

Contents lists available at ScienceDirect

Annals of the Rheumatic Diseases

Autoimmunity

Autoreactive T cells identified in patients with anti-Jo1 + antisynthetase syndrome recognise a new epitope on histidyl t-RNA synthetase

Angeles S. Galindo-Feria ^{1,2,3}, Ravi Kumar Sharma ^{1,2,4}, Anatoly Dubnovitsky ^{1,2}, Christina Gerstner ^{1,2}, Genadiy Kozhukh¹, Annika Van Vollenhoven ^{1,2}, Juan Sebastian Diaz Boada ¹, Daniel Ramsköld ⁵, Adnane Achour ^{6,7}, Maryam Dastmalchi ^{2,3}, Hugh H. Reid ⁸, Tatyana Sandalova ^{6,7}, Jamie Rossjohn ^{8,9}, Karine Chemin ^{1,2}, Vivianne Malmström ^{1,2}, Ingrid E. Lundberg ^{1,2,3}, Begum Horuluoglu ^{1,2,*}

ARTICLE INFO

Article history: Received 1 August 2025 Received in revised form 26 September 2025 Accepted 28 September 2025

ABSTRACT

Objectives: Anti-Jo1 + antisynthetase syndrome (ASyS) is characterised by autoantibodies targeting histidyl t-RNA synthetase (HisRS), association with *HLA-DRB1*03:01* and a distinct clinical phenotype including interstitial lung disease, myositis, arthritis, and mechanic's hands. Previous studies of autoreactive HisRS-specific CD4⁺T cells point to yet undiscovered T cell epitopes. We aimed to identify new epitopes on HisRS to investigate the presence of autoreactive T cells and their corresponding T-cell receptor (TCR) repertoire from patients with ASyS.

Methods: Peptides from HisRS N-terminal region with appropriate major histocompatibility complex (MHC) anchor residues were selected for *in vitro* binding assays. The peptide (HisRS₄₁₋₅₅) with the highest HLA-DRB1*03:01 binding affinity was selected for studies with HLA-class II tetramers. Peripheral blood mononuclear cells (PBMCs) from patients with ASyS with *HLA-DRB1*03:01* (n = 12) were stimulated *in vitro* with peptide and peptide-HLA-DRB1*03:01 tetramers were used to detect HisRS+CD4+T cells. Single TCR sequencing of captured T cells allowed analyses of the underlying TCR repertoire.

Results: We identified a new T cell epitope on HisRS with high affinity for HLA-DRB1*03:01. Autoreactive HisRS+CD4+T cells were detected in PBMCs of patients (n = 6/12). TCR repertoire analysis of HisRS+CD4+T cells revealed shared gene V-alpha and beta usages. Moreover,

Vivianne Malmström and Ingrid E. Lundberg contributed equally.

Handling editor Josef S. Smolen.

https://doi.org/10.1016/j.ard.2025.09.015

0003-4967/© 2025 The Author(s). Published by Elsevier B.V. on behalf of European Alliance of Associations for Rheumatology (EULAR). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

¹ Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden

² Center for Molecular Medicine, Stockholm, Sweden

³ Department of Gastro, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden

⁴ Department of Clinical Immunology and Rheumatology, All India Institute of Medical Sciences, Bilaspur, (H.P), India 174001

⁵ Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden

⁶ Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden

⁷ Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden

⁸ Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia

⁹ Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK

 $^{{\}bf *Correspondence\ to\ Dr.\ Begum\ Horuluoglu,\ Karolinska\ Institute,\ Stockholm,\ Sweden.}$

E-mail address: begum.horuluoglu@ki.se (B. Horuluoglu).

HisRS⁺CD4⁺T cells persisted after treatment in 2 patients (P2 and P4) and 2 identical T cell clones were detected between the initial and follow-up time points in 1 patient (P2).

Conclusions: Autoreactive T-cells targeting a new HisRS epitope were identified indicating T cell reactivity to diverse epitopes of the HisRS protein in patients with anti-Jo1 autoantibodies. Furthermore, we demonstrated the TCR repertoire of autoreactive HisRS + CD4 + T cells in patients. Persistence of these T-cells and specific clones may be contributing to disease.

WHAT IS ALREADY KNOWN ON THIS TOPIC

- Association of HLA-DRB1*03:01 with antisynthetase syndrome (ASyS) indicates the contribution of CD4⁺T cells in disease.
- CD4⁺T cells from peripheral blood mononuclear cell and bronchoalveolar lavage fluid cells from patients with ASyS are activated upon stimulation with the full-length histidyl t-RNA synthetase (HisRS) and HisRS-derived peptide indicating the presence of HisRS-reactive T cells.
- Shared T cell clones are found between muscle and blood with a cytotoxic phenotype. These clonally expanded T cells persist with a similar phenotype in a patient with ASyS despite treatment

WHAT THIS STUDY ADDS

- A new T-cell epitope identified on HisRS that has a high affinity to bind HLA-DRB1*03:01.
- Autoreactive HisRS⁺CD4⁺T cells were identified using HLAclass II tetramers in 6 patients with ASyS upon in vitro stimulation.
- T-cell receptor (TCR) repertoire analysis of autoreactive T cells showed shared alpha or beta chain CDR3 amino acid sequences and V gene usages for both alpha and beta chains among patients with ASyS.
- Persistence of antigen-specific T cells and identical T cell clones were detected after up to 12 months with immunosuppressive treatment which might contribute to disease chronicity.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY

- Presence of autoreactive T cells could be used as a tool to follow the effects of conventional treatments.
- Identification of antigen-specific T cells has implications for future development of therapies including tolerising and targeting pathogenic TCR signatures.

INTRODUCTION

Antisynthetase syndrome (ASyS) is a subgroup of idiopathic inflammatory myopathies characterised by the presence of auto-antibodies against aminoacyl t-RNA synthetases, myositis, and extramuscular features such as interstitial lung disease (ILD), and is associated with high morbidity and mortality [1–3]. The most frequent anti-tRNA synthetase autoantibodies are the anti-Jo-1 autoantibodies targeting histidyl-transfer RNA synthetase (HisRS), and there is a genetic association with *HLA-DRB1*03:01* implicating the recognition of autoantigens by CD4⁺ T cells [4,5]. T cells have been reported at the sites of inflammation in the muscle and lungs of patients with ASyS where they are proposed to contribute to disease pathogenesis [6–8].

HisRS, which is a cytoplasmic enzyme involved in protein translation, may trigger innate and adaptive immune responses leading to cell-mediated damage in tissues such as muscle and lung [9,10]. Our group has shown that CD4 $^+$ T cells from peripheral blood mononuclear cells (PBMCs) and bronchoalveolar lavage fluid (BALF) from patients with anti-Jo-1 $^+$ ASyS with the

*HLA-DRB1*03:01* haplotype were activated upon stimulation with HisRS protein. Increased levels of CD40L were detected on CD4⁺T cells, along with enhanced interferon γ (IFN γ) production, suggesting the presence of T cells recognising the HisRS protein [11]. Interestingly, while almost all patients' T cells responded to the full-length HisRS protein, not all responded to stimulation with the peptide used for T cell stimulation (HisRS₁₁₋₂₃) suggesting that multiple epitopes may contribute to the T cell response. These findings highlight the potential for epitope spreading and the importance of identifying new epitopes on HisRS.

The recombination of T-cell receptor (TCR) gene segments is the basis for the generation of a diverse T cell repertoire where each T cell expresses a unique TCR sequence. Restricted TCR gene usage in the lungs and muscles of patients with myositis has been shown suggesting antigen-induced T cell responses in these organs [12]. More recently, we showed using single-cell RNA sequencing the presence of clonally expanded cytotoxic CD4⁺T cell clones shared between muscle and blood of a patient with anti-Jo1 + ASyS suggesting the possibility to detect pathogenic T cells in blood [13]. These clonally expanded cytotoxic CD4⁺ T cells persisted with the same phenotype in both blood and muscle after 9 months of conventional immunosuppressives treatment, further supporting the contribution of CD4⁺T cells to disease chronicity [13].

In this study, we aimed to identify autoreactive HisRS-specific CD4⁺T cells in the peripheral blood of patients with ASyS using HLA-class II tetramers loaded with a HisRS peptide, to detect low-frequency antigen-specific CD4⁺T cells with high efficiency. We further performed single TCR sequencing to study the TCR repertoire of autoreactive HisRS-specific T cells and investigated their persistence at different disease stages.

METHODS

Patients and healthy controls

Peripheral blood samples from 2 cohorts (n = 33 in total) with anti-Jo1 autoantibodies were collected from Karolinska University Hospital Rheumatology Clinic at the time of diagnosis and at annual follow-up between 2014 and 2023. The diagnosis of ASyS was based on the presence of anti-Jo1 autoantibodies in addition to one of the following features: ILD, myositis, arthritis, Raynaud's phenomenon, fever, or mechanic's hands [14]. First cohort consisted of 19 patients who were included in peptide stimulation assays, whereas the second cohort with 14 patients was included for the HLA-class II tetramer assays. Disease activity was assessed using the International Myositis Assessment and Clinical Studies core set measures, including the Myositis Disease Activity Assesment Visual Analogue Scale (MYOACT), manual muscle testing 8 (MMT8), and the physician global assessment. A detailed, comprehensive summary of demographic, clinical, laboratory, immunological treatment, and genetics for both cohorts can be found in the supplementary methods and Supplementary Tables S1 and S2. HLA-

DRB1 alleles were genotyped using the DR low Olerup SSP kits. Peripheral blood cells from *HLA-DRB1*03*-positive healthy controls were kindly provided by the Uppsala Bioresource, Uppsala University Hospital.

Ethics

The research ethics committees at Region Stockholm (DNR: 2005/792-31/4, 2018/1198-32) and Uppsala University (DNR: 2009/013) approved the study. Written informed consent was obtained from all participants. This study was conducted in accordance with the Declaration of Helsinki.

RESULTS

Antigen-specific CD4⁺T cells are detected using in-house produced and assembled peptide-HLA-class II tetramers

First, we evaluated the efficacy of our tetramer assay to detect antigen-specific CD4⁺T cells *in vitro* using HLA-DRB1*03:01 tetramers (Tmr hereafter) loaded with the positive control tetanus peptide (Tet₅₀₆₋₅₂₅). PBMCs from HLA-

DRB1*03:01 positive healthy donors (HC1, HC2, and HC3) were stimulated with Tet₅₀₆₋₅₂₅ along with interleukin(IL)7 and IL15 cytokines to support T cell survival (Fig 1A). The cells were kept in culture for up to 21 days and stained for the presence of tetanus-reactive T cells on different days. Tetanus-HLA-DRB1*03:01 Tmrs conjugated with 2 different fluorophores were used to gate on double Tmr-positive T cells in order to minimise false positive events from the cultured cells using flow cytometry (Supplementary Fig S1A). We observed that the number of tetanusspecific CD4+T cells increased with the number of incubation days and decided to continue with day 13 cultures for the detection of antigen-specific CD4⁺T cells (Fig 1B,C). To further confirm the presence of $Tet_{506-525}^+CD4^+T$ cells, we measured IFN γ secretion following stimulation of PBMC from 2 individuals (HC 1 and patient with ASyS). Tet₅₀₆₋₅₂₅ Tmr⁺ cells were detected in HC1, while no Tmr⁺ cells were detected in the patient (Fig 1D). FluoroSpot results showed a significantly higher number of IFN γ^+ cells (spots) in culture containing tetanus Tmr-positive CD4⁺T cells as compared to their unstimulated counterparts. No such increase in the IFN γ^+ cells was observed in the cultures without tetanus Tmr-positive cells (Fig 1E). Altogether, our results indicate that our experimental set-up enabled us to detect

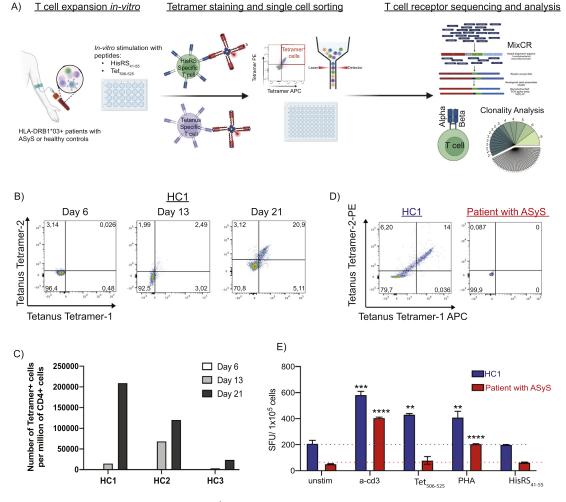
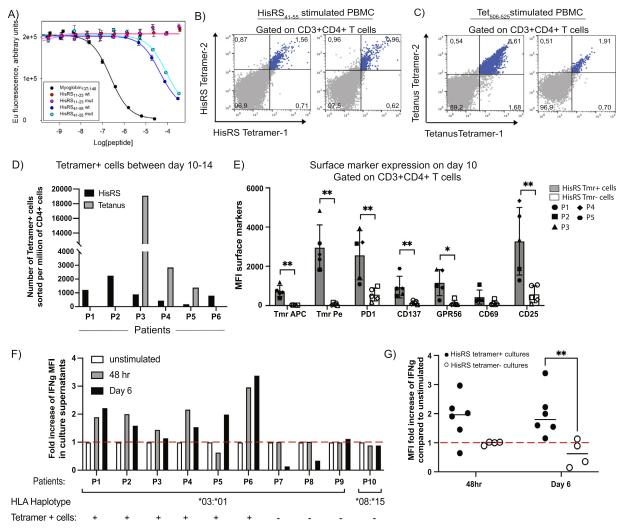


Figure 1. Tetanus tetramer staining of antigen-specific CD4 $^+$ T cells from human peripheral blood samples (A) Pipeline workflow starting from expansion of human peripheral blood mononuclear cells with respective peptides (HisRS_{41.55} and Tet_{506.525}) along with IL7 and IL15, Tmr staining, single T-cell sorting and sequencing. (B) Representative flow plots showing tetanus-specific cells using Tet_{506.525} tetramers conjugated with 2 different fluorophores on days 6, 13, and 21 following stimulation with Tet_{506.525} from healthy control 1 (HC1). (C) Bar plot showing the number of Tet_{506.525} Tmr $^+$ CD4 $^+$ T cells per million of CD4 $^+$ T cells on days 6, 13, and 21 from 3 healthy control (HC1, HC2, and HC3) peripheral blood sample following stimulation with Tet_{506.525}. (D) Flow plots showing presence (HC1, blue) and absence (patient with ASyS, red) of tetanus Tmr-positive CD4 $^+$ T cells, and (E) fluorospot staining from cells of these individuals which are positive for IFN γ upon stimulation with Tet_{506.525} or a-CD3 or PHA as positive controls and HisRS_{41.55} and unstimulated as negative controls. Number of spots per well was normalised to spots in 100,000 cells/well for plotting purposes. ASyS, antisynthetase syndrome; IFN γ , interferon γ ; IL, interleukin; TMR, tetramer; HisRS, histidyl t-RNA synthetase; PHA, phytohemagglutinin.

antigen-specific T cells using in-house assembled peptide-HLA-DRB1 $^{\star}03:01$ tetramers.


A new T cell epitope on HisRS identified and loaded on peptide-HLA-DRB1*03:01 tetramer

Given the known binding preferences for peptides to HLA-DRB1*03:01 and the previous reports on HisRS T cell reactivity being confined to the granzyme cleaved part of HisRS, we predicted tentative T cell epitopes for testing their binding to HLA-DRB1*03:01 [11]. A new epitope HisRS₄₁₋₅₅ was identified (LKAQLGPDESKQKFV, predicted binding residues underlined) with a higher binding affinity to HLA-DRB1*03:01 compared to the previously reported epitope HisRS₁₁₋₂₃ (Fig 2A). Binding assays comparing the HisRS₄₁₋₅₅ and HisRS₄₁₋₅₅.mut peptides (LKAALGPDASKAKFV, mutations underlined) showed no difference in HLA-binding, supporting that the identified anchor residues are indeed responsible for the interaction (Fig 2A). We also compared the stimulatory effects of these peptides by incubating PBMCs from patients with ASyS (n = 19, Supplementary Table S1). An increased CD40L expression was detected on CD4⁺T

cells in 53% of the patients stimulated with ${\rm HisRS_{41-55}}$, whereas 32% of patients had an increase upon ${\rm HisRS_{11-23}}$ stimulation compared to unstimulated (Supplementary Fig S1B,C). There was no significant difference in CD40L upregulation between peptide stimulations (Supplementary Fig S1C). Thus, the new epitope identified (${\rm HisRS_{41-55}}$) was chosen for the assembly of peptide-HLA-DRB1*03:01 tetramers.

Autoreactive HisRS-specific CD4⁺T cells are detected in PBMC of patients with anti-Jo1⁺ ASyS upon in vitro expansion

Next, we stimulated PBMCs from patients with anti-Jo1⁺ ASyS (n = 12/14 with an *HLA-DRB1*03* haplotype, Supplementary Table S2) with HisRS₄₁₋₅₅ and Tet₅₀₆₋₅₂₅ [15] peptides, to investigate the presence of antigen-specific T cells using tetramers. We included antibodies against cell surface receptors previously described to be upregulated on antigen-specific T cells (CD69, CD25, PD1, and CD137) [16,17] and a cytotoxicity-related receptor (GPR56) [18]. Between days 10 to 14 of stimulation, we detected HisRS Tmr double (Live⁺CD3⁺CD4⁺ Tmr-APC⁺/Tmr-PE⁺) positive T cells in 6 of 12 patients, and

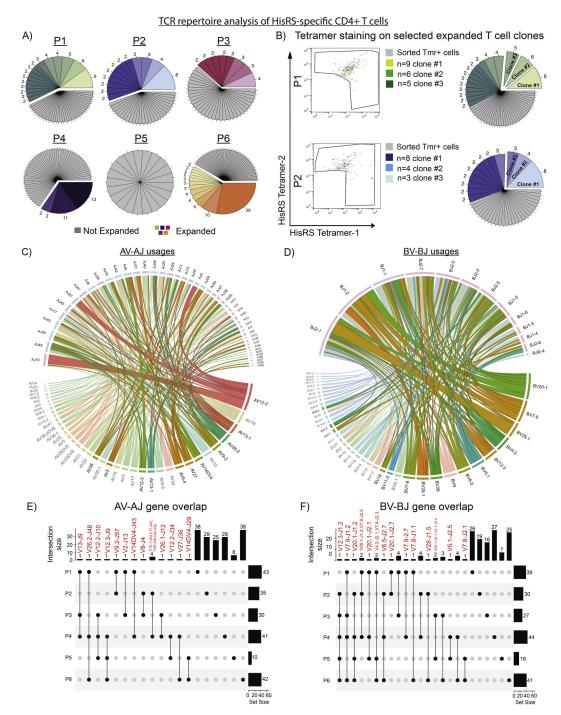
Figure 2. HisRS-specific CD4⁺T cells detected in peripheral blood of patients with ASyS. (A) Binding of HisRS peptides HisRS₁₀₋₂₅ (red), HisRS₁₀₋₂₅ mutated (pink), HisRS₄₁₋₅₅ (blue), HisRS₄₁₋₅₅ mutated (light blue) and myoglobulin (black) to MHC II. Representative flow cytometry plots showing (B) HisRS Tmr and (C) tetanus Tmr-positive cells (blue) among all CD4⁺T cells (grey) upon stimulation with HisRS₄₁₋₅₅ and Tet₅₀₆₋₅₂₅, respectively, using patient PBMCs. (D) Number of HisRS and tetanus Tmr-positive CD4⁺T cells per million of CD4⁺T cells in 6 patients P1-P6. (E) MFI of activation markers (PD1, CD69, CD137, and GPR56) from HisRS Tmr-positive (grey bar) vs HisRS Tmr-negative (clear bar) from 5 patients. Fold increase of IFNy levels measured in supernatants of cultures at 48 h and 6 d after stimulation with HisRS₄₁₋₅₅ shown (F) per patient and (G) grouped based on presence of Tmr-positive cells. ASyS, antisynthease syndrome; HisRS, histidyl t-RNA synthetase; MFI, mean fluorescent intensity; P1-P6, patients 1 to 6; PBMCs, peripheral blood mononuclear cells; TMR, tetramer; MHC, major histocompatibility complex.

tetanus double Tmr-positive (Live CD3 + CD4 + Tmr-APC + /Tmr-PE) T cells in 3 of 12 patients (Fig 2B,C, Supplementary Fig S1A). There was no difference in clinical parameters in patients with detectable HisRS-specific CD4⁺T and those without (Supplementary Table S3). The median number of HisRS Tmr-positive cells per million CD4⁺T cells was 1044 (IQR 366-2087) in 6 patients most likely reflecting the number of HisRS-specific T cells among the seeded PBMC. We detected a higher number of Tet-Tmr⁺ cells from the Tet₅₀₆₋₅₂₅ stimulated cultures compared to HisRS-Tmr⁺ cells from HisRS₄₁₋₅₅ stimulated cultures due to a possible higher number of circulating tetanus-specific CD4+ T cells in vaccinated adults (Fig 2D). Furthermore, HisRS Tmr-positive cells displayed significantly higher mean fluorescent intensity (MFI) of PD1, CD137, GPR56, and CD25 supporting their activation with HisRS₄₁₋₅₅ peptide stimulation as compared to HisRS Tmr-negative cells (Fig 2E). In the cultures from 48 hours and 6 days where HisRS Tmr-positive T cells were observed (6 patients; P1-P6), IFNy levels were increased as compared to their unstimulated cultures (Fig 2F). Moreover, IFN γ levels were significantly higher in HisRS Tmr-positive cultures compared to Tmr-negative cultures on day 6, again supporting the antigenspecific T cell activation by HisRS₄₁₋₅₅ peptide in the Tmr-positive cultures (Fig 2G). Among other cytokines that were measured (IL6, IL10, tumour necrosis factor α [TNF α], and IL17A) in the supernatants $TNF\alpha$ levels were also significantly higher in tetramer-positive cultures at day 6 (Supplementary Fig S1D). Altogether, our data show that HisRS-specific CD4⁺T cells are detectable in PBMC of patients with anti-Jo1+ ASyS upon in vitro expansion.

TCR repertoire analysis revealed shared gene usages among patients

Single HisRS- and tetanus-specific CD4⁺T cells were sorted between days 12 and 14 of peptide stimulation cultures for TCR sequencing. TCR alpha/ beta (α/β) chains of HisRS-specific $CD4^{+}T$ cells (n = 520 T cells) and tetanus-specific $CD4^{+}T$ cells (n = 130 T cells) were sequenced from 6 and 2 patients, respectively. T cells sharing identical complementarity determining region 3 (CDR3) amino acid sequences on both the α and β chains were considered to be a clone. Clonality analysis revealed the presence of expanded T cell clones in 5 of 6 patients for HisRS and 2 patients for tetanus (Fig 3A, Supplementary Fig S1E). The MFI values for tetramer staining of expanded T cells were confirmed from the index sorting (Fig 3B). Interestingly, we detected shared single α or β chain CDR3 sequences among different patients (Supplementary Fig S2A,B). We did not identify any clone (both α and β chain CDR3 identical) with public TCR sequences among all the tested patients with anti-Jo1⁺ ASyS (Supplementary Table S4A). We used TCR_explore, a webtool to further perform a TCR repertoire analysis to investigate shared patterns among TCR sequences between patients [19]. There was no difference in CDR3 lengths between patients (P1-P6) or antigens (HisRS vs Tetanus) (Supplementary Fig S2C,D). We observed a slightly higher diversity in CDR3 sequences of HisRS Tmr⁺ cells compared to Tetanus Tmr⁺ cells, although this difference did not reach any significance (Supplementary Fig S2E). Next, we evaluated the variable (V) and joining (J) gene pairs for both α and β chains (Fig 3C,D). We found shared gene pair usages for both α and β chains between patients for both HisRS and tetanus (Fig 3C-F, Supplementary Fig S2D,E). In addition, alpha chain V gene usages varied among individuals with AV13-1 and AV12-2 being in the top 3 gene usages observed in patients P1, P3, P5 and patients P2, P4, P5, P6,

respectively, among HisRS⁺ CD4⁺T cells (Fig 3C, E, Supplementary Fig S2F, Supplementary Table S4B). Beta chain V gene usages showed a bias against BV20-1 among HisRS⁺ CD4⁺T cells which was shared between patients P1, P2, P5, and P6 (Fig 3D,F, Supplementary Fig S2G, Supplementary Table S4B). Among the tetanus⁺CD4⁺T cells, there were 3 CDR3 α and one CDR3 β sequences shared among the 2 patients. In addition, there were also 3 AVJ and 2 BVJ gene usage pairings shared between these patients (Supplementary Fig S3A-D). Thus, our results identified expanded T cell clones among HisRS⁺ CD4⁺T cells further supporting their specificity against HisRS₄₁₋₅₅ with shared alpha and beta VJ gene pairs with high diversity among HisRS-specific CD4⁺T cells.


Persisting HisRS-specific T cells are detected in the blood of patients despite treatment

We investigated the presence of HisRS-specific CD4⁺T cells among PBMC from follow-up samples for 4 available patients (Supplementary Table S3). In follow-up blood samples after up to 1-year with immunosuppressive treatment, we detected HisRS Tmr-positive cells upon stimulation with HisRS₄₁₋₅₅ peptide in 2 of these patients (P2 and P4) (Fig 4A,B). The number of HisRS Tmr⁺ T cells was lower in the 1-year follow-up samples, compared to the samples from the first time point for both patients (Fig 4C). Similarly to the first time point, the MFI of surface markers PD1, CD137, GPR56, and CD69 as well as the IFNy levels in the cultures were increased in HisRS Tmr-positive cells compared to the Tmr-negative cells in both patients, although this did not reach statistical significance (Fig 4D,E). Upon TCR repertoire analysis of the HisRS Tmr-positive T cells, we observed expanded T cell clones in both patients (Fig 4F). Interestingly, we detected 2 identical T cell clones between the first and second time point in patient P2 (Fig 4G,H, Supplementary Fig S3E). These data suggest that HisRS-specific T cells persist in the blood of patients despite treatment with conventional immunosuppressants. The persistence of autoreactive TCR clones may suggest their role in disease progression.

DISCUSSION

In this study, we identified a new T cell epitope on the HisRS protein with a high binding affinity to the HLA-DRB1*03:01. Autoreactive T cells against this epitope were detected using peptide-HLA tetramers in blood samples of 6 of 12 patients with HLA-DRB1*03 and anti-Jo1 + ASyS upon in vitro peptide stimulation. TCR repertoire analysis of HisRS-specific T cells demonstrated the presence of expanded T cell clones supporting their specificity for this epitope. No public clones were detected (sharing both alpha and beta chain CDR3 sequences) between patients indicating the diversity of the TCR repertoire. Further analysis of TCR repertoire revealed shared alpha or beta CDR3 amino acid sequences as well as variable (V) and joining (J) gene pairings for both alpha (α) and beta (β) chains among patients. Finally, we observed persisting HisRS-specific T cells in 2 of 3 patients in follow-up samples (7-16 months) despite conventional immunosuppressive treatment. Overall, our study confirms the presence of autoreactive T cells targeting HisRSderived peptide in anti-Jo1 + patients and their persistence suggests that they may be contributing to disease chronicity.

Peptide-HLA multimer techniques have identified antigenspecific CD4⁺T cells in several autoimmune diseases, such as rheumatoid arthritis, type 1 diabetes, systemic lupus erythematosus, celiac disease, Parkinson's disease, and

Figure 3. TCR sequencing analysis reveals expanded clones and shared VJ gene usages. (A) Pie charts showing expanded T cell clones after stimulation with HisRS₄₁₋₅₅ sorted with tetramers between days 12 and 14. A clone is defined as having an identical alpha and beta CDR3 amino acid sequence. Colourful slices (green, blue, pink, purple, and orange) indicate expanded CDR3 sequences, whereas grey shows unique CDR3 sequences. The number at slices corresponds to how many times a CDR3 sequence is repeated, not shown for unique sequences which is 1 for all grey slices. (B) Representative flow cytometry plots showing top 3 expanded clones from P1 and P2, for HisRS Tmr-APC and HisRS-Tmr PE. Colourful dots are corresponding to expanded T cells; grey dots are all CD4⁺Tmr⁺ cells sorted. Circos plots showing (C) alpha and (D) beta chain VJ gene pairings, each sequence is represented once. The connecting lines that have black borders are used by multiple patients. UpSet plots showing the shared gene pairings for (E) alpha and (F) beta chain. Connected dots correspond to shared usages between patients. Intersection size corresponds to how many different pairings are shared and set size corresponds to the total number of VJ pairs present in each patient. HisRS, histidyl t-RNA synthetase; MFI, mean fluorescent intensity; P1-P6, patients 1 to 6; TCR, T-cell receptor; TMR, tetramer, V, variable; J, joining.

atherosclerosis [20–28]. Presence of these T cells has been linked to disease progression, supporting their contribution to disease [25]. However, despite these advances, the α/β TCR identity of autoreactive CD4⁺T cells remains uncharacterised in many autoimmune diseases, including ASyS. Previously, we reported the presence of antigen-reactive T cells in PBMC and BALF cells against the full-length HisRS protein in

patients with anti-Jo1⁺ ASyS. The reactivity of CD4⁺T cells against the previously reported epitope HisRS₁₁₋₂₃ was limited to a subset of the patients suggesting the presence of additional immunogenic HisRS epitopes or due to epitope spreading [11]. Here, we identified a new epitope that has a higher binding affinity to HLADR1*03:01 than the previously described epitope and demonstrated the presence of

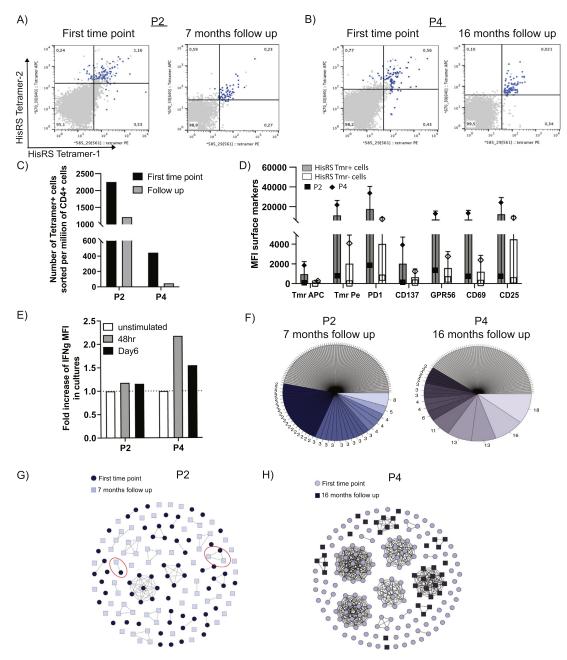


Figure 4. HisRS-specific CD4⁺T cells detected in 1-y follow-up samples of two patients. Flow cytometry plots showing HisRS Tmr-positive cells (blue) among CD4⁺T cells (grey) in (A) P2 and (B) P4 left panel first time point, right panel 1-year follow-up sample. (C) Number of HisRS-Tmr-positive CD4⁺T cells per million of CD4⁺T cells first time point (black bar) and follow up (grey bar) for two patients. (D) MFI of activation markers (PD1, CD69, CD137, and GPR56) of HisRS Tmr-positive (grey) vs HisRS tetramer negative (clear) cells (square: P2, diamond: P4). (E) Fold increase of IFNγ levels measured in supernatants of cultures 48 h and 6 d after stimulation with HisRS₄₁₋₅₅ shown per patient compared to unstimulated (clear bars) condition. (F) Pie charts showing expanded CDR3 sequences (expanded clones: blue for P2, purple for P4, unique clones: grey), the numbers on the slices indicate the number of cells that have corresponding sequences. Network plot showing shared CDR3 sequences between first time point (dark blue circle or dark purple circle) and 1-y follow-up (light blue square or lilac square) for (G) P2 and (H) P4. Connected shapes mean shared CDR3 sequences. IFNγ, interferon γ; HisRS, histidyl t-RNA synthetase; MFI, mean fluorescent intensity; P2-P4, patients 2 and 4; TMR, tetramer.

autoreactive CD4⁺T cells targeting this epitope in 6 of 12 HLA-DRB1*03:01-positive patients with ASyS.

In our study, the TCR repertoire we report reflects both antigen-experienced HisRS-specific T cells as well as naïve T cells capable of responding to the HisRS₄₁₋₅₅ epitope, both very relevant to understand the pathology of the disease. Heterogeneity within the naïve T cell compartment has been described with certain subsets more prone to respond to specific antigens [29,30]. In support of this, Gerstner et al [28] showed that a clear proportion of the autoreactive T cells detected in patients with rheumatoid arthritis displayed a naïve phenotype, and these cells are likely to be activated *in vivo* due to high chronicity

in autoimmune diseases. Taken together, this suggests that naïve T cells that can respond to autoantigens may be one of the target populations for tolerance therapies for patients with autoimmunity.

Previously, shared variable TCR gene usages in lung and muscle of patients with ASyS have been reported for selected V genes, suggesting a connection in the development and similar antigen-recognition of these cells [12]. More recently, using single-cell sequencing, we showed that cytotoxic CD4⁺T cell clones were shared between blood and muscle in a patient with anti-Jo1⁺ ASyS further supporting their developmental connection leading to tissue damage and demonstrating that these

potentially pathogenic T cells can be detected in peripheral blood [13].

Our TCR repertoire analysis of autoreactive HisRS-specific T cells from blood showed shared single alpha or beta CDR3 sequences among individuals, but no public clones (alpha and beta CDR3 sequences shared). However, we detected shared gene usages for both chains, with a bias towards increased variable TRAV-12, TRAV-13, and TRBV-20 gene usages. Biased usage of TCR gene segments has been reported in the context of infection or in autoimmunity [31]. Single-cell RNA sequencing of T cells from COVID-19-infected individuals showed a preference for TRAV1-2 and TRBV20 among CD8⁺T cells [32]. More recently, TRBV20-1 was shown to be the highest used gene segment among citrullinated peptide-specific CD4⁺T cells from patients with rheumatoid arthritis suggesting the preference towards specific gene usages in T cell responses [33-35]. Similarly, TCR alpha chain usage (TRAV12-1) was shown to be overrepresented among CD8⁺T cells upon yellow fever virus infection and TRAV-26-1 in celiac disease [36,37]. Our observed bias in TRAV and -BV-usages suggests a similar structural recognition mechanism.

Furthermore, the persistence of tetramer-positive CD4⁺T cells and specific T cell clones after treatment with conventional immunosuppressive treatment suggests that the persistence of T cells with identical TCRs might explain the high risk of relapses in patients with anti-Jo1⁺ ASyS, in support of our previous findings [13]. Future functional studies are needed to study the contribution of these antigen-specific T cells in disease progression and relapses.

One limitation of the present study is the small sample size due to the rarity of anti-Jo1 + ASyS. There were also delays in patient recruitment due to the COVID-19 pandemic. Another limitation of this study was the need for in vitro expansion of cells before repertoire analysis, due to the rarity of autoreactive T cells. Our data reflect the part of the TCR repertoire which responded to the stimulation in vitro. As confirmed by our studies, there are possibly several, some yet to be discovered, immunogenic peptides/antigens on HisRS in patients with anti-Jo1 + ASyS [11]. On the contrary, utilisation of HLA-class II tetramers makes it possible to identify very rare antigen-specific CD4⁺T cells; in patients with HLA-DRB1*03:01 with T cell reactivity against the HisRS₄₁₋₅₅ peptide in this case and provides a proof of concept on the detection of T cells specific for our target peptide using HLA-class II tetramers in 50% of the patients included with HLA-DRB1*03:01 haplotype.

To the best of our knowledge, this is the first study to report the detection of autoreactive HisRS-specific T cells using peptide-HLA-class II multimer technology and paired with α/β -TCR sequencing in patients with ASyS. Identification of antigen-specific T cells has clear implications for the future development of improved therapies including tolerising and targeting pathogenic TCR signatures. Moreover, targeting shared TCR signatures might also be tested as a therapeutic approach. Finally, our tetramers could also be used as valuable tools to study the effects of treatment on presumably pathogenic antigen-specific T cells in individual patients both under conventional immunosuppressive as well as new more targeted therapies.

Competing interests

IEL has received honorarium for lecture from Janssen Pharmaceutica NV, research grant from AstraZeneca and Janssen Pharmaceutica NV, and has been serving on the advisory board for Argenx, Astra-Zeneca, EMD Serono. Research &

Development Institute, Chugai, Galapagos, Novartis, Pfizer and Janssen Pharmaceutica NV and has stock shares in Roche and Novartis.

CRediT authorship contribution statement

Angeles S. Galindo-Feria: Writing - review & editing, Writing - original draft, Methodology, Investigation, Conceptualization. Ravi Kumar Sharma: Writing - review & editing, Visualization, Methodology, Data curation. Anatoly Dubnovitsky: Writing – review & editing, Methodology, Data curation. Christina Gerstner: Writing - review & editing, Writing original draft, Methodology, Conceptualization. Genadiy Kozhukh: Methodology. Annika Van Vollenhoven: Writing review & editing, Methodology. Juan Sebastian Diaz Boada: Writing – review & editing, Software, Methodology. Daniel Ramsköld: Writing – review & editing, Software. Adnane Achour: Writing - review & editing, Methodology. Maryam Dastmalchi: Resources. Hugh H. Reid: Writing - review & editing, Methodology. Tatyana Sandalova: Methodology. Jamie Rossjohn: Writing - review & editing, Methodology. **Karine Chemin:** Writing – review & editing, Writing – original draft, Supervision, Conceptualization. Vivianne Malmström: Writing - review & editing, Writing - original draft, Supervision, Methodology, Conceptualization. Ingrid E. Lundberg: Writing - review & editing, Writing - original draft, Supervision, Funding acquisition, Conceptualization. Begum Horuluoglu: Writing - review & editing, Writing - original draft, Visualization, Supervision, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization.

Acknowledgements

We thank the patients and medical staff, especially Dr Antonella Notarnicola and nurse Helene Sandlund at the Karolinska Rheumatology Clinic. Special thanks to Gloria Rostvall, Eva Lindroos, Julia Norkko, and Lucymary Okechukwu for biobanking and sample handling. We are grateful to Maija-Leena Eloranta and Lars Rönnbloom (Uppsala University Hospital) for providing HLA-matched control samples. We thank Anneli Dihkan for bringing the patient perspective to the research, and Barbro Larsson and Leonid Padyukov for support with HLA genotyping. We also appreciate Lars Klareskog for valuable discussions. We want to thank the CMM flow cytometry core and Lina Marcela Diaz Gallo for TCR demultiplexing scripts. We thank Timmy Hellström and Daniel Uvehag for support with scripts and containers for the bioinformatic pipeline and Alexandra Argyriou for artistic review of final figures. The authors acknowledge support from the National Genomics Infrastructure in Stockholm funded by Science for Life Laboratory, the Knut and Alice Wallenberg Foundation and the Swedish Research Council, and SNIC/Uppsala Multidisciplinary Center for Advanced Computational Science for assistance with massively parallel sequencing and access to the UPPMAX computational infrastructure.

Funding

This study was supported by The Myositis Association (BH), Professor Nanna Svartz Foundation (BH, 2024-074), Karolinska Institutet Research Foundations (BH, 2024-0021), Alex and Eva Wallström foundation (BH, 2023-00467), King Gustaf V 80th Year Foundation (BH FAI-2024-1083 and IL FAI-2024-1092),

Ake Wiberg Foundation (BH M24-00659 and RKS M23-0164), the Swedish Rheumatism Association (BH R-1013410 and IL R-1013188), The Swedish Research Council (IL, 2020–01378), Swedish Heart and Lung Foundation (IL 20220127 and BH 20241216), Region Stockholm (ALF project, IL, FoUI–985960), the Anna Hedin donation (IL), Konung Gustaf V:s och Drottning Victorias Frimurarstiftelse (IL). JR is supported by an NHMRC Investigator Award to 2008981.

Patient consent for publication

Not applicable.

Ethics approval

The study was approved by local ethics review boards and followed the Helsinki declaration.

Provenance and peer review

Not commissioned; externally peer reviewed.

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.ard.2025.09.015.

Orcid

Angeles S. Galindo-Feria: http://orcid.org/0000-0001-7095-211X

Ravi Kumar Sharma: http://orcid.org/0000-0002-2658-0002 Anatoly Dubnovitsky: http://orcid.org/0000-0002-5350-4531

Christina Gerstner: http://orcid.org/0009-0003-4342-4241 Daniel Ramsköld: http://orcid.org/0000-0003-2892-673X Adnane Achour: http://orcid.org/0000-0003-0432-710X Tatyana Sandalova: http://orcid.org/0000-0002-7694-6420 Karine Chemin: http://orcid.org/0000-0002-2597-7809 Vivianne Malmström: http://orcid.org/0000-0001-9251-

Ingrid E. Lundberg: http://orcid.org/0000-0002-6068-9212 Begum Horuluoglu: http://orcid.org/0000-0003-2241-5170

REFERENCES

- Lundberg IE, de Visser M, Werth VP. Classification of myositis. Nat Rev Rheumatol 2018;14(5):269–78.
- [2] Furst DE, Amato AA, Iorga ŞR, Gajria K, Fernandes AW. Epidemiology of adult idiopathic inflammatory myopathies in a U.S. managed care plan. Muscle Nerve 2012;45(5):676–83.
- [3] Svensson J, Arkema EV, Lundberg IE, Holmqvist M. Incidence and prevalence of idiopathic inflammatory myopathies in Sweden: a nationwide populationbased study. Rheumatology (Oxford) 2017;56(5):802–10.
- [4] Chinoy H, Adimulam S, Marriage F, New P, Vincze M, Zilahi E, et al. Interaction of HLA-DRB1*03 and smoking for the development of anti-Jo-1 antibodies in adult idiopathic inflammatory myopathies: a European-wide case study. Ann Rheum Dis 2012;71(6):961–5.
- [5] Miller FW, Chen W, O'Hanlon TP, Cooper RG, Vencovsky J, Rider LG, et al. Genome-wide association study identifies HLA 8.1 ancestral haplotype alleles as major genetic risk factors for myositis phenotypes. Genes Immun 2015;16 (7):470–80.
- [6] Arahata K, Engel AG. Monoclonal antibody analysis of mononuclear cells in myopathies. I: Quantitation of subsets according to diagnosis and sites of accumulation and demonstration and counts of muscle fibers invaded by T cells. Ann Neurol 1984;16(2):193–208.

- [7] Arahata K, Engel AG. Monoclonal antibody analysis of mononuclear cells in myopathies. III: Immunoelectron microscopy aspects of cell-mediated muscle fiber injury. Ann Neurol 1986;19(2):112–25.
- [8] Malmström V, Venalis P, Albrecht I. T cells in myositis. Arthritis Res Ther 2012;14(6):230.
- [9] Howard OMZ, Dong HF, Yang D, Raben N, Nagaraju K, Rosen A, et al. Histidyl-tRNA synthetase and asparaginyl-tRNA synthetase, autoantigens in myositis, activate chemokine receptors on T lymphocytes and immature dendritic cells. J Exp Med 2002;196(6):781–91.
- [10] Ascherman DP. Role of Jo-1 in the Immunopathogenesis of the Anti-synthetase Syndrome. Curr Rheumatol Rep 2015;17(9):56.
- [11] Galindo-Feria AS, Albrecht I, Fernandes-Cerqueira C, Notarnicola A, James EA, Herrath J, et al. Proinflammatory histidyl-transfer RNA synthetase-specific CD4+ T cells in the blood and lungs of patients with idiopathic inflammatory myopathies. Arthritis Rheumatol 2020;72(1):179–91.
- [12] Englund P, Wahlström J, Fathi M, Rasmussen E, Grunewald J, Tornling G, et al. Restricted T cell receptor BV gene usage in the lungs and muscles of patients with idiopathic inflammatory myopathies. Arthritis Rheum 2007;56 (1):372–83.
- [13] Argyriou A, Horuluoglu B, Galindo-Feria AS, Diaz-Boada JS, Sijbranda M, Notarnicola A, et al. Single-cell profiling of muscle-infiltrating T cells in idiopathic inflammatory myopathies. EMBO Mol Med 2023;15(10): e17240.
- [14] Connors GR, Christopher-Stine L, Oddis CV, Danoff SK. Interstitial lung disease associated with the idiopathic inflammatory myopathies: what progress has been made in the past 35 years? Chest 2010;138(6):1464–74.
- [15] Faner R, James E, Huston L, Pujol-Borrel R, Kwok WW, Juan M. Reassessing the role of HLA-DRB3 T-cell responses: evidence for significant expression and complementary antigen presentation. Eur J Immunol 2010:40(1):91–102.
- [16] Yan Z-H, Zheng X-F, Yi L, Wang J, Wang X-J, Wei P-J, et al. CD137 is a useful marker for identifying CD4(+) T cell responses to Mycobacterium tuberculosis. Scand J Immunol 2017;85(5):372–80.
- [17] Simon S, Labarriere N. PD-1 expression on tumor-specific T cells: friend or foe for immunotherapy? Oncoimmunology 2017;7(1):e1364828.
- [18] Argyriou A, Wadsworth 2nd MH, Lendvai A, Christensen SM, Hensvold AH, Gerstner C, et al. Single cell sequencing identifies clonally expanded synovial CD4(+) T(PH) cells expressing GPR56 in rheumatoid arthritis. Nat Commun 2022;13(1):4046.
- [19] Mullan KA, Zhang JB, Jones CM, Goh SJR, Revote J, Illing PT, Purcell AW, La Gruta NL, Li C, Mifsud NA. TCR_Explore: A novel webtool for T cell receptor repertoire analysis. Comput Struct Biotechnol J 2023;21:1272–82.
- [20] Schwenzer A, Jiang X, Mikuls TR, Payne JB, Sayles HR, Quirke A-M, et al. Identification of an immunodominant peptide from citrullinated tenascin-C as a major target for autoantibodies in rheumatoid arthritis. Ann Rheum Dis 2016;75(10):1876–83.
- [21] Boddul SV, Sharma RK, Dubnovitsky A, Raposo B, Gerstner C, Shen Y, et al. In vitro and ex vitro functional characterization of human HLA-DRB1 *04 restricted T cell receptors. J Transl Autoimmun 2021;4:100087.
- [22] Mitchell AM, Alkanani AA, McDaniel KA, Pyle L, Waugh K, Steck AK, et al. T-cell responses to hybrid insulin peptides prior to type 1 diabetes development. Proc Natl Acad Sci USA 2021;118(6):e2019129118.
- [23] Wolf D, Gerhardt T, Winkels H, Michel NA, Pramod AB, Ghosheh Y, et al. Pathogenic autoimmunity in atherosclerosis evolves from initially protective apolipoprotein B(100)-reactive CD4(+) T-regulatory cells. Circulation 2020;142(13):1279–93.
- [24] Abdirama D, Tesch S, Grießbach A-S, von Spee-Mayer C, Humrich JY, Stervbo U, et al. Nuclear antigen-reactive CD4(+) T cells expand in active systemic lupus erythematosus, produce effector cytokines, and invade the kidneys. Kidney Int 2021:99(1):238–46.
- [25] Lindestam Arlehamn CS, Dhanwani R, Pham J, Kuan R, Frazier A, Dutra JR, et al. α-Synuclein-specific T cell reactivity is associated with preclinical and early Parkinson's disease. Nat Commun 2020;11(1):1875.
- [26] Buitinga M, Callebaut A, Sodré FMC, Crèvecoeur I, Blahnik-Fagan G, Yang M-L, et al. Inflammation-induced citrullinated glucose-regulated protein 78 elicits immune responses in human type 1 diabetes. Diabetes 2018;67(11):2337–48.
- [27] Dendrou CA, Petersen J, Rossjohn J, Fugger L. HLA variation and disease. Nat Rev Immunol 2018:18(5):325–39.
- [28] Gerstner C, Turcinov S, Hensvold AH, Chemin K, Uchtenhagen H, Ramwadh-doebe TH, et al. Multi-HLA class II tetramer analyses of citrulline-reactive T cells and early treatment response in rheumatoid arthritis. BMC Immunol 2020;21(1):27.
- [29] Yoon J-W, Kim KM, Cho S, Cho M-J, Park S, Hwang D, et al. Th1-poised naive CD4 T cell subpopulation reflects anti-tumor immunity and autoimmune disease. Nat Commun 2025;16(1):1962.
- [30] Martin B, Auffray C, Delpoux A, Pommier A, Durand A, Charvet C, et al. Highly self-reactive naive CD4 T cells are prone to differentiate into regulatory T cells. Nat Commun 2013;4:2209.

[31] Turner SJ, Doherty PC, McCluskey J, Rossjohn J. Structural determinants of T-cell receptor bias in immunity. Nat Rev Immunol 2006;6(12): 883–94.

- [32] Luo L, Liang W, Pang J, Xu G, Chen Y, Guo X, et al. Dynamics of TCR repertoire and T cell function in COVID-19 convalescent individuals. Cell Discov 2021;7(1):89.
- [33] Sharma RK, Boddul SV, Yoosuf N, Turcinov S, Dubnovitsky A, Kozhukh G, et al. Biased TCR gene usage in citrullinated Tenascin C specific T-cells in rheumatoid arthritis. Sci Rep 2021;11(1):24512.
- [34] Turcinov S, Klint EA, Van Schoubroeck B, Kouwenhoven A, Mia S, Chemin K, et al. Diversity and clonality of T cell receptor repertoire and antigen
- specificities in small joints of early rheumatoid arthritis. Arthritis Rheumatol 2023;75(5):673-84.
- [35] Lim JJ, Jones CM, Loh TJ, Ting YT, Zareie P, Loh KL, et al. The shared susceptibility epitope of HLA-DR4 binds citrullinated self-antigens and the TCR. Sci Immunol 2021;6(58):eabe0896.
- [36] Frick R, Gunnarsen KS, Dahal-Koirala S, Risnes LF, Sollid LM, Sandlie I, et al. A TRAV26-1-encoded recognition motif focuses the biased T cell response in celiac disease. Eur J Immunol 2020;50(1):142–5.
- [37] Bovay A, Zoete V, Dolton G, Bulek AM, Cole DK, Rizkallah PJ, et al. T cell receptor alpha variable 12-2 bias in the immunodominant response to Yellow fever virus. Eur J Immunol 2018;48(2):258–72.