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Abstract 1 —The proliferation of decentralized applications 

across different autonomous blockchains raises the need to enable 

cross-chain data interoperability (CCDI). However, prior ap-

proaches for supporting CCDI often hit scalability bottlenecks re-

garding critical metrics, e.g., memory, or remain prone to with-

holding and censorship attacks. This paper proposes two protocols 

to implement secure and efficient CCDI under adversarial condi-

tions. The cross-chain token exchange (CCTE) protocol for atomic 

swaps is proposed. It adopts a deposit mechanism, a blockchain-

of-blockchains (BoB), and Merkle proofs to ensure the completion 

of token exchanges even under withholding attacks. It utilizes a 

parallelized design to support concurrent token exchanges, 

thereby improving its efficiency and avoiding censorship attacks 

that target sequential token exchanges. The CCDI protocol is pro-

posed to support any CCDI application. It authorizes a unique 

BoB to execute arbitrary CCDI application logic. It integrates a 

“transfer and in place data update” mechanism to improve its ef-

ficiency, and this mechanism enables a blockchain update its state 

data items using a single transaction, without requiring any infor-

mation from other blockchains. Moreover, the CCDI protocol in-

tegrates a state data migration scheme, which supports a user to 

migrate its state data item to censorship-resilient blockchains, and 

incorporates a malicious user nodes elimination scheme, which en-

ables the updates of state data items in a CCDI process even under 

withholding attacks. Systematic performance evaluations are con-

ducted to compare the two protocols with existing ones. The CCTE 

protocol reduces latency by at least 52% compared to existing pro-

tocols under probabilistic consensus setting. The CCDI protocol 

outperforms prior protocols, lowering communication cost by 

59%, computation overhead by 41%, memory burden by 12%, 

and latency cost by 33%. 

 
Index Terms— blockchain, cross-chain data interoperability, 

cross-chain token exchange, atomic swaps  

 

I. INTRODUCTION 

INCE from its proposal in 2008, blockchain (BC) [1] has 

been extensively practiced in different fields. The wide 

applications of BC raise the need of Cross-Chain Data 

Interoperability (CCDI), referring to as a data integration para-

digm that the data stored in one BC is reachable, verifiable, and 

referable by another in a semantically compatible manner [2]. 

A typical CCDI application is the Cross-Chain Token Exchange 

(CCTE) (or atomic swaps) [3-10], which allows a party to trans-

fer its tokens to another party in a BC if and only if the latter 

 
1This work is supported by Australian Research Council through a Discov-

ery Project (DP220103881).    

T. Yu, F. Luo and G. Ranzi are with Faculty of Engineering, The University 
of Sydney, NSW 2006, Australia (emails: teyu7403@uni.sydney.edu.au; 

fengji.luo@sydney.edu.au; gianluca.ranzi@sydney.edu.au).  

transfers its tokens to the former in another BC. Besides facili-

tating CCTE application, CCDI also supports more complicated 

data interactions across autonomous BCs [11-30] – for exam-

ple, for social media and Esports applications deployed in dif-

ferent BCs, CCDI can not only enable users in a same BC to 

interact but also support a user to interact the users from other 

BCs. 

One challenge of CCDI lies in the inherent independence of 

BCs [1], which restricts that the nodes in a BC can only access 

the state data (SD) of the BC (e.g., account balances and con-

tracts statuses) and cannot access the SD of other BCs. Such an 

independence nature of BCs would hinder CCDI operations. 

Most approaches directly compromise BCs’ independence 

property to support CCDI. However, lacking BCs’ independ-

ence may introduce additional issues. For instance, a BC must 

retain extra information from each connected BC to validate 

cross-chain data, causing significant memory overhead as the 

number of connected BCs grows.  

Another challenge of CCDI is to guarantee the atomicity 

property [2] in the presence of withholding and censorship at-

tacks. Specifically, the atomicity property states a situation 

where all SD items involved in a CCDI process is either fully 

updated or completely unchanged [2]. Under withholding at-

tacks, a malicious user can reject to submit its transaction, 

which stalls the updates of all SD items involved in a CCDI 

process, thereby denying CCDI services [5]. More seriously, 

under censorship attacks, the atomicity property may not hold 

anymore when a BC censors a transaction required in a CCDI 

process, which directly threats CCDI security [1]. 

A. State-of-the-Art 

A number of protocols have been developed to address the 

above two challenges in a multi-blockchain system (MBS).  

The CCTE scenario. Time-lock-based mechanisms are one 

of the solutions to enable the independence of BCs and support 

CCTE. The “lock” operation can be implemented in different 

ways, such as hash-time locks [5, 6, 8], signature-based locks 

[7, 10] and time-lock puzzles [9]. The original hash time lock 

contract (HTLC) scheme [5] requires a larger time cost for the 

“lock” operations to ensure atomicity of a CCTE process, which 

is time efficient. Recent work further improves the time effi-

ciency of these mechanisms by moving the locking phase off-

chain and employing adaptor signatures to carry out the 
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unlocking phase on-chain [7, 10].  

Despite these merits, time-lock-based mechanisms remain 

vulnerable to withholding and censorship attacks. By design, 

these mechanisms mandate that one party must complete its to-

ken transfer before its counterparty initiates theirs [5-10]. If the 

party is malicious, it can simply withhold that transfer, stalling 

the entire conditional exchange and wasting its counterparty’s 

time. Even if the party’s token transfer appears on its BC, the 

counterparty’s transfer on the target BC can be censored for a 

certain time window. During this time window, the party may 

initiate another transaction to spend out its tokens, causing the 

counterparty’s token transfer to fail after the time window. Alt-

hough fungibility property2 is a promising solution to counter 

censorship attacks [7], it breaks down entirely if the party col-

ludes with the target BC.  

Recent work [3 ,4] proposes a CCTE protocol that preserves 

the BCs’ independence while ensuring resilience to censorship 

attacks. The protocol in [3] sets up relay nodes to enable CCTE 

and relies on a blockchain of blockchains (BoB) to ensure the 

integrity and trustworthy of the relay nodes. [4] extends the 

CCTE framework to support multi-party scenarios. However, 

the work in [3] has two significant limitations: firstly, its mech-

anistic design is not efficient, imposing higher communication, 

computation, and latency overhead than time-lock-based 

schemes; secondly, under withholding attacks, the protocol in 

[3] must roll back all CCTE operations to ensure its atomicity 

property, thereby denying CCTE services.  

Based on the above literature review and discussion, we ask 

the first research question: whether there exists a protocol that 

can (i) ensure the atomicity property under censorship attacks, 

(ii) progress CCTE services even in the presence of withholding 

attacks, and (iii) offer substantially higher efficiency, regarding 

the metrics of communication, computation, memory and la-

tency, than the CCTE protocol in [3]?  

The CCDI scenario. There are two paradigms of CCDI pro-

tocols to support complex CCDI applications, e.g., social media 

and Esports. In the first paradigm, a BoB is introduced in an 

MBS, but its role is simplified to just forward or translate a 

CCDI request from the source BC to the target BC [12-20]. On 

this basis, the CCDI protocols facilitate direct state data verifi-

cation between BCs, which thus require each BC to store the 

block header of the others – this in turn compromises the inde-

pendence property of involved BCs.  

The second paradigm of CCDI protocols also rely on a BoB, 

but it assigns the BoB with enhanced abilities [21-30]. Specifi-

cally, the BoB in [24-26] can create SD items from its con-

nected BCs and execute any CCDI logic. The BoB can also is-

sue a statement (also known as a certificate [24-27] or a proof 

[28-30]) for a CCDI request and send it to relevant BCs. How-

ever, to verify the BoB’s statements, the BC needs to cache the 

extra information (e.g., block hashes of the BoB), which com-

promises the independence property of these BCs, thereby bur-

dening them with extra memory cost.  

Notably, the protocols of the two paradigms [12-30] execute 

 
2 The fungibility property ensures that token transfer transactions within a 

CCTE process are indistinguishable from standard token transfer transactions. 

the operations for the updates of SD items within a single BC – 

either a BoB or a target BC. With this design, the protocols can 

be censorship-resilient through selecting a censorship-resilient 

BC as the BoB or the target BC. However, these protocols still 

have two disadvantages. First, when a CCDI process operates 

under these protocols, it is still vulnerable to withholding at-

tacks. This is because these protocols can only roll back the 

whole operations of the CCDI process when withholding at-

tacks occurs, rather than further improving the quality of the 

atomicity property to prevent from denying CCDI services. 

Second, they hardly preserve the independence property of in-

volved BCs, as these BCs need to store information to validate 

other BCs’ proofs or BoBs’ statements.  

Based on the above analysis, we ask the second research 

question: whether there exists a protocol that can (i) progress 

CCDI services even in the presence of withholding attacks, (ii) 

preserve BCs’ independence, and (iii) offer higher efficiency, 

regarding the metrics of communication, computation, memory 

and latency, than the state-of-the-art CCDI protocols?  

B. Contributions of This Paper 

This study is devoted to providing solutions to the aforemen-

tioned two open research questions. The overarching contribu-

tion of this paper is to propose new protocols for enabling more 

secure and efficient data interoperability among multiple BCs. 

The contributions of this paper are 4-fold:  

1. To propose a new CCTE protocol. Compared with the 

CCTE protocol in [3], the proposed protocol has 4 advanta-

geous features: First, it does not need relay nodes. As a result, 

the protocol not only leads to a less memory cost compared with 

the protocol in [3] but also makes the CCTE process only in-

volve two token transfer transactions, one less than the protocol 

in [3]. Second, the two token transfer transactions are executed 

in parallel, offering greater efficiency compared with the proto-

col in [3] that requires sequential execution of the three token 

transfer transactions. Third, unlike the protocol in [3] which as-

sumes a 1:1 exchange rate for different token types, or the pro-

tocols [5-10] that assume pre-decided exchange rates, the pro-

posed protocol is based on an Automatic Market Maker mech-

anism [32] and the cross-chain token claim scheme [11] with 

some modifications – with this design, the protocol can be used 

to provide practical exchange rates without compromising the 

BCs’ independence. Last, it can complete all token transfer 

transactions even in the presence of censorship and withholding 

attacks; in contrast, the protocol in [3] needs to roll back all 

CCTE operations to preserve its atomicity property, leading to 

the denial of CCDI services.  

2. To propose a new CCDI protocol. It only costs three trans-

action execution phases to complete a CCDI process, and our 

solution is optimal compared with the current protocols [12-30]. 

Specifically, after locking all SD items involved in a CCDI pro-

cess (Phase 1), their metadata are submitted to a BoB, and the 

BoB then executes the CCDI operations to update these 

metadata (Phase 2). The updated metadata is finally sent back 

to their BCs (Phase 3). Since storing and updating metadata is 
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more computationally efficient than creating a SD item in a BC, 

this design is more lightweighted than the widely adopted “mint 

or claim”-based mechanisms [33, 34].  

Furthermore, we propose a threshold-signature-based “trans-

fer and in place data update” mechanism and integrate it into 

the CCDI protocol. The mechanism preserves each participat-

ing BC’s independence and offers more efficient performance 

than the “lock and claim” mechanisms [33, 34]. Specifically, all 

BoB nodes collectively create an account represented by a 

threshold public key, and the account is registered on each par-

ticipating BC. At the start of a CCDI process, the relevant SD 

items in a BC are transferred to the account for locking opera-

tion. Once the BoB yields updated metadata, the updated 

metadata plus a threshold signature [35] are submitted back to 

the BC. The BC verifies the signature and updates the locked 

SD items according to the updated metadata. Since the thresh-

old public key of the account can verify the signature, no exter-

nal data (e.g., BoB’s or other BCs’ root hashes) are required, 

thereby retaining each BC’s independence. Moreover, a trans-

action containing a single threshold signature can simultane-

ously update multiple SD items in a BC, which further boosts 

the efficiency of the CCDI protocol.  

As another critical part of the proposed protocol, a state-data 

migration scheme and a malicious user nodes elimination 

scheme are proposed and integrated into the CCDI protocol. 

The former scheme enables a user to migrate its SD item from 

a censorship-prone BC to a censorship-resilient BC without 

compromising either BC’s independence. The latter scheme 

identifies the users that launch withholding attacks. By elimi-

nating the identified users, SD items of honest users can be fur-

ther updated, instead of rolling back all operations involved in 

a CCDI process to preserve atomicity property.  

3. To establish an analysis framework to prove the proposed 

CCTE and CCDI protocols satisfy the 3 properties that are out-

lined in [31] as necessary properties of a cross-chain protocol, 

i.e., atomicity, isolation and durability3. Besides these three 

properties, we also prove the proposed CCTE protocol is with 

the fungibility and script-minimum properties4. The fungibility 

property is essential for mitigating censorship attacks, while the 

script-minimum property enhances the compatibility of a CCTE 

protocol by enabling BCs that do not support smart contracts to 

participate in the CCTE process.  

4. To implement the proposed protocols on Ganache [36] and 

Remix-IDE Ethereum [37]. Comprehensive case studies are 

conducted to evaluate the protocols by comparing with the dis-

tinguished protocols [3, 10, 26, 28]. The evaluation results 

demonstrate that the proposed protocols are with lower commu-

nication, computation, memory and latency cost.  

The rest of this paper is organized as follows. Section II in-

troduces some basic concepts related to this research. Section 

III provides an overview of the proposed protocols. Technical 

details of the proposed CCTE and CCDI protocols are presented 

in Sections IV and V, respectively. Simulation is reported in 

 
3 The isolation property ensures that transactions that are executed concur-

rently do not affect each other. The durability property ensures that a transaction 

can only be executed if the last transaction has correctly completed and has 

Section VI, followed by a review of related work in Section VII. 

Section VIII concludes the paper and discusses possible future 

work. 

II. BASIC CONCEPTS 

This section introduces some basic concepts that are prelim-

inaries of understanding the proposed protocols. 

A. Blockchain  

A BC [1] is a distributed ledger comprising a sequence of 

blocks, where each block cryptographically links to its prede-

cessor. A BC could be associated with the independence prop-

erty defined below.  

Independence property: For a BC with a set of verification 

nodes 𝒱. The independence property of the BC holds if every 

node 𝑣 ∈ 𝒱 only stores the state data of the BC and does not 

store the state data of any other BCs.  

B. Consensus Protocols 

A consensus protocol [38] refers to as a set of instructions 

executed by a BC’s nodes to achieve agreement on a block of 

transactions. A secure consensus protocol is considered to have 

safeness and liveness properties at the same time [1]. The safe-

ness property ensures all transactions are correctly executed and 

are executed in a globally consistent order. The liveness prop-

erty ensures that all the valid transactions submitted to a BC 

will eventually be stored into the BC.  

The consensus protocols can be generally divided into deter-

ministic protocols and probabilistic protocols [39]. With deter-

ministic consensus protocols, once a block is generated, the 

transactions within it become immutable. In contrast, according 

to the common prefix property [40], probabilistic protocols en-

sure that once a block is extended by a sufficient number of 

subsequent blocks, transactions included in this block becomes 

immutable with high probability. 

C. Smart Contracts 

A smart contract is a code container deployed in BCs, which 

contains deterministic algorithms [41]. The execution of a smart 

contract can be represented as:  

𝑆𝑠𝑐
𝑛𝑒𝑤 ← 𝑆𝐶(𝑆𝑠𝑐 , 𝑇𝑥𝑠(𝑆𝐷, 𝑝𝑎𝑟𝑎𝑚𝑠))                   (1) 

where 𝑆𝐶(⋅) denotes the smart contract; 𝑆𝑠𝑐 is the current state 

information of 𝑆𝐶(⋅); 𝑇𝑥𝑠(𝑆𝐷, 𝑝𝑎𝑟𝑎𝑚𝑠) represents the trans-

actions which invoke 𝑆𝐶(⋅), and each transaction contains state 

data 𝑆𝐷 and necessary parameters (denoted as 𝑝𝑎𝑟𝑎𝑚𝑠), e.g., 

signatures; 𝑆𝑠𝑐
𝑛𝑒𝑤 is the output generated by the smart contract, 

e.g., the updated state of 𝑆𝐶(⋅). The equation of (1) represents 

a state transition of 𝑆𝐶(⋅) from 𝑆𝑠𝑐 to 𝑆𝑠𝑐
𝑛𝑒𝑤. 

D. Cross-Chain Data Interoperability Protocol 

A CCDI protocol defines a set of executable instructions. Ex-

ecution of a CCDI protocol will lead to a state transition of all 

the BCs involved in a CCDI process. A CCDI process defined 

by a CCDI protocol includes the following elements: 

produced permanent result.  
4  The script-minimum property ensures that only signature verification 

scripts are required to execute token transfer transactions. 
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(i) A set of BCs 𝓑 = {𝐵𝐶1, 𝐵𝐶2, … } and a group of users 

𝓤 = {𝑈1, 𝑈2, … } . Both are considered as participants of the 

CCDI process. 

(ii) A list of transactions to be executed denoted as 𝓣 =
{𝑇𝑥1, 𝑇𝑥2, … }. Each transaction in 𝓣 is generated by a specific 

user from 𝓤 and it will be executed in a specific BC from 𝓑. 

(iii) Execution phases of the CCDI process, denoted as 𝓟 =
{𝑃1, 𝑃2, … }. The phases are executed in a sequential manner, 

and each phase involves the execution of one or more transac-

tions. To execute a phase, all the transactions involved can be 

concurrently executed. 

E. Merkle Proofs 

A Merkle proof [16] certifies the existence of a transaction in 

a block. Key operations for Merkle proofs include:  

(i) 𝐺𝑒𝑛𝑝𝑟𝑜𝑜𝑓 (𝑇𝑥 , 𝐵𝐻 ). It means the creation of a Merkle 

proof for a transaction 𝑇𝑥 in a block with its block header 𝐵𝐻.  

(ii) 𝑉𝑎𝑙𝑝𝑟𝑜𝑜𝑓(𝑃, 𝑇𝑥, 𝑅𝐵𝐻). It represents the verification of a 

Merkle proof 𝑃. 𝑅𝐵𝐻 is a root hash of a block header 𝐵𝐻. The 

verification operation returns true if 𝑇𝑥 is in the block with a 

header of 𝐵𝐻; it returns false otherwise.  

F. Threshold Signature 

A threshold signature (TS) [35] is used to certify that a mes-

sage 𝑚 is agreed by a group of nodes. Consider a blockchain 

comprising 𝑀 = 3𝑓 + 1 nodes, where 𝑓 is the number of Byz-

antine consensus nodes. If 𝑚 is valid, each node independently 

signs 𝑚 to generate a TS share. A TS is then constructed by 

combining at least 2𝑓 + 1 distinct TS shares generated by dif-

ferent nodes. Finally, the validity of the resulting TS is verified 

using a threshold public key.  

III. SYSTEM AND THREAT MODELS, ASSUMPTIONS AND GOALS 

This section provides an overview of the system to which the 

proposed protocols apply, together with the threat models, as-

sumptions and design goals of the protocols. 

A. System Model 

Our system model is based on a blockchain and blockchains-

based multi-blockchains system (BoBMBS). A BoBMBS con-

sists of a BC acting as a BoB and multiple BCs (called the ex-

ternal BCs). We denote the number of external BCs in a 

BoBMBS as 𝑁 and denote the external BCs as 𝐵𝐶𝑖 , 𝑖 ∈ [𝑁], 

where [𝑁] is short for the set {1,2, … , 𝑁}. For 𝐵𝐶𝑖 or the BoB, 

it progresses in consecutive epochs, with the 𝑒𝑖 -th or 𝑒𝐵 -th 

epoch indexed by 𝑒𝑖 or 𝑒𝐵 (𝑒𝑖 ∈ ℕ, 𝑒𝐵 ∈ ℕ). At the end of each 

epoch, a block is generated in a BC. All BCs in the system op-

erate under the semi-synchronous network model [38] and the 

adaptive corruption model [39]. In semi-synchronous networks, 

there exists an unknown time duration 𝛥 on message delivery 

delays, so a block generation time is not fixed. In the adaptive 

corruption model, an adversary may, at any time point during 

the execution of a consensus protocol, corrupt up to 𝑓 consen-

sus nodes in a BC.  

B. Threat Model 

Two attack scenarios (i.e., censorship attacks and 

withholding attacks) are considered in the BoBMBS system, 

aiming to deny CCDI services or make a CCDI protocol violate 

its atomicity property.  

Censorship attacks. In a normal case, a transaction 𝑇𝑥 sent 

to a blockchain 𝐵𝐶𝑖 (𝑖 ∈ [𝑁]) in epoch 𝑒𝑖 is immutably stored 

in 𝐵𝐶𝑖 in epoch 𝑒𝑖 + 𝜅𝑖 + 1, where 𝜅𝑖 ≥ 0 is a parameter of the 

common prefix property [40] of 𝐵𝐶𝑖. A censorship attack de-

lays the immutable inclusion of 𝑇𝑥 in 𝐵𝐶𝑖  to epoch 𝑒𝑖 + 𝜅𝑖 +
1 + 𝐷𝑖 , where 𝐷𝑖  is a finite positive integer.  

Withholding attacks. In a CCDI protocol, a normal case is 

that the user node participating in a CCDI process should send 

its transaction 𝑇𝑥 to a specified BC (see Section II-D) before a 

deadline defined by a CCDI protocol. A withhold attack occurs 

when the user node either submits 𝑇𝑥 after this deadline or fails 

to submit it throughout the CCDI process.  

C. Protocols Assumption and Design Goals 

Assumptions. The proposed CCDI protocols work in the 

BoBMBS. The following assumptions are applied to ensure the 

security of the protocols:  

(i) A deterministic consensus protocol is used in the BoB.  

(ii) The consensus nodes in the BoB store both the BoB’s 

state data and the latest 𝜅𝑖 block headers of 𝐵𝐶𝑖 (𝑖 ∈ [𝑁]).  
(iii) Every BC and the BoB in the BoBMBS hold the safeness 

and liveness properties.  

(iv) The BoB and some BCs in the BoBMBS are censorship-

resilient due to their protocols’ design [41-43].  

Goals. It is expected that the proposed protocols can achieve 

the following the following design goals:  

The independence property of each external BC in the 

BoBMBS is preserved when these BCs involve in the CCDI 

processes defined by the proposed protocols.  

The protocols hold the atomicity, isolation, and durability 

properties. These properties are defined as follows:   

Atomicity: In a CCDI process, the states of all the partici-

pants either successfully transit to new states or remain un-

changed. Note that the atomicity property does not apply to the 

changes of a participant’s state that is caused by the operations 

unrelated to the CCDI process.  

Isolation: In a phase of the CCDI process when multiple 

transactions need to be concurrently executed, each transaction 

must be executed independently.  

Durability: When a transaction 𝑇𝑥1  must be executed in 

prior to another transaction 𝑇𝑥2, the change of the BoBMBS’s 

state caused by 𝑇𝑥1 must be permanently and immutably stored 

in the corresponding BC before executing 𝑇𝑥2. 

Besides the above properties, the proposed CCTE protocol 

(see Section IV) holds two additional properties: 

Fungibility: For observers except for transaction formation 

agents, token receivers and the BoB, they cannot distinguish a 

token transfer transaction in a CCTE and a standard 
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tokentransfer transaction5.  

Script-minimum: An external BC only needs signature ver-

ification scripts to participate in a CCTE process.  

IV. CROSS-CHAIN TOKEN EXCHANGE PROTOCOL 

The proposed CCTE protocol (denoted as Π𝐶𝐶𝑇𝐸) is designed 

for CCTE (atomic swaps) scenarios where a sender intends to 

use its tokens of type 𝑇𝑜𝑘𝑒𝑛𝑖 to exchange for a receiver’s 𝑥𝑗 

tokens of type 𝑇𝑜𝑘𝑒𝑛𝑗 , and these two types of tokens circulate 

on 𝐵𝐶𝑖  and 𝐵𝐶𝑗 , respectively. The CCTE process defined in 

Π𝐶𝐶𝑇𝐸  involves 5 basic transactions and 5 participants. The 

transactions include a cross-chain transaction (CCT), two na-

tive transactions (denoted as 𝑁𝑇𝑠  and 𝑁𝑇𝑟 ), and two proof 

transactions (denoted as 𝑃𝑇𝑠 and 𝑃𝑇𝑟). The participants include 

a sender, a receiver, the two blockchains 𝐵𝐶𝑖 and 𝐵𝐶𝑗, and the 

BoB. In some situations, an additional cross-chain transaction 

𝐶𝐶𝑇𝑉 and at most two fraud-proof transactions (each denoted 

as 𝑇𝐹𝑃) (see Phase 3 of this section) will be needed. The type of 

the token circulating in the BoB is denoted as 𝑇𝑜𝑘𝑒𝑛𝐵 .  

As illustrated in Fig. 1, the CCTE process comprises of 3 

phases: firstly, the sender sends the CCT to the BoB for activat-

ing the CCTE process. Secondly, the sender sends the native 

transaction 𝑁𝑇𝑠 to 𝐵𝐶𝑖 and the BoB for transferring its tokens 

with type 𝑇𝑜𝑘𝑒𝑛𝑖 to the receiver’s address in 𝐵𝐶𝑖; in the same 

time, the receiver sends the native transaction 𝑁𝑇𝑟 to 𝐵𝐶𝑗 and 

the BoB for transferring its tokens with type 𝑇𝑜𝑘𝑒𝑛𝑗  to the 

sender’s address in 𝐵𝐶𝑗. Phase 3 will be executed for security 

purposes, in which the proof transactions 𝑃𝑇𝑠 and 𝑃𝑇𝑟  will be 

sent to the BoB. The transaction execution logics are supported 

by four smart contracts deployed in the BoB. Table I provides 

a brief description on their functionalities, while their roles will 

be explained later in this section. 

A. Workflow of 𝛱𝐶𝐶𝑇𝐸 

The overall procedure of CCTE is shown in Algorithm 1. To 

defend against censorship and withholding attacks, before the 

CCTE process, the sender and the receiver need to deposit a cer-

tain amount of 𝑇𝑜𝑘𝑒𝑛𝐵  (denoted the amounts as 𝑥𝑠,𝐵  and 𝑥𝑟,𝐵 , 

respectively) in the BoB through the smart contract 𝑆𝐶𝐷 (ln 01). 

The CCTE process is performed with the three phases:  

Phase 1: The sender generates a cross-chain transaction CCT 

and sends it to the BoB to invoke the smart contract 𝑆𝐶𝑇 (ln 02). 

𝑆𝐶𝑇  requests two exchange rates 𝐸𝑖,𝑗  and 𝐸𝐵,𝑗  from the smart 

contract 𝑆𝐶𝐴𝑀𝑀 (ln 03), where 𝐸𝑖,𝑗 is the exchange rate between 

𝑇𝑜𝑘𝑒𝑛𝑖  and 𝑇𝑜𝑘𝑒𝑛𝑗  and 𝐸𝐵,𝑗  is the exchange rate between 

𝑇𝑜𝑘𝑒𝑛𝐵  and 𝑇𝑜𝑘𝑒𝑛𝑗 . These two rates are determined following 

an exchange rate determination scheme, which will be elaborated 

in Section IV-B. Based on the exchange rates, 𝑆𝐶𝑇 calculates the 

amount of 𝑇𝑜𝑘𝑒𝑛𝑖  or 𝑇𝑜𝑘𝑒𝑛𝐵 needed for exchanging 𝑥𝑗 𝑇𝑜𝑘𝑒𝑛𝑗  

(ln 04).  

To validate the cross-chain transaction CCT, the smart contract 

𝑆𝐶𝑇  checks whether the sender and the receiver have enough 

 
5 The standard token transfer transaction contains the sender’s and the re-

ceiver’s public keys, the sender’s signature, the token’s type and the amount to 

be transferred. 

deposits of 𝑇𝑜𝑘𝑒𝑛𝐵 by invoking the smart contract 𝑆𝐶𝐷 (ln 05). 

If the sender or the receiver does not have enough deposits, the 

CCT is discarded, which can prevent participators from launch-

ing withholding attacks afterwards (ln 09). If they have, 𝑆𝐶𝑇 gen-

erates two instructions 𝐼𝑁𝑠 and 𝐼𝑁𝑟  (lns 06 and 07): 𝐼𝑁𝑠 is for the 

sender to transfer 𝑥𝑖 𝑇𝑜𝑘𝑒𝑛𝑖  to the receiver in 𝐵𝐶𝑖; 𝐼𝑁𝑟  is for the 

receiver to transfer 𝑥𝑗  𝑇𝑜𝑘𝑒𝑛𝑗  to the sender in 𝐵𝐶𝑗 . Aiming at 

quickly terminating the CCTE process, 𝑆𝐶𝑇 sets a deadline be-

fore which proof transactions on 𝐼𝑁𝑠 and 𝐼𝑁𝑟  must be included 

to the BoB (ln 08). 

Phase 2. The sender and the receiver generate native transac-

tions 𝑁𝑇𝑠(𝐼𝑁𝑠) and 𝑁𝑇𝑟(𝐼𝑁𝑟) for the two instructions 𝐼𝑁𝑠  and 

𝐼𝑁𝑟 , respectively. They send 𝑁𝑇𝑠(𝐼𝑁𝑠)  and 𝑁𝑇𝑟(𝐼𝑁𝑟)  to 𝐵𝐶𝑖 

and 𝐵𝐶𝑗, respectively. In the meantime, they send 𝑁𝑇𝑠(𝐼𝑁𝑠) and 

𝑁𝑇𝑟(𝐼𝑁𝑟) to the BoB for censorship and withholding resistance 

purposes (lns 10 and 11), as the two sending operations enable 

the consensus nodes in the BoB to submit 𝑁𝑇𝑠(𝐼𝑁𝑠)  and 

𝑁𝑇𝑟(𝐼𝑁𝑟) to corresponding BCs. If the sender and the receiver 

are honest and no attack exists, the CCTE process terminates at 

the end of Phase 2; otherwise, Phase 3 is needed: 

Phase 3. If the native transactions 𝑁𝑇𝑠(𝐼𝑁𝑠) and 𝑁𝑇𝑟(𝐼𝑁𝑟) 

are stored in the corresponding BCs, the sender and the receiver 

generate Merkle proofs 𝑃𝑠  and 𝑃𝑟  for 𝑁𝑇𝑠(𝐼𝑁𝑠) and 𝑁𝑇𝑟(𝐼𝑁𝑟), 

respectively (lns 12 and 13). Each Merkle proof and the corre-

sponding native transaction are packaged into a proof transaction. 

The proof transactions are sent to the BoB to invoke the smart 

contract 𝑆𝐶𝑀𝑃𝑉  (lns 14 and 15). 𝑆𝐶𝑀𝑃𝑉  validates the received 

proofs and records the valid Merkle proofs (lns 16-18). Then, 

there are two situations to confirm the CCT:  

Situation 1: If 𝑆𝐶𝑀𝑃𝑉 receives the two valid proofs, the CCTE 

process completes (lns 19 and 20).  

 

Fig. 1 The transactions of Π𝐶𝐶𝑇𝐸  in each phase. 

TABLE I 

Smart Contracts Used in Π𝐶𝐶𝑇𝐸  

 

Notation Functionality 

𝑆𝐶𝐷 Lock 𝑇𝑜𝑘𝑒𝑛𝐵  

𝑆𝐶𝑇  Execute cross-chain transactions  

𝑆𝐶𝐴𝑀𝑀 Calculate exchange rates  

𝑆𝐶𝑀𝑃𝑉  Validate received Merkle proofs 
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Situation 2: If one or both valid proofs fail to be recorded in 

𝑆𝐶𝑀𝑃𝑉  by the deadline defined in ln 08, a transaction 𝐶𝐶𝑇𝑉  is 

then generated by a node of the BoB to invoke 𝑆𝐶𝑀𝑃𝑉 (lns 21 and 

22). 𝑆𝐶𝑀𝑃𝑉 then checks whether the situation defined in ln 21 is 

true (ln 24). If it is false, 𝐶𝐶𝑇𝑉 is discarded (ln 30). Otherwise, 

the following 3 sub-situations may happen:   

Sub-situation 1: If either 𝑁𝑇𝑠(𝐼𝑁𝑠) or 𝑁𝑇𝑟(𝐼𝑁𝑟) fails to ap-

pear in the BoB by its deadline (ln 08) due to withholding attacks, 

𝑆𝐶𝑀𝑃𝑉  transfers the sender’s (or the receiver’s) deposited tokens 

with type of 𝑇𝑜𝑘𝑒𝑛𝐵  to the counterparty’s account in the BoB 

and the CCTE process completes (ln 24 or ln 25).  

Sub-situation 2: If 𝑁𝑇𝑠(𝐼𝑁𝑠) (or 𝑁𝑇𝑟(𝐼𝑁𝑟)) is recorded in the 

BoB, 𝑓 + 1  pre-defined consensus nodes of the BoB obtain 

𝑁𝑇𝑠(𝐼𝑁𝑠)  (or 𝑁𝑇𝑟(𝐼𝑁𝑟) ) and sends it to 𝐵𝐶𝑖  (or 𝐵𝐶𝑗 ). If 

𝑁𝑇𝑠(𝐼𝑁𝑠)  (or 𝑁𝑇𝑟(𝐼𝑁𝑟) ) is stored in 𝐵𝐶𝑖  (or 𝐵𝐶𝑗 ), the 𝑓 + 1 

consensus nodes generate its proof transaction (ln 14 or ln 15) 

and send it to the BoB for further execution (ln 26 or ln 27). 

Sub-situation 3: Before 𝑁𝑇𝑠(𝐼𝑁𝑠) (or 𝑁𝑇𝑟(𝐼𝑁𝑟)) is stored in 

𝐵𝐶𝑖 (or 𝐵𝐶𝑗), if any of the 𝑓 + 1 nodes finds that the balance of 

the sender’s 𝑇𝑜𝑘𝑒𝑛𝑖 (or the receiver’s 𝑇𝑜𝑘𝑒𝑛𝑗) on 𝐵𝐶𝑖 (or 𝐵𝐶𝑗) 

falls below 𝑥𝑖 (or 𝑥𝑗), it generates a fraud-proof transaction 𝑇𝐹𝑃  

with a Merkle proof and send 𝑇𝐹𝑃  to the BoB (ln 28 or ln 29).  

B. Token Exchange Rate Determination Scheme 

We design a Token exchange rate determination scheme to en-

able the smart contract 𝑆𝐶𝐴𝑀𝑀  to promptly determine the ex-

change rates between two types of tokens circulating in the 

BoBMBS. The scheme comprises two components: an Auto-

mated Market Maker (AMM) and a Cross-chain Token Claim 

Protocol (Π𝐶𝐶𝑇𝐶). We will present the two components first, fol-

lowed by the procedure of the token exchange rate determination 

scheme. 

Automated Market Maker. AMM uses a Liquidity Pool 

(LP) and mathematical algorithms to calculate exchange rate(s) 

between two types of tokens in a BC. The LP is deployed in the 

BoB, and it can be considered as a marketplace for token pro-

viders to save different types of tokens. For illustration, AMM 

considers the Balancer protocol [32] to calculate the exchange 

rate. For simplicity, we assume that there are 𝑁 types of tokens 

in the system, where each BC has one type of token. During the 

initiation of the LP, the AMM assigns a pre-defined weight to 

each token type (denoted as 𝑤𝑖 , 𝑖 ∈ [𝑁]) with a condition of 

∑ 𝑤𝑖
𝑁
𝑖=1 = 1. It then determines the exchange rate between two 

different types of tokens as:   

𝐸𝑖,𝑗 =
𝐵𝑗

𝐵𝑖
×

𝑤𝑖

𝑤𝑗
                                    (2) 

where 𝐸𝑖,𝑗 is the exchange rate between 𝑇𝑜𝑘𝑒𝑛𝑖  and 𝑇𝑜𝑘𝑒𝑛𝑗; 𝐵𝑖  

and 𝐵𝑗  are the quantity of the two types of tokens in the LP. 𝐵𝑖  

and 𝐵𝑗  will be quantified in the LP based on the cross-chain token 

claim protocol (denoted as Π𝐶𝐶𝑇𝐶): 

Cross-chain token claim protocol. Based on the token ex-

change rates generated from the AMM, Π𝐶𝐶𝑇𝐶  is designed to fa-

cilitate a token provider to save a specific type of token from 

the corresponding external BC to the LP. Π𝐶𝐶𝑇𝐶  is based on the 

cross-chain token claim scheme in [11] with modifications. 

Considering a token provider intends to save 𝑥 tokens with the 

type of 𝑇𝑜𝑘𝑒𝑛∗ to the LP, the protocol works as follows:  

(i) The BoB validating nodes jointly create a threshold public 

key-based address [35] in each external BC 𝐵𝐶𝑖. Denote the ad-

dress as 𝑇𝑃𝐾_𝐴𝑑𝑑𝑟𝑖 , 𝑖 ∈ [𝑁].  
(ii) The token provider sends the 𝑥 tokens with the type of 

𝑇𝑜𝑘𝑒𝑛∗ to an address 𝑇𝑃𝐾_𝐴𝑑𝑑𝑟∗ for locking operation. 

Algorithm 1 CCTE Procedures 

Notations 

∗= 𝑖 or 𝑗; 𝑒∗: 𝐵𝐶∗’s epoch index in which CCT is sent to the BoB; 𝑃𝐾𝑠,𝑖, 𝑃𝐾𝑠,𝑗 

and 𝑃𝐾𝑠,𝐵 : IDs of the senders in 𝐵𝐶𝑖 , 𝐵𝐶𝑗  and the BoB, respectively; 𝑃𝐾𝑟,𝑖 , 

𝑃𝐾𝑟,𝑗 and 𝑃𝐾𝑟,𝐵: IDs of the receiver in 𝐵𝐶𝑖, 𝐵𝐶𝑗 and the BoB, respectively; 𝜅̅: 

the secure parameter (𝜅̅ ≥ 2); 𝑀𝑎𝑥(): a function returning the largest value 

among the inputted values; 𝑀𝑖𝑛() : a function returning the smallest value 

among the inputted values; 𝐵𝐻∗
𝑒∗′: the header of 𝐵𝐶∗’s block generated in epoch 

𝑒∗′; 𝑅(𝐵𝐻∗
𝑒∗′): the root hash of 𝐵𝐻∗

𝑒∗′. 𝐹𝑃: the fraud-proof generated by consen-

sus nodes of the BoB. 𝑒∗
𝑐: the current epoch index of 𝐵𝐶∗. 𝑥𝑠,𝑖: the number of 

𝑇𝑜𝑘𝑒𝑛𝑖 in the sender’s account in 𝐵𝐶𝑖; 𝑥𝑠,𝑗: the number of 𝑇𝑜𝑘𝑒𝑛𝑗 in the re-

ceiver’s account in 𝐵𝐶𝑗 . 

CCTE instance: exchange for 𝑥𝑗  𝑇𝑜𝑘𝑒𝑛𝑗  using tokens with type 𝑇𝑜𝑘𝑒𝑛𝑖. 

01 𝑆𝐶𝐷: 𝑃𝐾𝑠,𝐵 =[𝑇𝑜𝑘𝑒𝑛𝐵: 𝑥𝑠,𝐵]; 𝑃𝐾𝑟,𝐵 =[𝑇𝑜𝑘𝑒𝑛𝐵: 𝑥𝑟,𝐵] 

Phase 1 – One cross-chain transaction execution 

02 
𝑃𝐾𝑠,𝐵 → 𝐶𝐶𝑇(𝐵𝐶𝑖,𝐵𝐶𝑗 , 𝑃𝐾𝑠,𝑖 , 𝑃𝐾𝑠,𝑗,𝑃𝐾𝑟,𝑖 , 𝑃𝐾𝑟,𝑗,𝑃𝐾𝑟,𝐵, 𝑥𝑗 , 

𝑇𝑜𝑘𝑒𝑛𝑖 , 𝑇𝑜𝑘𝑒𝑛𝑗 , 𝑆𝐶𝑇) → BoB 

03 𝐸𝑖,𝑗 = 𝐶𝐴𝑀𝑀(𝑇𝑜𝑘𝑒𝑛𝑖 , 𝑇𝑜𝑘𝑒𝑛𝑗); 𝐸𝐵,𝑗 = 𝑆𝐶𝐴𝑀𝑀(𝑇𝑜𝑘𝑒𝑛𝐵, 𝑇𝑜𝑘𝑒𝑛𝑗) 

04 𝑥𝑖 = 𝑥𝑗/𝐸𝑖,𝑗; 𝑥𝐵 = 𝑥𝑗/𝐸𝐵,𝑗 

05  𝑆𝐶𝑇 → 𝑆𝐶𝐷: if 𝑥𝑠,𝐵 > 𝜅̅ × 𝑥𝐵 and 𝑥𝑟,𝐵 > 𝜅̅ × 𝑥𝐵: 

06   𝑆𝐶𝑇: 𝐼𝑁𝑠 =(From: 𝑃𝐾𝑠,𝑖 , To: 𝑃𝐾𝑟,𝑖, Transfer: 𝑥𝑖 𝑇𝑜𝑘𝑒𝑛𝑖) 

07   𝐼𝑁𝑟 =(From: 𝑃𝐾𝑟,𝑗, To: 𝑃𝐾𝑠,𝑗, Transfer: 𝑥𝑗 𝑇𝑜𝑘𝑒𝑛𝑗) 

08   
𝑀𝑎𝑥(𝑒𝑖 + 𝜅̅ + 𝜅𝑖 , 𝑒𝑗 + 𝜅̅ + 𝜅𝑗); 𝑒∗ + 𝜅̅: the epoch index of 𝐵𝐶∗ 

when 𝐶𝐶𝑇 is stored 

09  Else: discard 𝐶𝐶𝑇 of ln 02 and terminate 

Phase 2 – Two native transactions execution concurrently 

10 Sender: 𝑃𝐾𝑠,𝑖 → 𝑁𝑇𝑠(𝐼𝑁𝑠) → 𝐵𝐶𝑖 and BoB 

11 Receiver: 𝑃𝐾𝑟,𝑗 → 𝑁𝑇𝑟(𝐼𝑁𝑟) → 𝐵𝐶𝑗 and BoB 

Phase 3 – Two proof transactions execution concurrently 

12 𝑃𝑠 = 𝐺𝑒𝑛𝑝𝑟𝑜𝑜𝑓(𝑁𝑇𝑠(𝐼𝑁𝑠), 𝐵𝐻𝑖
𝑒𝑖′)  

13 𝑃𝑟 = 𝐺𝑒𝑛𝑝𝑟𝑜𝑜𝑓(𝑁𝑇𝑟(𝐼𝑁𝑟), 𝐵𝐻
𝑗

𝑒𝑗′)  

14 𝑃𝑇𝑠(𝑃𝑠, 𝑁𝑇𝑠(𝐼𝑁𝑠), 𝑅(𝐵𝐻𝑖
𝑒𝑖′), 𝑆𝐶𝑀𝑃𝑉) → BoB  

15 𝑃𝑇𝑟(𝑃𝑟, 𝑁𝑇𝑟(𝐼𝑁𝑟), 𝑅(𝐵𝐻
𝑗

𝑒𝑗), 𝑆𝐶𝑀𝑃𝑉) → BoB 

16 
𝑆𝐶𝑀𝑃𝑉: (i) 𝐶𝐶𝑇 ∈ 𝑆𝐶𝑇;(ii) 𝑒∗

′ > 𝑒∗ + 𝜅̅; (iii) 𝑉𝑎𝑙𝑝𝑟𝑜𝑜𝑓(𝑃, 𝑁𝑇, 𝑅(𝐵𝐻∗
𝑒∗′)) 

If true is returned for all the three checking operations: 

17  𝑃 ∈ 𝑆𝐶𝑀𝑃𝑉  

18 Else: discard 𝑃 

19 Situation 1: If (𝑃𝑠, 𝑃𝑟) ∈ 𝑆𝐶𝑀𝑃𝑉   

20  𝑆𝐶𝑀𝑃𝑉: Confirm 𝐶𝐶𝑇 of ln 02  

21 
Situation 2: If 𝑃𝑠 and/or 𝑃𝑟 ∉ 𝑆𝐶𝑀𝑃𝑉 and 

𝑀𝑖𝑛(𝑒𝑖
𝑐 , 𝑒𝑗

𝑐) ≥ 𝑀𝑎𝑥(𝑒𝑖 + 𝜅̅ + 𝜅𝑖 , 𝑒𝑗 + 𝜅̅ + 𝜅𝑗)  

22  The nodes of the BoB: 𝐶𝐶𝑇𝑉(𝑆𝐶𝑀𝑃𝑉) → BoB 

23  𝑆𝐶𝑀𝑃𝑉: execute ln 21; if true is returned, lns 24-29; else: ln 30 

24   
Sub-situation 1: If 𝑁𝑇𝑠(𝐼𝑁𝑠) ∉ 𝐵𝑜𝐵 : 𝑆𝐶𝑀𝑃𝑉:  (From: 𝑃𝐾𝑠,𝐵 , To: 

𝑃𝐾𝑟,𝐵, Transfer: 𝑥𝐵 𝑇𝑜𝑘𝑒𝑛𝐵), confirm 𝐶𝐶𝑇 of ln 02  

25   
Sub-situation 1: If 𝑁𝑇𝑟(𝐼𝑁𝑟) ∉ 𝐵𝑜𝐵 : 𝑆𝐶𝑀𝑃𝑉:  (From: 𝑃𝐾𝑟,𝐵 , To: 

𝑃𝐾𝑠,𝐵, Transfer: 𝑥𝐵 𝑇𝑜𝑘𝑒𝑛𝐵), confirm 𝐶𝐶𝑇 of ln 02   

26   Sub-situation 2: If 𝑁𝑇𝑠(𝐼𝑁𝑠) ∈ 𝐵𝑜𝐵: execute ln 14 and invoke ln 19 

27   Sub-situation 2: If 𝑁𝑇𝑟(𝐼𝑁𝑟) ∈ 𝐵𝑜𝐵: execute ln 15 and invoke ln 19 

28   Sub-situation 3: If 𝑥𝑠,𝑖 < 𝑥𝑖: generate  𝑇𝐹𝑃 to invoke lns 16 and 24  

29   Sub-situation 3: If 𝑥𝑟,𝑖 < 𝑥𝑗: generate  𝑇𝐹𝑃 to invoke lns 16 and 25 

30  𝑆𝐶𝑀𝑃𝑉: Discard 𝐶𝐶𝑇𝑉(𝑆𝐶𝑀𝑃𝑉) 

*Note: For simplicity, the signatures contained in the transactions are omitted. 

This applies to the rest of this paper. 
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(iii) The token provider generates a Merkle proof for the to-

ken transfer operation in (ii). Based on the proof, 𝑆𝐶𝑀 mints 𝑥 

𝑡𝑜𝑘𝑒𝑛∗ in the BoB and transfers the minted tokens to the token 

provider’s address in the BoB.  

(iv) The token provider transfers the 𝑥 𝑇𝑜𝑘𝑒𝑛∗ from its ad-

dress in the BoB to the AMM smart contract 𝑆𝐶𝐴𝑀𝑀.  

Procedure of token exchange rate determination. With 

Π𝐶𝐶𝑇𝐶 , any types of tokens from an external BC can circulate in 

the BoB. The token exchange rate is determined via 3 steps: 

(i) Smart contract deployment. The AMM is implemented in 

𝑆𝐶𝐴𝑀𝑀 that is deployed in the BoB. There are two data struc-

tures in the LP of 𝑆𝐶𝐴𝑀𝑀: 𝐋𝐏𝑉 and 𝐋𝐏𝐾𝑉. 𝐋𝐏𝑉 stores N pre-de-

fined weighting values, one for a type of token. 𝐋𝐏𝐾𝑉 stores N 

key-value pairs. For each pair, the key is the ID of a specific 

token type, and the value is the number of tokens with this type.  

(ii) Initialize the LP. 𝑆𝐶𝐴𝑀𝑀 invokes a function (denoted as 

ℱ𝑉𝐼) to initialize the N weights in 𝐋𝐏𝑉:  

(𝑤1, … , 𝑤𝑁) = ℱ𝑉𝐼(𝑇𝑜𝑘𝑒𝑛1, … , 𝑇𝑜𝑘𝑒𝑛𝑁)        (3) 

(iii) Determination of the token exchange rate. Token provid-

ers contribute their claimed tokens to 𝑆𝐶𝐴𝑀𝑀. 𝑆𝐶𝐴𝑀𝑀 stores the 

key-value pairs of the tokens into 𝐋𝐏𝐾𝑉 . Once 𝐋𝐏𝑉  and 𝐋𝐏𝐾𝑉 

are constructed, (2) can be applied to calculate the exchange 

rate between any two types of tokens. 

C. Security Analysis 

This section is devoted to analyzing the security of the pro-

posed CCTE protocol. The analysis is represented by the fol-

lowing theorems:   

Theorem 1. For the CCTE process defined in Π𝐶𝐶𝑇𝐸 , the in-

dependence and the script-minimum properties of each partic-

ipating 𝐵𝐶𝑖 (𝑖 ∈ [𝑁]) in the BoBMBS can be preserved. 

Proof. Consider an arbitrary participating 𝐵𝐶𝑖  (𝑖 ∈ [𝑁]). In 

the second phase of the CCTE process, a token transfer trans-

action 𝑁𝑇𝑠 will be executed in 𝐵𝐶𝑖. To execute 𝑁𝑇𝑠, 𝐵𝐶𝑖 only 

need to check whether the sender of 𝑁𝑇𝑠 has sufficient tokens, 

which does not need the external state data. Thus, the independ-

ence property is held by 𝐵𝐶𝑖. Since the execution of the trans-

action 𝑁𝑇𝑠 only requires 𝐵𝐶𝑖 to have the scripts for validating 

the signature in 𝑁𝑇𝑠, the script-minimum property is also pre-

served.                                                                           

Theorem 2. Under the corruption and network models de-

fined in Section III-A, if every participating 𝐵𝐶𝑖 (𝑖 ∈ [𝑁]) and 

the BoB holds the safeness and liveness properties, Π𝐶𝐶𝑇𝐸  will 

preserve the atomicity, isolation, durability properties.  

Proof. For the atomicity property: the CCTE process has two 

state transitions: (a) the sender consumes 𝑥𝑖  𝑇𝑜𝑘𝑒𝑛𝑖  (or 𝑥𝐵 

𝑇𝑜𝑘𝑒𝑛𝐵) and obtains 𝑥𝑗 𝑇𝑜𝑘𝑒𝑛𝑗  (or 𝑥𝐵 𝑇𝑜𝑘𝑒𝑛𝐵). And (b) the 

receiver obtains 𝑥𝑖  𝑇𝑜𝑘𝑒𝑛𝑖  (or 𝑥𝐵  𝑇𝑜𝑘𝑒𝑛𝐵 ) and consumes 𝑥𝑗 

𝑇𝑜𝑘𝑒𝑛𝑗  (or 𝑥𝐵 𝑇𝑜𝑘𝑒𝑛𝐵). There are three situations:  

(i) Situation 1 – the CCT is invalid. In this situation, the CCT 

will be discarded and the CCTE process will terminate without 

any state transition (see lns 05 and 09 of Algorithm 1).  

(ii) Situation 2 – the CCT is valid, and both the sender and 

the receiver are honest. Once the CCT is validated to be valid, 

two instructions (i.e., 𝐼𝑁𝑠 and 𝐼𝑁𝑟  in Algorithm 1) will be gen-

erated. Also, the honest sender and the honest receiver will send 

𝑁𝑇𝑠  and 𝑁𝑇𝑟  to 𝐵𝐶𝑖  and 𝐵𝐶𝑗 , respectively. In the meantime, 

since 𝑁𝑇𝑠 and 𝑁𝑇𝑟 are also sent to the BoB before the deadline 

defined in Algorithm 1 (see ln 08), at least one of the 𝑓 + 1 

nodes in the BoB will submit 𝑁𝑇𝑠  and 𝑁𝑇𝑟  to corresponding 

BCs. According to the liveness property, even if censorship at-

tack is launched, 𝑁𝑇𝑠  and 𝑁𝑇𝑟  are guaranteed to be stored in 

corresponding BCs. As a result, successful state transitions will 

be achieved. However, if at least one participator (the sender 

and/or receiver) is malicious, it may launch a withholding at-

tack (see lns 24 and/or 25 of Algorithm 1), or the balance in its 

account may not enough (see lns 28 and/or 29 of Algorithm 1). 

Then, Situation 3 will be triggered: 

(iii) Situation 3 – the CCT is valid, and the sender and/or the 

receiver are malicious. According to lns 21-29 of Algorithm 1, 

each missed native transaction or proof transaction (due to with-

holding attacks), or the presence of valid fraud-proof transac-

tions (due to the insufficient balance) will lead to a transfer of 

𝑇𝑜𝑘𝑒𝑛𝐵  for completing the unfinished token transfer opera-

tions. Thus, the state transition will be successful. As a result, 

the atomicity property is preserved. 

Regarding the isolation property: the two native transactions 

will be executed concurrently in 𝐵𝐶𝑖  and 𝐵𝐶𝑗 , while the two 

proof transactions 𝑃𝑇𝑠 and 𝑃𝑇𝑟  will be executed concurrently in 

the BoB. Due to the independence of 𝐵𝐶𝑖 and 𝐵𝐶𝑗, each is una-

ware of the other's native transaction execution. Similarly, the 

execution of 𝑃𝑇𝑠 and 𝑃𝑇𝑟  in the BoB is independent – that is, 

the verification and execution of 𝑃𝑇𝑠 do not require any infor-

mation from 𝑃𝑇𝑟 , and vice versa. Therefore, the isolation prop-

erty is preserved.  

To ensure the durability property, (i) the native transaction 

(such as 𝑁𝑇𝑠 ) can only be executed after the CCT has been 

stored in the BoB and (ii) the proof transaction (such as 𝑃𝑇𝑠) 

can only be executed after the native transaction 𝑁𝑇𝑠 are stored 

in 𝐵𝐶𝑖.  

To ensure (i), if 𝑁𝑇𝑠 is stored in 𝐵𝐶𝑖 before the CCT has been 

stored in the BoB, i.e., 𝑒𝑖
′ ≤ 𝑒𝑖 + 𝜅̅ (see ln 16 of Algorithm 1), 

𝑃𝑇𝑠 will be discarded according to ln 18 of Algorithm 1. To en-

sure (ii), lns 06 and 18 also guarantee that if 𝑁𝑇𝑠 is not stored 

in 𝐵𝐶𝑖  (i.e., 𝑉𝑎𝑙𝑝𝑟𝑜𝑜𝑓(𝑃𝑠, 𝑁𝑇𝑠, 𝑅(𝐵𝐻𝑖
𝑒𝑖′) ≠ 1), 𝑃𝑇𝑠  will be dis-

carded according to ln 18 of Algorithm 1.  

When 𝐶𝐶𝑇𝑉 is required to be sent to the BoB (see ln 22 of 

Algorithm 1), to ensure the durability property, 𝐶𝐶𝑇𝑉 can only 

be executed after the deadline defined in ln 08 of Algorithm 1. 

The checking operation in ln 21 guarantees that if 𝐶𝐶𝑇𝑉 is sent 

to the BoB before the deadline, it will be discarded.  

When a fraud transaction containing a Merkle proof is sent 

to the BoB (see lns 28 and 29 of Algorithm 1), the BoB will 

verify that whether the Merkle proof can attest that the corre-

sponding native transaction (𝑁𝑇𝑠 or 𝑁𝑇𝑟) failed to be stored on 

its target BC because the on-chain balance of its sender’s ac-

count fell below the required threshold. As a result, the fraud-

proof transaction can only be executed when the Merkle proof 

is valid. Therefore, every transaction in Π𝐶𝐶𝑇𝐸  is executed fol-

lowing the criteria defined in the durability property.          

Theorem 3. every native transaction in the CCTE process 

defined by Π𝐶𝐶𝑇𝐸  preserves the fungibility property. 
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Proof. In each external BC, only native transactions that carry 

token transfer instructions will be executed. Since the instruc-

tions include only the sender’ and the receiver’s IDs, the token 

type and the token transfer amount, they cannot be distin-

guished from standard token transfer transactions. Therefore, 

the fungibility property is preserved.                                

V. CROSS-CHAIN DATA INTEROPERABILITY PROTOCOL 

The proposed cross-chain data interoperability CCDI proto-

col Π𝐶𝐶𝐷𝐼  operates under the BoBMBS including the BoB and 

𝑁 external blockchains BCs and defines a more generic CCDI 

process 𝒫𝐶𝐶𝐷𝐼 . Without loss of generality, we consider that 𝑋 

user nodes register to participate in 𝒫𝐶𝐶𝐷𝐼 . Each user node has 

a unique state data item, and the 𝑥-th (𝑥 ∈ [𝑋]) user node (de-

noted as 𝑈𝑥 ) is from 𝐵𝐶𝑖 , where 𝑖 ≡ 𝑥mod𝑁 . Additionally, 

Π𝐶𝐶𝐷𝐼  defines that each BC configures a relay group that com-

prises of (𝑓 + 1) relay nodes randomly selected from the 𝑀 

consensus nodes in the BoB. Π𝐶𝐶𝐷𝐼  further defines 3 smart con-

tracts for 𝒫𝐶𝐶𝐷𝐼 . 𝑆𝐶𝐶  and 𝑆𝐶ℱ  are deployed in the BoB, and 

𝑆𝐶𝐵𝐺  is deployed in every external blockchain 𝐵𝐶𝑖  (𝑖 ∈ [𝑁]). 

Their functionalities are shown in Table II.  

To illustrate a concrete CCDI application, we take battle 

games as an example. A battle game includes a Player versus 

Player (PvP) instance, which represents the scenario that two 

players battle with each other. A player uses a unique state data 

item representing its game character, which includes a role 

name, an attack value, and an experience value. In a PvP, a 

player’s score is the sum of its character’s attack and experience 

values. The player with a higher score will win the battle. These 

logics of battle games will be coded in the smart contracts 𝑆𝐶𝐵𝐺  

and 𝑆𝐶ℱ . In the following, we further present two building 

blocks of the CCDI protocol Π𝐶𝐶𝐷𝐼 . 

A. Two Building Blocks of 𝛱𝐶𝐶𝐷𝐼  

The first building block is an abstract CCDI application smart 

contract 𝑆𝐶ℱ that can host any types of CCDI applications. In 

this paper, 𝑆𝐶ℱ  deploys the logic of battle games. To invoke 

𝑆𝐶ℱ , a set of state data items’ metadata (denoted as 

{𝑆𝐷1 , … , 𝑆𝐷𝑥 , … } ) inputs into 𝑆𝐶ℱ  which outputs a new set 

{𝑆𝐷1
𝑛𝑒𝑤 , … , 𝑆𝐷𝑥

𝑛𝑒𝑤 , … } according to the logic of battle games:  

{𝑆𝐷1
𝑛𝑒𝑤 , … , 𝑆𝐷𝑥

𝑛𝑒𝑤 , … } = 𝑆𝐶ℱ(𝑆𝐷1, … , 𝑆𝐷𝑥 , … )        (4) 

where {𝑆𝐷1
𝑛𝑒𝑤 , … , 𝑆𝐷𝑥

𝑛𝑒𝑤 , … }  is the updated versions of 

{𝑆𝐷1 , … , 𝑆𝐷𝑥 , … }. Since 𝑆𝐶ℱ only consumes metadata, the data 

format unification mechanisms [22, 28] can be applied to the 

received metadata, harmonizing their data formats before sub-

mitting them to 𝑆𝐶ℱ . Upon outputting the updated metadata, 

they can be converted back to their original data formats. 

The second building block is a threshold-signature-based 

“transfer and in place data update” mechanism. Specifically, the 

nodes of the BoB collectively generate a threshold public key 

𝑃𝐾, and the 𝑖-th group generates an account using 𝑃𝐾 in the 

blockchain 𝐵𝐶𝑖 (𝑖 ∈ [𝑁]). The smart contract 𝑆𝐶𝐵𝐺  then grants 

𝑃𝐾 the ability to update the state data items that 𝑃𝐾 possesses. 

Thus, 𝑃𝐾 now can invoke 𝑆𝐶𝐵𝐺  to update its state data items. 

The details of the “transfer and in place data update” mecha-

nism are as below.  

When a user node 𝑈𝑥 in the blockchain 𝐵𝐶𝑖 registers to par-

ticipate in a CCDI process 𝒫𝐶𝐶𝐷𝐼 , it first sends its state data item 

(denoted as 𝑆𝐷𝑥) to the threshold public key 𝑃𝐾, which acts as 

the locking operation. When 𝑆𝐷𝑥 is updated in the BoB through 

the smart contract 𝑆𝐶ℱ, the nodes in the BoB generate a trans-

action containing a threshold signature 𝑇𝑆 and the updated 𝑆𝐷𝑥 

(denoted as 𝑆𝐷𝑥
𝑛𝑒𝑤). The transaction is then sent to 𝐵𝐶𝑖 to in-

voke smart contract 𝑆𝐶𝐵𝐺 . If 𝑃𝐾 in 𝑆𝐶𝐵𝐺  validates 𝑇𝑆, 𝑆𝐷𝑥  is 

updated to 𝑆𝐷𝑥
𝑛𝑒𝑤 in 𝐵𝐶𝑖 and sent back to 𝑈𝑥’s account.  

Next, we present the details of the protocol Π𝐶𝐶𝐷𝐼  (as shown 

in Fig. 2) as below.  

B. Phase 1 – Preparation 

Let the CCDI process be initiated at the beginning of the Bo 

B’s epoch indexed by 𝑒𝐵 and a deadline is set to be the end of 

the epoch 𝑒𝐵 + 𝜅 × 𝑀𝑎𝑥(𝜅𝑖), (𝑖 ∈ [𝑁]), where 𝜅  is a secure 

parameter to ensure that every external blockchain 𝐵𝐶𝑖  has 

passed 𝜅𝑖 epochs since the beginning of epoch 𝑒𝐵. In epoch 𝑒𝐵, 

every user node 𝑈𝑥  (𝑥 ∈ [𝑋]) then sends a native transaction 

𝑇𝑟𝑎𝑛𝑠𝑈𝑥  to the threshold public key 𝑃𝐾 in 𝐵𝐶𝑖:  

𝑇𝑟𝑎𝑛𝑠𝑈𝑥 =< 𝑆𝐷𝑥 , 𝑃𝐾𝑥
𝑖 , 𝑃𝐾, 𝑆𝐶𝐵𝐺 >                     (5) 

where 𝑃𝐾𝑥
𝑖  represents the account address of 𝑈𝑥  in 𝐵𝐶𝑖 . 𝐵𝐶𝑖 

 

Fig. 3 Flowchart of 𝒫𝐶𝐶𝐷𝐼 . 

 

Fig. 2 The transactions of Π𝐶𝐶𝐷𝐼  in each phase. 

TABLE II 

Smart Contracts Used in Π𝐶𝐶𝐷𝐼  

 

Notation Functionality 

𝑆𝐶𝐵𝐺  Deploy battle games, create and update state data items 

𝑆𝐶𝐶  Validate cross-chain transactions  

𝑆𝐶ℱ  Implement CCDI applications  

 

 Phase 1 
Native transactions execution:

Transferring SD items in corresponding BCs

If X SD items are 

transferred  

Case 1: X SD items are

updated in the BoB

If Y SD items are  

transferred  (Y<X)

Case 2: Y SD items are 

Updated in the BoB

Case 1*: X (Y) transferred SD 

items are updated in BCs

Case 2*: X-Y SD items 

are unlocked in BCs

 Phase 2 

 Phase 3 

Ux  Phase 1 

 Phase 2   

 BCi  BCi Phase 3  

      Ux 

(BoB nodes)  BoB

Native 

transaction 

TransSi

 (BoB nodes)

 BCi
 Phase 3  

Native 

transaction 

Trans*Rx

 (BoB nodes)

Native 

transaction 

TransUx

Cross-chain 

transaction 

CCTUx



Manuscript for IEEE TIFS, by Teng et al.  

 

checks whether 𝑃𝐾𝑥
𝑖  owns the state data item 𝑆𝐷𝑥 . If not, 

𝑇𝑟𝑎𝑛𝑠𝑈𝑥  is discarded; otherwise, 𝐵𝐶𝑖 transfers 𝑆𝐷𝑥 to 𝑃𝐾 and 

creates a key-value pair < 𝐻(𝑇𝑟𝑎𝑛𝑠𝑈𝑥), (𝑆𝐷𝑥 , 𝑃𝐾𝑥
𝑖 ) > in the 

smart contract 𝑆𝐶𝐵𝐺 , where 𝐻(⋅) is a hash function.  

C. Phase 2 – Execution 

If 𝑇𝑟𝑎𝑛𝑠𝑈𝑥  is stored in 𝐵𝐶𝑖  before epoch 𝑒𝐵 + 𝜅 ×
𝑀𝑎𝑥(𝜅𝑖), a Merkle proof (denoted by 𝑃𝑥 ) and a cross-chain 

transaction (denoted as 𝐶𝐶𝑇𝑈𝑥) are generated:  

𝐶𝐶𝑇𝑈𝑥 =< 𝑇𝑟𝑎𝑛𝑠𝑈𝑥 , 𝐵𝐶𝑖 , 𝑃𝑥 , 𝑆𝐶𝐶 >                (6) 

The user node 𝑈𝑥 and the 𝑓 + 1 replay nodes in the 𝑖-th relay 

group (𝑖 ∈ [𝑁]) send 𝐶𝐶𝑇𝑈𝑥  to the BoB to invoke the smart 

contract 𝑆𝐶𝐶. After receiving 𝐶𝐶𝑇𝑈𝑥, 𝑆𝐶𝐶 checks whether it has 

stored the state data item 𝑆𝐷𝑥  that is contained in the 

𝑇𝑟𝑎𝑛𝑠𝑈𝑥 ’s field of 𝐶𝐶𝑇𝑈𝑥 . If yes, 𝐶𝐶𝑇𝑈𝑥  is discarded; other-

wise, 𝑆𝐶𝐶 checks:  

 Whether the index of the BoB’s current epoch (de-

noted as 𝑒𝐵
𝑐) satisfies: 𝑒𝐵

𝑐 < 𝑒𝐵 + 𝜅 × 𝑀𝑎𝑥(𝜅𝑖). 

 Whether 𝑃𝑥 can prove that 𝑇𝑟𝑎𝑛𝑠𝑈𝑥  has been immuta-

bly stored in 𝐵𝐶𝑖.  

If 𝐶𝐶𝑇𝑈𝑥 passes all the 2 checking operations, the state data 

item 𝑆𝐷𝑥  contained in the cross-chain transaction 𝐶𝐶𝑇𝑈𝑥  is 

stored in the smart contract 𝑆𝐶ℱ ; otherwise, 𝐶𝐶𝑇𝑈𝑥  is dis-

carded. As shown in Fig.3, 𝑆𝐶ℱ performs one of the two opera-

tions:  

Case 1: If all the 𝑋 cross-chain transactions are stored in the 

smart contract 𝑆𝐶ℱ  by epoch 𝑒𝐵 + 𝜅 × 𝑀𝑎𝑥(𝜅𝑖) , when 𝑆𝐶ℱ 

stores the 𝑋-th state data item, it updates the 𝑋 state data items 

according to (4) and the updated 𝑆𝐷𝑥 is denoted as 𝑆𝐷𝑥
𝑛𝑒𝑤 . For 

the set of 𝐶  updated state data items 𝑺𝑖 =
{𝑆𝐷𝑥1

𝑛𝑒𝑤 , … , 𝑆𝐷𝑥𝑐
𝑛𝑒𝑤 , … , 𝑆𝐷𝑥𝐶

𝑛𝑒𝑤}  from the blockchain 𝐵𝐶𝑖  (𝑐 ∈

[𝐶] and ∀𝑐, 𝑖 ≡ 𝑥𝑐mod𝑁), the 𝑀 nodes of the BoB produce the 

threshold signature 𝑇𝑆 for the set 𝑺𝑖.  

Case 2: If there are some state data items among the 𝑋 state 

data items not stored in the smart contract 𝑆𝐶ℱ by epoch 𝑒𝐵 +
𝜅 × 𝑀𝑎𝑥(𝜅𝑖) , 𝑆𝐶ℱ  identifies the number of the user nodes’ 

state data items that have been received before epoch 𝑒𝐵 +
𝜅 × 𝑀𝑎𝑥(𝜅𝑖) (denoted as 𝑌). If 𝑌 > 1, 𝑆𝐶ℱ updates the 𝑌 state 

data items through (4). For the set of 𝐷 updated state data items 

𝑺̅𝑖 = {𝑆𝐷𝑥1
𝑛𝑒𝑤 , … , 𝑆𝐷𝑥𝑑

𝑛𝑒𝑤 , … , 𝑆𝐷𝑥𝐷
𝑛𝑒𝑤}  from the blockchain 𝐵𝐶𝑖 

(𝑑 ∈ [𝐷] and ∀𝑑, 𝑖 ≡ 𝑥𝑑mod𝑁), the 𝑀 nodes of the BoB pro-

duce the threshold signature 𝑇𝑆 for the set 𝑺̅𝑖. If 𝑌 ≤ 1, the 𝑀 

nodes of the BoB produce a threshold signature for the only re-

ceived state data item.  

If a valid cross-chain transaction 𝐶𝐶𝑇𝑈𝑥 (𝑥 ∈ [𝑋]) is sent to 

the BoB after epoch 𝑒𝐵 + 𝜅 × 𝑀𝑎𝑥(𝜅𝑖) , the 𝑀  nodes of the 

BoB also produce 𝑇𝑆 for the state data item 𝑆𝐷𝑥 contained in 

𝐶𝐶𝑇𝑈𝑥, ensuring its unlocking during Phase 3 (see Case 2*).  

D. Phase 3 – Settlement 

The transferred state data items in Phase 1 are updated in 

their blockchains in this phase:  

Case 1*: If the set 𝑺𝑖 is generated in the BoB, a native trans-

action 𝑇𝑟𝑎𝑛𝑠𝑺𝑖
 is generated:   

𝑇𝑟𝑎𝑛𝑠𝑺𝑖
=< 𝑺𝑖 , 𝑇𝑆, 𝑺𝑥𝑐

, 𝑆𝐶𝐵𝐺 >                (7) 

where 𝑺𝑥𝑐
 is a set containing the 𝐶  hash values 

{𝐻(𝑇𝑟𝑎𝑛𝑠𝑈𝑥1
), … , 𝐻(𝑇𝑟𝑎𝑛𝑠𝑈𝑥𝐶

)}. After that, the 𝑓 + 1 replay 

nodes in the 𝑖-th group send 𝑇𝑟𝑎𝑛𝑠𝑺𝑖
 to the blockchain 𝐵𝐶𝑖 to 

invoke the smart contract 𝑆𝐶𝐵𝐺 . 𝑆𝐶𝐵𝐺  checks:  

• Whether it has the key value pairs < 𝐻(𝑇𝑟𝑎𝑛𝑠𝑈𝑥1
),

(𝑆𝐷𝑥1
, 𝑃𝐾𝑥1

𝑖 ) >, … , < 𝐻(𝑇𝑟𝑎𝑛𝑠𝑈𝑥𝐶
), (𝑆𝐷𝑥𝐶

, 𝑃𝐾𝑥𝐶
𝑖 ) >. 

• Whether the threshold public key 𝑃𝐾 validates 𝑇𝑆. 

If 𝑇𝑟𝑎𝑛𝑠𝑺𝑖
 passes all the two checking operations, 𝑇𝑟𝑎𝑛𝑠𝑆𝑖

 is 

regarded as valid; otherwise, 𝑇𝑟𝑎𝑛𝑠𝑆𝑖
 is discarded.  

If 𝑇𝑟𝑎𝑛𝑠𝑺𝑖
 is valid, 𝑃𝐾  invokes 𝑆𝐶𝐵𝐺  to update 𝑆𝐷𝑥𝑐

 to 

𝑆𝐷𝑥𝑐
𝑛𝑒𝑤  and sends 𝑆𝐷𝑥𝑐

𝑛𝑒𝑤  to the account address 𝑃𝐾𝑥𝑐
𝑖  ( 𝑐 ∈

[𝐶]). After that, 𝑆𝐶𝐵𝐺  deletes < 𝐻(𝑇𝑟𝑎𝑛𝑠𝑈𝑥𝑐
), (𝑆𝐷𝑥𝑐

, 𝑃𝐾𝑥𝑐
𝑖 ) >.  

The above procedures are also applied to 𝑺̅𝑖 in Case 2.  

Case 2*: To respond to a valid cross-chain transaction 

𝐶𝐶𝑇𝑈𝑥 in Case 2, a native transaction 𝑇𝑟𝑎𝑛𝑠𝑅𝑥
∗  is generated:   

𝑇𝑟𝑎𝑛𝑠𝑅𝑥
∗ =< 𝑆𝐷𝑥 , 𝑇𝑆, 𝐻(𝑇𝑟𝑎𝑛𝑠𝑈𝑥), 𝑆𝐶𝐵𝐺 >           (8) 

The procedures for 𝑇𝑟𝑎𝑛𝑠𝑺𝑖
 is then applied to 𝑇𝑟𝑎𝑛𝑠𝑅𝑥

∗  and 

𝑆𝐷𝑥 will be directly sent back to 𝑈𝑥’s account 𝑃𝐾𝑥
𝑖 .  

E. Attacks Resolution Mechanism 

According to Case 2, censorship and withholding attacks can 

cause that some state data items are updated while others are 

not updated, which compromises the atomicity property. To 

counter the two attacks, we propose an attacks-resolution mech-

anism which consists of S𝑆𝐷𝑀, a state-data migration scheme, 

and S𝑀𝑈𝐸 , a malicious user nodes elimination scheme. S𝑆𝐷𝑀 en-

ables a user node 𝑈𝑥 migrate its state data item 𝑆𝐷𝑥 in a censor-

ship-prone blockchain 𝐵𝐶𝑖 into other censorship-resilient BCs 

(such as 𝐵𝐶𝑗). Different to the state-of the-art “lock (or burn)-

to-claim” schemes that sacrifice the independence property of 

involved BCs during data migration processes, Π𝑆𝐷𝑀 achieves 

data migration while preserving the independence property of 

involved BCs through our “transfer and in place data update” 

design. On the other hand, S𝑀𝑈𝐸  eliminates the user nodes who 

deliberately withhold their native transactions in Phase 1 to 

make Case 2 happen. Moreover, S𝑀𝑈𝐸  determines the set of 

participators in the CCDI process at the end of Phase 2, allow-

ing Π𝐶𝐶𝐷𝐼  to update honest participators’ state data items with-

out sacrificing its atomicity property. The details of the two pro-

tocols are presented as follows. 

State-data migration scheme S𝑆𝐷𝑀 . The user node 𝑈𝑥  exe-

cutes (5) to lock its state data item 𝑆𝐷𝑥. At the same time, 𝑈𝑥 

creates an account in the blockchain 𝐵𝐶𝑗 (denoted as 𝑃𝐾𝑥
𝑗
) and 

generates a newly initialized state data item 𝑆𝐷𝑥
̅̅ ̅̅ ̅ , which is 

𝑆𝐷𝑥’s initial version. 𝑈𝑥 then executes (5) to lock 𝑆𝐷𝑥
̅̅ ̅̅ ̅. Once 

𝑆𝐷𝑥 and 𝑆𝐷𝑥
̅̅ ̅̅ ̅ are locked in 𝐵𝐶𝑖 and 𝐵𝐶𝑗, respectively, 𝑈𝑥 gen-

erates two cross-chain transactions according to (6) and sends 

them to the BoB. If the two transactions are valid, the 𝑀 nodes 

of the BoB collectively produce the threshold signature 𝑇𝑆𝑖  for 

the locked 𝑆𝐷𝑥 and 𝑇𝑆𝑗  for the locked 𝑆𝐷𝑥
̅̅ ̅̅ ̅. Finally, the 𝑓 + 1 

replay nodes in the 𝑖-th group sends the transaction defined in 

(7) to transit 𝑆𝐷𝑥 to 𝑆𝐷𝑥
̅̅ ̅̅ ̅ in 𝐵𝐶𝑖. In the meantime, the 𝑓 + 1 re-

play nodes in the 𝑗-th group sends the transaction defined in (7) 

to transit 𝑆𝐷𝑥
̅̅ ̅̅ ̅ to 𝑆𝐷𝑥 in 𝐵𝐶𝑗. 

Supported by the scheme S𝑆𝐷𝑀, all user nodes can migrate 
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their state data items to other censorship-resilient BCs, thereby 

mitigating the negative impacts of censorship attacks. 

Malicious user nodes elimination scheme S𝑀𝑈𝐸 . S𝑀𝑈𝐸  fur-

ther eliminates the user nodes who make Case 2 happen through 

withholding attacks. First, a deposit mechanism is adopted, 

which enforces that every user node needs to deposit a certain 

number of tokens in the BoB before registering to participating 

in a CCDI process 𝒫𝐶𝐶𝐷𝐼 . If a user node does not fulfill the de-

posit operations before the state of 𝒫𝐶𝐶𝐷𝐼 , the authority of the 

user in 𝒫𝐶𝐶𝐷𝐼  is canceled. Second, if Case 2 happens, the BoB 

identifies the user nodes who fail to store their state data items 

in the smart contract 𝑆𝐶ℱ before epoch 𝑒𝐵 + 𝜅 × 𝑀𝑎𝑥(𝜅𝑖). The 

accounts of the identified user nodes are then removed from the 

𝑋 registered user nodes, and the deposits of the identified user 

nodes are forfeited. Lastly, denoting the identified number of 

user nodes be 𝑋 − 𝑌, the remaining 𝑌 user nodes are authorized 

for the CCDI process 𝒫𝐶𝐶𝐷𝐼 .  

Under the above design of the scheme S𝑀𝑈𝐸 , the final author-

ized participators in 𝒫𝐶𝐶𝐷𝐼  can only be determined at the end of 

Phase 2. In this way, more user nodes are allowed to participate 

in 𝒫𝐶𝐶𝐷𝐼  at the beginning of 𝒫𝐶𝐶𝐷𝐼 , that aligns with complex 

cross-chain interaction applications in real-world scenarios. 

However, malicious user nodes can be identified and elimi-

nated, guaranteeing the completion of the CCDI service for the 

remaining user nodes.  

F. Security Analysis 

This section is devoted to analyzing the security of the pro-

posed CCDI protocol. The analysis is represented by the fol-

lowing theorems:  

Theorem 4. For the CCDI process 𝒫𝐶𝐶𝐷𝐼  defined in Π𝐶𝐶𝐷𝐼 , 

the independence property of each participating 𝐵𝐶𝑖 (𝑖 ∈ [𝑁]) 
in the BoBMBS is preserved.  

Proof. In 𝒫𝐶𝐶𝐷𝐼 , two types of native transactions are executed 

in 𝐵𝐶𝑖 (i.e., 𝑇𝑟𝑎𝑛𝑠𝑈𝑥  and 𝑇𝑟𝑎𝑛𝑠𝑺𝑖
/𝑇𝑟𝑎𝑛𝑠𝑅𝑥

∗ ):  

(i) Executing 𝑇𝑟𝑎𝑛𝑠𝑈𝑥  involves checking the ownership of 

𝑆𝐷𝑥. As 𝑆𝐷𝑥 is the state data item of 𝐵𝐶𝑖, the execution of this 

operation does not need the external state data.  

(ii) The execution of 𝑇𝑟𝑎𝑛𝑠𝑺𝑖
/ 𝑇𝑟𝑎𝑛𝑠𝑅𝑥

∗  involves the two 

checking operations and the “in place data update” operation. 

The two checking operations require to use the state data 𝑃𝐾 

and 𝑺𝑥𝑐
. To execute the “in place data update” operation, the 

state data, i.e., the locked 𝑆𝐷𝑥 , is required. Apparently, 𝑃𝐾 , 

𝑺𝑥𝑐
, and the locked 𝑆𝐷𝑥 are the state data of 𝑆𝐶𝐵𝐺 . Thus, the 

execution of 𝑇𝑟𝑎𝑛𝑠𝑺𝑖
/𝑇𝑟𝑎𝑛𝑠𝑅𝑥

∗  does not require any external 

state data except for that of 𝐵𝐶𝑖, and proof completes.             

Theorem 5. Under the corruption and network models de-

fined in Section III-A, if every external 𝐵𝐶𝑖 (𝑖 ∈ [𝑁]) and the 

BoB hold the safeness and liveness properties, by combing the 

attacks resolution mechanism, 𝛱𝐶𝐶𝐷𝐼  will hold the atomicity, 

isolation, durability properties. 

Proof. To demonstrate the atomicity property, we analyze the 

state transitions of {𝑆𝐷1, … , 𝑆𝐷𝑋} through different phases: 

At Phase 2, with the support of the 𝑓 + 1 relay nodes, as long 

as a state data item (e.g., 𝑆𝐷𝑥) is immutably stored in corre-

sponding blockchain (e.g., 𝐵𝐶𝑖 ) before epoch 𝑒𝐵 + 𝜅 ×

𝑀𝑎𝑥(𝜅𝑖), at least one of the 𝑓 + 1 relay nodes will send the 

corresponding cross-chain transaction (e.g., 𝐶𝐶𝑇𝑈𝑥) to the BoB. 

Therefore, there are three possible situations. 𝓢1 (i.e., Case 1): 

𝑋  state data items are stored in 𝑆𝐶ℱ  before epoch 𝑒𝐵 +
𝜅 × 𝑀𝑎𝑥(𝜅𝑖). 𝓢2 (i.e., Case 2): only 𝑌 (1< 𝑌 < 𝑋) state data 

items meet the deadline. 𝓢3 : only 𝑌  (1≥ 𝑌) state data items 

meet the deadline.  

At Phase 3, with the support of the 𝑓 + 1  selected relay 

nodes, at least one honest relay node will send valid native 

transactions to the blockchains for the updates of locked state 

data in Phase 1. Thus, there are three possible situations:  

𝓢4: all the honest nodes’ state data items are eventually up-

dated in corresponding blockchains. 

𝓢5: some of honest users’ state data items are updated to their 

new state versions, while the other honest users’ state data items 

are just unlocked and unchanged.  

𝓢6: all state data items are unlocked and unchanged.  

With the scheme S𝑆𝐷𝑀, every user node can move to the cen-

sorship-resilient blockchains. Therefore, honest user nodes can 

store their state data items in the smart contract 𝑆𝐶ℱ  before 

epoch 𝑒𝐵 + 𝜅 × 𝑀𝑎𝑥(𝜅𝑖) for sure, which can potentially elimi-

nate the situation of 𝓢6. Moreover, the malicious user nodes 

who withhold their native transactions in Phase 1 can be identi-

fied and eliminated by the scheme S𝑀𝑈𝐸 , and the pre-defined 𝑋 

user nodes for the CCDI process can be updated to the 𝑌 user 

nodes. As a result, the remaining honest users must be a part of 

the 𝑌 user nodes, making 𝓢5 unable to happen. Thus, only 𝓢4 

can happen and Π𝐶𝐶𝐷𝐼  holds the atomicity property.  

Regarding the isolation property, in Phase 1 and Phase 3, 

each involves the concurrent execution of 𝑋  native transac-

tions. Phase 2 involves the concurrent execution of 𝑋  cross-

chain transactions.  

In Phase 1, the native transactions are associated with the op-

erations of ownership checking for state data items and locking 

state data items. For the native transaction 𝑇𝑟𝑎𝑛𝑠𝑈𝑥, checking 

and locking 𝑈𝑥’s state data 𝑆𝐷𝑥 only needs to check 𝑈𝑥’s ac-

count information, that does not interfere with the execution of 

𝑇𝑟𝑎𝑛𝑠𝑈𝑦  (𝑥 ≠ 𝑦). 

In Phase 2, the execution of the cross-chain transactions in-

volves the two operations of checking time requirement and 

checking the validity of Merkle proofs. Firstly, checking the 

epoch index requirement is independent operation, as the epoch 

index used for checking will not be changed even if an epoch 

checking operation is conducted. Secondly, checking 𝐶𝐶𝑇𝑈𝑥’s 

Merkle proof does not rely on the information from 𝐶𝐶𝑇𝑈𝑦’s 

Merkle proof, and vice versa. As a result, the execution of 

𝐶𝐶𝑇𝑈𝑥 does not interfere with the execution of 𝐶𝐶𝑇𝑈𝑦.  

In Phase 3, the execution of 𝑇𝑟𝑎𝑛𝑠𝑺𝑖
/𝑇𝑟𝑎𝑛𝑠𝑅𝑥

∗  is associated 

with checking the validity of the received threshold signature, 

checking key value pairs, and performing “in place data update” 

operations. Firstly, checking the validity of the threshold signa-

ture 𝑇𝑆 or the key value pairs is an independent operation and 

cannot change any state after the checking operation. Secondly, 

updating 𝑆𝐷𝑥 does not interfere with burning 𝑆𝐷𝑦 , as they are 

different state data items. As a result, the execution of 𝑇𝑟𝑎𝑛𝑠𝑺𝑖
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or 𝑇𝑟𝑎𝑛𝑠𝑅𝑥
∗  does not interfere with the execution of 𝑇𝑟𝑎𝑛𝑠𝑺𝑗

 

with 𝑖 ≠ 𝑗.  

As for the durability property, Π𝐶𝐶𝐷𝐼  involves three orderly 

executed transactions: the cross-chain transaction 𝐶𝐶𝑇𝑈𝑥  can 

only be executed after the native transaction 𝑇𝑟𝑎𝑛𝑠𝑈𝑥 is stored 

in 𝐵𝐶𝑖 ; and the native transaction 𝑇𝑟𝑎𝑛𝑠𝑺𝑖
/𝑇𝑟𝑎𝑛𝑠𝑅𝑥

∗  can only 

be executed after 𝐶𝐶𝑇𝑈𝑥 is stored in the BoB. With the support 

of the Merkle proof scheme, if 𝑇𝑟𝑎𝑛𝑠𝑈𝑥  is not stored in 𝐵𝐶𝑖, its 

valid Merkle proof cannot be generated. As a result, the BoB 

will not execute 𝐶𝐶𝑇𝑈𝑥. Supported by the threshold signature 

scheme, if 𝐶𝐶𝑇𝑈𝑥 is not stored in the BoB, a valid threshold sig-

nature cannot be generated. As a result, 𝐵𝐶𝑖  will not execute 

𝑇𝑟𝑎𝑛𝑠𝑺𝑖
/𝑇𝑟𝑎𝑛𝑠𝑅𝑥

∗ .                                                  

VI. SIMULATION 

A. Simulation Setup 

For the simulation tool, Multiple Ethereum BCs (including 

the external BCs and the BoB) are created by Ganache [36]. We 

use Solidity scripts to code the smart contracts, which are de-

ployed and tested in Remix-IDE Ethereum [37]. Merkle tree 

and Merkle proofs are written by Python. The complete process 

to conduct the simulation are well-presented in [45].  

For the simulated parameters, the block generation time of 

the Ethereum BC, the size of a block header, a block and a nor-

mal token transfer transaction (without considering the field of 

a transaction’s signature with 48 bytes) are set to be 15 seconds, 

510 bytes, 8×104 bytes and 50 bytes, respectively. The above 

settings align with the setting of the real-world Ethereum BC 

[46]. Additionally, we use SHA-256 hash function (32 bytes for 

each hash value) and the Merkle proof depth is fixed at 5. The 

threshold signature scheme is instantiated over the BLS12-381 

pairing-friendly elliptic curve. The security parameter 𝜅𝑖  for 

𝐵𝐶𝑖 (∀𝑖 ∈ [𝑁]) is set to be 𝑘.  

The system is tested subjected to four metrics: 

(i) Communication overhead 𝐶𝑜𝑚𝑚𝑜 – the size of transac-

tions (in bytes) required for executing a CCDI process. 

(ii) Computation overhead 𝐶𝑜𝑚𝑝𝑜  – the computation (in 

gas) required for executing a CCDI process. 

(iii) Memory overhead 𝑀𝑜 – the memory (in bytes) required 

for executing a CCDI process. 

(iv) Latency 𝐿𝑜 – the time slot (in seconds) between the be-

ginning of a CCDI process and the state data items of honest 

user nodes involved in the CCDI process all being updated.  

B. Evaluation of 𝛱𝐶𝐶𝑇𝐸  without Attacks 

We test the execution of a CCTE process with the proposed 

Π𝐶𝐶𝑇𝐸  without considering attacks. The total communication is 

330 bytes, in which a cross-chain transaction with 230 bytes and 

two native transactions, each with 50 bytes, are included. The 

gas cost of the smart contracts is reported in Table III. The 

memory cost is k×510×N bytes, all undertaken by the BoB. 

When the external BCs use deterministic protocols, the latency 

of the CCTE process is 30 seconds (15 seconds are spent on the 

BoB and 15 seconds are on the BCs); when the protocols are 

probabilistic, the latency is 30+15×k seconds.   

We compare the proposed Π𝐶𝐶𝑇𝐸  and two existing CCTE 

schemes without considering attacks: a cryptocurrency ex-

change protocol (denoted as Π𝐷𝐶𝐸) [3] and an adaptor-signa-

ture-based protocol (denoted as Π𝐴𝑆 ) [10]. Fig. 4 shows the 

comparison of the communication cost under the 3 protocols. It 

shows that although the Π𝐴𝑆 protocol is with the least commu-

nication cost (consuming 100 bytes), the proposed protocol is 

also efficient, requiring only 330 bytes to process a CCTE pro-

cess. The communication cost of Π𝐷𝐶𝐸  is higher than that of 

Π𝐶𝐶𝑇𝐸  due to its requirement for 1 cross-chain transaction, 3 to-

ken transfer transactions and 2C validation transactions, where 

C is the number of committee nodes.  

As shown in Table III, Π𝐶𝐶𝑇𝐸  consumes 512,911 (470,911 

for a CCT and 42,000 for two token transfers) gas to execute a 

CCTE process, which is less than Π𝐷𝐶𝐸 (440,525+163,780*C) 

 

Fig.4 Communication cost comparison in CCTE. Both Π𝐶𝐶𝑇𝐸  

and Π𝐴𝑆 does not introduce the variance C.  

 

Fig.5 Memory cost comparison in CCTE under varying ex-

ternal BC numbers N and 𝑘. 

 

Fig.6 Latency cost in CCTE. “deterministic” and “probabil-

istic” denote the consensus types (see Section II-B). 
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gas [3], while higher than Π𝐴𝑆  (42,000 gas). Π𝐶𝐶𝑇𝐸  incurs 

higher gas costs than Π𝐴𝑆  because Π𝐴𝑆  executes CCTs off-

chain, while Π𝐶𝐶𝑇𝐸  executes CCTs on-chain. Since CCTs run 

within the BoB, this overhead can be eliminated by implement-

ing the BoB with a gas-free constructions [47, 48].  

Since Π𝐴𝑆 does not need a BoB, Fig. 5 only shows the com-

parison of the memory cost between Π𝐶𝐶𝑇𝐸  and Π𝐷𝐶𝐸 . Π𝐶𝐶𝑇𝐸  

requires the BoB nodes to store a minimum number (i.e., 𝑘) of 

block headers per external BC to verify Merkle proofs. In con-

trast, Π𝐷𝐶𝐸 requires the committee nodes of its BoB to store the 

latest 𝑘 blocks of the 𝑁 BCs, which results in higher memory 

cost especially when 𝑁 continually increases. As a result, our 

protocol provides a scalable solution for the implementation of 

the BoB, as every consensus node in the BoB only caches kilo-

bytes-level sized data for the verification tasks during CCTE 

processes. 

 
6https://ethresear.ch/t/bls-signatures-in-solidity/7919 

Fig. 6 shows the latency cost comparison under the 3 proto-

cols. Π𝐶𝐶𝑇𝐸  uses only 2 phases to complete the CCTE process, 

which is the same with that of Π𝐴𝑆. Moreover, when the BCs 

adopt probabilistic consensus protocols and 𝑘 = 2, our protocol 

𝛱𝐶𝐶𝑇𝐸 reduces its latency by 52% compared to Π𝐴𝑆. This is due 

to the parallelized design of 𝛱𝐶𝐶𝑇𝐸, enabling the token transfer 

transactions being concurrently executed in Phase 2. As a result, 

this parallelized design not only improves protocol latency but 

also eliminates the censorship attack surface that is originated 

from sequential token transfers in [3] and [10]. 

C. Evaluation of 𝛱𝐶𝐶𝑇𝐸 under Attacks 

Table IV summarizes the results of the four key metrics for 

the 3 protocols under the censorship and withholding attacks. 

In the worst-case (both sender and receiver malicious), 𝛱𝐶𝐶𝑇𝐸  

incurs 980 bytes per CCTE operation (including two extra 210-

byte proof transactions plus one extra 230-byte cross-chain 

transaction 𝐶𝐶𝑇𝑉 ). Consequently, its total gas consumption 

rises to 732,251 (219,340 gas attributable to those three trans-

actions) and its latency increases by one additional block inter-

val (from 30+15k seconds to 45+15k seconds). Its memory 

overhead, however, remains unchanged.  

Although extra cost is introduced, 𝛱𝐶𝐶𝑇𝐸  ensures its atomic-

ity property and completes the two token transfers. In contrast, 

Π𝐴𝑆 fails to hold the atomicity property under the attacks (see 

Section VII-A), while Π𝐷𝐶𝐸  rolls back all operations in the 

CCTE process. Thus, our protocol is more robust and practical 

under the adversarial scenarios. 

D. Evaluation of 𝛱𝐶𝐶𝐷𝐼 without Attacks 

By implementing battle games (see Section V) in 𝑆𝐶ℱ to act 

as the CCDI application, we compare the proposed Π𝐶𝐶𝐷𝐼  with 

other 2 protocols named as MAP [28] and PoS-Co [26]. For 

simplicity, we consider that each BC has ⌊𝑋/𝑁⌋ state data items 

participating in a CCDI process. The following results are de-

rived without considering attacks. Fig. 7 compares the commu-

nication cost of the 3 protocols. It can be seen that our proposed 

protocol Π𝐶𝐶𝐷𝐼  reduces communication cost by at least 35% 

compared to the two protocols. This is because that in Π𝐶𝐶𝐷𝐼 , 

only 2𝑋 transactions (see (5) and (6)) and 𝑁 native transactions 

(see (7)) are required for updating 𝑋 state data items. In con-

trast, PoS-Co requires 3𝑋+1 transactions to update 𝑋 state data 

items. MAP’s performance in communication cost is worst, as 

it requires 5𝑋 transactions to update 𝑋 state data items.   

Table V shows the gas consumption of the operations in-

volved in the 3 protocols. Building upon Table V, Fig. 8 shows 

the comparison results of gas cost under the 3 protocols. It can 

be observed that Π𝐶𝐶𝐷𝐼  reduces gas consumption by at least 

41% compared to the two protocols when 𝑋 = 120, 𝑁 = 40. 

Π𝐶𝐶𝐷𝐼 ’s gas efficiency stems from three key design choices. 

First, in Phase 2, Π𝐶𝐶𝐷𝐼  records only each state data item’s 

metadata in 𝑆𝐶ℱ, rather than minting and storing a state data 

item on the BoB. Table V shows that metadata storage requires 

far less gas than creating new state data items. Second, in phase 

3, a single threshold signature lets Π𝐶𝐶𝐷𝐼  update ⌊𝑋/𝑁⌋ state 

TABLE III: 

Smart Contracts Used in Π𝐶𝐶𝑇𝐸 . 

 

Notation Deployment gas cost Execution gas cost 

𝑆𝐶𝐷 2,901,508 - 

𝑆𝐶𝑇  1,561,365 428,991 

𝑆𝐶𝐴𝑀𝑀 7,610,008  - 

𝑆𝐶𝑀𝑃𝑉  1,270,187 39,167 

“-”means the gas cost of the smart contracts are covered by 𝑆𝐶𝑇. The 
gas costs of 𝑆𝐶𝑇 and 𝑆𝐶𝑀𝑃𝑉 are caused by executing a valid cross-
chain transaction and a valid proof transaction, respectively. 

TABLE IV 

Comparison on the Four Metrics of the Three Protocols in a 

CCTE Process under Attacks. 

 

Types 𝐶𝑜𝑚𝑚𝑜 𝐶𝑜𝑚𝑝𝑜 𝑀𝑜 𝐿𝑜 

𝛱𝐶𝐶𝑇𝐸  980 732,251 510kN 45+15k 

𝛱𝐷𝐶𝐸  
410+40C 

419,525+163,780C 
8kN×10
4 

45+15k 

𝛱𝐴𝑆  50  21,000 0 30+30k 

A Proof-of-Work transaction in [3] is set to be 40 bytes in this paper. 

TABLE V 

Gas Consumptions of Basic Operations  

 

Operation types (required protocols) Gas cost Price 

Lock a state data item (MAP and PoS-Co) 186,443 $3.7 

Transfer a state data item (Π𝐶𝐶𝐷𝐼) 59,963 $1.2 

Verify a MP (Π𝐶𝐶𝐷𝐼 and PoS-Co)  39,167 $0.8 

ZK-SNARK (MAP) 250,000 [28] $5 

Verify a time metric (all protocols) 20,533 $0.4 

Store a state data item (Π𝐶𝐶𝐷𝐼) 118,645  $2.4 

PvP battle games (all protocols) 63,779 $1.3 

Verify a TS (Π𝐶𝐶𝐷𝐼 and PoS-Co) 113,0006 $2.3 

Update a state data item (all protocols) 51,244 $1 

Mint a state data item (MAP and PoS-Co) 265,479 $5.3 

The price of ETH is considered as $2,000 in this calculation. 



Manuscript for IEEE TIFS, by Teng et al.  

 

data items in one BC at once, incurring a fixed gas cost of 

21,000+113,000+51,244𝑋/𝑁 units. In contrast, MAP and PoS-

Co needs one transaction to update one state data item. Third, 

Π𝐶𝐶𝐷𝐼  only needs 3 phases to complete a CCDI process, while 

MAP and PoS-Co need 5 and 4 phases to complete a CCDI pro-

cess, respectively. All the three merits make Π𝐶𝐶𝐷𝐼  $2,593 and 

$493 cheaper than MAP and PoS-Co, respectively, when 𝑋 =
120 and 𝑁 = 40. 

Fig. 9 shows the comparison results of memory cost. The 

memory cost of Π𝐶𝐶𝐷𝐼  is 𝑁 × 𝑘 × 510 bytes, which is the same 

as Π𝐶𝐶𝑇𝐸 , as the two protocols ensure that every BC holds the 

independence property. Notably, the 𝑁 × 𝑘 × 510  bytes 

memory costs are only consumed by the BoB of the other two 

protocols. However, as MAP and PoS-Co do not hold the inde-

pendence property, the BCs in their constructions consumes ad-

ditional memory costs. In MAP, each BC needs to store the last 

𝑘 block headers of the BoB and a set of validators’ public keys. 

PoS-Co is more efficient than MAP since each BC only requires 

updating a threshold public key within a certain number of 

epochs. However, for every CCDI application, each BC needs 

to store 𝑘 latest root hashes of the BoB. As a result, Π𝐶𝐶𝐷𝐼  re-

duces its memory burden by at least 12% compared to the two 

protocols when 𝑘 = 16, 𝑁 = 40. According to [46], storing 1 

kilobytes data consumes 640,000 gas, which makes Π𝐶𝐶𝑇𝐸  

$1,922 and $560 cheaper than MAP and PoS-Co, when 𝑁 =
40, 𝑘 = 16. 

Fig. 10 shows the comparison result of latency cost. Since 

Π𝐶𝐶𝐷𝐼  only consumes 3 phases to complete a CCDI process (see 

Section V), while MAP and PoS-Co require 5 and 4 phases, re-

spectively, Π𝐶𝐶𝐷𝐼  reduces its latency by at least 33% compared 

to other two protocols. The efficiency of Π𝐶𝐶𝐷𝐼  is due to the 

“transfer and in place data update” design, which enables direct 

updates on multiple locked state data items using a single trans-

action within a single phase. By reducing latency, Π𝐶𝐶𝐷𝐼  nar-

rows adversaries’ window for mounting attacks, thereby en-

hancing system’s robustness. 

E. Evaluation of 𝛱𝐶𝐶𝐷𝐼  under Attacks 

We evaluate the 3 protocols under both censorship and with-

holding attacks. Table VI summarizes the four key metrics for 

each protocol. As shown, Π𝐶𝐶𝐷𝐼  outperforms both MAP and 

PoS-Co across every metric. This efficiency arises from two 

core mechanisms. First, the state-data migration scheme (S𝑆𝐷𝑀) 

allows honest user nodes to mitigate their state data items to 

censorship-resilient BCs, completely neutralizing censorship 

attacks; by contrast, MAP and PoS-Co must resort to timeout-

based mechanisms to roll back an entire CCDI process for the 

preservation of their atomicity property. Second, the malicious 

user nodes elimination scheme (S𝑀𝑈𝐸 ) eliminates malicious 

user nodes and allows the remaining user nodes continue the 

current CCDI process. Consequently, even if these malicious 

user nodes launch withholding attacks, the state data items of 

the remaining honest user nodes are still updated, unlike MAP 

and PoS-Co that roll back all operations involved in the CCDI 

TABLE VI 

Comparison on the Four Metrics of the Three Protocols in a 

CCDI Process Under Attacks 

 

Types 𝐶𝑜𝑚𝑚𝑜 𝐶𝑜𝑚𝑝𝑜 𝑀𝑜 𝐿𝑜 

𝛱𝐶𝐶𝐷𝐼  
640Y

+80N 

416,032Y+63,77

9(Y-1)+134,000N 

510kN 45+15k 

MAP 
1824Y 

1,543,166Y 
510kN+(1,4

44+150k)N 

>75+30k 

PoS-Co 
996Y

+80N  

621,500Y+134,0

00N 

574kN+96

N 

>60+30k 

In the CCDI process, we consider 𝑋 − 𝑌  malicious user 
nodes who can launch withholding attacks. 

 

Fig.7 Communication comparison in CCDI under varying X 

and N.  

  

Fig.8 Gas comparison in CCDI under varying X and N (with-

out considering the data storage costs of MAP and PoS-Co 

for validating proofs). 

 

Fig.9 Memory comparison in CCDI under varying 𝑁 and 𝑘 

(considering 40 validators in MAP’s PoS consensus). 

 

Fig.10 Latency comparison in CCDI. “deterministic” and 

“probabilistic” denote the consensus types.  
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process.  

VII. RELATED WORK 

This section provides a review for the CCTE and CCDI pro-

tocols that are reported in the literature or implemented in real-

world applications. 

A. Protocols for Cross-Chain Token Exchange 

Time-lock-based protocols are actively studied for facilitat-

ing CCTE, with the Hash-Time-Lock Contract (HTLC) [5] be-

ing a pioneered model. Subsequent research is conducted to im-

prove the performance of HTLC. [8] improves HTLC’s latency 

from 𝑂(|𝑉|∆) to 𝑂(∆), where |𝑉| is the number of parties in-

volved in HTLC. [9] replaces time locks with attribute-verifia-

ble timed commitments, eliminating the need for specific time 

parameters (e.g., ∆). Recently, adaptor signature-enabled lock 

schemes (ASLSs) are widely investigated to improve the time 

and on-chain computation efficiency of HTLCs [7, 10]. ASLSs 

divide a CCTE process into three phases. In the first phase, 

CCTE participators generate the token transfer transactions and 

commit pre-adaptor signatures off-chains. In the second phase, 

a participator first makes its adaptor signature publicly availa-

ble and finish its token transfer transaction on-chain. In the third 

phase, the subsequent participators obtain secrets from the 

adaptor signature to fulfill their own token transfer transactions 

on-chain. As a result, only token transfer transactions are exe-

cuted on-chain, eliminating the need of on-chain locking oper-

ations.  

Despite the improvements achieved by ASLSs, the protocols 

are still prone to censorship attacks. Taking two parties’ CCTE 

as an example, once Alice finishes its token transfer transaction 

in BC2, its secret will be exposed to Bob which can use this 

secret to finish its token transfer transactions in BC1. However, 

Alice can spend its account balance at the time when it submits 

its token transfer transactions in BC2. If Alice can collude BC1 

to delay the token transfer transaction of Bob but to accelerate 

the execution of its own token transfer transaction, Alice can 

spend out its token balance in BC1, making Bob’s token transfer 

transaction unable to be executed.   

To defend against censorship attacks, [3] proposes a Decen-

tralized Cryptocurrency Exchange protocol Π𝐷𝐶𝐸 . Π𝐷𝐶𝐸  intro-

duces relays who need to deposit certain amount of tokens in a 

BoB, and defines a CCTE process including 4 phases: (i) a 

sender sends a CCTE request to the BoB; (ii) the sender trans-

fers coin1 to an relay R1 in BC1; (iii) if the transfer in (ii) is 

confirmed, an relay R2 transfers the equivalent amount of coin2 

to a receiver at BC2; (iv) if the transfer in (iii) is valid, R1 trans-

fers the equivalent amount of coin3 to R2 in the TP. While the 

relays and the deposit mechanism can effectively counter cen-

sorship attacks, Π𝐷𝐶𝐸 is inefficient as it needs additional mech-

anisms (e.g., Proof-of-Work adopt in [3]) to guarantee the trust-

worthy of relays. Moreover, under withholding attacks, Π𝐷𝐶𝐸 

can only roll back all operations involved in the CCTE process 

for the guarantee of the atomicity property, which provides an 

attack surface to deny CCTE services.  

Notary-based schemes [4, 21], sidechains [24-26] and Ora-

cle-based schemes [12, 14] can also support CCTE. However, 

these schemes are computationally inefficient and time-con-

suming when applied to CCTE. Although existing off-chain 

state-channel schemes [50, 51] can substantially boost through-

put by enabling multiple users to concurrently exchange tokens 

off-chain without the need of the on-chain consensus, they still 

compromise the independence of the blockchains involved in a 

CCTE process. Developing techniques to retain each chain’s in-

dependence in state-channel deployments therefore merits fur-

ther investigation.  

B. Protocols for Cross-Chain Data Interoperability 

CCDI applications often involve complex state data update 

logics, making BoBs play an indispensable role in the protocols 

facilitating cross-chain data interoperability.  

Some protocols [12-20] (e.g., IBC protocol) enable CCDI 

through direct message verification among BCs, with BoBs 

handling message transmission and data format translation. In 

these protocols, every BC needs to store information of other 

BCs (e.g., their block headers) for the verification of received 

cross-chain messages, which compromises the BCs’ independ-

ence and leads to 𝑂(𝑁2) memory complexity for 𝑁 participat-

ing BCs.  

Other protocols [12, 14], e.g., LayerZero [12], use oracles 

and relay nodes as third parties to relay data. Under this design, 

each BC does not need to store other BCs information; instead, 

each BC uses the information provided by oracles and relay 

nodes to validate cross-chain messages. However, to guarantee 

the trustworthy of oracles and relay nodes, multiple nodes need 

to provide information to defend against false data injection at-

tacks launched by Byzantine nodes, which in turns introduces 

significant communication cost.  

To reduce significant memory and communication burdens 

of the above protocols [12-20], the protocols belonging the sec-

ond paradigm (described in Section I-A) have been widely stud-

ied in academia [21-26, 28-30] and adopted in industry [27]. 

Among them, some protocols (such as MAP [28] and XCMP 

[27]) directly use a BoB to verify CCDI requests. In these pro-

tocols, a CCDI process comprises of 5 phases: (i) all CCDI re-

quests are sent to the BoB; (ii) the BoB’s statements for these 

requests are sent to a destination BC; (iii) the BC updates all 

state data items in the requests; (iv) the updated operations are 

validated in the BoB; and (v) all updated state data items are 

updated in their original BCs.  

In side-chain based schemes [24-26] (e.g., PoS-Co), a CCDI 

process consists of 4 phases: (i) the state data items are locked 

in the BCs; (ii) each locked state data item is created in the 

sidechain and the CCDI function is executed in the sidechain to 

update these state data items; (iii) the root hash of the these up-

dated state data items a generated, and a threshold signature is 

generated by signing the root hash; after that, the threshold sig-

nature and the root hash are sent to the BCs; and (iv) every user 

node sends its updated state data item with a Merkle proof to its 

BC for the update of its locked state data item.  

A drawback of the protocols in the second paradigm is that 

each BC needs to continually store some information for the 

verification of BoB’s statements and proofs. This in turns com-

promises the BCs’ independence and leads to a memory 
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complexity with the order of 𝑂(𝑁)  for 𝑁  participating BCs. 

Additionally, current protocols in the second paradigm are not 

optimal, as they need at least 4 phases to finish a CCDI process. 

Additional phases introduce more communication, computation 

and latency burdens, which in turns reduces their efficiency, 

hindering their applicability in real-world applications. Moreo-

ver, under withholding attacks, current CCDI protocols can 

only roll back all operations to safeguard their atomicity prop-

erty, which also provide chances for adversaries to launch de-

nial of service attacks on CCDI applications. 

VIII. CONCLUSIONS AND FUTURE WORK 

This paper proposes a CCTE protocol and a CCDI protocol 

to support cross-chain data interoperability. The CCTE protocol 

is designed for cross-chain token exchange. Besides be capable 

of preserving the independence of participating BCs, the CCTE 

protocol supports parallel execution of cross-chain token trans-

fer transactions, which leads to a significant latency reduction. 

Although the CCTE protocol incurs higher communication, 

computation, and memory costs compared to time-lock-based 

schemes [7, 10], the CCTE protocol can hold atomicity property 

and complete token exchanges even in the presence of with-

holding and censorship attacks. 

As for the proposed CCDI protocol, by designing the thresh-

old signature-based “transfer and in place data update” mecha-

nism, the proposed CCDI protocol securely achieves the state 

data updates without compromising the independence property 

of the participating BCs. Furthermore, with the threshold-sig-

nature-based “in place data update” operations, the CCDI pro-

tocol only spends one phase (i.e., one transaction execution 

time) to complete all the state data update in the participating 

BCs, which incurs the least latency cost compared to the state-

of-the-art protocols [12-30]. Moreover, the state-data migration 

scheme and the malicious user nodes elimination scheme fur-

ther safeguard the CCDI protocol in the presence of withhold-

ing and censorship attacks.  

Future research can be conducted in two directions. Firstly, 

as deposit mechanism is not user-friendly, it is worth investi-

gating if there is a method that can obviate the need of the de-

posit mechanism used in the proposed CCTE protocol (in Sec-

tion IV) while maintaining the protocol’s efficiency. Secondly, 

from the authors’ perspective, the communication cost of the 

proposed CCDI protocol (in Section V) is relatively high, and 

we aim to further reduce the communication cost by designing 

more efficient message sending mechanisms [52] and applying 

leader-based mechanisms [53].  
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