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Depression is associated with immunological and metabolic alterations, but immunometabolic characteristics of developmental
trajectories of depressive symptoms remain unclear. Studies of longitudinal trends of depressive symptoms in young people could
provide insight into aetiological mechanisms and heterogeneity behind depression, and origins of possible common
cardiometabolic comorbidities for depression. Using depressive symptoms scores measured on 10 occasions between ages 10 and
25 years in the Avon Longitudinal Study of Parents and Children (n= 7302), we identified four distinct trajectories: low-stable (70%
of the sample), adolescent-limited (13%), adulthood-onset (10%) and adolescent-persistent (7%). We examined associations of
these trajectories with: i) anthropometric, cardiometabolic and psychiatric phenotypes using multivariable regression (n= 1565-
2828); ii) 67 blood immunological proteins and 57 metabolomic features using empirical Bayes moderated linear models (n= 2059
and n= 2240 respectively); and iii) 28 blood cell counts and biochemical measures using multivariable regression (n= 2246).
Relative to the low-stable group, risk of depression and anxiety in adulthood was higher for all other groups, especially in the
adolescent-persistent (RRdepression=13.11, 95% CI 9.59-17.90; RRGAD= 11.77, 95% CI 8.58-16.14) and adulthood-onset
(RRdepression=6.25, 95% CI 4.50-8.68; RRGAD= 4.66, 95% CI 3.29-6.60) groups. The three depression-related trajectories vary in their
immunometabolic profile, with evidence of little or no alterations in the adolescent-limited group. The adulthood-onset group
shows widespread classical immunometabolic changes (e.g., increased immune cell counts and insulin resistance), while the
adolescent-persistent group is characterised by higher BMI both in childhood and adulthood with few other immunometabolic
changes. These findings point to distinct mechanisms and prevention opportunities for adverse cardiometabolic profile in different
groups of young people with depression.
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INTRODUCTION
The first two decades of life represent a critical epoch for human
neurodevelopment when most serious mental illnesses of adult life
first emerge. [1] Half of all lifetime cases of common mental disorders
including depression and anxiety start by 14 years and 75% by 24
years. [2] The first onset of clinically recognised depressive episodes
typically occurs between the ages of 12 and 15 years [3] and the
increase in new onset of depression peaks between the ages of 15
and 18 years. [4] Depressive symptoms in childhood and adolescence,
including those below diagnostic thresholds, are associated with an
elevated risk of depression and other psychiatric diagnoses subse-
quently in adulthood. [2, 5–7] These findings highlight the need for
studying depressive symptoms during early life.

Characterisation of longitudinal profiles of depressive symp-
toms during development could help understand the pathogen-
esis and heterogeneity of later depression, as different individuals
may arrive at the same destination via different routes. There is
growing evidence to suggest characteristic depression trajectories
in childhood and adolescence are differentially associated with
risk factors and outcomes. Existing studies have reported
associations of a ‘high’ or ‘increasing’ depression trajectory with
female sex, lower socioeconomic status, stressful life events,
conduct issues, substance use, and parental psychopathology.
[3, 8, 9] Trajectories with higher symptom burden have been
associated with subsequent depression and other psychiatric
diagnoses, lower educational attainment, income and poorer
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psychosocial adjustment. [8–10] However, less is known about
underlying biological correlates of depression trajectories, includ-
ing blood-based biomarker signatures. A better understanding of
the biological correlates may help uncover mechanistic insights
and identify accessible predictive markers for depression.
Existing literature suggests that depression as a syndrome and

specific symptoms or symptom dimensions of depression are
associated with immunometabolic dysfunction, but there is
limited work on immunometabolic correlates of depression
trajectories. Depression is associated with immunometabolic
alterations such as chronic low-grade inflammation, [11, 12]
neuroendocrine dysregulations, [13] as well as less favourable
metabolic and lipid profiles. [12, 14] Overall effect sizes for some
of these associations are inconsistent, which could be partly due
to clinical or phenotypic heterogeneity within cross-sectional
studies. [12] For instance, immunometabolic alterations appear to
be more pronounced or common in individuals endorsing atypical
energy-related symptoms of depression (e.g., hyperphagia, weight
gain, hypersomnia, or leaden paralysis) as opposed to melancholic
symptoms. [12, 15] At the symptom level, inflammatory markers
are particularly associated with somatic and neurovegetative
symptoms of depression (e.g., fatigue, altered sleep and appetite)
as opposed to psychological symptoms (e.g., hopelessness,
excessive/inappropriate guilt). [16, 17] Some of these findings
are supported by Mendelian randomization analyses reporting a
potentially causal link between inflammatory markers (e.g.,
C-reactive protein (CRP) or interleukin 6 (IL-6)) and fatigue,
anhedonia, sleep problems, appetite and psychomotor changes.
[18, 19].
The accumulation of risk model for chronic diseases posits that

cumulative exposures across the life course result in diverging
health trajectories and widening health inequalities as people age.
[20] By characterising depression trajectories, developmental
windows when trajectories begin to diverge can be identified
and we can then examine potential factors driving such
divergence and biological dysregulations linked to subsequent
disease risk. By studying the biomarker signatures of depression
trajectories, we may also gain further insight into the origins of
higher levels of cardiometabolic multimorbidity in individuals with
depression. [21, 22]
The aims of the current study were threefold: (i) to model

depressive symptom trajectories from childhood to early adult-
hood to classify individuals into more homogeneous subgroups,
(ii) to examine associations between these subgroups and risk of
psychiatric and cardiometabolic outcomes in early adulthood, and
(iii) to examine associations of these subgroups with clinical and
blood immunometabolic markers including proteomic, metabo-
lomic and biochemical measures in early adulthood. By examining
the broader biomarker signature across different domains
including the immune proteome, metabolome, and clinical
biochemistry, we aim to provide more comprehensive insights
into biological pathways and systems possibly involved in the
development and persistence of depressive symptoms in young
people.

MATERIALS AND METHODS
Description of cohort
This study uses data from the Avon Longitudinal Study of Parents and
Children (ALSPAC). Pregnant women resident in the former county of
Avon, United Kingdom (UK) with expected dates of delivery between 1st

April 1991 and 31st December 1992 were invited to take part in the
ALSPAC study. The initial recruitment enrolled 14541 pregnancies, which
resulted in 14062 live births and 13988 infants still alive at 12 months.
Further recruitment of eligible participants took place when the oldest
children were approximately seven years of age; the total sample size for
analyses using any data collected after the age of seven is therefore 15447
pregnancies; of these, 14901 children were alive at 12 months of age.
[23, 24].

The study website contains details of all the data that is available
through a fully searchable data dictionary and variable search tool: https://
www.bristol.ac.uk/alspac/researchers/our-data/.

Data
Sociodemographic and health variables. Sociodemographic characteristics
used to characterise the identified depressive symptom trajectories include
sex, ethnicity, maternal education, maternal occupational social class,
socioeconomic deprivation, and family adversity during pregnancy. Health
characteristics examined include smoking, risky alcohol use, carotid intima-
media thickness, carotid-femoral pulse wave velocity, metabolic syndrome
and its components, obesity, and psychiatric outcomes and medications.
Detailed description of these variables as well as those included as
covariables in the biomarker analyses are presented in Methods S1.

Depressive symptoms. Self-reported depressive symptoms were assessed
using the 13-item Short Mood and Feelings Questionnaire (SMFQ). [25] We
used data collected on 10 occasions between the ages of 10 and 25 years
(ages 10, 12, 13, 16, 17, 18, 21, 22, 23, 25), ending with the last
questionnaire administered in 2017-2018, prior to the start of the COVID-19
pandemic (see Table S1). Questions were answered based on the two-
weeks prior to completing the questionnaire. Each SMFQ item is scored as
0 = “not true”, 1 = “sometimes true” and 2 = “always true”, resulting in a
total SMFQ sum score 0-26 (higher score reflects more symptoms). For
individuals who had missing data on fewer than three questions, score was
imputed to the median value for missing items. For each occasion, those
with missing data on more than three questions had their total score
recoded as missing.

Circulating blood biomarkers. For this analysis, blood biomarkers were
assayed in blood samples collected at the face-to-face research clinic
undertaken at 24 years. A total of 92 circulating inflammatory proteins
were measured using the Olink Target 96 Inflammation panel (Olink
Analysis Service, Uppsala, Sweden); proteins with ≥50% values below the
limit of detection (LOD) were excluded leaving 67 proteins to be included
(Table S2). Over 220 metabolomic features (148 metabolites and 77 ratios)
were quantified using a high-throughput 1H-NMR spectroscopy-based
platform (Nightingale Health, Helsinki, Finland) using a standardised
protocol and parameters described elsewhere. [26–28] Lipoprotein
subclasses were excluded from the analysis to minimise redundancy of
information, leaving a subset of 57 metabolomic features (9 cholesterol
measures, 12 apolipoproteins and lipids measures, 3 lipoprotein particle
sizes, 16 fatty acids and saturation measures, 3 glycolysis-related
metabolites, 8 amino acids, 3 ketone bodies, 2 fluid balance-related
measures and 1 inflammation-related measure) to be included in the
analysis (Table S3). All 26 blood count and chemistry measures collected at
the same clinic interaction were included (Table S4). Additionally, we
computed the aspartate aminotransferase/alanine aminotransferase (AST/
ALT) ratio and the Homeostatic Model Assessment for Insulin Resistance
(HOMA-IR). Further information on data collection and processing of all
blood biomarkers are presented in Methods S1.

Covariables. Prior to statistical analysis, we plotted a directed acyclic
graph (DAG) showing theoretical relationships between depressive
symptom trajectories (independent variable), immunometabolic markers
(dependent variables) and important covariables based on the literature
(Figure S1). The minimum adjustment set of confounders included in
models was sex at birth, maternal education, maternal occupational social
class, and body mass index (BMI) at age 10.

Statistical analysis
Characterisation of depressive symptom trajectories. Latent class trajectory
modelling was performed using the lcmm R package [29] to identify
subgroups with distinct SMFQ trajectories. This type of modelling seeks to
identify homogenous groups of individuals with similar trajectories within
a heterogeneous population by combining a latent class model and a
mixed model. These models are estimated within the maximum likelihood
framework. [29] The lcmm package distinguishes time of measurement and
occasion, so individuals with missing data can still be included; we
included those with at least three measurements for better modelling of
non-linear trajectories. A multi-step approach adapted from the model
selection framework suggested by Lennon et al. [30] and van der Nest et al.
[31] was used, with the order of steps changed to address potential
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overextraction of latent classes from model under-specification as reported
in the simulation literature [32, 33]. The steps followed:

1. Scope literature and inspect plots to inform polynomial order and
potential number of classes. We modelled smfq ~ age + age2 and
estimated models up to six latent classes.

2. Estimate growth mixture models (GMM) with random intercepts and
class-specific proportional random-effect variance-covariance matrix
with increasing number of classes. Select the most appropriate
number of classes k based on model convergence, model fit
(Bayesian information criterion (BIC), Integrated Completed Like-
lihood (ICL), and relative entropy), smallest class size ≥5% and visual
inspection of the trajectories.

3. Test alternative model structures with k classes – GMM with random
intercepts and common random-effect variance-covariance matrix,
and group-based trajectory models (GBTM); compare model fit
indices, smallest class size and visually inspect trajectories as above,
and assess model adequacy (average posterior probabilities ≥0.7
and odds of correct classification ≥5 for all classes).

4. Refine trajectory shape by testing up to second-degree fractional
polynomials including (-2, -1, -0.5, 0, 0.5, 1, 2, 3) where 0 refers to log
X and repeated polynomials refer to (Xi + Xi * log X). Select final
model based on model convergence and model fit.

Age (in years) was used as the time variable in all models. No
covariables were included in these latent class mixed models as the aim
is to describe the trajectories; covariables were accounted for in the next
step when testing for associations with phenotypes of interest and
biomarkers. For each model, an automatic grid search with 50 sets of
random initial values and up to 10 iterations was run to reduce the odds
of the model converging towards a local maximum and then up to 500
iterations were allowed for the final estimation. Using the selected
model, posterior probabilities for class membership were then estimated
and individuals were assigned to the class of highest posterior
probability in the entire sample using the predictClass function. We first
performed the latent class mixed modelling on the subsample with three
or more data points and then predicted class membership in the entire
sample to reduce uncertainty in the modelling stage and to maximise
sample sizes in the subsequent analyses. Additional information on the
modelling is presented in Methods S1. The reporting of this study
adheres to the Guidelines for Reporting on Latent Trajectory Studies
(GRoLTS) [34] (Table S5).

Associations with sociodemographic and clinical variables. Sociodemo-
graphic characteristics are stratified by trajectory class and summarised
using mean (SD), median [interquartile range] or count (%) as
appropriate, with differences between trajectories tested with chi-
square or Kruskal-Wallis tests. Associations of trajectory membership
with psychiatric or cardiometabolic outcomes of interest at age 24 or
28 years were tested using multivariable linear or logistic regressions
on complete cases, using the largest trajectory class as the reference
group and adjusting for sex, maternal education, maternal occupational
social class and BMI at age 10. These variables are described in detailed
in Methods S1.

Associations with immunometabolic biomarkers. For both proteomic and
metabolomic data, associations between depressive symptom trajectories
and markers were evaluated using multiple linear models fitted in the
limma R package. [35] Limma uses an empirical Bayes method to
moderate the standard errors of estimated log-fold changes by borrowing
strength from linear models of the other analytes and allowing for
different variability between analytes and between samples. Planned
contrasts of each of the intermediary trajectories against the trajectory
with the most individuals were conducted. With the blood count and
clinical chemistry data, linear regressions were fitted with blood markers
as dependent variables and SMFQ trajectory class as the independent
variable.
For each of these markers, the basic model included sex, maternal

education and maternal occupational social class as covariables and the
adjusted model further included BMI at age 10. All models were
performed on complete cases. Correction for multiple testing was
performed for each set of models using the Benjamini-Hochberg
procedure, using a false discovery rate (FDR) threshold of <0.1. This
threshold was chosen due to the large number of biomarkers tested, a
relatively small sample size and the exploratory nature of this work.

Sensitivity analyses
To address potential error carried over from the probabilistic latent class
assignment into the association analyses, we performed two sets of
sensitivity analyses, the first set by restricting the sample to individuals
who had a modal posterior probability ≥0.7, and the second set by using
the individuals’ posterior probabilities for each latent class as separate
terms in the models.
Data extraction and initial data cleaning was performed in StataMP

version 17. [36] Further data preparation and statistical analyses were
conducted in R versions 4.1.1 and 4.2.1, [37] using packages tidyverse
(v2.0.0), lcmm (v2.0.2), LCTMtools (v0.1.3), tableone (version 0.13.2),
marginaleffects (v0.25.0), knitr (v1.43), kableExtra (v1.3.4), limma (v3.54.2),
and broom (v1.0.5). Plots were generated using ggplot2 (v3.4.2), ggpubr
(v0.6.0), and ggrepel (v0.9.3).

RESULTS
Sample
Latent class trajectory modelling was performed on data from
7302 participants who had SMFQ scores available from at least
three time-points between ages 10 and 25 years. Once the best-
fitting model was identified, posterior probabilities and class
membership were estimated in the entire sample, and 9595
individuals were assigned class membership. Of these 9595
individuals, 2256 had sufficient biomarker and complete covari-
able data to be included in the biomarker analyses (Figure S2).

Depressive symptom trajectories from childhood to early
adulthood
Following comparison of model fit and adequacy statistics and
visual inspection of trajectory plots (Table S6 and Figures S3-S4), a
four-class group-based trajectory model was identified as best
describing the data. As shown in Fig. 1, the four identified
depressive symptom trajectories from childhood to early adult-
hood can be described as follows: low-stable – those who
consistently had no or low levels of depressive symptoms (69.6%,
n= 6680), adolescent-limited – those who had elevated depres-
sive symptoms in childhood/adolescence that decreased over
time (13.3%, n= 1280), adolescent-persistent – those who had
elevated depressive symptoms in childhood/adolescence that
remained high into adulthood (7.0%, n= 672) and adulthood-
onset – those who started with low levels of depressive symptoms
that increased in late adolescence/early adulthood (10.0%,
n= 963).

Characteristics of depressive symptom trajectories
Descriptive statistics for characteristics of these individuals, stratified
by trajectory, are presented in Table 1 below. There were more
women in all three depression-related trajectories: adolescent-
limited (66.3%), adolescent-persistent (76.5%), and adulthood-
onset trajectories (64.6%). Additionally, the adolescent-persistent

Fig. 1 Predicted marginal mean depressive symptom trajectories
from childhood to early adulthood in the ALSPAC cohort. Lines
showing predicted marginal mean depressive symptom trajectories
with shaded areas representing 95% confidence intervals.
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trajectory was associated with lower maternal education and greater
family adversity during pregnancy. Descriptive statistics for the same
characteristics of the subset of individuals who were included in the
biomarker analyses are presented in Table S7.

Adulthood cardiometabolic and psychiatric outcomes
associated with depressive symptom trajectories
Compared to the low-stable trajectory, after adjusting for sex,
maternal education, maternal occupational class and BMI at age 10,
all three depression-related trajectories were associated with
smoking, ICD-10 diagnosis of depression and ICD-01 diagnosis of
generalised anxiety disorder at 24 years, and being prescribed an
antidepressant or an anxiolytic at 28 years. However, the magnitude
of association varied between the trajectories, with the risk for these
outcomes being the highest for the adolescent-persistent trajectory
(approximately 13-fold risk of depression), followed by the
adulthood-onset and adolescent-limited trajectories. The
adolescent-persistent trajectory was additionally associated with
obesity (Table 2). Unadjusted model results are presented in Table S8.

Differentially abundant proteins associated with depressive
symptom trajectories
Relative to the low-stable trajectory, after adjusting for sex,
maternal education, maternal occupational class and BMI at age
10, one protein (C-C motif chemokine 25 [CCL25]) was upregu-
lated in the adolescent-limited trajectory; four proteins (fibroblast
growth factor 21 [FGF-21], hepatocyte growth factor [HGF],

eukaryotic translation initiation factor [4E-BP1], and eotaxin-1
[CCL11]) were upregulated in the adolescent-persistent trajectory;
and five proteins (FGF-21, fibroblast growth factor 19 [FGF-19],
CUB domain-containing protein 1 [CDCP1], HGF, CCL11) were
upregulated in the adulthood-onset trajectory (Fig. 2). The full set
of results are presented in Tables S9-10.

Differentially abundant metabolites associated with
depressive symptom trajectories
Relative to the low-stable trajectory, after adjusting for sex, maternal
education and occupational class, and BMI at age 10, creatinine was
decreased in the adolescent-persistent trajectory. Three metabolite
ratios (omega-3 to total fatty acids [omega-3/FA], docosahexaenoic
acid to total fatty acids [DHA/FA], polyunsaturated fatty acids to total
fatty acids [PUFA/FA] ratios) were decreased whereas the mono-
saturated to total fatty acids (MUFA/FA) and apolipoprotein B to
apolipoprotein A1 (ApoB/ApoA1) ratios were increased in the adult-
onset trajectory (Fig. 3). The full set of results are presented in Tables
S11-12.

Blood count and clinical chemistry markers
Relative to the low-stable trajectory, after adjusting for sex,
maternal education and occupational class, and BMI at age 10,
there was evidence for decreased AST levels in the adolescent-
limited trajectory, and increased HOMA-IR, insulin, neutrophil and
white blood cell (WBC) counts in the adulthood-onset trajectory
(Fig. 4). The full set of results are presented in Tables S13-14.

Table 1. Characteristics of depressive symptom trajectories in the ALSPAC birth cohort.

Low-stable
(n= 6680)

Adolescent-limited
(n= 1280)

Adolescent-persistent
(n= 672)

Adulthood-onset
(n= 963)

p

Sex: Female 3064 (45.9%) 849 (66.3%) 514 (76.5%) 622 (64.6%) <0.001

Ethnicity: Non-white 240 (4.1%) 44 (3.9%) 36 (6.2%) 40 (4.8%) 0.097

Maternal education 0.026

CSE or none 894 (15.1%) 159 (13.9%) 107 (17.9%) 120 (14.1%)

Vocational 560 (9.5%) 91 (8.0%) 53 (8.9%) 64 (7.5%)

O-level 2064 (34.9%) 406 (35.6%) 231 (38.6%) 293 (34.5%)

A-level 1483 (25.1%) 308 (27.0%) 141 (23.6%) 230 (27.1%)

Degree 911 (15.4%) 178 (15.6%) 66 (11.0%) 142 (16.7%)

Maternal occupational social class 0.556

I – highest 356 (7.0%) 63 (6.6%) 28 (5.5%) 45 (6.3%)

II 1714 (33.8%) 335 (35.0%) 161 (31.8%) 250 (34.9%)

III (non-manual) 2137 (42.2%) 392 (41.0%) 216 (42.7%) 302 (42.1%)

III (manual) 350 (6.9%) 66 (6.9%) 34 (6.7%) 57 (7.9%)

IV or V1 – lowest 509 (10.0%) 100 (10.5%) 67 (13.2%) 63 (8.8%)

English IMD 2000 quintile 0.723

1 – least deprived 1665 (32.1%) 355 (35.3%) 146 (30.7%) 242 (33.3%)

2 1044 (20.1%) 188 (18.7%) 100 (21.0%) 143 (19.7%)

3 956 (18.4%) 174 (17.3%) 84 (17.6%) 140 (19.3%)

4 790 (15.2%) 153 (15.2%) 77 (16.2%) 115 (15.8%)

5 – most deprived 739 (14.2%) 137 (13.6%) 69 (14.5%) 86 (11.8%)

Family Adversity Index 1 [2] 1 [2] 1 [3] 1 [2] <0.001

BMI at age 10 17.43 [3.76] 17.63 [3.89] 18.25 [4.76] 17.43 [3.68] <0.001

Number of SMFQ
measurements

4 [5] 6 [5] 5 [4] 6 [5] <0.001

1Categories have been collapsed due to small cell counts in subsequent analyses.
Numbers presented as mean (SD), median [IQR], or n (%). Percentages are column percentages and computed based on the number of individuals with
available data on each variable. Group comparisons were conducted using Chi-square tests for categorical variables and Kruskal-Wallis tests for non-normal
continuous variables.
BMI body mass index, CSE Certificate of Secondary Education, O-level Ordinary level, A-level Advanced level, IMD Index of Multiple Deprivation, SMFQ Short
Mood and Feelings Questionnaire.
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Sensitivity analyses
The sensitivity analyses showed patterns of associations that are
largely similar to those observed in the primary analyses, with
consistent associations of depression-related trajectories with
anthropometric, cardiometabolic and psychiatric outcomes, and
top-ranking immunometabolic biomarkers with similar effect sizes
in the same directions (Methods S2).

DISCUSSION
Depression is a complex heterogeneous disorder, which poses a
challenge for discovering biomarkers associated with disease
onset and/or progression. We have taken a longitudinal approach
to identifying blood-based biomarkers for depression by examin-
ing longitudinal patterns of depressive symptoms in the popula-
tion during the critical developmental epoch of childhood,
adolescence and early adulthood. Using data from a prospective
birth cohort, we identified four longitudinal population subgroups
based on repeated measures of depressive symptoms over a 15-
year period from ages 10 to 25 years. We show that majority of
participants (approximately 70%) have little or no depressive
symptoms (low-stable group). We identified three depression-
related groups which comprise a group with higher symptom
levels during childhood and adolescence which later decrease
(adolescent-limited group, 13%), a group with symptoms emer-
ging during puberty that persist throughout adolescence through
to adulthood (adolescent-persistent group, 7%), and a group with
symptoms emerging during late adolescence/early adulthood and
increasing thereafter (adulthood-onset, 10%). Earlier work exam-
ining latent depressive symptom trajectories in ALSPAC have
reported varying numbers of latent trajectories, but all studies

consistently identified a group with low/no symptoms, a group
with symptoms emerging in early adolescence that persist, and a
group with symptoms emerging in late adolescence/early
adulthood. [10, 38, 39] Differences in the number of trajectories
identified may be due to sample inclusion/exclusion criteria, the
number of repeated measures included, polynomials used to
model the trajectories, as well as model selection criteria.
We examined health phenotypes and blood biomarkers asso-

ciated with these subgroups for greater insight into the develop-
mental course of depression. Our analyses show that compared to
the low-stable group, risk of depression and anxiety in adulthood is
higher for all three depression-related groups. However, such risk is
particularly elevated for the adolescent-persistent group (11 to 13-
fold risk) followed by the adulthood-onset group (four to six-fold
risk). Interestingly, the group where higher levels of symptoms are
mostly limited to adolescence, they still have a three-fold risk of
depression in adulthood. This suggests that while their depressive
symptoms do not persist at the same level as observed in
adolescence, their symptoms do not fully return to the pre-
morbid level either, and therefore are still more likely to meet
criteria for a clinical diagnosis than those in the low-stable group.
The literature also suggests that partial remission of depression is
common and is a robust predictor for relapse. [40].
Having examined health phenotypic and blood proteomic,

immunological and metabolic biomarker associations for these
three groups, we show that the adolescent-limited group is
distinct from the other two depression-related groups as it
showed little immunometabolic alterations. In contrast, both the
adolescent-persistent and adulthood-onset groups are associated
with immunometabolic changes, but the exact pattern of
associations varies between the two groups. The adolescent-

Fig. 2 Volcano plots showing differential immune protein abundance levels in depressive symptom trajectories. Panels a and b show
results from basic and adjusted models respectively. The reference group for all analyses is the low-stable trajectory. 4E-BP1 – eukaryotic
translation initiation factor; CCL11 – eotaxin-1; CCL25 – C-C motif chemokine 25; CDCP1 – CUB domain-containing protein 1; FGF-19 –
fibroblast growth factor 19; FGF-21 – fibroblast growth factor 21; HGF – hepatic growth factor.
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persistent group was associated with higher BMI in childhood and
adulthood, whereas the adulthood-onset group did not show this,
but rather had more widespread alterations in blood-based
metabolic parameters including insulin resistance, insulin levels
and changes in fatty acid ratios. Blood proteomic changes were
largely similar between the two groups and involved proteins that
mainly act as growth factors, cytokines and chemokines. While
immunometabolic associations persisted given adjustment for
childhood BMI in the adolescent-persistent group, the presence or
absence of this BMI adjustment had an impact on some
association estimates in the adolescent-persistent and
adulthood-onset groups. While this may relate to the apparent
differences in BMI by trajectories, it is difficult to distinguish this as
an artefact of adjustment or a true impact of BMI.
Epidemiological studies consistently report a bidirectional

relationship (both cross-sectionally and longitudinally) between
obesity and depression, [41] whereas Mendelian randomization
studies support a causal role of BMI on major depressive disorder
and depressive symptoms but not vice versa. [42, 43] The
comorbidity between obesity and depression is generally
associated with poorer prognosis, with studies reporting associa-
tions with a more chronic course of depression in adulthood
[44, 45] as well as poorer treatment response. [46] Our findings
add to this evidence by showing an association between higher
childhood BMI and persistent depressive symptoms between
adolescence and early adulthood.
Many of the alterations observed in the adulthood-onset

trajectory are already well studied markers of cardiometabolic
disease risk. The ApoB/ApoA1 ratio is associated with cardiovascular
diseases and metabolic syndrome, [47, 48] and can be used to

predict longer-term cardiovascular risk when measured in early life.
[49, 50] Higher values of HOMA-IR are associated with an increased
risk of developing type 2 diabetes mellitus (T2DM), systemic arterial
hypertension and non-fatal major adverse cardiovascular events.
[51] Lower blood omega-3 fatty acid concentrations are associated
with poorer cardiovascular outcomes [52, 53] and may also
contribute to chronic systemic inflammation, whereas changes in
MUFA, PUFA and DHA concentrations in early adulthood were
associated with incident obesity, insulin resistance and elevated
blood pressure 10 years later. [54] Since dietary intake and
supplementation are the main predictors of blood levels of
omega-3 fatty acids, [55, 56] with other lifestyle-related factors
such as BMI, smoking and alcohol consumption also playing a role,
[57] this suggests that the adulthood-onset group may benefit from
primary prevention strategies such as lifestyle modifications to
prevent future cardiometabolic disease. Given that it is already well
established that depression predisposes young people to acceler-
ated atherosclerosis and early cardiovascular disease, [58] further
studies investigating the use of longitudinal course of depressive
symptoms for risk stratification and prevention of cardiometabolic
disease are warranted.
The overlapping proteomic signals observed between the

adolescent-persistent and adulthood-onset trajectories potentially
suggest shared underlying mechanisms (genetic or environmen-
tal) or shared biological responses to depression, which warrant
further study for their roles in the pathophysiology of depression
and cardiometabolic disease. FGF-21 is a novel regulator of
glucose and lipid metabolism that mainly acts through an FGF
receptor 1 (FGFR1)/β-klotho receptor complex and the Ras/Raf
MAPK signalling pathway, which have been implicated in the

Fig. 3 Volcano plots showing differential metabolite abundance levels in depressive symptom trajectories. Panels a and b show results
from basic and adjusted models respectively. The reference group for all analyses is the low-stable trajectory. Orange points indicate
upregulation and blue points indicate downregulation. ApoB/ApoA1 – apolipoprotein B to apolipoprotein A1 ratio, DHA/FA –
docosahexaenoic acid to total fatty acids ratio, MUFA/FA – monounsaturated fatty acids to total fatty acids ratio, Omega-3/FA – omega-3
fatty acids to total fatty acids ratio, PUFA/FA – polyunsaturated fatty acids/total fatty acids ratio.
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pathophysiology of depression and therapeutic effects of
antidepressants. [59–61] Elevated circulating FGF-21 concentra-
tions have also been shown to be associated with a range of
cardiometabolic markers and diseases. [62–66] HGF mediates
inflammatory responses to tissue injury and regulates cell growth
and morphogenesis through the activation of the HGF/mesench-
ymal-epithelial transition factor (c-Met) signalling pathway, which
has downstream effects on the Raf/MAPK and PI3K/Akt pathways.
Altered HGF/c-Met signalling has been suggested to play a role in
the pathogenesis of depression in adolescents through disrupting
interneuron development. [67] CCL11 is a chemokine involved in
the selective recruitment of eosinophils into sites of inflammation
and has been implicated in various allergic and inflammatory
conditions. [68] It can be transported across the blood-brain
barrier [69] and is an age-related systemic factor associated with
reduced synaptic plasticity and impaired hippocampal-dependent
learning and memory in mice. [70] In humans, CCL11 levels
increase with age, [70] and there is emerging evidence to suggest

that CCL11 levels are associated with psychiatric disorders. [71–75]
In summary, the overlapping proteomic signals between the
adolescent-persistent and adulthood-onset trajectories highlight
potential roles of physiological stress from lifestyle or environ-
mental factors, disruptions in neurodevelopment and neurogen-
esis, and cellular senescence in the underlying vulnerability or
biological response to depression, and may be key biomarkers
relevant to illness pathogenesis.
An advantage of our work is that by examining depressive

symptoms longitudinally using a latent class trajectory approach,
we can account for population heterogeneity and obtain better
characterisation of subgroups and their changes over time.
Existing literature shows that depression is associated with
alterations in various immunometabolic biomarkers, including
increased inflammatory cytokines, [76, 77] WBC, [78] neutrophils,
[78] T-lymphocytes and other immune cell counts, [78] HOMA-IR,
[79] insulin, [79] lipids and fatty acids. [80, 81] Using longitudinal
data from young people, we add to this evidence base by showing

Fig. 4 Dot-and-whisker plots showing differential levels of full blood count and clinical biochemistry biomarkers in different depressive
symptom trajectories. Effect estimates and 95% confidence intervals for each biomarker have been exponentiated for ease of interpretation;
estimates represent the percentage difference in mean levels of each biomarker for respective trajectory, in relation to the low-stable
trajectory (reference group). Panels a and b show results from basic and adjusted models respectively. Asterisks indicate evidence for an
association after FDR correction of p-values. WBC – white blood count, RBC – red blood count, Hb – haemoglobin, Hct – haematocrit, MCV –
mean cell volume, MCH – mean cell haemoglobin, MCHC – mean corpuscular haemoglobin concentration, HOMA-IR – Homeostatic Model
Assessment for Insulin Resistance, HDL – high-density lipoprotein, LDL – low-density lipoprotein, VLDL – very low-density lipoprotein, CRP –
C-reactive protein, GGT – gamma-glutamyl transpeptide, ALT – alanine aminotransferase, AST – aspartate aminotransferase, P3NP –
procollagen-3 N-terminal peptide.
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that classical immunometabolic changes are particularly asso-
ciated with an adulthood-onset trajectory, rather than other
developmental subgroups of depressive symptoms, including one
with persistent symptoms since adolescence. While developmen-
tal stages like childhood, adolescence and adulthood are in part
socially constructed, our results show that the timings of
divergence in depressive symptom trajectories are approximately
aligned with the transitions between developmental stages when
some of the major biological and environmental changes also take
place (e.g., puberty, starting secondary school, and finishing
school).
This study has several limitations. Firstly, the approach of

treating assigned class membership as discrete in assessing
relationships with other variables has been shown to under-
estimate the strength of the relationships. [82] However, as we are
mainly interested in subpopulations with different depressive
symptom trajectories, this approach allows for easier interpreta-
tion and translation. Secondly, depression is episodic in nature
and the use of polynomials cannot fully capture the dynamics of
depressive symptom severity over time; however, this approach
was chosen over other methods (e.g., splines) for model
parsimony.
Furthermore, the sample size in this study is relatively small and

may be underpowered to detect differences after stratifying
individuals into four separate trajectories. For this reason, we did
not further stratify our analyses by sex or other potentially relevant
variables (e.g., BMI). While we have adjusted our biomarker
analyses for several potential confounders, residual confounding
could still be an issue. For instance, we have not accounted for
medication use or chronic disease, but these are likely to be
uncommon in young people. As the biomarkers were measured at
age 24, which is after the onset of depressive symptoms in many
individuals, further research is required to assess the direction and
causality of associations we have identified.
In conclusion, we identified distinct developmental trajectories

of depression from childhood to early adulthood, which show
differential associations with cardiometabolic and psychiatric
outcomes, and are characterised by distinct immunometabolic
profiles. In particular, individuals with persistent depressive
symptoms from childhood through to early adulthood were more
likely to have higher BMI both in childhood and in early adulthood
and few other immunometabolic changes, whereas individuals
who develop depressive symptoms towards early adulthood show
classical immunometabolic alterations in immune cell counts,
insulin resistance and fatty acid profiles. These findings point to
distinct mechanisms and prevention opportunities for adverse
cardiometabolic profile in different groups of young people with
depressive symptoms.
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