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Abstract ' —The proliferation of decentralized applications
across different autonomous blockchains raises the need to enable
cross-chain data interoperability (CCDI). However, prior ap-
proaches for supporting CCDI often hit scalability bottlenecks re-
garding critical metrics, e.g., memory, or remain prone to with-
holding and censorship attacks. This paper proposes two protocols
to implement secure and efficient CCDI under adversarial condi-
tions. The cross-chain token exchange (CCTE) protocol for atomic
swaps is proposed. It adopts a deposit mechanism, a blockchain-
of-blockchains (BoB), and Merkle proofs to ensure the completion
of token exchanges even under withholding attacks. It utilizes a
parallelized design to support concurrent token exchanges,
thereby improving its efficiency and avoiding censorship attacks
that target sequential token exchanges. The CCDI protocol is pro-
posed to support any CCDI application. It authorizes a unique
BoB to execute arbitrary CCDI application logic. It integrates a
“transfer and in place data update” mechanism to improve its ef-
ficiency, and this mechanism enables a blockchain update its state
data items using a single transaction, without requiring any infor-
mation from other blockchains. Moreover, the CCDI protocol in-
tegrates a state data migration scheme, which supports a user to
migrate its state data item to censorship-resilient blockchains, and
incorporates a malicious user nodes elimination scheme, which en-
ables the updates of state data items in a CCDI process even under
withholding attacks. Systematic performance evaluations are con-
ducted to compare the two protocols with existing ones. The CCTE
protocol reduces latency by at least 52% compared to existing pro-
tocols under probabilistic consensus setting. The CCDI protocol
outperforms prior protocols, lowering communication cost by
59%, computation overhead by 41%, memory burden by 12%,
and latency cost by 33%.

Index Terms— blockchain, cross-chain data interoperability,
cross-chain token exchange, atomic swaps

[. INTRODUCTION

INCE from its proposal in 2008, blockchain (BC) [1] has
been extensively practiced in different fields. The wide
applications of BC raise the need of Cross-Chain Data
Interoperability (CCDI), referring to as a data integration para-
digm that the data stored in one BC is reachable, verifiable, and
referable by another in a semantically compatible manner [2].
A typical CCDI application is the Cross-Chain Token Exchange
(CCTE) (or atomic swaps) [3-10], which allows a party to trans-
fer its tokens to another party in a BC if and only if the latter
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transfers its tokens to the former in another BC. Besides facili-
tating CCTE application, CCDI also supports more complicated
data interactions across autonomous BCs [11-30] — for exam-
ple, for social media and Esports applications deployed in dif-
ferent BCs, CCDI can not only enable users in a same BC to
interact but also support a user to interact the users from other
BCs.

One challenge of CCDI lies in the inherent independence of
BCs [1], which restricts that the nodes in a BC can only access
the state data (SD) of the BC (e.g., account balances and con-
tracts statuses) and cannot access the SD of other BCs. Such an
independence nature of BCs would hinder CCDI operations.
Most approaches directly compromise BCs’ independence
property to support CCDI. However, lacking BCs’ independ-
ence may introduce additional issues. For instance, a BC must
retain extra information from each connected BC to validate
cross-chain data, causing significant memory overhead as the
number of connected BCs grows.

Another challenge of CCDI is to guarantee the atomicity
property [2] in the presence of withholding and censorship at-
tacks. Specifically, the atomicity property states a situation
where all SD items involved in a CCDI process is either fully
updated or completely unchanged [2]. Under withholding at-
tacks, a malicious user can reject to submit its transaction,
which stalls the updates of all SD items involved in a CCDI
process, thereby denying CCDI services [5]. More seriously,
under censorship attacks, the atomicity property may not hold
anymore when a BC censors a transaction required in a CCDI
process, which directly threats CCDI security [1].

A. State-of-the-Art

A number of protocols have been developed to address the
above two challenges in a multi-blockchain system (MBS).

The CCTE scenario. Time-lock-based mechanisms are one
of the solutions to enable the independence of BCs and support
CCTE. The “lock” operation can be implemented in different
ways, such as hash-time locks [5, 6, 8], signature-based locks
[7, 10] and time-lock puzzles [9]. The original hash time lock
contract (HTLC) scheme [5] requires a larger time cost for the
“lock” operations to ensure atomicity of a CCTE process, which
is time efficient. Recent work further improves the time effi-
ciency of these mechanisms by moving the locking phase oft-
chain and employing adaptor signatures to carry out the
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unlocking phase on-chain [7, 10].

Despite these merits, time-lock-based mechanisms remain
vulnerable to withholding and censorship attacks. By design,
these mechanisms mandate that one party must complete its to-
ken transfer before its counterparty initiates theirs [5-10]. If the
party is malicious, it can simply withhold that transfer, stalling
the entire conditional exchange and wasting its counterparty’s
time. Even if the party’s token transfer appears on its BC, the
counterparty’s transfer on the target BC can be censored for a
certain time window. During this time window, the party may
initiate another transaction to spend out its tokens, causing the
counterparty’s token transfer to fail after the time window. Alt-
hough fungibility property? is a promising solution to counter
censorship attacks [7], it breaks down entirely if the party col-
ludes with the target BC.

Recent work [3 ,4] proposes a CCTE protocol that preserves
the BCs’ independence while ensuring resilience to censorship
attacks. The protocol in [3] sets up relay nodes to enable CCTE
and relies on a blockchain of blockchains (BoB) to ensure the
integrity and trustworthy of the relay nodes. [4] extends the
CCTE framework to support multi-party scenarios. However,
the work in [3] has two significant limitations: firstly, its mech-
anistic design is not efficient, imposing higher communication,
computation, and latency overhead than time-lock-based
schemes; secondly, under withholding attacks, the protocol in
[3] must roll back all CCTE operations to ensure its atomicity
property, thereby denying CCTE services.

Based on the above literature review and discussion, we ask
the first research question: whether there exists a protocol that
can (i) ensure the atomicity property under censorship attacks,
(ii) progress CCTE services even in the presence of withholding
attacks, and (iii) offer substantially higher efficiency, regarding
the metrics of communication, computation, memory and la-
tency, than the CCTE protocol in [3]?

The CCDI scenario. There are two paradigms of CCDI pro-
tocols to support complex CCDI applications, e.g., social media
and Esports. In the first paradigm, a BoB is introduced in an
MBS, but its role is simplified to just forward or translate a
CCDI request from the source BC to the target BC [12-20]. On
this basis, the CCDI protocols facilitate direct state data verifi-
cation between BCs, which thus require each BC to store the
block header of the others — this in turn compromises the inde-
pendence property of involved BCs.

The second paradigm of CCDI protocols also rely on a BoB,
but it assigns the BoB with enhanced abilities [21-30]. Specifi-
cally, the BoB in [24-26] can create SD items from its con-
nected BCs and execute any CCDI logic. The BoB can also is-
sue a statement (also known as a certificate [24-27] or a proof
[28-30]) for a CCDI request and send it to relevant BCs. How-
ever, to verify the BoB’s statements, the BC needs to cache the
extra information (e.g., block hashes of the BoB), which com-
promises the independence property of these BCs, thereby bur-
dening them with extra memory cost.

Notably, the protocols of the two paradigms [12-30] execute

2 The fungibility property ensures that token transfer transactions within a
CCTE process are indistinguishable from standard token transfer transactions.

the operations for the updates of SD items within a single BC —
either a BoB or a target BC. With this design, the protocols can
be censorship-resilient through selecting a censorship-resilient
BC as the BoB or the target BC. However, these protocols still
have two disadvantages. First, when a CCDI process operates
under these protocols, it is still vulnerable to withholding at-
tacks. This is because these protocols can only roll back the
whole operations of the CCDI process when withholding at-
tacks occurs, rather than further improving the quality of the
atomicity property to prevent from denying CCDI services.
Second, they hardly preserve the independence property of in-
volved BCs, as these BCs need to store information to validate
other BCs’ proofs or BoBs’ statements.

Based on the above analysis, we ask the second research
question: whether there exists a protocol that can (i) progress
CCDI services even in the presence of withholding attacks, (ii)
preserve BCs’ independence, and (iii) offer higher efficiency,
regarding the metrics of communication, computation, memory
and latency, than the state-of-the-art CCDI protocols?

B. Contributions of This Paper

This study is devoted to providing solutions to the aforemen-
tioned two open research questions. The overarching contribu-
tion of this paper is to propose new protocols for enabling more
secure and efficient data interoperability among multiple BCs.
The contributions of this paper are 4-fold:

1. To propose a new CCTE protocol. Compared with the
CCTE protocol in [3], the proposed protocol has 4 advanta-
geous features: First, it does not need relay nodes. As a result,
the protocol not only leads to a less memory cost compared with
the protocol in [3] but also makes the CCTE process only in-
volve two token transfer transactions, one less than the protocol
in [3]. Second, the two token transfer transactions are executed
in parallel, offering greater efficiency compared with the proto-
col in [3] that requires sequential execution of the three token
transfer transactions. Third, unlike the protocol in [3] which as-
sumes a 1:1 exchange rate for different token types, or the pro-
tocols [5-10] that assume pre-decided exchange rates, the pro-
posed protocol is based on an Automatic Market Maker mech-
anism [32] and the cross-chain token claim scheme [11] with
some modifications — with this design, the protocol can be used
to provide practical exchange rates without compromising the
BCs’ independence. Last, it can complete all token transfer
transactions even in the presence of censorship and withholding
attacks; in contrast, the protocol in [3] needs to roll back all
CCTE operations to preserve its atomicity property, leading to
the denial of CCDI services.

2. To propose a new CCDI protocol. It only costs three trans-
action execution phases to complete a CCDI process, and our
solution is optimal compared with the current protocols [12-30].
Specifically, after locking all SD items involved in a CCDI pro-
cess (Phase 1), their metadata are submitted to a BoB, and the
BoB then executes the CCDI operations to update these
metadata (Phase 2). The updated metadata is finally sent back
to their BCs (Phase 3). Since storing and updating metadata is
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more computationally efficient than creating a SD item in a BC,
this design is more lightweighted than the widely adopted “mint
or claim”-based mechanisms [33, 34].

Furthermore, we propose a threshold-signature-based “trans-
fer and in place data update” mechanism and integrate it into
the CCDI protocol. The mechanism preserves each participat-
ing BC’s independence and offers more efficient performance
than the “lock and claim” mechanisms [33, 34]. Specifically, all
BoB nodes collectively create an account represented by a
threshold public key, and the account is registered on each par-
ticipating BC. At the start of a CCDI process, the relevant SD
items in a BC are transferred to the account for locking opera-
tion. Once the BoB yields updated metadata, the updated
metadata plus a threshold signature [35] are submitted back to
the BC. The BC verifies the signature and updates the locked
SD items according to the updated metadata. Since the thresh-
old public key of the account can verify the signature, no exter-
nal data (e.g., BoB’s or other BCs’ root hashes) are required,
thereby retaining each BC’s independence. Moreover, a trans-
action containing a single threshold signature can simultane-
ously update multiple SD items in a BC, which further boosts
the efficiency of the CCDI protocol.

As another critical part of the proposed protocol, a state-data
migration scheme and a malicious user nodes elimination
scheme are proposed and integrated into the CCDI protocol.
The former scheme enables a user to migrate its SD item from
a censorship-prone BC to a censorship-resilient BC without
compromising either BC’s independence. The latter scheme
identifies the users that launch withholding attacks. By elimi-
nating the identified users, SD items of honest users can be fur-
ther updated, instead of rolling back all operations involved in
a CCDI process to preserve atomicity property.

3. To establish an analysis framework to prove the proposed
CCTE and CCDI protocols satisfy the 3 properties that are out-
lined in [31] as necessary properties of a cross-chain protocol,
i.e., atomicity, isolation and durability®. Besides these three
properties, we also prove the proposed CCTE protocol is with
the fungibility and script-minimum properties*. The fungibility
property is essential for mitigating censorship attacks, while the
script-minimum property enhances the compatibility of a CCTE
protocol by enabling BCs that do not support smart contracts to
participate in the CCTE process.

4. To implement the proposed protocols on Ganache [36] and
Remix-IDE Ethereum [37]. Comprehensive case studies are
conducted to evaluate the protocols by comparing with the dis-
tinguished protocols [3, 10, 26, 28]. The evaluation results
demonstrate that the proposed protocols are with lower commu-
nication, computation, memory and latency cost.

The rest of this paper is organized as follows. Section II in-
troduces some basic concepts related to this research. Section
IIT provides an overview of the proposed protocols. Technical
details of the proposed CCTE and CCDI protocols are presented
in Sections IV and V, respectively. Simulation is reported in

3 The isolation property ensures that transactions that are executed concur-
rently do not affect each other. The durability property ensures that a transaction
can only be executed if the last transaction has correctly completed and has

Section VI, followed by a review of related work in Section VII.
Section VIII concludes the paper and discusses possible future
work.

II. BASIC CONCEPTS

This section introduces some basic concepts that are prelim-
inaries of understanding the proposed protocols.

A. Blockchain

A BC [1] is a distributed ledger comprising a sequence of
blocks, where each block cryptographically links to its prede-
cessor. A BC could be associated with the independence prop-
erty defined below.

Independence property: For a BC with a set of verification
nodes V. The independence property of the BC holds if every
node v € V only stores the state data of the BC and does not
store the state data of any other BCs.

B. Consensus Protocols

A consensus protocol [38] refers to as a set of instructions
executed by a BC’s nodes to achieve agreement on a block of
transactions. A secure consensus protocol is considered to have
safeness and liveness properties at the same time [1]. The safe-
ness property ensures all transactions are correctly executed and
are executed in a globally consistent order. The liveness prop-
erty ensures that all the valid transactions submitted to a BC
will eventually be stored into the BC.

The consensus protocols can be generally divided into deter-
ministic protocols and probabilistic protocols [39]. With deter-
ministic consensus protocols, once a block is generated, the
transactions within it become immutable. In contrast, according
to the common prefix property [40], probabilistic protocols en-
sure that once a block is extended by a sufficient number of
subsequent blocks, transactions included in this block becomes
immutable with high probability.

C. Smart Contracts

A smart contract is a code container deployed in BCs, which
contains deterministic algorithms [41]. The execution of a smart
contract can be represented as:

SV « SC(Sse, Txs(SD, params)) €))
where SC () denotes the smart contract; S, is the current state
information of SC(+); Txs(SD, params) represents the trans-
actions which invoke SC(+), and each transaction contains state
data SD and necessary parameters (denoted as params), e.g.,
signatures; Sqw" is the output generated by the smart contract,
e.g., the updated state of SC(+). The equation of (1) represents
a state transition of SC(+) from S, to SiEW.,

D. Cross-Chain Data Interoperability Protocol

A CCDI protocol defines a set of executable instructions. Ex-
ecution of a CCDI protocol will lead to a state transition of all
the BCs involved in a CCDI process. A CCDI process defined
by a CCDI protocol includes the following elements:

produced permanent result.
* The script-minimum property ensures that only signature verification
scripts are required to execute token transfer transactions.
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(1) A set of BCs B = {B(C;,BC(,, ...} and a group of users
U = {U,;,U,,...}. Both are considered as participants of the
CCDI process.

(i1)) A list of transactions to be executed denoted as T =
{Tx4,Tx,, ... }. Each transaction in J is generated by a specific
user from U and it will be executed in a specific BC from B.

(iii) Execution phases of the CCDI process, denoted as P =
{P;, P,, ... }. The phases are executed in a sequential manner,
and each phase involves the execution of one or more transac-
tions. To execute a phase, all the transactions involved can be
concurrently executed.

E. Merkle Proofs

A Merkle proof [16] certifies the existence of a transaction in
a block. Key operations for Merkle proofs include:

(i) Geny,poor (Tx, BH). It means the creation of a Merkle
proof for a transaction Tx in a block with its block header BH.

(i) Valyroof (P, Tx, Rgy). It represents the verification of a
Merkle proof P. Rgy is a root hash of a block header BH. The
verification operation returns true if Tx is in the block with a
header of BH; it returns false otherwise.

F. Threshold Signature

A threshold signature (TS) [35] is used to certify that a mes-
sage m is agreed by a group of nodes. Consider a blockchain
comprising M = 3f + 1 nodes, where f is the number of Byz-
antine consensus nodes. If m is valid, each node independently
signs m to generate a TS share. A TS is then constructed by
combining at least 2f + 1 distinct TS shares generated by dif-
ferent nodes. Finally, the validity of the resulting TS is verified
using a threshold public key.

III. SYSTEM AND THREAT MODELS, ASSUMPTIONS AND GOALS

This section provides an overview of the system to which the
proposed protocols apply, together with the threat models, as-
sumptions and design goals of the protocols.

A. System Model

Our system model is based on a blockchain and blockchains-
based multi-blockchains system (BoBMBS). A BoBMBS con-
sists of a BC acting as a BoB and multiple BCs (called the ex-
ternal BCs). We denote the number of external BCs in a
BoBMBS as N and denote the external BCs as BC;, i € [N],
where [N] is short for the set {1,2, ..., N}. For BC; or the BoB,
it progresses in consecutive epochs, with the e;-th or ez-th
epoch indexed by e; or e (e; € N, ez € N). At the end of each
epoch, a block is generated in a BC. All BCs in the system op-
erate under the semi-synchronous network model [38] and the
adaptive corruption model [39]. In semi-synchronous networks,
there exists an unknown time duration 4 on message delivery
delays, so a block generation time is not fixed. In the adaptive
corruption model, an adversary may, at any time point during
the execution of a consensus protocol, corrupt up to f consen-
sus nodes in a BC.

B. Threat Model

Two attack scenarios (i.e., censorship attacks and

withholding attacks) are considered in the BOBMBS system,
aiming to deny CCDI services or make a CCDI protocol violate
its atomicity property.

Censorship attacks. In a normal case, a transaction Tx sent
to a blockchain BC; (i € [N]) in epoch e; is immutably stored
in BC; in epoch e; + k; + 1, where k; > 0 is a parameter of the
common prefix property [40] of BC;. A censorship attack de-
lays the immutable inclusion of Tx in BC; to epoch e; + k; +
1 + D;, where D; is a finite positive integer.

Withholding attacks. In a CCDI protocol, a normal case is
that the user node participating in a CCDI process should send
its transaction Tx to a specified BC (see Section II-D) before a
deadline defined by a CCDI protocol. A withhold attack occurs
when the user node either submits Tx after this deadline or fails
to submit it throughout the CCDI process.

C. Protocols Assumption and Design Goals

Assumptions. The proposed CCDI protocols work in the
BoBMBS. The following assumptions are applied to ensure the
security of the protocols:

(1) A deterministic consensus protocol is used in the BoB.

(i1) The consensus nodes in the BoB store both the BoB’s
state data and the latest x; block headers of BC; (i € [N]).

(iii) Every BC and the BoB in the BoOBMBS hold the safeness
and liveness properties.

(iv) The BoB and some BCs in the BOBMBS are censorship-
resilient due to their protocols’ design [41-43].

Goals. It is expected that the proposed protocols can achieve
the following the following design goals:

The independence property of each external BC in the
BoBMBS is preserved when these BCs involve in the CCDI
processes defined by the proposed protocols.

The protocols hold the atomicity, isolation, and durability
properties. These properties are defined as follows:

Atomicity: In a CCDI process, the states of all the partici-
pants either successfully transit to new states or remain un-
changed. Note that the atomicity property does not apply to the
changes of a participant’s state that is caused by the operations
unrelated to the CCDI process.

Isolation: /n a phase of the CCDI process when multiple
transactions need to be concurrently executed, each transaction
must be executed independently.

Durability: When a transaction Tx, must be executed in
prior to another transaction Tx,, the change of the BOBMBS'’s
state caused by Tx; must be permanently and immutably stored
in the corresponding BC before executing Tx,.

Besides the above properties, the proposed CCTE protocol
(see Section I'V) holds two additional properties:

Fungibility: For observers except for transaction formation
agents, token receivers and the BoB, they cannot distinguish a
token transfer transaction in a CCTE and a standard
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tokentransfer transaction’.
Script-minimum: An external BC only needs signature ver-
ification scripts to participate in a CCTE process.

IV. CROSS-CHAIN TOKEN EXCHANGE PROTOCOL

The proposed CCTE protocol (denoted as [I¢rg) is designed
for CCTE (atomic swaps) scenarios where a sender intends to
use its tokens of type Token; to exchange for a receiver’s x;
tokens of type Token;, and these two types of tokens circulate
on BC; and B(;, respectively. The CCTE process defined in
[I¢crg involves 5 basic transactions and 5 participants. The
transactions include a cross-chain transaction (CCT), two na-
tive transactions (denoted as NT; and NT, ), and two proof
transactions (denoted as PT; and PT,.). The participants include
a sender, a receiver, the two blockchains BC; and B(;, and the
BoB. In some situations, an additional cross-chain transaction
CCTy and at most two fraud-proof transactions (each denoted
as Trp) (see Phase 3 of this section) will be needed. The type of
the token circulating in the BoB is denoted as Tokeng.

As illustrated in Fig. 1, the CCTE process comprises of 3
phases: firstly, the sender sends the CCT to the BoB for activat-
ing the CCTE process. Secondly, the sender sends the native
transaction NT to BC; and the BoB for transferring its tokens
with type Token; to the receiver’s address in BC;; in the same
time, the receiver sends the native transaction NT, to BC; and
the BoB for transferring its tokens with type Token; to the
sender’s address in BC;. Phase 3 will be executed for security
purposes, in which the proof transactions PTy and PT, will be
sent to the BoB. The transaction execution logics are supported
by four smart contracts deployed in the BoB. Table I provides
a brief description on their functionalities, while their roles will
be explained later in this section.

A. Workflow of lzcrg

The overall procedure of CCTE is shown in Algorithm 1. To
defend against censorship and withholding attacks, before the
CCTE process, the sender and the receiver need to deposit a cer-
tain amount of Tokeny (denoted the amounts as x5 and x, 5,
respectively) in the BoB through the smart contract SCp, (In 01).
The CCTE process is performed with the three phases:

Phase 1: The sender generates a cross-chain transaction CCT
and sends it to the BoB to invoke the smart contract SC; (In 02).
SCr requests two exchange rates E; ; and Eg ; from the smart
contract SCypy (In 03), where E; ; is the exchange rate between
Token; and Token; and Ep; is the exchange rate between
Tokeng and Token;. These two rates are determined following
an exchange rate determination scheme, which will be elaborated
in Section IV-B. Based on the exchange rates, SCr calculates the
amount of Token; or Tokeng needed for exchanging x; Token;
(In 04).

To validate the cross-chain transaction CCT, the smart contract
SCr checks whether the sender and the receiver have enough

5 The standard token transfer transaction contains the sender’s and the re-
ceiver’s public keys, the sender’s signature, the token’s type and the amount to
be transferred.

g ‘Cross-chain transaction‘ & Request execution

z ‘Native transaction INs' BoB @ ‘Native transaction IN- BoB
— & &
Sender Phase 2 BCi E Receiver  Phase 2 BC;

-‘g&‘Proof transaction PTs (TFP)‘@ ‘Proof transaction PTr (TFP)‘ L0
P ——

—_—

BoB nodes  Phase 3 BoB Phase 3 BoB nodes

Fig. 1 The transactions of I1-¢5 in each phase.

TABLE I
Smart Contracts Used in qcrg

Notation Functionality
SCp Lock Tokeng
SCr Execute cross-chain transactions
SCamm Calculate exchange rates
SCypy Validate received Merkle proofs

deposits of Tokeng by invoking the smart contract SCp, (In 05).
If the sender or the receiver does not have enough deposits, the
CCT is discarded, which can prevent participators from launch-
ing withholding attacks afterwards (In 09). If they have, SC; gen-
erates two instructions IN and IN,. (Ins 06 and 07): INj is for the
sender to transfer x; Token; to the receiver in BC;; IN, is for the
receiver to transfer x; Token; to the sender in BC;. Aiming at
quickly terminating the CCTE process, SC; sets a deadline be-
fore which proof transactions on IN and IN, must be included
to the BoB (In 08).

Phase 2. The sender and the receiver generate native transac-
tions NT;(IN,) and NT,(IN,) for the two instructions INg and
IN,., respectively. They send NT(IN) and NT,.(IN,) to BC;
and BC;, respectively. In the meantime, they send NT(IN;) and
NT,.(IN,) to the BoB for censorship and withholding resistance
purposes (Ins 10 and 11), as the two sending operations enable
the consensus nodes in the BoB to submit NT,(INg) and
NT,(IN,) to corresponding BCs. If the sender and the receiver
are honest and no attack exists, the CCTE process terminates at
the end of Phase 2; otherwise, Phase 3 is needed:

Phase 3. If the native transactions NT3(INy) and NT,.(IN,)
are stored in the corresponding BCs, the sender and the receiver
generate Merkle proofs P; and B. for NT;(INy) and NT,.(IN,),
respectively (Ins 12 and 13). Each Merkle proof and the corre-
sponding native transaction are packaged into a proof transaction.
The proof transactions are sent to the BoB to invoke the smart
contract SCypy (Ins 14 and 15). SCypy validates the received
proofs and records the valid Merkle proofs (Ins 16-18). Then,
there are two situations to confirm the CCT:

Situation 1: If SCypy receives the two valid proofs, the CCTE
process completes (Ins 19 and 20).
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Algorithm 1 CCTE Procedures

Notations

*= [ or J; e,: BC,’s epoch index in which CCT is sent to the BoB; PKj;, PK ;
and PKp: IDs of the senders in BC;, BC; and the BoB, respectively; PK,.;,
PK,. j and PK, p: IDs of the receiver in BC;, BC; and the BoB, respectively; k:
the secure parameter (K > 2); Max(): a function returning the largest value
among the inputted values; Min(): a function returning the smallest value
among the inputted values; BH.* " the header of BC,’s block generated in epoch
e, R(BH! /): the root hash of BHS" . FP: the fraud-proof generated by consen-
sus nodes of the BoB. ef: the current epoch index of BC,. x;: the number of
Token; in the sender’s account in BC;; x; ;: the number of Token; in the re-
ceiver’s account in BC;.

CCTE instance: exchange for x; Token; using tokens with type Token;.

01 SCp:PK,p =[Tokeng:xs]; PK, 5 =[Tokeng:x, p]

Phase 1 — One cross-chain transaction execution

PK,p - CCT(BC;,BC;, PK,;, PK, j,PK, ;, PK.. ;,PK, p, X,

Token;, Token;, SCr) — BoB

03 E;j = Cuum(Token;, Token)); Ep; = SCyyy (Tokeng, Token;)

04 x; =x;/E;j; xg = x;/Ep

05 SCr— SCp:ifxsp >k X xgand x5 > i X xp:

06 SCr:INg =(From: PKg;, To: PK,;, Transfer: x; Token;)

07 IN, =(From: PK, ;, To: PKj ;, Transfer: x; Token;)

Max(ei +K+K,e+K+ Kj); e, + K: the epoch index of BC,
when CCT is stored

09  Else: discard CCT of In 02 and terminate

Phase 2 — Two native transactions execution concurrently

10 Sender: PK; = NT;(INs) = BC; and BoB

11 Receiver: PK,.; » NT,.(IN,) - BC; and BoB

Phase 3 — Two proof transactions execution concurrently

12 P, = GeNypoor (NT;(INy), BH)

13 P = GeNyyoor (NT,(IN,), BH" )

14 PT,(P, NT,(IN),R(BH"),SCypy) = BoB

15 PT.(B, NTT(INT),R(BH;"),SCMPV) - BoB

SCypy: () CCT € SCri(ii) e, > e, + &; (i) Valyyoor (P, NT, R(BHS"))
If true is returned for all the three checking operations:

17 P € SCypy

18 Else: discard P

19 Situation 1: If (P, B.) € SCypy

20 SCypy: Confirm CCT of In 02

Situation 2: If P; and/or P, & SCypy and

Min(ef, ef) > Max(el- +ik+K,e+k+ K}-)

22 The nodes of the BoB: CCTy, (SCypy) — BoB

23 SCypy: execute In 21; if true is returned, Ins 24-29; else: In 30
Sub-situation 1: If NT;(IN;) € BoB: SCypy: (From: PKp, To:

02

08

24 PK, p, Transfer: x5 Tokeng), confirm CCT of In 02

25 Sub-situation 1: If NT,.(IN,) € BoB : SCypy: (From: PK, p, To:
PK, g, Transfer: xp Tokeng), confirm CCT of In 02

26 Sub-situation 2: If NT;(IN;) € BoB: execute In 14 and invoke In 19

27 Sub-situation 2: If NT,.(IN,.) € BoB: execute In 15 and invoke In 19

28 Sub-situation 3: If x;; < x;: generate Trp to invoke Ins 16 and 24

29 Sub-situation 3: If x,.; < x;: generate Tpp to invoke Ins 16 and 25

30  SCypy: Discard CCTy (SCypy)

*Note: For simplicity, the signatures contained in the transactions are omitted.

This applies to the rest of this paper.

Situation 2: If one or both valid proofs fail to be recorded in
SCypy by the deadline defined in In 08, a transaction CCTy, is
then generated by a node of the BoB to invoke SCy;py (Ins 21 and
22). SCypy then checks whether the situation defined in In 21 is
true (In 24). If it is false, CCTy, is discarded (In 30). Otherwise,
the following 3 sub-situations may happen:

Sub-situation 1: If either NT;(IN;) or NT,(IN,) fails to ap-
pear in the BoB by its deadline (In 08) due to withholding attacks,
SCypy transfers the sender’s (or the receiver’s) deposited tokens
with type of Tokeng to the counterparty’s account in the BoB
and the CCTE process completes (In 24 or In 25).

Sub-situation 2: If NT;(IN;) (or NT,.(IN,.)) is recorded in the
BoB, f + 1 pre-defined consensus nodes of the BoB obtain
NT;(INs) (or NT.(IN,) ) and sends it to BC; (or BC;). If
NTs(INs) (or NT,.(IN,)) is stored in BC; (or BC;), the f + 1
consensus nodes generate its proof transaction (In 14 or In 15)
and send it to the BoB for further execution (In 26 or In 27).

Sub-situation 3: Before NT;(INy) (or NT,.(IN,)) is stored in
BC; (or B(;), if any of the f + 1 nodes finds that the balance of
the sender’s Token; (or the receiver’s Token;) on BC; (or BC))
falls below x; (or x;), it generates a fraud-proof transaction Trp
with a Merkle proof and send Trp to the BoB (In 28 or In 29).

B. Token Exchange Rate Determination Scheme

We design a Token exchange rate determination scheme to en-
able the smart contract SCyp, to promptly determine the ex-
change rates between two types of tokens circulating in the
BoBMBS. The scheme comprises two components: an Auto-
mated Market Maker (AMM) and a Cross-chain Token Claim
Protocol (IT¢¢r¢). We will present the two components first, fol-
lowed by the procedure of the token exchange rate determination
scheme.

Automated Market Maker. AMM uses a Liquidity Pool
(LP) and mathematical algorithms to calculate exchange rate(s)
between two types of tokens in a BC. The LP is deployed in the
BoB, and it can be considered as a marketplace for token pro-
viders to save different types of tokens. For illustration, AMM
considers the Balancer protocol [32] to calculate the exchange
rate. For simplicity, we assume that there are N types of tokens
in the system, where each BC has one type of token. During the
initiation of the LP, the AMM assigns a pre-defined weight to
each token type (denoted as w;, i € [N]) with a condition of

N . w; = 1. It then determines the exchange rate between two
different types of tokens as:

E

=R @
where £ ; is the exchange rate between Token; and Token;; B;
and B; are the quantity of the two types of tokens in the LP. B;
and B; will be quantified in the LP based on the cross-chain token
claim protocol (denoted as qcrc):

Cross-chain token claim protocol. Based on the token ex-
change rates generated from the AMM, 7 is designed to fa-
cilitate a token provider to save a specific type of token from
the corresponding external BC to the LP. [I;¢r is based on the
cross-chain token claim scheme in [11] with modifications.
Considering a token provider intends to save x tokens with the
type of Token, to the LP, the protocol works as follows:

(1) The BoB validating nodes jointly create a threshold public
key-based address [35] in each external BC BC;. Denote the ad-
dress as TPK_Addr;, i € [N].

(i1) The token provider sends the x tokens with the type of
Token, to an address TPK_Addr, for locking operation.
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(iii) The token provider generates a Merkle proof for the to-
ken transfer operation in (ii). Based on the proof, SC,; mints x
token, in the BoB and transfers the minted tokens to the token
provider’s address in the BoB.

(iv) The token provider transfers the x Token, from its ad-
dress in the BoB to the AMM smart contract SCypp-

Procedure of token exchange rate determination. With
ecre, any types of tokens from an external BC can circulate in
the BoB. The token exchange rate is determined via 3 steps:

(i) Smart contract deployment. The AMM is implemented in
SCyumu that is deployed in the BoB. There are two data struc-
tures in the LP of SCypp: LPy and LPyy, . LPy, stores N pre-de-
fined weighting values, one for a type of token. LPgy, stores N
key-value pairs. For each pair, the key is the ID of a specific
token type, and the value is the number of tokens with this type.

(i1) Initialize the LP. SCypy invokes a function (denoted as
Fy;) to initialize the N weights in LPy,:

(wy, ..., wy) = Fy;(Token,, ..., Tokeny) 3)

(iii) Determination of the token exchange rate. Token provid-
ers contribute their claimed tokens to SCyppy. SCapy Stores the
key-value pairs of the tokens into LPg;,. Once LP, and LPy,,
are constructed, (2) can be applied to calculate the exchange
rate between any two types of tokens.

C. Security Analysis

This section is devoted to analyzing the security of the pro-
posed CCTE protocol. The analysis is represented by the fol-
lowing theorems:

Theorem 1. For the CCTE process defined in Ugcrg, the in-
dependence and the script-minimum properties of each partic-
ipating BC; (i € [N]) in the BoBMBS can be preserved.

Proof. Consider an arbitrary participating BC; (i € [N]). In
the second phase of the CCTE process, a token transfer trans-
action NT; will be executed in BC;. To execute NTy, BC; only
need to check whether the sender of NT; has sufficient tokens,
which does not need the external state data. Thus, the independ-
ence property is held by BC;. Since the execution of the trans-
action NT; only requires BC; to have the scripts for validating
the signature in NTj, the script-minimum property is also pre-
served. O

Theorem 2. Under the corruption and network models de-
fined in Section IlI-A, if every participating BC; (i € [N]) and
the BoB holds the safeness and liveness properties, Uccrg will
preserve the atomicity, isolation, durability properties.

Proof. For the atomicity property: the CCTE process has two
state transitions: (a) the sender consumes x; Token; (or xp
Tokeng) and obtains x; Token; (or xg Tokeng). And (b) the
receiver obtains x; Token; (or xz Tokeng) and consumes x;
Token; (or xg Tokeng). There are three situations:

(1) Situation 1 — the CCT is invalid. In this situation, the CCT
will be discarded and the CCTE process will terminate without
any state transition (see Ins 05 and 09 of Algorithm 1).

(i1) Situation 2 — the CCT is valid, and both the sender and
the receiver are honest. Once the CCT is validated to be valid,
two instructions (i.e., INg and IN,. in Algorithm 1) will be gen-
erated. Also, the honest sender and the honest receiver will send

NT; and NT, to BC; and B(;, respectively. In the meantime,
since NT; and NT, are also sent to the BoB before the deadline
defined in Algorithm 1 (see In 08), at least one of the f + 1
nodes in the BoB will submit NT; and NT,. to corresponding
BCs. According to the liveness property, even if censorship at-
tack is launched, NT; and NT, are guaranteed to be stored in
corresponding BCs. As a result, successful state transitions will
be achieved. However, if at least one participator (the sender
and/or receiver) is malicious, it may launch a withholding at-
tack (see Ins 24 and/or 25 of Algorithm 1), or the balance in its
account may not enough (see Ins 28 and/or 29 of Algorithm 1).
Then, Situation 3 will be triggered:

(ii1) Situation 3 — the CCT is valid, and the sender and/or the
receiver are malicious. According to Ins 21-29 of Algorithm 1,
each missed native transaction or proof transaction (due to with-
holding attacks), or the presence of valid fraud-proof transac-
tions (due to the insufficient balance) will lead to a transfer of
Tokeng for completing the unfinished token transfer opera-
tions. Thus, the state transition will be successful. As a result,
the atomicity property is preserved.

Regarding the isolation property: the two native transactions
will be executed concurrently in BC; and B(;, while the two
prooftransactions PT, and PT, will be executed concurrently in
the BoB. Due to the independence of BC; and B(j, each is una-
ware of the other's native transaction execution. Similarly, the
execution of PTg and PT, in the BoB is independent — that is,
the verification and execution of PT; do not require any infor-
mation from PT,., and vice versa. Therefore, the isolation prop-
erty is preserved.

To ensure the durability property, (i) the native transaction
(such as NT;) can only be executed after the CCT has been
stored in the BoB and (ii) the proof transaction (such as PTy)
can only be executed after the native transaction NTy are stored
in BC;.

To ensure (i), if NT; is stored in BC; before the CCT has been
stored in the BoB, i.e., e; < e; + i (see In 16 of Algorithm 1),
PT, will be discarded according to In 18 of Algorithm 1. To en-
sure (ii), Ins 06 and 18 also guarantee that if NT; is not stored
in BC; (i.e., Valyroor (P, NTg, R(BH{") % 1), PT, will be dis-
carded according to In 18 of Algorithm 1.

When CCTy, is required to be sent to the BoB (see In 22 of
Algorithm 1), to ensure the durability property, CCTy, can only
be executed after the deadline defined in In 08 of Algorithm 1.
The checking operation in In 21 guarantees that if CCTy, is sent
to the BoB before the deadline, it will be discarded.

When a fraud transaction containing a Merkle proof is sent
to the BoB (see Ins 28 and 29 of Algorithm 1), the BoB will
verify that whether the Merkle proof can attest that the corre-
sponding native transaction (NTs or NT,.) failed to be stored on
its target BC because the on-chain balance of its sender’s ac-
count fell below the required threshold. As a result, the fraud-
proof transaction can only be executed when the Merkle proof
is valid. Therefore, every transaction in [1¢crg is executed fol-
lowing the criteria defined in the durability property. O

Theorem 3. every native transaction in the CCTE process
defined by N crg preserves the fungibility property.
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TABLE II
Smart Contracts Used in q¢cp;

Notation Functionality
NOY: Deploy battle games, create and update state data item:
SCc Validate cross-chain transactions
SCr Implement CCDI applications

. Native Native
transaction a0 transaction
@
Y Transux % =" Transsi %
Ux Phase 1 BCi (BoB nodes) Phase 3 BCi
° Cross-chain Native
a0 . .
&8% | transaction A transaction %
-Ux CCTux ﬁ ‘e Trans*Rrx
N )
(BoB nodes) Phase 2 BoB || (BoB nodes) Phase 3 BCi

Proof. In each external BC, only native transactions that carry
token transfer instructions will be executed. Since the instruc-
tions include only the sender’ and the receiver’s IDs, the token
type and the token transfer amount, they cannot be distin-
guished from standard token transfer transactions. Therefore,
the fungibility property is preserved. O

V. CROSS-CHAIN DATA INTEROPERABILITY PROTOCOL

The proposed cross-chain data interoperability CCDI proto-
col l¢p; operates under the BoBMBS including the BoB and
N external blockchains BCs and defines a more generic CCDI
process Pccp;. Without loss of generality, we consider that X
user nodes register to participate in Pqp;. Each user node has
a unique state data item, and the x-th (x € [X]) user node (de-
noted as U, ) is from BC;, where i = xmodN . Additionally,
[I¢cp; defines that each BC configures a relay group that com-
prises of (f + 1) relay nodes randomly selected from the M
consensus nodes in the BoB. Il.p; further defines 3 smart con-
tracts for Pecp;. SCc and SCr are deployed in the BoB, and
SCpye is deployed in every external blockchain BC; (i € [N]).
Their functionalities are shown in Table II.

To illustrate a concrete CCDI application, we take battle
games as an example. A battle game includes a Player versus
Player (PvP) instance, which represents the scenario that two
players battle with each other. A player uses a unique state data
item representing its game character, which includes a role
name, an attack value, and an experience value. In a PvP, a
player’s score is the sum of its character’s attack and experience
values. The player with a higher score will win the battle. These
logics of battle games will be coded in the smart contracts SCpq
and SCr. In the following, we further present two building
blocks of the CCDI protocol [ ;¢p;-

A. Two Building Blocks of II-cp;

The first building block is an abstract CCDI application smart
contract SCx that can host any types of CCDI applications. In
this paper, SC¢ deploys the logic of battle games. To invoke
SCr, a set of state data items’ metadata (denoted as
{SD,, ...,SD,,...}) inputs into SCz which outputs a new set
{SD**", ...,SD}¢", ...} according to the logic of battle games:

{SD*%,...,SD}¢¥, ..} = SCx(SDy, ...,SDy, ...) @)
where {SD**,...,SD}¢%,...} is the updated versions of
{SD,, ...,SD,, ... }. Since SC# only consumes metadata, the data
format unification mechanisms [22, 28] can be applied to the
received metadata, harmonizing their data formats before sub-
mitting them to SCz. Upon outputting the updated metadata,
they can be converted back to their original data formats.

The second building block is a threshold-signature-based

Fig. 2 The transactions of [1.¢p; in each phase.

Native transactions execution:

Transferring SD items in corresponding BCs

i Phase 1 i

If X SD items are
transferred

If Y SD items are
transferred (Y<X)

v v
Case 1: X SD items are
updated in the BoB

Case 2: Y SD items are
Updated in the BoB

i Phase 2 i

Case 2*: X-Y SD items
are unlocked in BCs

Case 1*: X () transferred SD
items are updated in BCs

Fig. 3 Flowchart of Pecp;.

“transfer and in place data update” mechanism. Specifically, the
nodes of the BoB collectively generate a threshold public key
PK, and the i-th group generates an account using PK in the
blockchain BC; (i € [N]). The smart contract SCg(; then grants
PK the ability to update the state data items that PK possesses.
Thus, PK now can invoke SCg. to update its state data items.
The details of the “transfer and in place data update” mecha-
nism are as below.

When a user node U, in the blockchain BC; registers to par-
ticipate in a CCDI process Pccp;, it first sends its state data item
(denoted as SD,) to the threshold public key PK, which acts as
the locking operation. When SD,. is updated in the BoB through
the smart contract SCz, the nodes in the BoB generate a trans-
action containing a threshold signature TS and the updated SD,
(denoted as SD}¢"). The transaction is then sent to BC; to in-
voke smart contract SCp;. If PK in SCp validates TS, SD,, is
updated to SD2€" in BC; and sent back to U,’s account.

Next, we present the details of the protocol [1-¢p; (as shown
in Fig. 2) as below.

B. Phase 1 — Preparation

Let the CCDI process be initiated at the beginning of the Bo
B’s epoch indexed by e and a deadline is set to be the end of
the epoch ez + k¥ X Max(k;), (i € [N]), where k is a secure
parameter to ensure that every external blockchain BC; has
passed k; epochs since the beginning of epoch eg. In epoch eg,
every user node U, (x € [X]) then sends a native transaction
Transy, to the threshold public key PK in BC;:

Transy, =< SD,, PK}, PK,SCp; > (5)
where PK! represents the account address of U, in BC;. BC;
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checks whether PK} owns the state data item SD, . If not,
Transy, is discarded; otherwise, BC; transfers SD, to PK and
creates a key-value pair < H(Transy,), (SDy, PKL) > in the
smart contract SCp;, where H(+) is a hash function.

C. Phase 2 — Execution

If Transy, is stored in BC; before epoch e + K X
Max(k;), a Merkle proof (denoted by P,) and a cross-chain
transaction (denoted as CCTy, ) are generated:

CCTy, =< Transy,, BC;, P, SC; > 6)

The user node U, and the f + 1 replay nodes in the i-th relay
group (i € [N]) send CCTy, to the BoB to invoke the smart
contract SC. After receiving CCTy,., SC. checks whether it has
stored the state data item SD, that is contained in the
Transy,’s field of CCTy,. If yes, CCTy, is discarded; other-
wise, SC. checks:

©®  Whether the index of the BoB’s current epoch (de-
noted as ef) satisfies: ef < eg + k X Max(x;).

©®  Whether P, can prove that Trans;, has been immuta-
bly stored in BC;.

If CCTy, passes all the 2 checking operations, the state data
item SD, contained in the cross-chain transaction CCTy, is
stored in the smart contract SCr; otherwise, CCTy, is dis-
carded. As shown in Fig.3, SCs performs one of the two opera-
tions:

Case 1: If all the X cross-chain transactions are stored in the
smart contract SCz by epoch eg + k X Max(x;), when SCr
stores the X-th state data item, it updates the X state data items
according to (4) and the updated SD, is denoted as SDy¢". For
the set of C wupdated state data items S;=
{SDR2Y, ..., SDYY, ..., SDE"} from the blockchain BC; (¢ €
[C] and V¢, i = x.modN), the M nodes of the BoB produce the
threshold signature T'S for the set S;.

Case 2: If there are some state data items among the X state
data items not stored in the smart contract SC by epoch eg +
K X Max(k;), SCr identifies the number of the user nodes’
state data items that have been received before epoch ep +
K X Max(k;) (denoted as Y). If Y > 1, SCy updates the Y state
data items through (4). For the set of D updated state data items
S; = {SD}ev, ...,SDEev, ..., SDYEW} from the blockchain BC;
(d € [D] and Vd, i = xymodN), the M nodes of the BoB pro-
duce the threshold signature TS for the set S;. If Y < 1, the M
nodes of the BoB produce a threshold signature for the only re-
ceived state data item.

If a valid cross-chain transaction CCTy, (x € [X]) is sent to
the BoB after epoch eg + k X Max(x;), the M nodes of the
BoB also produce TS for the state data item SD, contained in
CCTy,, ensuring its unlocking during Phase 3 (see Case 2*).

D. Phase 3 — Settlement

The transferred state data items in Phase 1 are updated in
their blockchains in this phase:
Case 1*: If the set S; is generated in the BoB, a native trans-
action Transg, is generated:
Transg, =< $;,TS, Sy, SCpc > @)
the € hash wvalues

where S, is a set containing

{H(Transyy,), ..., H(Transy.)}. After that, the f + 1 replay
nodes in the i-th group send Transg, to the blockchain BC; to

invoke the smart contract SCg(;. SCp¢; checks:

. Whether it has the key value pairs < H(Transyy, ),
(SDy,, PKL) >, ..., < H(Transy,,), (SDy,, PK}L,) >.

. Whether the threshold public key PK validates TS.

If Transg, passes all the two checking operations, Transg, is
regarded as valid; otherwise, Transs, is discarded.

If Transs,; is valid, PK invokes SCg; to update SDy_ to
SDE?™ and sends SD?" to the account address PK,ﬁC (ce
[C]). After that, SCp; deletes < H(Transyy,), (SDy,, PKL.) >.

The above procedures are also applied to S; in Case 2.

Case 2*: To respond to a valid cross-chain transaction
CCTy, in Case 2, a native transaction Transg, is generated:
Transg, =< SD,,TS,H(Transy,),SCgs > ®)
The procedures for Transg, is then applied to Transg, and
SD, will be directly sent back to U, ’s account PKL.

E. Attacks Resolution Mechanism

According to Case 2, censorship and withholding attacks can
cause that some state data items are updated while others are
not updated, which compromises the atomicity property. To
counter the two attacks, we propose an attacks-resolution mech-
anism which consists of Sgpy,, a state-data migration scheme,
and Sy kg, a malicious user nodes elimination scheme. Sgpy, en-
ables a user node U, migrate its state data item SD,. in a censor-
ship-prone blockchain BC; into other censorship-resilient BCs
(such as B(;). Different to the state-of the-art “lock (or burn)-
to-claim” schemes that sacrifice the independence property of
involved BCs during data migration processes, [Igpy achieves
data migration while preserving the independence property of
involved BCs through our “transfer and in place data update”
design. On the other hand, S,y eliminates the user nodes who
deliberately withhold their native transactions in Phase 1 to
make Case 2 happen. Moreover, Sy determines the set of
participators in the CCDI process at the end of Phase 2, allow-
ing I-cp; to update honest participators’ state data items with-
out sacrificing its atomicity property. The details of the two pro-
tocols are presented as follows.

State-data migration scheme Sgpy. The user node U, exe-
cutes (5) to lock its state data item SD,. At the same time, U,
creates an account in the blockchain BC; (denoted as PK}) and
generates a newly initialized state data item SD,, which is
SD,’s initial version. U, then executes (5) to lock SD,. Once
SD, and SD,, are locked in BC; and BC(;, respectively, U, gen-
erates two cross-chain transactions according to (6) and sends
them to the BoB. If the two transactions are valid, the M nodes
of the BoB collectively produce the threshold signature T'S; for
the locked SD, and TS; for the locked SD,. Finally, the f + 1
replay nodes in the i-th group sends the transaction defined in
(7) to transit SD,. to SD,. in BC;. In the meantime, the f + 1 re-
play nodes in the j-th group sends the transaction defined in (7)
to transit SD,, to SD,, in BC;.

Supported by the scheme Sgpy,, all user nodes can migrate
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their state data items to other censorship-resilient BCs, thereby
mitigating the negative impacts of censorship attacks.

Malicious user nodes elimination scheme Syyg. Syyg fur-
ther eliminates the user nodes who make Case 2 happen through
withholding attacks. First, a deposit mechanism is adopted,
which enforces that every user node needs to deposit a certain
number of tokens in the BoB before registering to participating
in a CCDI process Pccp;- If a user node does not fulfill the de-
posit operations before the state of Pecp;, the authority of the
user in Pqqp; is canceled. Second, if Case 2 happens, the BoB
identifies the user nodes who fail to store their state data items
in the smart contract SCr before epoch ez + k X Max(x;). The
accounts of the identified user nodes are then removed from the
X registered user nodes, and the deposits of the identified user
nodes are forfeited. Lastly, denoting the identified number of
user nodes be X — Y, the remaining Y user nodes are authorized
for the CCDI process Peep;-

Under the above design of the scheme Sy, the final author-
ized participators in P.¢p; can only be determined at the end of
Phase 2. In this way, more user nodes are allowed to participate
in Pecp; at the beginning of Pecp;, that aligns with complex
cross-chain interaction applications in real-world scenarios.
However, malicious user nodes can be identified and elimi-
nated, guaranteeing the completion of the CCDI service for the
remaining user nodes.

F. Security Analysis

This section is devoted to analyzing the security of the pro-
posed CCDI protocol. The analysis is represented by the fol-
lowing theorems:

Theorem 4. For the CCDI process Pccp; defined in N ecp;,
the independence property of each participating BC; (i € [N])
in the BoBMBS is preserved.

Proof. In Prcp;, two types of native transactions are executed
in BC; (i.e., Transy, and Transg,/Transg,):

(i) Executing Transy, involves checking the ownership of
SD,. As SD, is the state data item of BC;, the execution of this
operation does not need the external state data.

(i) The execution of Transs,/Transg, involves the two
checking operations and the “in place data update” operation.
The two checking operations require to use the state data PK
and S, _. To execute the “in place data update” operation, the
state data, i.e., the locked SD,, is required. Apparently, PK,
S,.> and the locked SD, are the state data of SCpg. Thus, the
execution of Transg,/Transg, does not require any external
state data except for that of BC;, and proof completes.

Theorem 5. Under the corruption and network models de-
fined in Section III-A, if every external BC; (i € [N]) and the
BoB hold the safeness and liveness properties, by combing the
attacks resolution mechanism, Il;cp; will hold the atomicity,
isolation, durability properties.

Proof. To demonstrate the atomicity property, we analyze the
state transitions of {SD;, ..., SDx} through different phases:

At Phase 2, with the support of the f + 1 relay nodes, as long
as a state data item (e.g., SD,) is immutably stored in corre-
sponding blockchain (e.g., BC; ) before epoch ep + k X

Max(k;), at least one of the f + 1 relay nodes will send the
corresponding cross-chain transaction (e.g., CCTy,) to the BoB.
Therefore, there are three possible situations. §; (i.e., Case 1):
X state data items are stored in SCy before epoch ep +
K X Max(k;). 8, (i.e., Case 2): only Y (1< Y < X) state data
items meet the deadline. §5: only ¥ (1> V) state data items
meet the deadline.

At Phase 3, with the support of the f + 1 selected relay
nodes, at least one honest relay node will send valid native
transactions to the blockchains for the updates of locked state
data in Phase 1. Thus, there are three possible situations:

8, all the honest nodes’ state data items are eventually up-
dated in corresponding blockchains.

§85: some of honest users’ state data items are updated to their
new state versions, while the other honest users’ state data items
are just unlocked and unchanged.

8, all state data items are unlocked and unchanged.

With the scheme Sgp,,, every user node can move to the cen-
sorship-resilient blockchains. Therefore, honest user nodes can
store their state data items in the smart contract SCy before
epoch ep + Kk X Max(k;) for sure, which can potentially elimi-
nate the situation of §;. Moreover, the malicious user nodes
who withhold their native transactions in Phase 1 can be identi-
fied and eliminated by the scheme Sy, and the pre-defined X
user nodes for the CCDI process can be updated to the Y user
nodes. As a result, the remaining honest users must be a part of
the Y user nodes, making 85 unable to happen. Thus, only §,
can happen and I1.¢p; holds the atomicity property.

Regarding the isolation property, in Phase 1 and Phase 3,
each involves the concurrent execution of X native transac-
tions. Phase 2 involves the concurrent execution of X cross-
chain transactions.

In Phase 1, the native transactions are associated with the op-
erations of ownership checking for state data items and locking
state data items. For the native transaction Transy,, checking
and locking U, ’s state data SD, only needs to check U,’s ac-
count information, that does not interfere with the execution of
Transy, (x # ).

In Phase 2, the execution of the cross-chain transactions in-
volves the two operations of checking time requirement and
checking the validity of Merkle proofs. Firstly, checking the
epoch index requirement is independent operation, as the epoch
index used for checking will not be changed even if an epoch
checking operation is conducted. Secondly, checking CCTy,.’s
Merkle proof does not rely on the information from CCTy,,’s
Merkle proof, and vice versa. As a result, the execution of
CCTy, does not interfere with the execution of CCTy,,.

In Phase 3, the execution of Transg,/Transg, is associated
with checking the validity of the received threshold signature,
checking key value pairs, and performing “in place data update”
operations. Firstly, checking the validity of the threshold signa-
ture TS or the key value pairs is an independent operation and
cannot change any state after the checking operation. Secondly,
updating SD, does not interfere with burning SD,,, as they are
different state data items. As a result, the execution of Transy,
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or Transp, does not interfere with the execution of Transsj
with i # j.

As for the durability property, I1.-p; involves three orderly
executed transactions: the cross-chain transaction CCTy, can
only be executed after the native transaction Transy, is stored
in BC;; and the native transaction Transg,/Transg, can only
be executed after CCTy, is stored in the BoB. With the support
of the Merkle proof scheme, if Transy, is not stored in BC;, its
valid Merkle proof cannot be generated. As a result, the BoB
will not execute CCTy,. Supported by the threshold signature
scheme, if CCTy, is not stored in the BoB, a valid threshold sig-
nature cannot be generated. As a result, BC; will not execute
Transg,/Transgy. O

VI. SIMULATION

A. Simulation Setup

For the simulation tool, Multiple Ethereum BCs (including
the external BCs and the BoB) are created by Ganache [36]. We
use Solidity scripts to code the smart contracts, which are de-
ployed and tested in Remix-IDE Ethereum [37]. Merkle tree
and Merkle proofs are written by Python. The complete process
to conduct the simulation are well-presented in [45].

For the simulated parameters, the block generation time of
the Ethereum BC, the size of a block header, a block and a nor-
mal token transfer transaction (without considering the field of
a transaction’s signature with 48 bytes) are set to be 15 seconds,
510 bytes, 8x10* bytes and 50 bytes, respectively. The above
settings align with the setting of the real-world Ethereum BC
[46]. Additionally, we use SHA-256 hash function (32 bytes for
each hash value) and the Merkle proof depth is fixed at 5. The
threshold signature scheme is instantiated over the BLS12-381
pairing-friendly elliptic curve. The security parameter k; for
BC; (Vi € [N]) is set to be k.

The system is tested subjected to four metrics:

(1) Communication overhead Comm, — the size of transac-
tions (in bytes) required for executing a CCDI process.

(il) Computation overhead Comp, — the computation (in
gas) required for executing a CCDI process.

(iii) Memory overhead M, — the memory (in bytes) required
for executing a CCDI process.

(iv) Latency L, — the time slot (in seconds) between the be-
ginning of a CCDI process and the state data items of honest
user nodes involved in the CCDI process all being updated.

B. Evaluation of [I-¢crg without Attacks

We test the execution of a CCTE process with the proposed
[Icrg without considering attacks. The total communication is
330 bytes, in which a cross-chain transaction with 230 bytes and
two native transactions, each with 50 bytes, are included. The
gas cost of the smart contracts is reported in Table III. The
memory cost is kxX5/0xN bytes, all undertaken by the BoB.
When the external BCs use deterministic protocols, the latency
of the CCTE process is 30 seconds (15 seconds are spent on the
BoB and 15 seconds are on the BCs); when the protocols are
probabilistic, the latency is 30+15 Xk seconds.

We compare the proposed Il;crg and two existing CCTE
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Fig.6 Latency cost in CCTE. “deterministic” and “probabil-
istic” denote the consensus types (see Section II-B).

schemes without considering attacks: a cryptocurrency ex-
change protocol (denoted as I1.g) [3] and an adaptor-signa-
ture-based protocol (denoted as Il,g) [10]. Fig. 4 shows the
comparison of the communication cost under the 3 protocols. It
shows that although the I, protocol is with the least commu-
nication cost (consuming 100 bytes), the proposed protocol is
also efficient, requiring only 330 bytes to process a CCTE pro-
cess. The communication cost of I, is higher than that of
H¢crg due to its requirement for 1 cross-chain transaction, 3 to-
ken transfer transactions and 2C validation transactions, where
C is the number of committee nodes.

As shown in Table III, [;cpp consumes 512,911 (470,911
for a CCT and 42,000 for two token transfers) gas to execute a
CCTE process, which is less than 1, (440,525+163,780*C)



Manuscript for IEEE TIFS, by Teng et al.

TABLE II:
Smart Contracts Used in qcrg.

Notation Deployment gas cost Execution gas cost
SCp 2,901,508 -
SCr 1,561,365 428,991
SCamm 7,610,008 -
SCupy 1,270,187 39,167

“-"means the gas cost of the smart contracts are covered by SCy. The
gas costs of SCr and SCy;py are caused by executing a valid cross-
chain transaction and a valid proof transaction, respectively.

TABLE IV
Comparison on the Four Metrics of the Three Protocols in a
CCTE Process under Attacks.

Types Comm, Comp, M, Lo
Heers 980 732,251 SIOKN 4515k
+ +
Mpee 1O0C 419 5054163,780c  SKV<10 45+ISk
M 50 21,000 0 30430k

A Proof-of-Work transaction in [3] is set to be 40 bytes in this paper.

TABLE V
Gas Consumptions of Basic Operations

Operation types (required protocols) Gas cost Price
Lock a state data item (MAP and PoS-Co) 186,443 $3.7
Transfer a state data item (I¢cp;) 59,963 $1.2
Verify a MP (I1¢¢p; and PoS-Co) 39,167 $0.8
ZK-SNARK (MAP) 250,000 [28] $5
Verify a time metric (all protocols) 20,533 $0.4
Store a state data item (Il¢cpy) 118,645 $2.4
PvP battle games (all protocols) 63,779 $1.3
Verify a TS (TIl¢¢p; and PoS-Co) 113,000° $2.3
Update a state data item (all protocols) 51,244 $1
Mint a state data item (MAP and PoS-Co) 265,479 $5.3

The price of ETH is considered as $2,000 in this calculation.

gas [3], while higher than Il,5 (42,000 gas). [I;crp incurs
higher gas costs than I, because I45 executes CCTs off-
chain, while [1;cr5 executes CCTs on-chain. Since CCTs run
within the BoB, this overhead can be eliminated by implement-
ing the BoB with a gas-free constructions [47, 48].

Since I, does not need a BoB, Fig. 5 only shows the com-
parison of the memory cost between qcrp and Mpcg. Hecre
requires the BoB nodes to store a minimum number (i.e., k) of
block headers per external BC to verify Merkle proofs. In con-
trast, 155 requires the committee nodes of its BoB to store the
latest k blocks of the N BCs, which results in higher memory
cost especially when N continually increases. As a result, our
protocol provides a scalable solution for the implementation of
the BoB, as every consensus node in the BoB only caches kilo-
bytes-level sized data for the verification tasks during CCTE
processes.

®https://ethresear.ch/t/bls-signatures-in-solidity/7919

Fig. 6 shows the latency cost comparison under the 3 proto-
cols. II¢crg uses only 2 phases to complete the CCTE process,
which is the same with that of I1,5. Moreover, when the BCs
adopt probabilistic consensus protocols and k = 2, our protocol
[ crg reduces its latency by 52% compared to I1,5. This is due
to the parallelized design of I1;¢r, enabling the token transfer
transactions being concurrently executed in Phase 2. As a result,
this parallelized design not only improves protocol latency but
also eliminates the censorship attack surface that is originated
from sequential token transfers in [3] and [10].

C. Evaluation of Il cry under Attacks

Table IV summarizes the results of the four key metrics for
the 3 protocols under the censorship and withholding attacks.
In the worst-case (both sender and receiver malicious), Il crg
incurs 980 bytes per CCTE operation (including two extra 210-
byte proof transactions plus one extra 230-byte cross-chain
transaction CCTy, ). Consequently, its total gas consumption
rises to 732,251 (219,340 gas attributable to those three trans-
actions) and its latency increases by one additional block inter-
val (from 30+15k seconds to 45+15k seconds). Its memory
overhead, however, remains unchanged.

Although extra cost is introduced, 1.7 ensures its atomic-
ity property and completes the two token transfers. In contrast,
[, fails to hold the atomicity property under the attacks (see
Section VII-A), while I,y rolls back all operations in the
CCTE process. Thus, our protocol is more robust and practical
under the adversarial scenarios.

D. Evaluation of [Io¢cp; without Attacks

By implementing battle games (see Section V) in SCr to act
as the CCDI application, we compare the proposed II;¢p; with
other 2 protocols named as MAP [28] and PoS-Co [26]. For
simplicity, we consider that each BC has | X /N | state data items
participating in a CCDI process. The following results are de-
rived without considering attacks. Fig. 7 compares the commu-
nication cost of the 3 protocols. It can be seen that our proposed
protocol I;cp; reduces communication cost by at least 35%
compared to the two protocols. This is because that in [Iq¢p;,
only 2X transactions (see (5) and (6)) and N native transactions
(see (7)) are required for updating X state data items. In con-
trast, PoS-Co requires 3X+1 transactions to update X state data
items. MAP’s performance in communication cost is worst, as
it requires 5X transactions to update X state data items.

Table V shows the gas consumption of the operations in-
volved in the 3 protocols. Building upon Table V, Fig. 8 shows
the comparison results of gas cost under the 3 protocols. It can
be observed that I[1;.p; reduces gas consumption by at least
41% compared to the two protocols when X = 120, N = 40.
Meepr’s gas efficiency stems from three key design choices.
First, in Phase 2, II.-p; records only each state data item’s
metadata in SCr, rather than minting and storing a state data
item on the BoB. Table V shows that metadata storage requires
far less gas than creating new state data items. Second, in phase
3, a single threshold signature lets I.cp; update |X/N| state
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TABLE VI

Comparison on the Four Metrics of the Three Protocols in a
CCDI Process Under Attacks

Types Comm, Comp, M, L,
1 640Y  416,032Y+63,77  510kN 45+15k
CCDT 480N 9(Y-1)+134,000N
1824Y 510kN+(1,4  >75+30k
MAP 1,543,166Y 44+1500)N
PoS-Co 996Y  621,500Y+134,0  574kN+96  >60+30k
+80N 00N N
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Fig.8 Gas comparison in CCDI under varying X and N (with-
out considering the data storage costs of MAP and PoS-Co
for validating proofs).

PoS-Co
k=16

leepr MAP A

k=8

100

M,(kilobyte)

200 gro7 A

10 20 30 1010 20 30 10
N N

Fig.9 Memory comparison in CCDI under varying N and k
(considering 40 validators in MAP’s PoS consensus).

3001 = Ilccpr - deterministic BB MAP - probabilistic
E B ([,  probabilistic BEEA PoS-Co - deterministic
E_ EEE MAP - deterministic B8R PoS-Co -~ probabilistic
£ 200
<
o]
2,

Z100
~

0 9 3

Fig.10 Latency comparison in CCDI. “deterministic” and
“probabilistic” denote the consensus types.

data items in one BC at once, incurring a fixed gas cost of
21,000+113,000+51,244X /N units. In contrast, MAP and PoS-
Co needs one transaction to update one state data item. Third,
[I¢cp; only needs 3 phases to complete a CCDI process, while
MAP and PoS-Co need 5 and 4 phases to complete a CCDI pro-
cess, respectively. All the three merits make [;-p; $2,593 and
$493 cheaper than MAP and PoS-Co, respectively, when X =
120 and N = 40.

Fig. 9 shows the comparison results of memory cost. The
memory cost of [I¢cp; is N X k X 510 bytes, which is the same
as [qcrg, as the two protocols ensure that every BC holds the

In the CCDI process, we consider X — Y malicious user
nodes who can launch withholding attacks.

independence property. Notably, the N Xk x 510 bytes
memory costs are only consumed by the BoB of the other two
protocols. However, as MAP and PoS-Co do not hold the inde-
pendence property, the BCs in their constructions consumes ad-
ditional memory costs. In MAP, each BC needs to store the last
k block headers of the BoB and a set of validators’ public keys.
PoS-Co is more efficient than MAP since each BC only requires
updating a threshold public key within a certain number of
epochs. However, for every CCDI application, each BC needs
to store k latest root hashes of the BoB. As a result, [1-¢p; re-
duces its memory burden by at least 12% compared to the two
protocols when k = 16, N = 40. According to [46], storing 1
kilobytes data consumes 640,000 gas, which makes Iqcrg
$1,922 and $560 cheaper than MAP and PoS-Co, when N =
40, k = 16.

Fig. 10 shows the comparison result of latency cost. Since
[¢cp; only consumes 3 phases to complete a CCDI process (see
Section V), while MAP and PoS-Co require 5 and 4 phases, re-
spectively, I1¢¢p; reduces its latency by at least 33% compared
to other two protocols. The efficiency of [I;¢p; is due to the
“transfer and in place data update” design, which enables direct
updates on multiple locked state data items using a single trans-
action within a single phase. By reducing latency, [1¢p; nar-
rows adversaries’ window for mounting attacks, thereby en-
hancing system’s robustness.

E. Evaluation of Il -¢p; under Attacks

We evaluate the 3 protocols under both censorship and with-
holding attacks. Table VI summarizes the four key metrics for
each protocol. As shown, [I-¢p; outperforms both MAP and
PoS-Co across every metric. This efficiency arises from two
core mechanisms. First, the state-data migration scheme (Sgp )
allows honest user nodes to mitigate their state data items to
censorship-resilient BCs, completely neutralizing censorship
attacks; by contrast, MAP and PoS-Co must resort to timeout-
based mechanisms to roll back an entire CCDI process for the
preservation of their atomicity property. Second, the malicious
user nodes elimination scheme (S, ;) eliminates malicious
user nodes and allows the remaining user nodes continue the
current CCDI process. Consequently, even if these malicious
user nodes launch withholding attacks, the state data items of
the remaining honest user nodes are still updated, unlike MAP
and PoS-Co that roll back all operations involved in the CCDI
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process.

VII. RELATED WORK

This section provides a review for the CCTE and CCDI pro-
tocols that are reported in the literature or implemented in real-
world applications.

A. Protocols for Cross-Chain Token Exchange

Time-lock-based protocols are actively studied for facilitat-
ing CCTE, with the Hash-Time-Lock Contract (HTLC) [5] be-
ing a pioneered model. Subsequent research is conducted to im-
prove the performance of HTLC. [8] improves HTLC’s latency
from O(|V|A) to O(A), where |V| is the number of parties in-
volved in HTLC. [9] replaces time locks with attribute-verifia-
ble timed commitments, eliminating the need for specific time
parameters (e.g., A). Recently, adaptor signature-enabled lock
schemes (ASLSs) are widely investigated to improve the time
and on-chain computation efficiency of HTLCs [7, 10]. ASLSs
divide a CCTE process into three phases. In the first phase,
CCTE participators generate the token transfer transactions and
commit pre-adaptor signatures off-chains. In the second phase,
a participator first makes its adaptor signature publicly availa-
ble and finish its token transfer transaction on-chain. In the third
phase, the subsequent participators obtain secrets from the
adaptor signature to fulfill their own token transfer transactions
on-chain. As a result, only token transfer transactions are exe-
cuted on-chain, eliminating the need of on-chain locking oper-
ations.

Despite the improvements achieved by ASLSs, the protocols
are still prone to censorship attacks. Taking two parties” CCTE
as an example, once Alice finishes its token transfer transaction
in BC,, its secret will be exposed to Bob which can use this
secret to finish its token transfer transactions in BC;. However,
Alice can spend its account balance at the time when it submits
its token transfer transactions in BC,. If Alice can collude BC;
to delay the token transfer transaction of Bob but to accelerate
the execution of its own token transfer transaction, Alice can
spend out its token balance in BC;, making Bob’s token transfer
transaction unable to be executed.

To defend against censorship attacks, [3] proposes a Decen-
tralized Cryptocurrency Exchange protocol Ilpg. s intro-
duces relays who need to deposit certain amount of tokens in a
BoB, and defines a CCTE process including 4 phases: (i) a
sender sends a CCTE request to the BoB; (ii) the sender trans-
fers coin; to an relay R; in BCy; (iii) if the transfer in (ii) is
confirmed, an relay R, transfers the equivalent amount of coins
to a receiver at BCy; (iv) if the transfer in (iii) is valid, R, trans-
fers the equivalent amount of coins to R, in the TP. While the
relays and the deposit mechanism can effectively counter cen-
sorship attacks, I, is inefficient as it needs additional mech-
anisms (e.g., Proof-of-Work adopt in [3]) to guarantee the trust-
worthy of relays. Moreover, under withholding attacks, I1pcx
can only roll back all operations involved in the CCTE process
for the guarantee of the atomicity property, which provides an
attack surface to deny CCTE services.

Notary-based schemes [4, 21], sidechains [24-26] and Ora-
cle-based schemes [12, 14] can also support CCTE. However,

these schemes are computationally inefficient and time-con-
suming when applied to CCTE. Although existing off-chain
state-channel schemes [50, 51] can substantially boost through-
put by enabling multiple users to concurrently exchange tokens
off-chain without the need of the on-chain consensus, they still
compromise the independence of the blockchains involved in a
CCTE process. Developing techniques to retain each chain’s in-
dependence in state-channel deployments therefore merits fur-
ther investigation.

B. Protocols for Cross-Chain Data Interoperability

CCDI applications often involve complex state data update
logics, making BoBs play an indispensable role in the protocols
facilitating cross-chain data interoperability.

Some protocols [12-20] (e.g., IBC protocol) enable CCDI
through direct message verification among BCs, with BoBs
handling message transmission and data format translation. In
these protocols, every BC needs to store information of other
BCs (e.g., their block headers) for the verification of received
cross-chain messages, which compromises the BCs’ independ-
ence and leads to O (N?) memory complexity for N participat-
ing BCs.

Other protocols [12, 14], e.g., LayerZero [12], use oracles
and relay nodes as third parties to relay data. Under this design,
each BC does not need to store other BCs information; instead,
each BC uses the information provided by oracles and relay
nodes to validate cross-chain messages. However, to guarantee
the trustworthy of oracles and relay nodes, multiple nodes need
to provide information to defend against false data injection at-
tacks launched by Byzantine nodes, which in turns introduces
significant communication cost.

To reduce significant memory and communication burdens
of the above protocols [12-20], the protocols belonging the sec-
ond paradigm (described in Section I-A) have been widely stud-
ied in academia [21-26, 28-30] and adopted in industry [27].
Among them, some protocols (such as MAP [28] and XCMP
[27]) directly use a BoB to verify CCDI requests. In these pro-
tocols, a CCDI process comprises of 5 phases: (i) all CCDI re-
quests are sent to the BoB; (ii) the BoB’s statements for these
requests are sent to a destination BC; (iii) the BC updates all
state data items in the requests; (iv) the updated operations are
validated in the BoB; and (v) all updated state data items are
updated in their original BCs.

In side-chain based schemes [24-26] (e.g., PoS-Co), a CCDI
process consists of 4 phases: (i) the state data items are locked
in the BCs; (ii) each locked state data item is created in the
sidechain and the CCDI function is executed in the sidechain to
update these state data items; (iii) the root hash of the these up-
dated state data items a generated, and a threshold signature is
generated by signing the root hash; after that, the threshold sig-
nature and the root hash are sent to the BCs; and (iv) every user
node sends its updated state data item with a Merkle proof to its
BC for the update of its locked state data item.

A drawback of the protocols in the second paradigm is that
each BC needs to continually store some information for the
verification of BoB’s statements and proofs. This in turns com-
promises the BCs’ independence and leads to a memory
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complexity with the order of O(N) for N participating BCs.
Additionally, current protocols in the second paradigm are not
optimal, as they need at least 4 phases to finish a CCDI process.
Additional phases introduce more communication, computation
and latency burdens, which in turns reduces their efficiency,
hindering their applicability in real-world applications. Moreo-
ver, under withholding attacks, current CCDI protocols can
only roll back all operations to safeguard their atomicity prop-
erty, which also provide chances for adversaries to launch de-
nial of service attacks on CCDI applications.

VIII. CONCLUSIONS AND FUTURE WORK

This paper proposes a CCTE protocol and a CCDI protocol
to support cross-chain data interoperability. The CCTE protocol
is designed for cross-chain token exchange. Besides be capable
of preserving the independence of participating BCs, the CCTE
protocol supports parallel execution of cross-chain token trans-
fer transactions, which leads to a significant latency reduction.
Although the CCTE protocol incurs higher communication,
computation, and memory costs compared to time-lock-based
schemes [7, 10], the CCTE protocol can hold atomicity property
and complete token exchanges even in the presence of with-
holding and censorship attacks.

As for the proposed CCDI protocol, by designing the thresh-
old signature-based “transfer and in place data update” mecha-
nism, the proposed CCDI protocol securely achieves the state
data updates without compromising the independence property
of the participating BCs. Furthermore, with the threshold-sig-
nature-based “in place data update” operations, the CCDI pro-
tocol only spends one phase (i.e., one transaction execution
time) to complete all the state data update in the participating
BCs, which incurs the least latency cost compared to the state-
of-the-art protocols [12-30]. Moreover, the state-data migration
scheme and the malicious user nodes elimination scheme fur-
ther safeguard the CCDI protocol in the presence of withhold-
ing and censorship attacks.

Future research can be conducted in two directions. Firstly,
as deposit mechanism is not user-friendly, it is worth investi-
gating if there is a method that can obviate the need of the de-
posit mechanism used in the proposed CCTE protocol (in Sec-
tion IV) while maintaining the protocol’s efficiency. Secondly,
from the authors’ perspective, the communication cost of the
proposed CCDI protocol (in Section V) is relatively high, and
we aim to further reduce the communication cost by designing
more efficient message sending mechanisms [52] and applying
leader-based mechanisms [53].
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