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A B S T R A C T

Urban expansion can influence flooding by altering impervious area, surface runoff and the distribution of 
population. While the impact of urban development on flood hazards has been widely studied, the variation in 
flood characteristics in the context of urban development patterns remain insufficiently explored. This study 
analyzed flood characteristics and driving factors across 49 study units within the Pearl River Basin from 1998 to 
2022. Using the VIC and CaMa-Flood models, we simulated river flood depth and captured inundation map. 
Nearly 2 % of built-up area suffer flood inundation, and by comparing inundated area without flood protection, 
there is around 88 % reduction in inundated area with 100-year flood protection level. Urban development 
patterns were identified by population and built-up area, then study units were grouped into four distinct types 
combined effects of flood hazard levels and urban development: (i) expanding units with hazard-improved, (ii) 
expanding units with hazard-unimproved, (iii) non-expanding units with hazard-improved, and (iv) non- 
expanding units with hazard-unimproved. Four driving factors are identified by Kolmogorov-Smirnov tests, 
including vegetation coverage, elevation, distance to nearest drainage and soil permeability, which significantly 
influence flood hazard. This study presents a novel framework for assessing flood hazards by integrating urban 
development heterogeneity. Results would contribute to future urban planning and enhancing flood resilience.

1. Introduction

Flooding is among the most frequent and devastating natural di
sasters (Kousky, 2014), casting great flood hazard on cities worldwide 
(Rentschler et al., 2023). Flood hazard is considered as the frequency 
and magnitude of flood events (Tellman et al., 2021), and results from a 
complex interplay of factors (Merz et al., 2021). These factors include 
riverine inundation, exposure, vulnerability (e.g., disadvantaged com
munities, inadequate infrastructure, and outdated urban planning), and 
urban resilience (the capacity to recover from disasters) (Kron, 2005; 
Laidlaw and Percival, 2024). Therefore, to identify and mitigate flood 
hazard, extensive researches have been conducted on the relationship 
between flooding and local natural and social conditions. For instance, 
Kumar and Acharya (2016) assessed flood hazard in Kashmir Valley 

considering vegetation coverage (NDVI) change. Devitt et al. (2023)
conducted a global analysis of the sensitivity of inundated areas and 
population exposure. Fujiki et al. (2024) explored flooding and 
inequality in response to poverty in France. Sohn et al. (2020) studied 
the effect of impervious surfaces on surface runoff and urban flooding in 
Texas.

Considering that impervious surface growth is accompanied by 
urban expansion (Shahtahmassebi et al., 2016), there exists correlation 
between urban development patterns and flood hazards (Idowu and 
Zhou, 2023). Urban development patterns have been widely discussed, 
aiming to comprehend regional characteristics. Generally, urban 
expansion results in increased impervious surfaces and higher popula
tion density (Arcaute et al., 2015; Shahfahad et al., 2021), while urban 
shrinkage is associated with population decline (Alves et al., 2016; Jin 
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et al., 2024). By contrast, Sun et al. (2024) divided global urban 
expansion into five types in terms of population and density change. Li 
et al. (2022) categorized global cities into nine types by considering 
built-up land. Song et al. (2021) classified Chinese cities into three types: 
sustained shrinkage, transitional shrinkage and sustained growth by 
calculating population density. Therefore, flood characteristic could 
differ in cities because of various urban land expansion and population 
distribution patterns. However, much less is known regarding the dif
ference of flood hazard under different urban development patterns, and 
potential factors that leads to the difference. This may undermine 
strengthening urban resilience against floods, due to lack of sufficient 
understanding of regional development, especially for the cities 
suffering shrinkage.

Generally, expanding cities experience expansion in impervious area 
and reduction in infiltration capacity, which exacerbates local flooding 
(Ebert et al., 2009). Shrinkage cities suffer more flood risk and socio
economic vulnerability (Kim et al., 2025). Suburbs from Beijing in China 
face great increase in submerged area in the future (Jia et al., 2024). 
However, due to the variant development patterns among cities and 
regional differences within a city (Copus, 2001), there is limited un
derstanding of the difference of flood characteristics under divergent 
urban development patterns.

To bridge this research gap, here we study flood hazard and urban 
expansion in some administrative regions within the Pearl River Basin in 

China (Zhang et al., 2012). Flood hazard is assessed by calculating 
inundated area using hydrologic models, while urban development 
patterns is identified using population and built-up land data. Then flood 
hazard and urban development patterns are combined together to get 
different types of regions and unveil their divergences. The driving 
factors, which are sensitive to the divergence, are extracted out by 
analyzing flood hazard among divergent regions. Finally, suggestions 
are summarized to help reduce inundated area and mitigate flood haz
ard for regions under divergent development patterns. The findings are 
expected to provide actionable insights to urban planners and policy 
makers, hoping to enhance urban flood resilience, inform adaptive 
planning strategies, and promote sustainable development.

2. Study area and datasets

2.1. Study area

The Pearl River Basin, a critical region in southern China, encom
passes major metropolitan areas, like Guangzhou and Shenzhen. This 
basin comprises the Xijiang, Beijiang, and Dongjiang watersheds, and 
the Pearl River Delta (Pearl River Water Resources Commission of the 
Ministry of Water Resources, 2015). In Fig. 1, the study units are the 
administrative regions through which the main river and primary trib
utaries flow. Finally, the study area includes 49 study units across 13 

Fig. 1. The distribution of study units, and main streams and primary tributaries. Bold red line circles the study area, grey line separate study area into 49 study 
units, and red line denote the Pearl River Basin. Blue line indicates main streams and primary tributaries. The region denoting (1) the Pearl River Delta, (2) Xijiang, 
(3) Beijiang and (4) Dongjiang watersheds are boxed out respectively.
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cities (attached in Supplementary Table 1).

2.2. Data source

Flood characteristic is analyzed supported by CN05.1 dataset. 
CN05.1 derives from China Meteorological Data Service Centre (htt 
ps://data.cma.cn/) (Wu and Gao, 2013), and is interpolated from data 
collected at over 2400 Chinese meteorological stations (Wu et al., 2017). 
With a spatial resolution of 0.25◦ × 0.25◦, the dataset covers the period 
from 1961 to 2022 for entire China and is widely used for validating 
high-resolution climate models. Merit Hydro is a global datasets with a 
spatial resolution of 15-arcsec (Yamazaki et al., 2011), which includes 
flow direction and river channel width (https://hydro.iis.u-tokyo.ac. 
jp/). It can be used for estimating river channel information and flood 
simulation.

Urban development pattern is identified using population and built- 
up land data. For details, population data is sourced from the China 
Economic and Social Big Data Platform (https://data.cnki.net/) (Zhang 
et al., 2022), covering the whole study period. Built-up area data is 
derived from China Land Cover Dataset (CLCD) (Zhang et al., 2022; Zou 
et al., 2022), which demonstrates strong spatio-temporal consistency 
with the high resolution at 30 m from 1985 to 2022.

Factors (Table 1) across 49 study units consider local socio-economic 
and natural conditions, which could potentially influence flood hazard. 
For details, the growth of GDP (global domestic product) can induce 
decrease in floods by improving production efficiency (Ceesay, 2020). 
Intense population in flood-prone area increase potential damage when 
extreme flood event occurs (Ferdous et al., 2020). NDVI (vegetation 
coverage) is a significant predictor to explain variation in runoff and 
impact on flooding (Kim et al., 2017). High-altitude regions are 
considered to be less exposed to storms and flooding since these disasters 
mainly hit coastal areas or villages around rivers (Ronco et al., 2023). 
Precipitation, wind speed and temperature have been verified to be 
related to runoff generation (Liang et al., 1994), which finally leads to 
flooding. HAND (the height above the nearest drainage) is a good in
dicator of hydrology-relevant topography (Jiang et al., 2023), and 
widely discussed for flood risk management. The expansion of urban 
land and variation of soil property can impact surface runoff, which then 
influences flood occurrence (Ma et al., 2024). Besides, flat to gentle 
slope makes runoff get stored and dispose out gradually, so low gradient 
slopes at lower reaches are highly vulnerable to flood occurrence 
(Ramesh and Iqbal, 2022). R-B (Richards-Baker flashiness index) is used 
to reflect the frequency and rapidity of short-time changes in streamflow 
(Baker et al., 2004), and analyze flood risk perception (Knighton et al., 
2021).

3. Methods

This study analyzes flood characteristics and driving factors under 
urban development patterns through a four-step methodological 
framework. The proposed method first utilizes VIC and CaMa-Flood 
models to generate simulated inundated area distribution. The inun
dated area is then used to assess flood characteristics using Mann- 
Kendall trend tests. Thereafter, urban development pattern is evalu
ated by quantifying changes in population and population density. 
Finally, by combining flood characteristics with urban development 
patterns, the study units are classified into various types. Kolmogorov- 
Smirnov tests are conducted to identify driving factors across different 
types of study units. The difference of urban development pattern and 
applicability of driving factors are carefully analyzed to mitigate flood 
hazard.

3.1. Flood inundation simulation

The VIC (Variable Infiltration Capacity) and CaMa-Flood (Catch
ment-based Macro-scale Floodplain) models are coupled together to 
perform flood simulations. The VIC model is a macroscale, distributed 
hydrological model developed by the University of Washington (Liang 
et al., 1994). It has been widely used for river runoff simulation. The 
CaMa-Flood is a global river model (Yamazaki et al., 2011), which in
corporates floodplain dynamics through sub-grid parameterization and 
has been extensively used to generate flood inundation maps.

In this study, the VIC model is first used to simulate daily runoff in 
the study area. The model inputs data include daily minimum temper
ature, maximum temperature, precipitation, and wind speed from 
CN05.1 dataset. The generated runoff data is then input into the CaMa- 
Flood model, which generates river flood depth. The soil and vegetation 
parameters required for VIC model were consistent with the previous 
study (Zhong et al., 2023).

Flood depth is first computed at 1 arcmin (nearly 1800 m at the 
equator) and then downscaled onto a 15-arcsec (approximately 450 m) 
high-resolution digital elevation model (DEM) (Dottori et al., 2018). By 
analyzing the spatial distribution of the simulated inundation depth in 
built-up area, simulated inundated area and inundation ratio are 
calculated. The maximum inundated area within a year is then calcu
lated, which is considered as annual flood inundation area. The inun
dation ratio is the value of the simulated inundated area divided by the 
built-up area.

Different locations differ in natural conditions, urban sizes, and flood 
protection standards (Ward et al., 2017; Dottori et al., 2018). The levees 
in the cities located in study area have reached the flood protection level 
of at least 100 - year return period (https://dara.gd.gov.cn/zwgk/z 

Table 1 
The potential factors.

Factor Definition Unit Source

GDP GDP per capita in study unit RMB/ 
person

China Economic and Social Big Data Platform (https://data.cnki.net/)

Population 
density

The density of the population person/ 
km2

NDVI Annual vegetation coverage in built-up area – Institute of Geographic Sciences and Natural Resource Research, CAS (http://english. 
igsnrr.cas.cn/)

Elevation The average elevation of built-up area m Geospatial Data Cloud (https://www.gscloud.cn/)
Precipitation Annual average precipitation mm/day Climate Change Research Center (https://data.cma.cn/)
Wind speed Annual average wind speed m/s
Temperature Annual average temperature ◦C
HAND The height above the nearest drainage in built-up area m Merit Hydro (https://hydro.iis.u-tokyo.ac.jp/)
Land cover 

change
The growth rate of built-up area – Annual China Land Cover (https://essd.copernicus.org/articles/13/3907/2021/)

Soil permeability The ease with water penetrates through the soil in 
built-up area

– Geographic Data Sharing Infrastructure, global resources data cloud (http://www. 
gis5g.com/)

Terrain slope The degree of steepness in built-up area ◦ SRTM product (https://earthexplorer.usgs.gov/)
R-B Frequency and rapidity of the short-term changes in 

streamflow
– The water resources bulletin (https://www.pearlwater.gov.cn/zwgkcs/lygb/szygb/)
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cwj/content/post_3577642.html). Besides, Dottori et al. (2018) used 
present-day flood protection levels obtained from FLOPROS to calculate 
present and future flood risk, in which the flood protection levels was set 
as a return period of 100 years in China. Therefore, our work is con
ducted in the context of 100-year flood protection standard by consid
ering the height of the levee (attached in Supplementary Note 4).

3.2. Classification of urban development pattern

Population and built-up area data are utilized to classify urban 
development patterns, following the approach of Sun et al. (2024). 
Specifically, built-up area is considered difficult to reduce because of the 
limited arable land reclamation (Wang et al., 2020).The threshold for 
the change of population (UPDdt) and population density (Pdt) are both 
set at 1 % (Oswalt et al., 2006). The relevant formulas are as follows: 

UPDt =
Pt

Bt
(1) 

Pdt =(Pt+n − Pt) (2) 

UPDdt =(UPDt+n − UPDt) (3) 

where Pt is the population, Bt is the area of built-up area, UPDt is the 
population density, t represents the first reference year, and t+ n rep
resents the last reference year

The urban development patterns of study units are categorized into 
two types: expanding units, characterized by an increasing population or 
built-up area, and non-expanding units, characterized by a constant or 
decreasing trend in population or built-up area. Following the approach 
of Sun et al. (2024), a unit is classified as an expanding unit when any of 
the following conditions hold: UPDdt > 0 %, UPDdt = 0 % & Pdt > 0 %, or 
UPDdt < 0 % & Pdt ≥ 0 %. Conversely, a unit is classified as a 
non-expanding unit when UPDdt = 0 % & Pdt = 0 % or UPDdt < 0 % & Pdt 
< 0 %.

4. Results

4.1. Identification of flood characteristic

Using the method described in Section 3.1, Figs. 3 and 4 illustrate the 

spatial distribution of simulated inundated areas and flood character
istics from 1998 to 2022, considering 100-year flood protection level. 
The simulated inundated area is validated with the support of flood 
extent from Global Flood Database (Tellman et al., 2021) (attached in 
Supplementary Note 2). By comparing simulated inundated area with 
100-year flood protection level to no flood protection (Fig. 2b), there is 
approximately 88 % reduction in inundated area. This highlights the 
significant role of flood control facilities in river flood prevention. For 
the entire study area (Fig. 2a), the built-up area expanded nearly three 
times from 1998 to 2022. Simulated inundation ratio (Fig. 2a) began to 
rise in 1998, reached its peak (2.1 %) in 2015, and then gradually 
decreased, maintaining at around 2.0 %. This can be explained that the 
newly-developed urban land was further to the rivers than the original 
urban land after 2015, and the latter was already located near the river 
(Jiang et al., 2023). For the Pearl River Delta (Fig. 3a), the built-up area 
experienced significant expansion over the 25-year period, accompanied 
by an increase in simulated inundated area. In contrast, the Xijiang and 
Beijiang watersheds (Fig. 3b and c) exhibited relatively slower expan
sion of both built-up and inundated areas, which were predominantly 
distributed along river banks. In Dongjiang watershed (Fig. 3d), the 
built-up area expanded considerably from its original extent, while the 
simulated inundated area showed only marginal growth.

Finally, by using the Mann-Kendall trend test (Fattah et al., 2024), 
the trend of the simulated inundation ratio in each study unit was 
identified, including three types: increasing, decreasing trend, and no 
trend. The decreasing type is considered the units with hazard- 
improved, indicating the mitigation in flood hazard. Conversely, the 
increasing and no trend types are classified into units with hazard- 
unimproved, suggesting the suffering constant or worsening flooding 
in these regions. The distribution of study units with different flood 
characteristics is presented in Fig. 2c. Of the total study units, 31 are 
classified as hazard-improved units, while 18 are categorized as hazard- 
unimproved units.

4.2. Identification of urban development pattern

The urban development patterns of the study units from 1998 to 
2022 are explored in Fig. 4a, revealing that all study units are identified 
as expanding units. During this period, all the study units experienced 
rapid development, marked by increasing populations and built-up 

Fig. 2. a The temporal change of built-up area (sienna bar), simulated inundated area (wheat bar), and annually simulated inundation ratio (blue points) from 1998 
to 2022; b Percentage reduction in average simulated inundated area with 100-year flood protection level compared to no flood protection. Green bands indicate 
percentage reduction respectively; c Spatial distribution of units with hazard-improved (chocolate), and units with hazard-unimproved (grey).
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areas. Considering 2017 marks the high-quality urban advancement in 
China and the significant regional disparities persist among cities from 
2017 to 2021 (Qin and Qin, 2025), we further divided the study period 
into two phases: 1998–2017 and 2018–2022. By segmenting the study 
period, it can be more clearly observed that how urban development 
patterns evolved.

From 1998 to 2017 (Fig. 4b), none of the study units were non- 
expanding units, a trend consistent with the entire study period. How
ever, from 2018 to 2022 (Fig. 4c), the number of non-expanding units 
increased significantly, rising from zero to 24, highlighting a shift in 
urban development patterns during this phase. In contrast, the number 
of expanding units remained at 25, nearly equal to the number of non- 

expanding units. Notably, most of the expanding units are located 
within the Pearl River Delta.

4.3. Combining analysis between flood characteristics and urban 
development pattern

To further explore the variation of flood characteristic under diver
gent urban development pattern, the study units were further classified 
into four types, as shown in Fig. 5b, as expanding units with hazard- 
improved (17 of 49 units), expanding units with hazard-unimproved 
(8 units), non-expanding units with hazard-improved (14 units), and 
non-expanding units with hazard-unimproved (10 units) (attached in 

Fig. 3. The spatial distribution of built-up area (black) and simulated inundated area (dark red) within a the Pearl River Delta, b Xijiang, c Beijiang and d Dongjiang 
watersheds, taking five years for example. Blue line indicates main streams and primary tributaries.

Fig. 4. Identified urban development patterns from a 1998 to 2022, b 1998 to 2017 and c 2018 to 2022. Yellow scatters represent expanding units, while brown ones 
represent non-expanding units.
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Fig. 5. a Scatter plots representing all study units in the quadrant diagram. X-axis shows the change rate in simulated inundated area from 2018 to 2022, while Y-axis 
shows the change rate in population density from 2018 to 2022; b Spatial distribution of the identified four types of study units: expanding units with hazard- 
improved (orange), expanding units with hazard-unimproved (magenta), non-expanding units with hazard-improved (maroon), and non-expanding units with 
hazard-unimproved (dark blue).

Fig. 6. Cumulative distribution figures (CDF) for expanding units with hazard-improved (orange) and expanding unit with hazard-unimproved (magenta) about a 
GDP, b population density, c NDVI, d elevation, e precipitation, f wind speed, g temperature, h HAND, i land cover change, j soil permeability, k terrain slope and l 
R-B. KS indicates two-sample KS-test P value. Green shading indicates sensitivity at α < 0.01.
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Supplementary Table 2).
To explore the attributes of the four types of study units, a point 

graph (Fig. 5a) was created to show the change rates in population 
density and simulated inundated area from 2018 to 2022, and it was 
divided into four quadrants. Specifically, when the change rate in pop
ulation density exceeds 0, the units are classified as expanding units; 
otherwise, they are non-expanding. This indicates a strong correlation 
between city expansion and population density increase. When the 
change rate in inundated area is below 0.0 %, the units are categorized 
as hazard-improved. The three units in the fourth quadrant are all non- 
expanding units with hazard-improved, resulting from decreasing city 
size and decreasing flood inundation hazard. 27 units, with change rates 
in inundated area ranging between 0.3 % and 1.6 %, exhibit mixed 
trends in city size and include all four types of study units.

4.4. Analysis of driving factors

The Kolmogorov-Smirnov test (Ohunakin et al., 2024) was con
ducted to determine driving factors between hazard-improved and 
hazard-unimproved units, considering expanding and non-expanding 
types separately. For the expanding units (Fig. 6), the driving factors 
with a P-value below 0.01 include NDVI, elevation, HAND and soil 
permeability. Specifically, Fig. 6c shows that about 70 % of units with 
hazard-improved have greater NDVI than those with hazard- 
unimproved. This suggests that enhancing vegetation coverage could 
help transform units into hazard-improved ones. In Fig. 6d, there are 
distinct differences in elevation between the two types of units. As the 
elevation is over 70 m or below 30 m, built-up area in units with hazard- 
improved is higher. This indicates the influence of elevation in built-up 
area in mitigating flood hazard. Regarding HAND (Fig. 6h), the value in 
hazard-improved units are generally higher, supporting the consensus 
that keeping distance to rivers reduces flood risk (Njoku et al., 2020). In 
Fig. 6j, the orange line representing expanding units with 
hazard-unimproved lies below the magenta line, indicating that these 
units tend to have higher soil permeability. This can be explained that 
places with high natural soil permeability suffered less water retention 
and were more suitable for human living and urban expansion (Yu et al., 
2019). However, large-scale expansion of impervious surface area 
conversely leads to increase in surface runoff and exacerbates flood 
hazard (Du et al., 2015). For other factors, the lines for both types of 
units tend to overlap with P-values greater than 0.01, suggesting that 
these factors are not significant driving forces.

Similar to the expanding units in Fig. 6, non-expanding units (Fig. 7) 
also show that NDVI, elevation, HAND and soil permeability are driving 
factors. Units with hazard-improved tend to have denser vegetation 
coverage, higher elevation, further distance to the nearest river and 

relatively lower soil permeability compared to those with hazard- 
unimproved. Besides. GDP, population density, temperature, land 
cover change and terrain slope are driving factors with P-value below 
0.01. Considering the geographical location of units with hazard- 
unimproved (Fig. 7b), the sensitivity of these factors is likely related 
to the distribution of NDVI, elevation, HAND and soil permeability. A 
linear correlation analysis (Fig. 8) was then conducted to explain this 
relationship.

The normalization is conducted for factors. As can be seen from 
Fig. 8, units with lower vegetation coverage, tend to have higher pop
ulation density, fatter terrain, higher temperature and higher GDP. 
These units are mostly distributed in the Pearl River Delta (Fig. 5b), 
which is a region with subdued topography, developed economy and 
high carbon emission (Xu et al., 2018). It’s noteworthy that carbon 
emission is related to heat-island effect (Wang et al., 2020), causing an 
increase in temperature. Regarding elevation and HAND, units with 
higher elevation and further distance to nearest rivers, tend to have 
lower population density, steeper terrain, lower temperature and lower 
GDP. As for soil permeability, there is no direct linear correlation in 
GDP, population density and built-up area change. Besides, units 
showing strong soil permeability are following higher temperature and 
fatter terrain, and they are mainly situated at the estuary (Fig. 5b). This 
further suggesting the influence of soil permeability in flood hazard 
mitigating (Figs. 6j and 7j). Moreover, distinctly strong linear correla
tion exists among NDVI, and elevation, HAND and soil permeability.

5. Discussion

5.1. The differences of urban development patterns

According to the results of urban development patterns (Fig. 4), all 
the units are expanding units from 1998 to 2017. However, between 
2018 and 2022, 24 non-expanding units emerged. These differences in 
development patterns are attributed to variations in urban development 
orientation, geographical location, and population dynamics, which 
create competition among units.

The 49 study units in this work are located within 13 cities (see Supple
mentary Table 1). According to the Outline Development Plan for the 
Guangdong-Hong Kong-Macao Greater Bay Area released by the Chinese 
government (https://www.gov.cn/zhengce/2019-02/18/content_536659 
3.htm#1), 13 cities are classified into three categories: core cities, node cit
ies, and nearby cities. Specifically, Guangzhou is identified as the core city, 
playing a leading role in the development of the Greater Bay Area and serving 
as an integrated transport hub. The node cities—Foshan, Dongguan, 
Zhongshan, Zhuhai, Huizhou, and Jiangmen, demonstrate strong interaction 
and cooperation with the core city. The nearby cities—Qingyuan, Shaoguan, 

Fig. 7. Cumulative distribution figures (CDF) for non-expanding units with hazard-improved (maroon) and non-expanding unit with hazard-unimproved (dark blue) 
about a GDP, b population density, c NDVI, d elevation, e precipitation, f wind speed, g temperature, h HAND, i land cover change, j soil permeability, k terrain slope 
and l R-B. KS indicates two-sample KS-test P value. Green shading indicates sensitivity at α < 0.01.
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Wuzhou, Yunfu, and Heyuan, are located adjacent to the Greater Bay Area 
and are influenced by the radiation effect of the node cities. As shown in 
Fig. 9a, among the units in the nearby cities, 11 are non-expanding and 5 are 
expanding. This suggests that these units face disadvantages in regional 
development, with limited opportunities for growth. In the node cities, the 
number of expanding units (16) exceeds that of non-expanding units (8), 
indicating greater development opportunities and the potential for expan
sion through cooperation with the core city. In contrast, the core city units 
show a nearly balanced distribution, with 4 expanding and 5 non-expanding 
units. This pattern indicates that differences in urban development orienta
tions influence the variations in development patterns across the region.

In terms of geographical location, the study units are situated within 
the Xijiang, Beijiang, and Dongjiang watersheds, and the Pearl River 
Delta (Fig. 9b). The elevation map reveals that the Pearl River Delta has 
lower terrain compared to the other three watersheds. This, character
ized by flat terrain and its proximity to the estuary, is more conducive to 

economic development and population concentration. Consequently, 
the units in the Pearl River Delta (Fig. 4c) are predominantly expanding 
units. In contrast, the three watersheds with higher terrain are largely 
covered by mountainous and hilly areas, which hinder local economic 
development and expansion of built-up areas. Finally, there are more 
non-expanding units than expanding ones in these areas. This suggests 
that variations in geographical location significantly influence urban 
development patterns.

Differences in population dynamics also play a significant role in 
shaping variations in urban development patterns. As shown in Fig. 9c, 
most non-expanding units have experienced population decline, while 
the majority of expanding units have seen an increase in population. 
This suggests that population growth tends to drive urban expansion in 
the study area.

Fig. 8. Heat maps (above the diagonal), histograms (diagonal) and scatter plots (below the diagonal) for driving factors in non-expanding units. Heat maps suggest 
the correlation coefficient between two driving factors. The color bar indicates Pearson correlation values, ranging from − 1.0 to 1.0. “*”, “**”, and “***” denotes P 
value below 0.1, 0.05 and 0.01 respectively. Histograms show the distribution of driving factors with the Kernel density estimation curves. Scatter plots show the 
relationship between two driving factors with the fitting line and 95 % confidence interval.

Fig. 9. an Urban development orientations of 49 study units with two types of urban development patterns; purple area represents the core city, light purple area 
represents the node city, and light blue represents the nearby city; b Geographical location of 49 study units; I-IV means Xijiang watershed, Beijinag watershed, 
Dongjinag watershed and the Pearl River Delta separately (elevation is showed in the color bar); c Population dynamics of those 49 units (red bar represents the 
increase rate of population from 2018 to 2022, while blue bar represents the decrease rate of population from 2018 to 2022).
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5.2. The applicability of driving factors

Regardless of the type of urban development patterns, NDVI, eleva
tion, HAND and soil permeability have a significant impact on flood 
hazard (Figs. 6 and 7). Specifically, non-expanding units with hazard- 
unimproved (NU in Fig. 10a) have considerably lower vegetation 
coverage than the other three types of units. This is primarily because 
this type of units is distributed in highly developed region (Fig. 5b). 
NDVI of expanding units with hazard-improved (EI in Fig. 10a) is 
slightly higher than that of expanding units with hazard-unimproved 
(EU in Fig. 10a). Therefore, for expanding units, it is essential to in
crease Greenland. For non-expanding units, it is advised to enhance 
vegetation coverage in urban land, like following nature-based solution 
(Opperman and Galloway, 2022)

In terms of elevation and HAND (Fig. 10b and c), non-expanding 
units with hazard-improved are situated at higher elevations with 
further distance to rivers than the other units. Besides, elevation and 
HAND in expanding units with hazard-improved are relatively higher 
than expanding units with hazard-unimproved. This suggests that higher 
elevation and further distance to nearest drainage can help improve 
flood hazard. However, expanding units (EI and EU in Fig. 10b and c) are 
primarily located in the Pearl River Delta (Fig. 4c), which is significantly 
lower in elevation and nearer to rivers compared to non-expanding units 
(NI and NU in Fig. 10b and c). This makes the expanding units more 
vulnerable to flood hazard. Therefore, for expanding units, urban 
planning should prioritize the development of new areas on higher 
ground and maintain distance from the nearest drainage, aiming to 
reduce flood exposure. For non-expanding units, given the constraints 
on expanding built-up areas, the focus should be on strengthening flood 
control infrastructure, including dams and levees.

For soil permeability in expanding units (Fig. 10d), the overall levels 
of permeability across the four categories are similar. However, 
expanding units with hazard-unimproved have slightly higher perme
ability than expanding units with hazard-improved, and non-expanding 
units with hazard-unimproved have obviously higher permeability than 
those with hazard-improved. This refers to the results in Figs. 6j and 7j, 
and soil permeability is natural property and calculated without 
considering impervious surface. Therefore, regardless of urban devel
opment patterns, units should utilize soil permeability and other 
permeable materials to improve the permeability of urban land. For 
example, constructing a “sponge city” in flood susceptible areas (Aksoy 
et al., 2025).

5.3. Limitation

Further research is needed to focus on the detailed mechanism of 
NDVI and soil permeability, such as the possible existence of mediating 
variables. This could help understand how vegetation coverage affects 

flooding in built-up area at a deeper level. Besides, our work mainly 
concentrated on flood hazard. In the future research, flood risk, which 
includes flood hazard, exposure and vulnerability, is needed to 
comprehensively analyze within the study area.

6. Conclusion

This study aimed to explore characteristics and drivers of flood 
hazard under different urban development patterns across 49 study 
units within the Pearl River Basin. Using VIC and CaMa-Flood models, 
the flood characteristics were identified in the context of 100-year flood 
protection level. Nearly 2 % of the built-up area suffer flood inundation, 
and by comparing inundated area without flood protection, there is 
around 88 % reduction in inundated area with 100-year flood protection 
level. Besides, using Mann-Kendall trend test, flood characteristic can be 
classified into hazard-improved and hazard-unimproved.

Urban development patterns were identified by population and built- 
up area, which includes expanding and non-expanding types. This 
divergence is related to development orientation, geographical location, 
and population dynamics. Then study units were grouped into four 
distinct types combined effects of flood hazard levels and urban devel
opment: (i) expanding units with hazard-improved, (ii) expanding units 
with hazard-unimproved, (iii) non-expanding units with hazard- 
improved, and (iv) non-expanding units with hazard-unimproved.

Based on the results of Kolmogorov-Smirnov tests, this study iden
tified four driving factors that significantly influence flood characteris
tics, including vegetation coverage, elevation, distance to nearest 
drainage and soil permeability. Considering the applicability, hazard- 
improved units have relatively lager vegetation coverage, higher 
elevation and further distance to rivers. Moreover, it is necessary to 
improve urban surface permeability, which helps reduce surface runoff 
and mitigate flood hazard.

In conclusion, our work is to draw practical conclusions to reduce 
flood hazards and provide actionable recommendations for policy
makers. From an urban planning perspective, newly developed areas 
should be carefully planned and situated in higher-elevation zones and 
keep safe distance to rivers. Proper planning of green land and utiliza
tion of soil permeability are also essential to mitigate flood hazard.
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