o+ zfm—zﬂa( —p) ) S (1)) =
r o q 2 r—p m\I\ T )=

which is valid also for r lying on the cylinder surface. It is
noted that the thus-represented scattering is elastic with scat-
tering strength A. We can bring equation (A.1) into an integral
form,

NOES i(S(r—r)

/dr [Lo(r,r' Y+ V(r,r')] S (r —
(A.2)

where L, represents the kernel of the operator 9> + }a, +q* —
’;’—22 under usual out-going boundary conditions, satisfying

/dr” Lo(r,r'") S, (r' 1) = 2—5(r—r ),

wr!

(A.3)

and V(r,r") = Xé(r — p)d(r’ — p). According to general wave
scattering theory [31], the solution to (A.2) can be written as

S (r,r") =Sw (r,r") + /drl /drzS,,, (r,r)) T(r1,72) S (r2,r')
(A4)

where T(r,r’) denotes the scattering matrix given by

XV (r,r1) Sy (r1,r2) V(r2,73) Sm (r3,12) V (ra, 1)

+ .. (A.5)

where the ellipsis stand for the higher-order terms in the series.
Evaluating this expression leads to

B itAp/2
B 1—i (7‘(’)\/}/2) Sm (/LP)

Using this expression in (A.4) and comparing the result to
equation (5), one finds equation (7).

The above elastic scattering model, however, would allow
polarization waves to leak out of the cylinder for any finite
A, which is unphysical. This issue may be avoided if the cyl-
inder surface is allowed to absorb (i.e. dissipate) polariza-
tion waves, and A is then treated as a parameter that meas-
ures how strongly polarization waves are elastically scattered.
For finite ), polarization waves are then partially scattered
and partially absorbed. Such absorption could happen due
to inelastic scattering with, for example, lattice vibrations,
which can take energy from the polarization waves and
thermalize them. A detailed microscopic treatment of inelastic
scattering is beyond the scope of this work. In general, A
might depend on frequency but not on m nor p due to cyl-
indrical symmetry. The dependence on frequency may be
ignored as the frequency regime of interest is very narrow
about the exciton resonance. All said, the as-described model
remains a gross simplification of reality. A realistic functional
form for R,,(p,r’) must account for the internal structure of
excitons and may be developed along the lines sketched in
the Supplemental Information of [30]. These issues are being
studied.

3(r—p)o(r'—p).

(A.6)
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