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Estimating disorder probability based on
polygenicpredictionusing theBPCapproach

Emil Uffelmann 1 , Major Depressive Disorder Working Group of the Psychia-
tric Genomics Consortium*, Schizophrenia Working Group of the Psychiatric
Genomics Consortium*, Alkes L. Price 2,3,4, Danielle Posthuma1,5 &
Wouter J. Peyrot1,6,7

Polygenic Scores (PGSs) summarize an individual’s genetic propensity for a
given trait. Bayesianmethods, which improve the prediction accuracy of PGSs,
are not well-calibrated for binary disorder traits in ascertained samples. This is
a problem because well-calibrated PGSs are needed for future clinical imple-
mentation. We introduce the Bayesian polygenic score Probability Conversion
(BPC) approach, which computes an individual’s predicted disorder prob-
ability using genome-wide association study summary statistics, an existing
Bayesian PGS method (e.g. PRScs, SBayesR), the individual’s genotype data,
and a prior disorder probability (which can be specified flexibly, based for
example on literature, small reference samples, or prior elicitation). The BPC
approach is practical in its application as it does not require a tuning sample
with both genotype and phenotype data. Here, we show in simulated and
empirical data of nine disorder traits that BPC yields well-calibrated results
that are consistently better than the results of another recently published
approach.

Polygenic Scores (PGSs)1 are per-individual estimates of the total
contribution of common genetic variants to a trait or disorder liability
based on SNP effect sizes (betas) from Genome-Wide Association
Studies (GWAS)2. PGSs for several traits show increasing clinical
potential that rivals that of conventional clinical predictors3–6. While
summarizing an individual’s genetic risk for a disorder in a single value
has the potential to be a simple and informative metric, PGS applica-
tions are limited because they are generally only interpretable at the
group level. Accordingly, PGSs are commonly evaluated using the
coefficient of determination (R2)7 or the Area Under the Curve (AUC)8,
metrics that are blind to the scale of the PGS. Moreover, risk estimates
based on PGSs are often reported in quantiles (e.g., a PGS falls in the

top 5%of a given distribution), which can be challenging to interpret in
terms of personal absolute risk of disease.

To make PGSs directly interpretable to individuals, they can be
transformed into probabilities. For example, if an individual receives a
PGS of 0.5 formultiple sclerosis, then this should correspond to a 50%
probability of that individual developing multiple sclerosis in their
lifetime. With access to a sufficiently large population-representative
tuning sample with relevant pheno- and genotype data, such a trans-
formation can be achievedwith existingmethods9,10. However, inmost
clinical settings, such samples are not readily available. Ideally, a single
individual’s genotype data and publicly available resources should be
sufficient to achieve such a transformation.
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Bayesian PGS methods are known to be well-calibrated for con-
tinuous traits11–13, meaning the slope equals 1 when regressing the true
phenotype on the PGS (implying the predicted values are, on average,
equal to the true trait values). This offers a unique opportunity to
achieve well-calibrated probabilities for binary disorder traits. How-
ever, when samples are over-ascertained for cases, Bayesian PGSs can
become miscalibrated and, therefore, require a transformation.

Here, we introduce Bayesian polygenic score Probability Con-
version (BPC), an approach to transform PGSs based on Bayesian
methods (e.g. PRScs12 and SBayesR11), that only requires a single indi-
vidual’s genotype data, GWAS summary statistics, and a prior disorder
probability. We confirm that the resulting probabilities are well-
calibrated in simulations and empirical analyses of nine disorders and
that the BPC approach performs better than a recently published
approach14.

Results
Overview of methods
The BPC approach estimates absolute disorder probabilities using
PGSs derived from GWAS summary statistics, genotype data, and a
prior disorder probability, while avoiding the need for phenotype-
informed tuning samples. BPC is designed to yield well-calibrated
probabilities even in ascertained samples (i.e., when the risk is larger
than the population prevalence), enabling its potential use in clinical
contexts. The code to apply the BPC approach is publicly available
(https://doi.org/10.5281/zenodo.15721084).

The BPC approach consists of 4 steps (see Fig. 1 andMethods). As
input, BPC requires an individual’s genotype data, a prior disorder
probability (which can be informed by literature, small reference
samples, or prior elicitation15), and GWAS summary statistics and their
effective sample size (Neff, see Supplementary Note 1). Additionally, it
requires the population lifetime prevalence of the disorder and an
ancestry-matched population genetic reference panel (e.g., 1000
Genomes), which are generally publicly available. In step 1, an existing
Bayesian method (e.g., PRScs12 or SBayesR11) is used to compute pos-
terior mean betas on the standardized observed scale with 50% case
ascertainment (p =0.5; see SupplementaryNote 2); PRScs and SBayesR
require slightly different approaches (see Methods). In step 2, the
posterior mean betas are transformed to the continuous liability scale

(seeMethods and Supplementary Note 3), which are used to construct
the PGS. In step 3, BPC requires an estimate of R2

liability, the coefficient
of determination on the liability scale7, to derive the distribution of the
PGS in cases and controls (see Supplementary Note 4). R2

liability is
estimated in an ancestry-matched population reference sample with-
out phenotype information (see Methods). Based on R2

liability and the
population prevalence, the expecteddistribution of PGSs for cases and
controls is computed. Lastly, in step 4, the BPC approach uses these
distributions and applies Bayes’ Theorem to update the prior to the
posterior disorder probability based on the individual PGS value.

We compare the BPC approach to one other summary-statistics-
based method, introduced in Pain et al.14. The approach works as fol-
lows. First, the difference in mean PGS between cases and controls is
computed based on an estimate of the R2. The R2 is estimated based on
the GWAS summary statistics using lassosum16. Second, the PGS dis-
tribution across cases and controls is divided into quantiles, and third,
the disorder probabilities per PGS quantile are assessed based on the
prior disorder probability, which gives the predicted disorder prob-
ability for individual i. Key differences between the BPC and Pain et al.14

approach are provided in the Methods.
We also compare the BPC approach to two approaches using

phenotype-informed tuning data, BPC-tuned and Logit-tuned. BPC-
tuned is identical to BPC, but uses empirical estimates of the dis-
tribution of the PGSs in cases and controls derived from the tuning
sample with both genotype and phenotype data, instead of deriving
them theoretically. The Logit-tuned approach estimates predicted
disorder probabilities by fitting a logistic regression model of disease
status on PGS in the tuning sample, applying the resulting slope and
intercept to PGSs in the testing sample to compute logits, and then
transforming these logits using the inverse logit function to disorder
probabilities (see Methods for details).

To assess calibration, we compute the Integrated Calibration
Index (ICI): the weighted average of the absolute difference between
the real and predicted disorder probability17. (The real disorder prob-
ability is computed using the loess smoothing function in R; thus, the
ICI can be intuitively understood as the weighted difference between
the calibration curve and the diagonal line in a calibration plot (see
Results: Empirical analysis). Lower values of the ICI indicate better
calibration, and perfect calibration implies an ICI of 0. To assess the

Step 1

Step 2

Step 3

Step 4

Input Requiredd input:: 
1. Individual’s genotype & prior disorder probability (P(case); based on e.g., literature or small reference samples)
2. Genome-wide associa�on study (GWAS) summary sta�s�cs & effec�ve sample size (Neff)
3. Popula�on life�me prevalence (K) & popula�on reference sample (e.g., 1000 Genome)

Compute posterior mean betas with a Bayesian PGS method.
Posterior mean betas are computed with a Bayesian PGS method that is known to be well-calibrated for con�nuous traits (e.g.,
SBayesR or PRScs). For disorder traits, when Neff is used in the Bayesian PGS method, the posterior mean betas are on the
standardized observed scale with 50% cases (p = 0.5) (irrespec�ve of the actual case ra�o in the GWAS).

Transformm posteriorr meann betass too liabilityy scale.
Posterior mean betas are transformed from the observed scale to the liability scale,
implying  that the resul�ng PGS is well-calibrated on the liability scale, using
Equa�on 23 in Lee et al. (2011) (p = 0.5, K = prevalence):

Derivee R2
liability andd thee expectedd distributionn off thee PGSS inn casess andd controls.

PGS are calculated in a popula�on reference sample (e.g., 1000 Genomes) to es�mate R2
liability (N.B. no phenotype informa�on is

required for this step). Based on gene�c theory, R2
liability allows defining the PGS’ distribu�on in cases and controls.

Computee thee predictedd disorderr probability.
The posterior predicted disorder probability, P(case|PGS),
is computed using Bayes’ Theorem and the prior disorder probability, P(case): ) =

× ( )

( )

= 50/50 ×
× (1 − )

×

Fig. 1 | Overview of the Bayesian polygenic score Probability Conversion (BPC) approach. The BPC approach transforms an individual’s Polygenic Score (PGS) into a
well-calibrated disorder probability.
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prediction accuracy of the PGSs, we use the Area Under the Curve
(AUC) and the R2.

We evaluated the BPC approach in simulations and empirical
analyses of nine disorders. In our empirical analyses, we analyzed nine
phenotypes based on large training samples of GWAS meta-analyses,
namely schizophrenia (SCZ)18, major depression (MD)19, breast cancer
(BC)20, coronary artery disease (CAD)21, inflammatory bowel disease
(IBD)22, multiple sclerosis (MS)23, prostate cancer (PC)24, rheumatoid
arthritis (RA)25, and type 2 diabetes (T2D)26 (see Table 1).We computed
the PGSs in three testing samples that were fully independent of the
respective training samples: PGC-MD19, PGC-SCZ18, and UK Biobank27

(see Table 1), and we use the 1000 Genomes28 sample as ancestry-
matched population reference sample without phenotype informa-
tion. The analyseswere conducted in individuals of European ancestry,
and the tuning approaches were only applied in empirical analyses.

Simulation analysis
We simulated individual-level data for 1000 SNPs in Linkage Equili-
brium based on the liability threshold model29 (see Supplementary
Note 5 for details); we used this simplified simulation setup to limit
computational costs (see Methods). We repeated the simulations 100
times for every parameter setting (R2

liability: 1%, 5%, 10%, and 15%;
population lifetime prevalences: 1% and 15%). We s«imulated three
independent samples: a training sample with case-control information
used to estimate SNP effects in aGWAS, a population reference sample
without case-control information to estimate R2

liability as described
above (N = 503), and a testing samplewith case information to evaluate
model performance (Ncase= 1000 and Ncontrol = 1000). We evaluated
the BPC and Pain et al.14 approaches across all parameter combina-
tions. TheBPC approachconsistently achievesmean ICI values close to
0 (ranging frommean 0.014 (± SE 0.0004) to 0.017 ( ±0.0006) across
4 × 2 = 8 parameter settings), meaning the predicted and observed
probabilities agree closely (see Fig. 2).

The Pain et al.14 approach performs considerably less well (ICI
ranging from 0.039 (±0.002) to 0.118 (±0.009) across all parameter
settings; see Fig. 2) because it does not distinguish the prior disorder
probability (in this case, the testing sample case-control ratio) from the
lifetime prevalence in the full population, which overestimates the
predicted probabilities and negatively impacts calibration (see Meth-
ods for details and Supplementary Fig. 1 for a schematic representa-
tion). Indeed, the distinction between the BPC and Pain et al.14

approach is more pronounced when the disorder population lifetime
prevalence is low because this increases the difference between the
population lifetime prevalence and the prior disorder probability
(which is set to 50%). Similarly, larger values of R2

liability exacerbate the
overestimates of the Pain et al.14 approach because it leads to more
power to detect the bias (except for R2

liability = 1%; see below). A simple
adaptation of the Pain et al.14 approach to take both the population
lifetime prevalence and prior disorder probability into account
strongly improves its calibration and removes the negative impact of
the low population lifetime prevalence and increasing R2

liability values;
nevertheless, the BPC approach continues to achieve lower ICI values
(see Supplementary Fig. 2). For low simulated values of R2

liability, when
theGWAShas little power, theR2

liability values estimatedwith lassosum
in the Pain et al.14 approach become unstable (see below), leading to an
increased ICI. When we adjust the Pain et al.14 approach to take both
the population lifetime prevalence and prior disorder probability into
account and compute the variance of a well-calibrated PGS in a
population reference sample to estimate R2

liability (instead of lasso-
sum), the difference between both approaches becomes very small
(see Supplementary Fig. 3). Nonetheless, the BPC approach achieves
slightly better calibration in nearly every condition, because the Pain
et al.14 approach assumes that the variance of the PGS is the same in
cases and controls while they are different. The difference becomes
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larger for higher R2
liability values and lower population lifetime pre-

valences (see Supplementary Fig. 4 and Methods).
We conducted several secondary analyses. First, we verified that

doubling the number of causal SNPs does not affect these results, and
the ICI of the BPC approach remains low (0.016 ± 0.008;
R2

liability =0.05 and K =0.01). Second, in addition to the ICI, we used
the calibration slope and intercept to evaluate calibration. Again, the
BPC approach consistently achieves good calibration (see Supple-
mentary Figs. 5 and 6) and performs better than the Pain et al.14

approach. Furthermore, the Pain et al. approach consistently over-
estimates the disorder probabilities, with slopes smaller than one and/
or intercepts smaller than zero (seeMethods). In line with observations
made in ref. 17, we show that the ICI is a more stable metric of cali-
bration, especially at small values of R2

liability (see Supplementary Fig. 7).
We also evaluated a linear rescaling approach (see Methods). We

found that the linear rescaling approach performs reasonably well but
worse than the BPC approach because it can result in probabilities
larger than 1 and lower than 0. This mostly occurs in conditions where
the population lifetime prevalence is low and R2

liability is large. Setting
these outlying values to 1 and 0, respectively, negatively impacts
calibration (see Supplementary Fig. 8). Therefore, our primary
recommendation is to use the BPC approach.

We found that the calibration slopes of untransformed Bayesian
PGSs for binary disorder traits deviate from 1 in ascertained samples,
evenwhen the case-control ratios in the training and testing sample are
both 50% and the PGSs are on the standardized observed scale with
50% case ascertainment. Similarly, the calibration intercepts deviate
from 0 (see Supplementary Figs. 9 and 10; the bias is most apparent
when the population lifetime prevalence is low and R2

liability is large).
This is because the transformation from the liability to the observed
scale in ascertained samples is linear for the GWAS results (i.e., betas)
used to compute the PGS30 but non-linear for the coefficient of
determination (R2) of the PGS7 (see Supplementary Fig. 11). As a result,
varðPGSobservedÞ and R2

observed scale are not proportional, and the PGSs
can thus not be well-calibrated (see Eq. 2) without a probability

conversion approach. Untransformed PGS do attain accurate calibra-
tion when neither the training nor the testing sample case-control
ratios differ from the population lifetime prevalence (i.e., random
ascertainment), even when the population lifetime prevalence is low
(K = 0.01) and R2

liability is large (0.15). The PGS’s mean calibration slope
over 100 simulation runs does not significantly differ from 1 (mean
calibration slope = 1.02, s.e.m. = 0.02).Wenote that theuntransformed
Bayesian PGSs are centered around zero and cannot be evaluated with
the ICI17.

TheBPC approach assumes that the PGSs are normally distributed
in cases and controls. We verified that this assumption holds for all
parameters in our simulations and that significant deviations are only
observed at current unrealistically large values of R2

liability (=0.6; see
Supplementary Fig. 12). A second assumption is that the liability con-
version of the PGS is successful. We verified that regressing the liability
scores on the PGSs (based on Bpred, a version of LDPred that assumes
linkage equilibrium13) in a population reference sample leads to slopes
and intercepts that are, on average, 1 and 0, respectively (see Sup-
plementary Fig. 13).

Lastly, we investigated the distribution of PðPGSi jDi = caseÞ
PðPGSiÞ (see Eq. 3)

to test how strongly the posterior predicted disorder probabilities
depend on the prior (PðDi = caseÞ). If the probabilities are determined
mainly by the prior, the distribution is expected to vary closely around
1. We find that the distributions vary markedly around 1 for most rea-
listic simulation conditions (e.g., S.D. = 0.3 for K = 0.01, R2

liability = 0.05,
and prior = 0.50), except when the R2

liability is very low, the population
prevalence is high, and the prior is very high (i.e., S.D. = 0.05 for
R2

liability = 0.01, K =0.15, and prior = 0.75) (Supplementary Fig. 14).

Empirical analysis
To further evaluate the performance of the BPC approach, we applied
it to nine phenotypes across nine training samples (SCZ18, MD19, BC20,
CAD21, IBD22,MS23, PC24, RA25, andT2D26) and three testing samples (i.e.,
UK Biobank27, PGC-SCZ18, PGC-MD19; see Methods and Table 1 for a
summary).We ascertained cases and controls for eachphenotype such
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Fig. 2 | Calibration in simulations. Calibration of the BPC and the Pain et al.14

approach was evaluated using the Integrated Calibration Index (ICI) in 100 simu-
lation runs and for combinations of two parameters, the population lifetime pre-
valence (K), and the explained variance of the PGS on the liability scale (R2

liability).
The BPC approach achieves lowmean ICI values in every condition, while themean

ICI values of the Pain et al.14 approach are consistently larger. The difference
between both approaches becomes larger for conditions with low population
lifetime prevalences and large R2

liability values. Error bars represent standard errors
and their center represent means.
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that the testing sample case-control ratios were 0.25, 0.5, and 0.75,
thus testing the calibration of the BPC approach across a range of prior
disorder probabilities. We performed similar comparisons as in the
simulations with the addition of two applications of the BPC approach,
one using PRScs12 (BPC-PRScs) and one using SBayesR11 (BPC-SBayesR)
to compute posterior mean betas (see Fig. 1 and Methods). We note
that for SBayesR, the results did not converge for prostate cancer and
therefore depict one fewer data point. Results are reported in Fig. 3
and Supplementary Data 1. Averaged across all prior disorder prob-
abilities, BPC-PRScs achieves the lowest mean ICI value of 0.024
(±0.002), followed by BPC-SBayesR with 0.034 (±0.004). The Pain
et al.14 approach has the largestmean ICI value of 0.053 (±0.007). The
BPC-PRScs approach consistently achieves the lowest mean ICI values
across all prior disorder probabilities. We note the Pain et al.14

approach can be used with both PRScs and SBayesR. While the pre-
sented results are based on PRScs, using SBayesR yields comparable
results (see Supplementary Fig. 15 and Supplementary Data 1). The
observation that the BPC approachproduces well-calibrated predicted
disorder probabilities suggests that the PGSs are also well-calibrated
on the unobserved liability scale.

When focusing in detail on the calibration plots with a prior dis-
order probability of 50%, BPC-PRScs shows better calibration than the
Pain et al.14 approach for every trait, except Type 2 Diabetes (see Fig. 4
and Supplementary Data 1). The Pain et al.14 approach tends to over-
estimate the probabilities for many traits, as can be seen by the right
shift of the histograms and calibration lines. This is particularly true for
traits with low population lifetime prevalence and large R2

liability values,
such as rare auto-immune disorders (i.e., Inflammatory Bowel Dis-
order, Multiple Sclerosis, and Rheumatoid Arthritis) and Prostate
Cancer, which is in line with our theoretical expectations (seeMethods
and Supplementary Fig. 1 for a schematic representation).

We performed secondary analyses yielding the following eight
conclusions. First, comparing the calibration plots of BPC-PRScs with
BPC-SBayesR, the latter makes correct predictions on average but is
less well-calibrated for low and high values of the predicted disorder

probabilities (see Supplementary Fig. 16 and Supplementary Data 1).
Second, misspecification of the effective sample size by a factor of 0.5
and 2 negatively impacts calibration for BPC-PRScs, while it does not
affect the calibration of the Pain et al.14 approach (see Supplementary
Fig. 17 and Supplementary Data 2) as it involves a scaling step after the
posteriormean betas havebeen computed.We note the BPC approach
still has lower median ICI values than the Pain et al.14 approach. BPC-
SBayesR seems generally more robust to misspecification of the
effective sample size, except for Coronary Artery Disease, which suf-
fers extreme miscalibration when Neff is multiplied by 2. Third, mis-
specification of the prior impacts calibration because it shifts themean
of the predicted disorder probabilities. A mismatch of 0.25 between
the true and assumed prior leads to an average increase of 0.21 (s.e.m.
0.02) in the ICI (see Supplementary Fig. 18). However, given that the
BPC approach is well-calibrated under a range of correctly specified
priors, the change of the posterior predicted disorder probability
relative to the prior remains informative as it makes the diagnosis less
ormore likely compared to the prior expectation. In practice, the prior
can be estimated from small reference samples, literature, or prior
elicitation (seeDiscussion for more information). Fourth, including the
MHC region strongly and negatively impacts calibration for the auto-
immune disorders Multiple Sclerosis and Rheumatoid Arthritis for
BPC-PRScs and Pain et al.14 (but not BPC-SBayesR; This is because
SBayesR’s reference sample excludes most of the MHC region; see
Supplementary Fig. 19 and Supplementary Data 3). Fifth, reducing the
INFO filter from 0.9 to 0.3 and the minor allele frequency filter from
10% to 1% (as in ref. 31) yields comparable average ICI values (except for
Coronary Artery Disease and BPC-SBayesR; see Supplementary Fig. 20
and SupplementaryData 4). Sixth, evaluating calibrationwith the slope
and intercept from a linear regression of the phenotype on the pre-
dicted disorder probabilities also shows that BPC-PRScs is best cali-
brated overall (see Supplementary Figs. 21 and 22, and Supplementary
Data 5). Seventh, we tested and confirmed that the BPC’s assumption
of normally distributed PGSs in cases and controls holds for all ana-
lyzed phenotypes (see Supplementary Fig. 23). Eighth, we investigated
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Fig. 3 | Calibration in empirical analyses of nine disorders.Calibration of the BPC
and the Pain et al.14 approach was evaluated using the Integrated Calibration Index
(ICI) for nine disorders, while varying the prior disorder probability. The BPC
approach was applied using two Bayesian PGS methods, PRScs (BPC-PRScs) and
SBayesR (BPC-SBayesR). The BPC-PRScs approach achieves the lowest mean ICI

values across all prior disorder probabilities. BPC-SBayesR shows one fewer data
points, as it did not converge for prostate cancer.Numerical values are presented in
Supplementary Data 1. Error bars represent standard errors and their center
represent means.
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the distribution of PðPGSi jDi = caseÞ
PðPGSiÞ and found it to vary considerably

around one (e.g., S.D. = 0.29 for schizophrenia when the prior = 0.50),
showing that the predicted disorder probabilities are not solely
determined by the prior (see Supplementary Fig. 24).

In contrast to simulations (see Supplementary Figs. 9 and 10), the
untransformed Bayesian PGSs do not show strongly miscalibrated
slopes and intercepts (see Supplementary Figs. 25 and26), likelydue to

the variance of estimates of the calibration slopes in combination with
much fewer observations in empirical data (i.e., 9) than in simulations
(100 simulation runs for 8 parametrizations). Our findings align with
the previous observation that the calibration slope is very sensitive to
miscalibration in small parts of the data and that the ICI is more robust
and preferred as a metric for calibration17. Because untransformed
Bayesian PGSs are centered around 0 and do not range from 0 to 1,
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Fig. 4 | Disorder-specific calibration curves in empirical analyses of nine dis-
orders. Calibration of the BPC and the Pain et al.14 approach was evaluated using
the Integrated Calibration Index (ICI) for nine disorders, each with a prior disorder
probability of 0.5 (see Table 1 for an overview of the case/control testing sample
sizes). The prior disorder probability was set to 0.5, as opposed to the lifetime
prevalence in the general population (K), to emulate the higher risk of help-seeking
individuals in clinical settings. Histograms at the top of the plots depict the dis-
tribution of the predicted disorder probabilities, and the dots at the base of the
histograms depict the mean predicted probability. The lines were drawn with a
loess smoothing function, and their transparency follows the density of the histo-
gram to show which parts of the distribution carry the most weight in the calcu-
lation of the ICI. For major depression and schizophrenia, 62 and 22 cohorts,

respectively, were available for analysis and therefore depict thin, light-colored,
and transparent lines for individual cohorts. In contrast, the thicker anddarker lines
depict results when data from all cohorts are concatenated. The disorder popula-
tion lifetime prevalence (K) is reported. The Area Under the receiver operator
Curve (AUC) is the same for both approaches because the transformations do not
change the ranking of individual PGSs, and both approaches use the same PGS
inputs. The BPC-PRScs approach achieves lower ICI values for eight out of nine
disorders. The Pain et al.14 approach tends to overestimate the predicted disorder
probabilities, as seen by the right shift of the histograms and the dots. Numerical
values are presented in Supplementary Data 1. Calibration curves for BPC-SBayesR
are presented in Supplementary Fig. 16.
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they cannot be evaluated with the ICI and cannot be interpreted as
predicted disorder probabilities.

Comparing to calibration of tuning approaches
The BPC approach does not require tuning samples to estimate
predicted disorder probabilities. However, to benchmark the BPC
approach, we compared it to other approaches that utilize such
tuning samples that include genotype and phenotype data (see
Methods). The calibration of the BPC approach is similar to the
tuning approaches when the tuning samples are smaller than 200
cases and 200 controls (see Fig. 5), while the area under the ROC
curve (AUC) does not differ between these approaches (see
Supplementary Fig. 27). For larger tuning sample sizes, the tuning
approaches have an ICI that is approximately 0.015 smaller.
However, we consider BPC’s calibration (ICI < 0.03) satisfactory,
such that the benefit of not requiring a tuning sample outweighs
the improved calibration of the tuning approaches.

Estimation of variance explained (R2
liability)

The BPC approach depends on a valid estimate of R2
liability. We

compute the variance of a well-calibrated PGS in a population
reference sample without the need for phenotype data (see
Methods). This leads to estimates that are very close to the
observed values from linear regression7 in a sample with both
pheno- and genotype data in simulations (mean absolute differ-
ence ranges from 0.009 to 0.011; see Fig. 6a) and in empirical
data (mean absolute difference = 0.02; see Fig. 6b). This suggests
that the PGSs are well-calibrated on the unobserved liability scale.
The Pain et al.14 approach uses lassosum16, which leads to esti-
mates that are slightly misspecified in simulations (mean absolute
difference ranges from 0.058 to 0.088) and in empirical data
(mean absolute difference = 0.05).

Discussion
We developed the BPC approach to transform PGSs to absolute risk
values, which yields predicted disorder probabilities that may be
clinically useful for single individuals. Based onBayesian PGSmethods,
it requires only minimal input, namely GWAS summary statistics, a
single individual’s genome-wide genotype data and prior disorder
probability, and an estimate of the disorder’s population lifetime
prevalence. We verified in simulations and empirical analyses of nine
disorders that the BPC approach achieves good calibration across a
range of prior disorder probabilities, meaning the predicted and real
disorder probabilities closely align. The BPC approach depends on a
valid estimate of R2

liability, which we compute by estimating the var-
ianceof awell-calibratedPGS in apopulation reference samplewithout
the need for phenotype data, and verify that the estimates are close to
empirically calculated values in case-control data.

We compared the BPC approach to a recently published approach
in Pain et al.14, and showed that it achieves lower ICI values in every
simulation condition and for eight out of nine tested disorders in
empirical analyses. This is partly because the Pain et al.14 approach
overestimates the predicted disorder probabilities whenever the prior
disorder probability exceeds the population lifetime prevalence. We
also compared the BPC approach to methods requiring tuning data10.
We found that for larger tuning sample sizes of more than 200 cases
and controls, the tuning approaches have an ICI that is approximately
0.015 smaller. However, we consider BPC’s calibration (ICI < 0.03)
satisfactory, such that the benefit of not requiring a tuning sample
outweighs the improved calibration of the tuning approaches.

In clinical settings where a single individual may be considered,
the prior disorder probability, which can be interpreted as the case-
control ratio in a hypothetical testing sample to which that individual
belongs, can be approximated in several ways. It may be estimated
using a small external reference sample to obtain a data-informed
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Fig. 5 | Calibration of tuning approaches in empirical analyses of nine dis-
orders. Calibration of the BPC-PRScs, BPC-tuned, Logit-tuned and the Pain et al.14

approach was evaluated using the Integrated Calibration Index (ICI) for nine dis-
orders. BPC-tuned and Logit-tuned use a tuning sample that includes genotype and

phenotype data, whereas BPC-PRScs and Pain et al.14 do not require an additional
independent tuning sample. Tuning sample sizes are presented as (Ncase/Ncontrol).
Error bars represent standard errors and their center represent means.
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prior, such as context-specific prevalence estimates of individuals
seeking health care for a specific disorder in a given hospital. Such a
reference sample does not require genotype data and may be smaller
than those required for the tuning approaches. Alternatively, such
context-specific prevalence estimates may also be obtained from the
literature32. The context may refer to any variable that modifies a dis-
order’s prevalence, such as age or sex33. When no data is available to
estimate the prior, prior elicitation15 may be used, where a clinician (or

a panel of clinicians) provides a subjective estimate of the prior. Gen-
erally, the lifetime risk for help-seeking individuals is expected to be
higher than for individuals from thegeneral population (where lifetime
risk = K). As such, the prior will often be higher than K. When con-
siderable uncertainty about the prior exists, a range of priors may be
used to obtain a range of posterior disorder probabilities.

There are several limitations to this study. First, because most
GWASs are based on individuals from European populations, the
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orders. a Simulation results of estimating R2
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lassosum (as used by Pain et al.14), both of which do not require disorder-specific
individual-level genotype and phenotype data. The x-axis depicts R2

liability estimated
by regressing disorder status on the Bayesian PGS in individual-level data in the
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calibration of the BPC approach for individuals from non-European
populations is unknown but may be negatively affected, as is the
accuracy of risk predictions34,35. However, as long as the GWAS popu-
lation matches that of the individual, the BPC approach is expected to
be well-calibrated. Future studies are needed to develop methods to
obtain well-calibrated predictions for individuals from non-European
populations. Second, we performed simulations without LD, which
may be perceived as a limitation. However, we note that the results
from our simulation and empirical analyses were concordant, sug-
gesting that our simplified simulation setup was appropriate. Third,
the potential for clinical utility of polygenic prediction (and thereby
the BPC approach) strongly depends on the magnitude of the PGS’s
R2

liability, which is currently prohibitively small formost traits. However,
there are traits, suchas coronaryartery disease36–38, type 2diabetes39,40,
breast cancer4,41,42, chronic obstructive pulmonary disease5, and pros-
tate cancer6,43, for which current PGSs may already be sufficiently
powered to find clinical application and be economically effective.
Moreover, as GWAS sample sizes grow, the PGS’s R2

liability is expected
to approach the disorder’s h2

SNP, and therefore, their clinical applic-
ability will becomemore likely. Fourth, the calibration of the predicted
disorder probabilities depends on a correct estimate of the prior.
While we showed that misspecification of the prior negatively impacts
calibration, we also showed that the BPC approach is well-calibrated
across a range of correctly specified priors and that, therefore, the
change of the posterior predicted disorder probability relative to the
prior remains informative. Irrespectively, striving for the best possible
prior disorder probabilities in practice is important and provides an
important direction for future research. Fifth, the BPC approach can
only be applied to polygenic traits with normally distributed PGSs in
cases and controls. While we show that this assumption holds in our
simulation and empirical analyses (Supplementary Fig. 12), its violation
due to outlying common, very large-effect variants can negatively
impact calibration, such as APOE for Alzheimer’s Disease44, and should
be removed prior to the application of the BPC approach. Integrating
prediction based on rare variants with large effects with polygenic
prediction is an important direction for future research. Sixth, while
variables that are not correlated to the PGS (e.g., sex, age) can easily be
used to adjust the prior, variables that are correlated to the PGS (e.g.,
family history45–48) cannot currently be incorporated into the BPC
approach because, in this case, the prior cannot be adjusted inde-
pendently withoutmodifying the R2

liability. Extending the BPC approach
to include variables correlated to the PGS is an important direction for
future research. Seventh, the BPC outcome is presented as a fixed
lifetime probability. Extending the BPC approach tomodel the decline
in risk in the years following the assessment in which the disorder has
not manifested is an important direction for future research.

In conclusion, the BPC approach provides an effective tool to
compute well-calibrated predicted disorder probabilities based
on PGSs.

Methods
Bayesian polygenic score Probability Conversion (BPC)
approach
We developed the BPC approach to achieve calibration for binary
disorder traits in ascertained samples, using the existing Bayesian
Polygenic Score (PGS) methods PRScs12 and SBayesR11. The BPC
approach follows four steps (see Fig. 1).

First, the BPC approach requires as input an individual’s genotype
data and prior disorder probability. The prior can be based on context-
specific prevalence estimates from published literature32, small refer-
ence samples, or prior elicitation (see Discussion for a detailed dis-
cussion on approaches to set the prior). For convenience, we mostly
report results for a prior of 0.50. Second, the BPC approach requires
the GWAS summary statistics (training sample) and the effective
sample size (Neff, see Supplementary Note 1) of the training sample

(i.e., the sum of Neff of all cohorts contributing to the meta-analysis49).
The GWAS betas are assumed to be age-independent. Third, the
population lifetime prevalence of the disorder of interest and an
ancestry-matched population reference sample (e.g., 1000G) are
required. No tuning sample with both genotype and phenotype data is
required. We note that instead of an individual-level population
reference sample, summary-level LD and allele frequency information
could, inprinciple, be used aswell. It is important touse the same set of
SNPs across the training sample, reference sample, and the individual’s
genotype data to ensure optimal prediction accuracy and well-
calibrated BPC predictions.

The BPC approach requires the posterior mean betas to be on the
standardizedobserved scalewith 50% case ascertainment (p=0:5). For
PRScs, this is achieved by simply using Neff (i.e. the effective sample
size)49 as input because PRScs is based on the GWAS Z-scores, noting
that β50=50 = z=

ffiffiffiffiffiffiffiffiffi

Neff

p

.50 (see Supplementary Note 2). (We note that, as
long asNeff is used, the proportion of cases in the discovery GWAS can
have different values from 50%.) In contrast, SBayesR is based on the
GWAS effect sizes (typically on the log-odds scale), which first need to
be transformed to β50=50 = z=

ffiffiffiffiffiffiffiffiffi

Neff

p

before applying SBayesR, while
also setting Neff as sample size.

The posterior mean betas are transformed from the standardized
observed scale with 50% case ascertainment to the continuous liability
scale (βliability)

30 (see Supplementary Note 3):

βliability =β
posterior mean
50=50 ×

K × ð1� KÞ
z ×p

ð1Þ

where K denotes the disorder population lifetime prevalence and z is
the height of the standard normal probability density function at a
threshold corresponding to K30. Subsequently, a PGS is constructed
using βliability and an individual’s genotype data.

To define the standard normal probability density function of the
PGS in both cases and controls, an estimate of R2

liability, the coefficient
of determination on the liability scale7, is required. When a PGS is well-
calibrated for a standardized phenotype with variance 1 (here the
liability51), the variance of the PGS equals the variance explained by the
PGS in the phenotype:

R2
liability =

varðslope×PGSliabilityÞ
varðliabilityÞ =

varð1 × PGSliabilityÞ
1

= varðPGSliabilityÞ

ð2Þ

where slope refers to the regression of the liability on PGSliability (which
is equal to 1 due to the PGSbeingwell-calibrated). Thus,R2

liability can be
estimated by computing varðPGSliabilityÞ in an ancestry-matched
population reference sample without the need for phenotype data.
Given R2

liability, the expected mean and variance of the PGS can be
estimated in cases and in controls using normal theory52,53 (see
Supplementary Note 4). Thus, the expected conditional probabilities
P PGSijDi = case
� �

and P PGSijDi = control
� �

can be estimated for every
individual i with PGS value PGSi and disease status Di.

Finally, we use Bayes’ theorem to update the prior disorder
probability to the posterior probability:

P Di = casejPGSi
� �

=
P PGSijDi = case
� �

×P Di = case
� �

P PGSi
� � ð3Þ

where PðDi = caseÞ is the prior disorder probability for individual i,
P PGSijDi = case
� �

is the conditional probability, and PðPGSiÞ is the
normalization factor corresponding to P. Thus, the BPC approach
provides predicted disorder probabilities for individuals based on
GWAS summary statistics, individual genotype data, and a prior dis-
order probability. (See Code Availability for R code to implement the
BPC approach.). We note the prior disorder probability can be
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specified flexibly and does not depend on the case ratio in the training
GWAS sample (see Discussion for a detailed discussion on how to set
the prior).

Alternative approaches to obtain disorder probabilities
from PGS
The BPC approach transforms a single individual’s genotype data
to the predicted disorder probability based on only publicly
available data without requiring tuning samples that include both
pheno- and genotype data, making it practical in its application.
We are aware of only one other published approach that com-
putes disorder probabilities only based on publicly available data,
introduced in Pain et al.14. In addition, we describe the linear
rescaling approach, an unpublished alternative to the BPC
approach.

Briefly, the approach of Pain et al.14 works as follows. First, the
difference inmean PGSbetween cases and controls is computed based
on an estimate of the R2 (which is transformed to the AUC54,55),
assuming the PGShave the same variance in cases and controls (scaled
to 1). The R2 is estimated based on the GWAS summary statistics using
lassosum16. Second, the PGS distribution across cases and controls is
divided into quantiles, and third, the disorder probabilities per PGS
quantile are assessed based on the testing sample’s case-control ratio
(i.e. the prior disorder probability). For individual i, the predicted
disorder probability follows by finding which quantile contains its PGS
Z-value (standardized based on the distribution of the PGS in 1000
Genomes).

The approach of Pain et al.14 differs in three important ways from
the BPC approach. First, it implicitly assumes that the variance and the
mean of the PGS in the full population are the same as in the target
sample. However, if the target sample is over-ascertained for cases, the
variance and the mean are larger than in the full population (see
Fig. S1). As such, PGS Z-values based on the full population (i.e., 1000
Genomes) will overestimate the PGS Z-values in the ascertained
target sample and, consequently, also the predicted disorder prob-
abilities. Second, Pain et al.14 suggest using lassosum16 to estimate the
R2 from summary statistics, while the BPC approach achieves this by
estimating the variance of a well-calibrated PGS in a population
reference sample. Third, the Pain et al.14 approach assumes
var PGSjcaseð Þ= var PGSjcontrolð Þ, while the BPC approach models
more precisely the fact that var PGSjcaseð Þ< var PGSjcontrolð Þ, which
has the most impact for disorders with low population lifetime pre-
valence (K) and large R2

liability values (see Results & Supplementary
Table 1 for a summary of these differences).

We developed an alternative approach, the linear rescaling
approach, to obtain well-calibrated predicted disorder probabilities,
that does not apply Bayes’ Theorem but a linear rescaling of the
PGSliability instead. The linear rescaling approach follows steps 1-3of the
BPC approach described above and in Fig. 1. Subsequently, the
expected variance of the PGSliability in the ascertained sample,
varðPGSliabilityjascertained sampleÞ, is computed based on the prior
disorder probability (i.e., the case-control ratio in the testing sample,
PðcaseÞ) and the distribution of PGSliability in cases and controls. Next,
the PGS is scaled to PGS’ with the property that
var PGS0jascertained sample

� �

=R2
observed in the ascertained sample

(R2
observed is computed based on R2

liability and the transformation
introduced in Lee et al.7), resulting in PGS0 that is well-calibrated on the
standardized observed scale (see Eq. 2). Lastly, we scale the PGS0
(which is based on a standardized phenotype) to the observed scale
with cases coded 1 and controls 0,
PGS0�1scale = PGS0*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P caseð Þx 1� P caseð Þð Þ
p

+P caseð Þ, resulting in PGSs
that represent the predicted disorder probability. We note the linear
rescaling approach can lead to predicted disorder probabilities that
are larger than 1 and smaller than 0, which we truncate to 1 and 0
before evaluating its calibration.

Approaches using tuning samples
We developed an alternative BPC-tuned approach that is conceptually
similar to the standard BPC approach outlined above. Instead of
deriving them theoretically, it uses empirical estimates of the variances
and means of the PGS in cases and controls derived from a tuning
sample with both genotype and phenotype data. As such, the BPC-
tuned approach skips steps 1 and 2 described above and in Fig. 1.

The Logit-tuned approach, as applied in ref. 10 computes pre-
dicted disorder probabilities in three steps. First, the slope and inter-
cept are estimated from a logistic regression model in the tuning
sample: D � PGS, where D 2 f0, 1g is a vector of binary disease status.
Second, the PGSs in the testing sample are used to compute logit(D̂):
PGS*slope+ intercept. Third, the predicted disorder probabilities are
computed as the inverse logit transformation
of D̂ : P Di = casejPGSi

� �

= eD̂

1 + e
^̂D
.

Untransformed PGS
We also evaluated the calibration of untransformed PGSs. These are
constructed using the posteriormean betas of step 1 (see Fig. 1), which
are on the standardized observed scale with 50% case ascertainment
when Neff is used as input in the Bayesian PGS methods. The resulting
PGSs are centered around zero and cannot be interpreted as disorder
probabilities.

Metrics of performance
To assess calibration, we compute the Integrated Calibration Index
(ICI): the weighted average of the absolute difference between the real
and predicted disorder probability17. (The real disorder probability is
computed using the loess smoothing function in R; thus, the ICI can be
intuitively understood as the weighted difference between the cali-
bration curve and the diagonal line in a calibration plot (see Results)).
Lower values of the ICI indicate better calibration and perfect cali-
bration implies ICI = 0.

The calibration slope is anothermetric to assess calibration that is
often used in the literature11–13, which refers to the slope from a linear
regression of the phenotype of interest on the PGS. If the slope equals 1
and the intercept 0, the predictor is said to be well-calibrated. A
downside of thismetric is that a PGSwith values outside the range of 0
and 1 can still have a calibration slope of 1, and the ICI has been pro-
posed as a superior metric because the ICI is robust to sparse sub-
regions of poor calibration17. Typically, untransformed Bayesian PGSs
are centered around0, andwhile theymayhave a calibration slopeof 1,
they cannot be interpreted as disorder probabilities and cannot be
evaluated with the ICI.

To assess the prediction accuracy of the PGSs, we use the Area
Under the Curve (AUC) and the coefficient of determination (R2) (we
note the AUC and R2 can be transformed into one another7).

Simulation analysis
We simulated individual-level data for 1000 SNPs in Linkage Equili-
brium based on the liability threshold model29 (see Supplementary
Note 5 for details).We simulated a relatively small number of SNPs (M)
because this allows the simulation of smaller training sample sizes (N),
which reduces the computational cost. The PGS’s R2 primarily depends
on M

N , such that simulations at reduced values of both M and N are
appropriate13. To further reduce the computational cost, we did not
simulate LinkageDisequilibrium (LD),whichhas no impact on the scale
of the PGS as it aggregates all SNP effects into a single score. We
repeated the simulations 100 times for eight different parameter set-
tingswherewevaried the power of the training sample and thereby the
coefficient of determination (R2) of thePGS (R2

liability = {0.01, 0.05,0.10,
0.15}), as well as the disorder population lifetime prevalence (K = {0.01,
0.15}). The disorder’s SNP-based heritability was set to 0.2. We simu-
lated three independent samples: a training sample with case-control
information used to estimate SNP effects with a GWAS (varying N; see
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below), a population reference sample without case-control informa-
tion to estimate R2

liability as described above (N = 503), and a testing
sample with case control-information to evaluate model performance
(Ncase= 1000 andNcontrol = 1000). To achieve the desired R2

liability in the
testing sample, we approximated the required sample size of the
training sample using the avengeme package in R56 (e.g.Ntraining = 2759
when R2

liability =0:1 and K =0.01). We computed the posterior mean
betas using Bpred, the version of LDPred that assumes linkage
equilibrium13, with GWAS betas on the standardized observed scale
with 50% case ascertainment and therefore used Neff as input. We
applied the BPC approach to estimate predicted disorder probabilities
and compared it to the existing approach introduced in Pain et al.14.

Empirical analysis
We analyzed nine phenotypes based on large training samples of
GWASmeta-analyses, namely schizophrenia (SCZ)18, major depression
(MD)19, breast cancer (BC)20, coronary artery disease (CAD; we note
that 23% of the training sample included individuals from non-
European populations)21, inflammatory bowel disease (IBD)22, multi-
ple sclerosis (MS)23, prostate cancer (PC)24, rheumatoid arthritis (RA)25,
and type 2 diabetes (T2D)26. We computed the PGSs in three testing
samples that were fully independent of the respective training samples
(Table 1). For SCZ and MD, 62 and 22 testing cohorts, respectively,
were used, and PGSs were computed based on the GWAS results that
excluded the testing cohort from the Psychiatric Genomics Con-
sortium (PGC). In evaluating the ICI, we concatenated all individual
cohorts. Testing data from the UK Biobank27 was used for BC, CAD,
IBD, MS, PC, RA, and T2D. If SNP-wise Neff values were available in the
GWAS results, the maximum Neff across all SNPs was used as input to
the BPC approach (MD and SCZ). Alternatively, Neff was calculated as
the sum of Neff of all contributing cohorts (CAD, IBD, MS, RA)49. If
neither information was available, the SNP-wise Neff were estimated
analytically with Neff =

4
2×AF × 1�AFð Þ× SE2.

49, where AF = effect allele fre-

quency and SE = standard error (PC, BC). Because the analytically
derived Neff can produce large outliers, we used the 90th percentile
across all SNPs instead of the maximum as input to the BPC approach.

Standard quality control was applied: Ambiguous (i.e., A/T or C/G
SNPs), duplicate, and mismatching alleles for SNPs across training,
testing, and population reference sample were removed1; a minor
allele frequency filter of 10%, and, when available, an imputation INFO
filter of 0.9 was applied as described before31; The major histo-
compatibility complex (MHC) was removed (hg19 coordinates:
6:28000000:34000000).

Posterior mean betas of SNPs were computed with PRScs-auto12

(from here on simply referred to as PRScs; version June 4th, 2021) and
SBayesR (version 2.03)11. PRScs uses a Linkage Disequilibrium (LD)
reference panel based on HapMap357 SNPs and Europeans from the
1000 Genomes Project28 (the default for PRScs). We use the default
parameters listed on the software’s GitHub page (https://github.com/
getian107/PRScs). In the input of PRScs, we specified the sample size as
Neff to ensureposteriormeanbetaswereon the standardizedobserved
scalewith 50% case ascertainment. SBayesR uses anLD reference panel
that is based on HapMap357 SNPs and 50,000 European UK Biobank
subjects (the default for SBayesR version 2.03). In the input for
SBayesR,we transformed the effect sizes to the standardized observed
scale with 50% case ascertainment (β50=50 = z=

ffiffiffiffiffiffiffiffiffi

Neff

p

) and set the
sample size to Neff.

To estimate R2
liability we use an ancestry-matched population

reference sample, namely the European sample of 1000 Genomes28,
which we downloaded from the MAGMA website (https://ctg.cncr.nl/
software/magma).

The posterior mean betas were used to compute the PGS in 1000
Genomes and in the testing sample with Plink1.9 (version Linux 64-bit
6th June, 2021; command “--score <variant ID column > <effect allele

column> <posterior mean beta> sum center”; https://doi.org/10.5281/
zenodo.15721084).

The BPC approach requires a valid estimate of the prior disorder
probability, whichwe set to the case-control ratio in the testing sample
(see Discussion for approaches to estimate the prior disorder prob-
ability). We ascertained cases in the testing sample such that the case-
control ratio was equal to 25%, 50%, or 75%.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Individual-level data fromthePsychiatricGenomicsConsortium(https://
pgc.unc.edu/) and the UK Biobank (https://www.ukbiobank.ac.uk/
enable-your-research/apply-for-access) cannot be shared freely, but an
access application is requiredfirst. TheGWAS summary statistics used in
the UKB analyses can be requested or downloaded from the following
web pages: Breast Cancer (https://bcac.ccge.medschl.cam.ac.uk/
bcacdata/oncoarray/oncoarray-and-combined-summary-result/gwas-
summary-associations-breast-cancer-risk-2020/); BMI (https://portals.
broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_
data_files); Coronary Artery Disease (http://www.cardiogramplusc4d.
org/data-downloads/#); Inflammatory Bowel Disease (https://www.
ibdgenetics.org/); Multiple Sclerosis (https://imsgc.net/?page_id=31);
Prostate Cancer (http://practical.icr.ac.uk/blog/?page_id=8164); Rheu-
matoid Arthritis (https://data.cyverse.org/dav-anon/iplant/home/
kazuyoshiishigaki/ra_gwas/ra_gwas-10-28-2021.tar); Type 2 Diabetes
(https://diagram-consortium.org/downloads.html). GWAS summary
statistics for Major Depression and Schizophrenia can be downloaded
from the PGC website (https://pgc.unc.edu/for-researchers/download-
results/). 1000Genomes referencefiles canbedownloaded fromhttps://
ctg.cncr.nl/software/magma.

Code availability
Scripts to apply the BPC approach can be downloaded from https://
doi.org/10.5281/zenodo.15721084.
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