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Urban expansion can influence flooding by altering impervious area, surface runoff and the distribution of
population. While the impact of urban development on flood hazards has been widely studied, the variation in
flood characteristics in the context of urban development patterns remain insufficiently explored. This study
analyzed flood characteristics and driving factors across 49 study units within the Pearl River Basin from 1998 to
2022. Using the VIC and CaMa-Flood models, we simulated river flood depth and captured inundation map.
Nearly 2 % of built-up area suffer flood inundation, and by comparing inundated area without flood protection,
there is around 88 % reduction in inundated area with 100-year flood protection level. Urban development
patterns were identified by population and built-up area, then study units were grouped into four distinct types
combined effects of flood hazard levels and urban development: (i) expanding units with hazard-improved, (ii)
expanding units with hazard-unimproved, (iii) non-expanding units with hazard-improved, and (iv) non-
expanding units with hazard-unimproved. Four driving factors are identified by Kolmogorov-Smirnov tests,
including vegetation coverage, elevation, distance to nearest drainage and soil permeability, which significantly
influence flood hazard. This study presents a novel framework for assessing flood hazards by integrating urban
development heterogeneity. Results would contribute to future urban planning and enhancing flood resilience.

1. Introduction considering vegetation coverage (NDVI) change. Devitt et al. (2023)
conducted a global analysis of the sensitivity of inundated areas and

Flooding is among the most frequent and devastating natural di- population exposure. Fujiki et al. (2024) explored flooding and

sasters (Kousky, 2014), casting great flood hazard on cities worldwide
(Rentschler et al., 2023). Flood hazard is considered as the frequency
and magnitude of flood events (Tellman et al., 2021), and results from a
complex interplay of factors (Merz et al., 2021). These factors include
riverine inundation, exposure, vulnerability (e.g., disadvantaged com-
munities, inadequate infrastructure, and outdated urban planning), and
urban resilience (the capacity to recover from disasters) (Kron, 2005;
Laidlaw and Percival, 2024). Therefore, to identify and mitigate flood
hazard, extensive researches have been conducted on the relationship
between flooding and local natural and social conditions. For instance,
Kumar and Acharya (2016) assessed flood hazard in Kashmir Valley

inequality in response to poverty in France. Sohn et al. (2020) studied
the effect of impervious surfaces on surface runoff and urban flooding in
Texas.

Considering that impervious surface growth is accompanied by
urban expansion (Shahtahmassebi et al., 2016), there exists correlation
between urban development patterns and flood hazards (Idowu and
Zhou, 2023). Urban development patterns have been widely discussed,
aiming to comprehend regional characteristics. Generally, urban
expansion results in increased impervious surfaces and higher popula-
tion density (Arcaute et al., 2015; Shahfahad et al., 2021), while urban
shrinkage is associated with population decline (Alves et al., 2016; Jin
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et al.,, 2024). By contrast, Sun et al. (2024) divided global urban
expansion into five types in terms of population and density change. Li
et al. (2022) categorized global cities into nine types by considering
built-up land. Song et al. (2021) classified Chinese cities into three types:
sustained shrinkage, transitional shrinkage and sustained growth by
calculating population density. Therefore, flood characteristic could
differ in cities because of various urban land expansion and population
distribution patterns. However, much less is known regarding the dif-
ference of flood hazard under different urban development patterns, and
potential factors that leads to the difference. This may undermine
strengthening urban resilience against floods, due to lack of sufficient
understanding of regional development, especially for the cities
suffering shrinkage.

Generally, expanding cities experience expansion in impervious area
and reduction in infiltration capacity, which exacerbates local flooding
(Ebert et al., 2009). Shrinkage cities suffer more flood risk and socio-
economic vulnerability (Kim et al., 2025). Suburbs from Beijing in China
face great increase in submerged area in the future (Jia et al., 2024).
However, due to the variant development patterns among cities and
regional differences within a city (Copus, 2001), there is limited un-
derstanding of the difference of flood characteristics under divergent
urban development patterns.

To bridge this research gap, here we study flood hazard and urban
expansion in some administrative regions within the Pearl River Basin in
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China (Zhang et al., 2012). Flood hazard is assessed by calculating
inundated area using hydrologic models, while urban development
patterns is identified using population and built-up land data. Then flood
hazard and urban development patterns are combined together to get
different types of regions and unveil their divergences. The driving
factors, which are sensitive to the divergence, are extracted out by
analyzing flood hazard among divergent regions. Finally, suggestions
are summarized to help reduce inundated area and mitigate flood haz-
ard for regions under divergent development patterns. The findings are
expected to provide actionable insights to urban planners and policy
makers, hoping to enhance urban flood resilience, inform adaptive
planning strategies, and promote sustainable development.

2. Study area and datasets
2.1. Study area

The Pearl River Basin, a critical region in southern China, encom-
passes major metropolitan areas, like Guangzhou and Shenzhen. This
basin comprises the Xijiang, Beijiang, and Dongjiang watersheds, and
the Pearl River Delta (Pearl River Water Resources Commission of the
Ministry of Water Resources, 2015). In Fig. 1, the study units are the
administrative regions through which the main river and primary trib-
utaries flow. Finally, the study area includes 49 study units across 13
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Fig. 1. The distribution of study units, and main streams and primary tributaries. Bold red line circles the study area, grey line separate study area into 49 study
units, and red line denote the Pearl River Basin. Blue line indicates main streams and primary tributaries. The region denoting (1) the Pearl River Delta, (2) Xijiang,

(3) Beijiang and (4) Dongjiang watersheds are boxed out respectively.
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cities (attached in Supplementary Table 1).

2.2. Data source

Flood characteristic is analyzed supported by CNO05.1 dataset.
CNO5.1 derives from China Meteorological Data Service Centre (htt
ps://data.cma.cn/) (Wu and Gao, 2013), and is interpolated from data
collected at over 2400 Chinese meteorological stations (Wu et al., 2017).
With a spatial resolution of 0.25° x 0.25°, the dataset covers the period
from 1961 to 2022 for entire China and is widely used for validating
high-resolution climate models. Merit Hydro is a global datasets with a
spatial resolution of 15-arcsec (Yamazaki et al., 2011), which includes
flow direction and river channel width (https://hydro.iis.u-tokyo.ac.
jp/). It can be used for estimating river channel information and flood
simulation.

Urban development pattern is identified using population and built-
up land data. For details, population data is sourced from the China
Economic and Social Big Data Platform (https://data.cnki.net/) (Zhang
et al., 2022), covering the whole study period. Built-up area data is
derived from China Land Cover Dataset (CLCD) (Zhang et al., 2022; Zou
et al., 2022), which demonstrates strong spatio-temporal consistency
with the high resolution at 30 m from 1985 to 2022.

Factors (Table 1) across 49 study units consider local socio-economic
and natural conditions, which could potentially influence flood hazard.
For details, the growth of GDP (global domestic product) can induce
decrease in floods by improving production efficiency (Ceesay, 2020).
Intense population in flood-prone area increase potential damage when
extreme flood event occurs (Ferdous et al., 2020). NDVI (vegetation
coverage) is a significant predictor to explain variation in runoff and
impact on flooding (Kim et al., 2017). High-altitude regions are
considered to be less exposed to storms and flooding since these disasters
mainly hit coastal areas or villages around rivers (Ronco et al., 2023).
Precipitation, wind speed and temperature have been verified to be
related to runoff generation (Liang et al., 1994), which finally leads to
flooding. HAND (the height above the nearest drainage) is a good in-
dicator of hydrology-relevant topography (Jiang et al., 2023), and
widely discussed for flood risk management. The expansion of urban
land and variation of soil property can impact surface runoff, which then
influences flood occurrence (Ma et al., 2024). Besides, flat to gentle
slope makes runoff get stored and dispose out gradually, so low gradient
slopes at lower reaches are highly vulnerable to flood occurrence
(Ramesh and Igbal, 2022). R-B (Richards-Baker flashiness index) is used
to reflect the frequency and rapidity of short-time changes in streamflow
(Baker et al., 2004), and analyze flood risk perception (Knighton et al.,
2021).
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3. Methods

This study analyzes flood characteristics and driving factors under
urban development patterns through a four-step methodological
framework. The proposed method first utilizes VIC and CaMa-Flood
models to generate simulated inundated area distribution. The inun-
dated area is then used to assess flood characteristics using Mann-
Kendall trend tests. Thereafter, urban development pattern is evalu-
ated by quantifying changes in population and population density.
Finally, by combining flood characteristics with urban development
patterns, the study units are classified into various types. Kolmogorov-
Smirnov tests are conducted to identify driving factors across different
types of study units. The difference of urban development pattern and
applicability of driving factors are carefully analyzed to mitigate flood
hazard.

3.1. Flood inundation simulation

The VIC (Variable Infiltration Capacity) and CaMa-Flood (Catch-
ment-based Macro-scale Floodplain) models are coupled together to
perform flood simulations. The VIC model is a macroscale, distributed
hydrological model developed by the University of Washington (Liang
et al., 1994). It has been widely used for river runoff simulation. The
CaMa-Flood is a global river model (Yamazaki et al., 2011), which in-
corporates floodplain dynamics through sub-grid parameterization and
has been extensively used to generate flood inundation maps.

In this study, the VIC model is first used to simulate daily runoff in
the study area. The model inputs data include daily minimum temper-
ature, maximum temperature, precipitation, and wind speed from
CNO5.1 dataset. The generated runoff data is then input into the CaMa-
Flood model, which generates river flood depth. The soil and vegetation
parameters required for VIC model were consistent with the previous
study (Zhong et al., 2023).

Flood depth is first computed at 1 arcmin (nearly 1800 m at the
equator) and then downscaled onto a 15-arcsec (approximately 450 m)
high-resolution digital elevation model (DEM) (Dottori et al., 2018). By
analyzing the spatial distribution of the simulated inundation depth in
built-up area, simulated inundated area and inundation ratio are
calculated. The maximum inundated area within a year is then calcu-
lated, which is considered as annual flood inundation area. The inun-
dation ratio is the value of the simulated inundated area divided by the
built-up area.

Different locations differ in natural conditions, urban sizes, and flood
protection standards (Ward et al., 2017; Dottori et al., 2018). The levees
in the cities located in study area have reached the flood protection level
of at least 100 - year return period (https://dara.gd.gov.cn/zwgk/z

Table 1
The potential factors.
Factor Definition Unit Source
GDP GDP per capita in study unit RMB/ China Economic and Social Big Data Platform (https://data.cnki.net/)
person
Population The density of the population person/

density km?

NDVI Annual vegetation coverage in built-up area -
Elevation The average elevation of built-up area m
Precipitation Annual average precipitation mm/day
Wind speed Annual average wind speed m/s
Temperature Annual average temperature °C
HAND The height above the nearest drainage in built-up area  m
Land cover The growth rate of built-up area -
change
Soil permeability The ease with water penetrates through the soil in -
built-up area
Terrain slope The degree of steepness in built-up area °
R-B Frequency and rapidity of the short-term changes in -

streamflow

Institute of Geographic Sciences and Natural Resource Research, CAS (http://english.
igsnrr.cas.cn/)

Geospatial Data Cloud (https://www.gscloud.cn/)

Climate Change Research Center (https://data.cma.cn/)

Merit Hydro (https://hydro.iis.u-tokyo.ac.jp/)
Annual China Land Cover (https://essd.copernicus.org/articles/13/3907,/2021/)

Geographic Data Sharing Infrastructure, global resources data cloud (http://www.
gis5g.com/)

SRTM product (https://earthexplorer.usgs.gov/)

The water resources bulletin (https://www.pearlwater.gov.cn/zwgkes/lygb/szygb/)
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cwj/content/post_3577642.html). Besides, Dottori et al. (2018) used
present-day flood protection levels obtained from FLOPROS to calculate
present and future flood risk, in which the flood protection levels was set
as a return period of 100 years in China. Therefore, our work is con-
ducted in the context of 100-year flood protection standard by consid-
ering the height of the levee (attached in Supplementary Note 4).

3.2. Classification of urban development pattern

Population and built-up area data are utilized to classify urban
development patterns, following the approach of Sun et al. (2024).
Specifically, built-up area is considered difficult to reduce because of the
limited arable land reclamation (Wang et al., 2020).The threshold for
the change of population (UPDy,) and population density (Pg4) are both
set at 1 % (Oswalt et al., 2006). The relevant formulas are as follows:

P,
UPD, =— 1
=3, (€]
Pdt:(Ptm*Pt) 2
UPDg, = (UPD,,, — UPD,) 3)

where P, is the population, B; is the area of built-up area, UPD; is the
population density, t represents the first reference year, and t+ n rep-
resents the last reference year

The urban development patterns of study units are categorized into
two types: expanding units, characterized by an increasing population or
built-up area, and non-expanding units, characterized by a constant or
decreasing trend in population or built-up area. Following the approach
of Sun et al. (2024), a unit is classified as an expanding unit when any of
the following conditions hold: UPDg4, > 0 %, UPDg4 = 0 % & P4, > 0 %, or
UPDg < 0 % & P4 > 0 %. Conversely, a unit is classified as a
non-expanding unit when UPDg, = 0 % & Pg, = 0 % or UPDg, < 0 % & Py,
< 0 %.

4. Results
4.1. Identification of flood characteristic

Using the method described in Section 3.1, Figs. 3 and 4 illustrate the
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spatial distribution of simulated inundated areas and flood character-
istics from 1998 to 2022, considering 100-year flood protection level.
The simulated inundated area is validated with the support of flood
extent from Global Flood Database (Tellman et al., 2021) (attached in
Supplementary Note 2). By comparing simulated inundated area with
100-year flood protection level to no flood protection (Fig. 2b), there is
approximately 88 % reduction in inundated area. This highlights the
significant role of flood control facilities in river flood prevention. For
the entire study area (Fig. 2a), the built-up area expanded nearly three
times from 1998 to 2022. Simulated inundation ratio (Fig. 2a) began to
rise in 1998, reached its peak (2.1 %) in 2015, and then gradually
decreased, maintaining at around 2.0 %. This can be explained that the
newly-developed urban land was further to the rivers than the original
urban land after 2015, and the latter was already located near the river
(Jiang et al., 2023). For the Pearl River Delta (Fig. 3a), the built-up area
experienced significant expansion over the 25-year period, accompanied
by an increase in simulated inundated area. In contrast, the Xijiang and
Beijiang watersheds (Fig. 3b and c) exhibited relatively slower expan-
sion of both built-up and inundated areas, which were predominantly
distributed along river banks. In Dongjiang watershed (Fig. 3d), the
built-up area expanded considerably from its original extent, while the
simulated inundated area showed only marginal growth.

Finally, by using the Mann-Kendall trend test (Fattah et al., 2024),
the trend of the simulated inundation ratio in each study unit was
identified, including three types: increasing, decreasing trend, and no
trend. The decreasing type is considered the units with hazard-
improved, indicating the mitigation in flood hazard. Conversely, the
increasing and no trend types are classified into units with hazard-
unimproved, suggesting the suffering constant or worsening flooding
in these regions. The distribution of study units with different flood
characteristics is presented in Fig. 2c. Of the total study units, 31 are
classified as hazard-improved units, while 18 are categorized as hazard-
unimproved units.

4.2. Identification of urban development pattern

The urban development patterns of the study units from 1998 to
2022 are explored in Fig. 4a, revealing that all study units are identified
as expanding units. During this period, all the study units experienced
rapid development, marked by increasing populations and built-up
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Fig. 2. a The temporal change of built-up area (sienna bar), simulated inundated area (wheat bar), and annually simulated inundation ratio (blue points) from 1998
to 2022; b Percentage reduction in average simulated inundated area with 100-year flood protection level compared to no flood protection. Green bands indicate
percentage reduction respectively; ¢ Spatial distribution of units with hazard-improved (chocolate), and units with hazard-unimproved (grey).
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(a) The Pearl River Delta
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Fig. 3. The spatial distribution of built-up area (black) and simulated inundated area (dark red) within a the Pearl River Delta, b Xijiang, ¢ Beijiang and d Dongjiang
watersheds, taking five years for example. Blue line indicates main streams and primary tributaries.
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Fig. 4. Identified urban development patterns from a 1998 to 2022, b 1998 to 2017 and ¢ 2018 to 2022. Yellow scatters represent expanding units, while brown ones

represent non-expanding units.

areas. Considering 2017 marks the high-quality urban advancement in
China and the significant regional disparities persist among cities from
2017 to 2021 (Qin and Qin, 2025), we further divided the study period
into two phases: 1998-2017 and 2018-2022. By segmenting the study
period, it can be more clearly observed that how urban development
patterns evolved.

From 1998 to 2017 (Fig. 4b), none of the study units were non-
expanding units, a trend consistent with the entire study period. How-
ever, from 2018 to 2022 (Fig. 4c), the number of non-expanding units
increased significantly, rising from zero to 24, highlighting a shift in
urban development patterns during this phase. In contrast, the number
of expanding units remained at 25, nearly equal to the number of non-

expanding units. Notably, most of the expanding units are located
within the Pearl River Delta.

4.3. Combining analysis between flood characteristics and urban
development pattern

To further explore the variation of flood characteristic under diver-
gent urban development pattern, the study units were further classified
into four types, as shown in Fig. 5b, as expanding units with hazard-
improved (17 of 49 units), expanding units with hazard-unimproved
(8 units), non-expanding units with hazard-improved (14 units), and
non-expanding units with hazard-unimproved (10 units) (attached in
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Supplementary Table 2).

To explore the attributes of the four types of study units, a point
graph (Fig. 5a) was created to show the change rates in population
density and simulated inundated area from 2018 to 2022, and it was
divided into four quadrants. Specifically, when the change rate in pop-
ulation density exceeds 0, the units are classified as expanding units;
otherwise, they are non-expanding. This indicates a strong correlation
between city expansion and population density increase. When the
change rate in inundated area is below 0.0 %, the units are categorized
as hazard-improved. The three units in the fourth quadrant are all non-
expanding units with hazard-improved, resulting from decreasing city
size and decreasing flood inundation hazard. 27 units, with change rates
in inundated area ranging between 0.3 % and 1.6 %, exhibit mixed
trends in city size and include all four types of study units.

4.4. Analysis of driving factors

The Kolmogorov-Smirnov test (Ohunakin et al., 2024) was con-
ducted to determine driving factors between hazard-improved and
hazard-unimproved units, considering expanding and non-expanding
types separately. For the expanding units (Fig. 6), the driving factors
with a P-value below 0.01 include NDVI, elevation, HAND and soil
permeability. Specifically, Fig. 6¢ shows that about 70 % of units with
hazard-improved have greater NDVI than those with hazard-
unimproved. This suggests that enhancing vegetation coverage could
help transform units into hazard-improved ones. In Fig. 6d, there are
distinct differences in elevation between the two types of units. As the
elevation is over 70 m or below 30 m, built-up area in units with hazard-
improved is higher. This indicates the influence of elevation in built-up
area in mitigating flood hazard. Regarding HAND (Fig. 6h), the value in
hazard-improved units are generally higher, supporting the consensus
that keeping distance to rivers reduces flood risk (Njoku et al., 2020). In
Fig. 6j, the orange line representing expanding units with
hazard-unimproved lies below the magenta line, indicating that these
units tend to have higher soil permeability. This can be explained that
places with high natural soil permeability suffered less water retention
and were more suitable for human living and urban expansion (Yu et al.,
2019). However, large-scale expansion of impervious surface area
conversely leads to increase in surface runoff and exacerbates flood
hazard (Du et al., 2015). For other factors, the lines for both types of
units tend to overlap with P-values greater than 0.01, suggesting that
these factors are not significant driving forces.

Similar to the expanding units in Fig. 6, non-expanding units (Fig. 7)
also show that NDVI, elevation, HAND and soil permeability are driving
factors. Units with hazard-improved tend to have denser vegetation
coverage, higher elevation, further distance to the nearest river and
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relatively lower soil permeability compared to those with hazard-
unimproved. Besides. GDP, population density, temperature, land
cover change and terrain slope are driving factors with P-value below
0.01. Considering the geographical location of units with hazard-
unimproved (Fig. 7b), the sensitivity of these factors is likely related
to the distribution of NDVI, elevation, HAND and soil permeability. A
linear correlation analysis (Fig. 8) was then conducted to explain this
relationship.

The normalization is conducted for factors. As can be seen from
Fig. 8, units with lower vegetation coverage, tend to have higher pop-
ulation density, fatter terrain, higher temperature and higher GDP.
These units are mostly distributed in the Pearl River Delta (Fig. 5b),
which is a region with subdued topography, developed economy and
high carbon emission (Xu et al., 2018). It’s noteworthy that carbon
emission is related to heat-island effect (Wang et al., 2020), causing an
increase in temperature. Regarding elevation and HAND, units with
higher elevation and further distance to nearest rivers, tend to have
lower population density, steeper terrain, lower temperature and lower
GDP. As for soil permeability, there is no direct linear correlation in
GDP, population density and built-up area change. Besides, units
showing strong soil permeability are following higher temperature and
fatter terrain, and they are mainly situated at the estuary (Fig. 5b). This
further suggesting the influence of soil permeability in flood hazard
mitigating (Figs. 6j and 7j). Moreover, distinctly strong linear correla-
tion exists among NDVI, and elevation, HAND and soil permeability.

5. Discussion
5.1. The differences of urban development patterns

According to the results of urban development patterns (Fig. 4), all
the units are expanding units from 1998 to 2017. However, between
2018 and 2022, 24 non-expanding units emerged. These differences in
development patterns are attributed to variations in urban development
orientation, geographical location, and population dynamics, which
create competition among units.

The 49 study units in this work are located within 13 cities (see Supple-
mentary Table 1). According to the Outline Development Plan for the
Guangdong-Hong Kong-Macao Greater Bay Area released by the Chinese
government (https://www.gov.cn/zhengce/2019-02/18/content 536659
3.htm#1), 13 cities are classified into three categories: core cities, node cit-
ies, and nearby cities. Specifically, Guangzhou is identified as the core city,
playing aleading role in the development of the Greater Bay Area and serving
as an integrated transport hub. The node cities—Foshan, Dongguan,
Zhongshan, Zhuhai, Huizhou, and Jiangmen, demonstrate strong interaction
and cooperation with the core city. The nearby cities—Qingyuan, Shaoguan,
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Wuzhou, Yunfu, and Heyuan, are located adjacent to the Greater Bay Area
and are influenced by the radiation effect of the node cities. As shown in
Fig. 9a, among the units in the nearby cities, 11 are non-expanding and 5 are
expanding. This suggests that these units face disadvantages in regional
development, with limited opportunities for growth. In the node cities, the
number of expanding units (16) exceeds that of non-expanding units (8),
indicating greater development opportunities and the potential for expan-
sion through cooperation with the core city. In contrast, the core city units
show a nearly balanced distribution, with 4 expanding and 5 non-expanding
units. This pattern indicates that differences in urban development orienta-
tions influence the variations in development patterns across the region.

In terms of geographical location, the study units are situated within
the Xijiang, Beijiang, and Dongjiang watersheds, and the Pearl River
Delta (Fig. 9b). The elevation map reveals that the Pearl River Delta has
lower terrain compared to the other three watersheds. This, character-
ized by flat terrain and its proximity to the estuary, is more conducive to

economic development and population concentration. Consequently,
the units in the Pearl River Delta (Fig. 4c) are predominantly expanding
units. In contrast, the three watersheds with higher terrain are largely
covered by mountainous and hilly areas, which hinder local economic
development and expansion of built-up areas. Finally, there are more
non-expanding units than expanding ones in these areas. This suggests
that variations in geographical location significantly influence urban
development patterns.

Differences in population dynamics also play a significant role in
shaping variations in urban development patterns. As shown in Fig. 9c,
most non-expanding units have experienced population decline, while
the majority of expanding units have seen an increase in population.
This suggests that population growth tends to drive urban expansion in
the study area.
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5.2. The applicability of driving factors

Regardless of the type of urban development patterns, NDVI, eleva-
tion, HAND and soil permeability have a significant impact on flood
hazard (Figs. 6 and 7). Specifically, non-expanding units with hazard-
unimproved (NU in Fig. 10a) have considerably lower vegetation
coverage than the other three types of units. This is primarily because
this type of units is distributed in highly developed region (Fig. 5b).
NDVI of expanding units with hazard-improved (EI in Fig. 10a) is
slightly higher than that of expanding units with hazard-unimproved
(EU in Fig. 10a). Therefore, for expanding units, it is essential to in-
crease Greenland. For non-expanding units, it is advised to enhance
vegetation coverage in urban land, like following nature-based solution
(Opperman and Galloway, 2022)

In terms of elevation and HAND (Fig. 10b and c), non-expanding
units with hazard-improved are situated at higher elevations with
further distance to rivers than the other units. Besides, elevation and
HAND in expanding units with hazard-improved are relatively higher
than expanding units with hazard-unimproved. This suggests that higher
elevation and further distance to nearest drainage can help improve
flood hazard. However, expanding units (EI and EU in Fig. 10b and c) are
primarily located in the Pearl River Delta (Fig. 4c), which is significantly
lower in elevation and nearer to rivers compared to non-expanding units
(NI and NU in Fig. 10b and c). This makes the expanding units more
vulnerable to flood hazard. Therefore, for expanding units, urban
planning should prioritize the development of new areas on higher
ground and maintain distance from the nearest drainage, aiming to
reduce flood exposure. For non-expanding units, given the constraints
on expanding built-up areas, the focus should be on strengthening flood
control infrastructure, including dams and levees.

For soil permeability in expanding units (Fig. 10d), the overall levels
of permeability across the four categories are similar. However,
expanding units with hazard-unimproved have slightly higher perme-
ability than expanding units with hazard-improved, and non-expanding
units with hazard-unimproved have obviously higher permeability than
those with hazard-improved. This refers to the results in Figs. 6j and 7j,
and soil permeability is natural property and calculated without
considering impervious surface. Therefore, regardless of urban devel-
opment patterns, units should utilize soil permeability and other
permeable materials to improve the permeability of urban land. For
example, constructing a “sponge city” in flood susceptible areas (Aksoy
et al., 2025).

5.3. Limitation

Further research is needed to focus on the detailed mechanism of
NDVI and soil permeability, such as the possible existence of mediating
variables. This could help understand how vegetation coverage affects
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flooding in built-up area at a deeper level. Besides, our work mainly
concentrated on flood hazard. In the future research, flood risk, which
includes flood hazard, exposure and vulnerability, is needed to
comprehensively analyze within the study area.

6. Conclusion

This study aimed to explore characteristics and drivers of flood
hazard under different urban development patterns across 49 study
units within the Pearl River Basin. Using VIC and CaMa-Flood models,
the flood characteristics were identified in the context of 100-year flood
protection level. Nearly 2 % of the built-up area suffer flood inundation,
and by comparing inundated area without flood protection, there is
around 88 % reduction in inundated area with 100-year flood protection
level. Besides, using Mann-Kendall trend test, flood characteristic can be
classified into hazard-improved and hazard-unimproved.

Urban development patterns were identified by population and built-
up area, which includes expanding and non-expanding types. This
divergence is related to development orientation, geographical location,
and population dynamics. Then study units were grouped into four
distinct types combined effects of flood hazard levels and urban devel-
opment: (i) expanding units with hazard-improved, (ii) expanding units
with hazard-unimproved, (iii) non-expanding units with hazard-
improved, and (iv) non-expanding units with hazard-unimproved.

Based on the results of Kolmogorov-Smirnov tests, this study iden-
tified four driving factors that significantly influence flood characteris-
tics, including vegetation coverage, elevation, distance to nearest
drainage and soil permeability. Considering the applicability, hazard-
improved units have relatively lager vegetation coverage, higher
elevation and further distance to rivers. Moreover, it is necessary to
improve urban surface permeability, which helps reduce surface runoff
and mitigate flood hazard.

In conclusion, our work is to draw practical conclusions to reduce
flood hazards and provide actionable recommendations for policy-
makers. From an urban planning perspective, newly developed areas
should be carefully planned and situated in higher-elevation zones and
keep safe distance to rivers. Proper planning of green land and utiliza-
tion of soil permeability are also essential to mitigate flood hazard.
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