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Abstract. The well-known temporal misalignment in large lan-
guage models (LLMs) emerges when they fail to recall temporal in-
formation. This is due to their training process, which happens with-
out any explicit temporal grounding. To mitigate this issue, multiple
approaches have been proposed, including fine-tuning on up-to-date
data, retrieval augmented generation - where an LLM is directed to
a recent dataset - or modifying an LLM’s knowledge via knowledge
editing. Regardless of the method, however, the question of build-
ing datasets that accurately and faithfully reflect changes to events
or entities remains open. Doing this in free text form and not only
as triplets is desirable because LLMs benefit downstream from more
context and can capture more nuanced relationships and cascading
knowledge updates. Resources like Wikipedia can be leveraged for
this thanks to their revision histories, which are expressed in free
text and are both less biased and more comprehensive than knowl-
edge graphs like Wikidata. In this paper, we propose TACTICAL, a
methodology for creating timelines of Wikipedia entities and events,
represented as revision pairs extracted from a wikititle’s timeline,
and are categorized according to the atomicity of the changes affect-
ing such entities or events. Our results suggest that LLMs struggle to
recall event and entity timelines, even if they have seen them during
pretraining. TACTICAL, on the other hand, proves to be an effec-
tive method for building temporally grounded datasets that are, in
turn, effective tools for activating LLMs’ temporal knowledge.

1 Introduction

Since LLMs are trained on raw web text and, often, without any
explicit temporal grounding [39], they are prone to suffer fempo-
ral misalignment [22, 18, 16]. To mitigate this issue, multiple ap-
proaches have been proposed, from fine-tuning on up to date data to
retrieval augmented generation, where an LLM is pointed to a re-
cent dataset [40], or directly modifying an LLM’s knowledge via
knowledge editing [7, 41, 28, 36]. Regardless of the method, how-
ever, there is growing evidence that the knowledge to be updated
should satisfy two desiderata: first, new facts about an entity or an
event should be atomically determined [25], and second, this infor-
mation should be expressed in natural language instead of (or at least
on top of) the subject-predicate-object triplets traditionally found in
the relation extraction literature. This creates a setup where an LLM
can naturally be updated while at the same time mitigating multi-
hop and reasoning limitations that are often derived from triplet-only
knowledge editing [40, 3, 20].

* Corresponding Author. Email: borkakotyh@carditf.ac.uk

In this paper, we propose a methodology, which we term TAC-
TICAL (Timelines of Atomic Changes), for developing free-text
datasets with well-delimited changes. In a nutshell, our method re-
quires two key components: First, we use a Wikipedia-like corpus
that contains historical revisions of entity pages, where for a given
entity E (e.g., “Karla Estrada”), we collect a chronological sequence
of page versions R(E) spanning a time period T'. Second, we lever-
age structured timelines of significant events related to £, which are
often conveniently captured in Wikipedia tables (e.g., a table listing
an actress’s television roles over the years). The alignment of these
chronological page revisions with established timelines of notable
events yields a labeled set of revision pairs R(E,T");, where each
pair of consecutive yearly revisions is tagged with one of three la-
bels: no change (n), atomic change (a) or multiple changes (m). Im-
portantly, these changes represent significant factual updates worthy
of inclusion in tabulated timelines, rather than merely aesthetic mod-
ifications, paraphrasing, or minor updates to E. Our approach dif-
fers from similar contemporary datasets [16, 4] because of its yearly
snapshots, free-text revision pairs and fine-grained change types with
a better verification strategy.

We use our TACTICAL framework to derive a dataset that is used
in two ways. First, as a preliminary analysis, we conduct text classi-
fication experiments to determine the ability of LLMs to distinguish
between periods of stability and meaningful change in an entity’s
timeline. Then, we present our core contribution, a set of experi-
ments demonstrating that using TACTICAL-derived exemplars in an
in-context-learning setting significantly improves LLMs’ ability to
recall temporally grounded facts about entities and events, outper-
forming existing baselines. Along the way, we found that LLMs en-
code, as [39] put it, a “chaotic sense of time” and significantly strug-
gle to recall important facts even in well-known entities and even if
they have seen them during pretraining.

Thus, our contributions can be summarized as follows:

o We propose TACTICAL, a novel methodology for constructing
datasets of change-tagged pairs of wikipage revisions.

e We introduce the task of “change” detection in Wikipedia (both
atomic and multiple), and evaluate a suite of BERT-based classi-
fiers in different splits of a TACTIC AL-derived dataset.

e We provide an analysis of LLMs’ ability to recall temporal facts
about entities and events thanks to a novel probing dataset.

e We show that TACTICAL-enhanced prompting significantly out-
performs other methods on stirring an LLM’s temporal under-
standing on the probing dataset.

The paper is organized as follows. In Section 2, we give an account
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Label Title Timestamp 1  Text 1 Timestamp 2 Text 2

Change Steve Mandanda 2022-01-27 Steve Mandanda Mpidi is a = 2023-12-21 Steve Mandanda Mpidi (French
French professional footballer pronunciation: ; born 28 March
who plays as a goalkeeper for 1985) is a professional foot-
Ligue 1 club Marseille, where baller who plays as a goalkeeper
he is captain, and the France na- for Ligue 1 club Rennes.
tional team.

No-change 4D film 2008-01-05 A 4-D film (or 4D film) is anen- ~ 2009-12-23 A 4-D film (sometimes written
tertainment presentation system 4D film) is a marketing term that
that combines a 3-D film with describes an entertainment pre-
physical effects. sentation system combining a 3-

D film with physical effects in
the theatre.

Atomic-change Louisiana Tech Lady Techsters  2015-03-02 [...] The current head coach  2016-12-06 [...] The team currently com-

basketball of the Lady Techsters is Tyler petes in Conference USA. The
Summitt, and the current asso- current head coach of the Lady
ciate head coach is Mickie De- Techsters is Brooke Stoehr.
Moss.
Multiple-change  Stephan El Shaarawy 2010-01-07 Stephan El Shaarawy [...] is an  2011-12-10 Stephan El Shaarawy [..] is an

Italian footballer who plays for
Serie A club Genoa.

Italian professional footballer
who plays as an attacking mid-

fielder for Serie A club Milan.
He is a current member of the
Italy U21 national team.

Table 1: Examples of each label collected using the heuristics.

of works related to our approach. Section 3 describes the TACTI-
CAL method. Sections 4 and 5 provide details of the two experimen-
tal results we report in this paper, and finally, Sections 6 summarizes
our results and future work'.

2 Related Work
2.1 Adapting Word Embeddings

Temporal grounding of language models dates back to the word
embedding era, where associations between terms and their near-
est neighbors were shown to change significantly over time, espe-
cially if these terms underwent semantic shift, e.g., “gay” or “broad-
cast”. Methods for building temporally grounded representations
range from statistical laws capturing gradual, regular patterns of his-
torical semantic change to sudden shifts in social media [8]. Oth-
ers have leveraged diachronic embeddings for temporal word analo-
gies that identify lexical replacements over time [30], while more
complex relationships between words and contexts have been ex-
tracted from neural models [27]. In LLMs, the most prominent tem-
poral grounding paradigm involves (re)training with newer data,
i.e., continual learning [18, 15]. This approach typically follows a
parameter-efficient strategy where models are exposed to new data
and their parameters are updated accordingly, often through regu-
larization techniques to prevent catastrophic forgetting of previously
learned knowledge and preserve linguistic capabilities as new facts
are learned [2, 21].

2.2 Knowledge Editing

Continual learning can be seen as a form of knowledge editing. Be-
yond full fine-tuning, alternative approaches are on the rise due to
practical considerations such as LLM size and the fact that some of
the most capable LLMs only exist behind public APIs, such as Chat-
GPT? or Claude’. Some techniques include fine-tuning-based meth-

1 Resources at https://huggingface.co/tacticalv2 and https://github.com/
hsuvas/tactical supplementary material includes prompts, dataset details,
and experiments.

2 https://openai.com/api/

3 https://www.anthropic.com/api

ods like LoRA [14], which enable parameter-efficient adaptation that
can be applied to temporal updates; meta-learning, i.e., updating
knowledge with fewer examples [7, 31]; modifying factual knowl-
edge linked to specific parameters [24]; merging external knowledge
representations [11]; and extrinsic editing, directly motivated by the
aforementioned API-only situation, and which requires editing tech-
niques that operate either on the input or output spaces but not on the
model itself [12], e.g. by storing user requests and clarifications to re-
trieve during generation, in a typical RAG fashion [23]. Most of these
methods, however, operate on simplified <subject, relation, object>
triples, which are limited, can lead to ambiguities when propagating
new knowledge [20], and are simply not the optimal format for LLM
updating, as opposed to free text [3].

2.3  Benchmarks

In terms of benchmarks, the space is growing rapidly. For tempo-
ral question answering, SituatedQA [38] contains questions whose
answers change depending on the time frame, while TEMPLAMA
[10] and TAQA [39] specifically track time-sensitive questions over
different periods. In contrast, RealTimeQA and FreshQA [17, 34], al-
ternatively, focus on current, up-to-date events. For knowledge edit-
ing, COUNTERFACT [24] is widely used, presenting counterfactual
facts for models to incorporate without disrupting unrelated knowl-
edge. Other benchmarks include ZsRE [19], which focuses on re-
lation extraction; WikiData [6]; and ConvSent [26], each covering
different domains and use cases, ranging from biomedical to general-
purpose conversational contexts. Recently, to address limitations in
existing benchmarks, EVEDIT [20] augments factual triples with
event descriptions to provide clearer deduction anchors.

2.4 Wikipedia Revisions in NLP

This paper relies heavily on the longitudinal nature of Wikipedia and
the availability of past snapshots. Despite its value, and the fact that
Wikipedia has received much research attention, the potential of revi-
sion histories remains largely untapped. Notable exceptions include
using Wikipedia’s revision history to compute article trustworthiness
[37], detecting controversial content by examining edit patterns [42],
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identifying vandalism through machine learning approaches [29],
and extracting event structures from temporal edit patterns [33]. It
is clear that for such use cases, discriminating noise vs. meaningful
changes could be of high impact.

2.5 Current Limitations

As discussed in [3, 20], techniques that rely on triplets of the form
<subject, relation, object> limit model edits by not capturing their
multi-hop domino-effect. For example, if a citizen of country A be-
comes a citizen of country B, this could be due to different reasons,
e.g., (1) applying for B citizenship or (2) discovering that they were
born and raised in B. This context matters. If 2 were true, then the
<born-in> relation for this citizen would also need adjusting, creat-
ing aripple effect of factual changes [6]. It is clear that these “deduc-
tion anchors” [20] are hard to capture and maintain in triplet-based
knowledge editing, as opposed to natural language, which is an op-
timal vehicle for capturing multi-hop relationships derived from up-
dates in the world [3, 24], and can be subject to well-known model
performance evaluation metrics like perplexity or bits per character
[5]. This is in addition to well-studied issues related to KB main-
tainability and stagnation, which resources like Wikipedia address
thanks to their rapidly changing nature [16].

In this context, the core contribution of this paper is leveraging the
best of both worlds: our TACTICAL framework derives datasets that
contain fine-grained information about factual changes in the world,
alongside relevant contexts, with fine-grained typification of whether
these changes are atomic or not.

3 TACTICAL Methodology

We describe now the methodology for building R(FE,T);, where
! € {n,a,m} (no change, atomic change and multiple change, re-
spectively), by utilizing two sources: £ and T'. Let us first define
R(E,T) = {(+¥,7¢™") |y € T,1 < i < |R(E,T)|} to be an or-
dered set of all contiguous yearly revisions of E across the timeline
T Bach pair (¢, 7¢™") consists of a revision at year y and its imme-
diate successor at year y+ 1, spanning from the first recorded version
to the most up-to-date iteration of the entity’s wiki page. We imple-
ment a number of heuristics (which we denote with H), and which
are applied in a cascaded fashion. This both maximizes the quality of
the resulting dataset and allows for validation at each stage.

The first step is to collect one revision per entity’s wikipage
per year. Specifically, for each entity E, we pair consecutive years
(y,y + 1) where y € {2000,2001, .. .,2023}, using the first revi-
sion from year y and the last revision from year y + 1. To ensure data
quality, we filter out pages with fewer than three sentences, which
typically represent lists rather than content-rich articles. Our work re-
lies on Q&A datasets that are temporally grounded on a timestamp,
which can be easily derived from structured knowledge resources
like databases or KGs. For this paper, we build upon TAQA [39], a
recent dataset providing question-answer pairs about Wikipedia enti-
ties across different timestamps. For each entity £, a temporal Q&A
dataset defines a function A : Q x T" — P(S) that maps a ques-
tion ¢ € @ and a year y € T to a set of possible string answers
A(q,y) C S. For example, for the question "What is the role of Karla
Estrada in her most recent television series?" at year y = 2000, we
would have A(g,2000) = {"Lilay"}. With this temporal question-
answering data at hand, our aim is to determine:

1. Whether entity F changed significantly between years y and y+1.

2. When a significant change occurred, whether it was atomic (a sin-
gle aspect) or involved multiple aspects.

3.1 Heuristic Cascade for Positive Examples

To identify positive examples (i.e., revision pairs where significant
changes occurred), we apply the following heuristic cascade:

e Hy (Initial Filter): We verify that A(q,y) # A(q,y + 1) for a
given question ¢ about entity E. This ensures that the value in a
Wikipedia list has demonstrably changed between years because
the answer to the question has changed in between y and y + 1.

e H; (Structural Similarity): Given the set of changed answers, we
then filter out those revisions that are too dissimilar. This is to
capture cases where the page was empty or merely a stub in year
y before becoming a proper article in year y 4+ 1. We compute the
similarity between revisions r{ and rf“, requiring it to be high
(greater than ) but not equal to 1. Formally:

Sim(r¢,r?*") > @ and Sim(r?,ryT) #£ 1 (1)
This similarity is computed using sentence-transformer®
based embeddings for the first 512 BERT [9] tokens of each revi-
sion. This phase ensures that both ¥ and ¥ are similar enough
to guarantee a gradual change (but change nonetheless) in that en-
tity’s timeline.

e H, (Content Verification): Using LLaMA-3 [13], we verify that
the answers from TAQA are contained in their respective revi-
sions with respect to the original question. Formally, for each pair
(ry, A(q,y)) and (ry+1,A(q,y + 1)), we prompt LLaMa to de-
termine Cont. as follows:

Cont.(ry, A(q, y) | ¢) = 1 && Cont.(ry11, A(q,y+1) [ ¢) =1
@)
This ensures that the core information we are tracking is present in
both texts and that the answers correspond to the intended question
rather than being incidental mentions. In other words, we ensure
that these Wikipedia revisions are talking about the events in the
original tables, as not all table-worthy information of an entity is
present in their corresponding wikipage.
e H3 (Information Novelty): We verify that the cosine similarity be-
tween revision r, and the concatenation of question ¢ with answer
A(q,y + 1) is not more than A:

Sim(ry,q @ A(g,y +1)) < X 3)

This ensures there is no evidence in the first revision of the
updated information that appears in the second revision, to en-
sure that when the content related to A(q,y + 1)) appears in a
wikipage’s timeline, this is indeed a novel appearance.

o H, (Expert Confirmation): As a final verification step, we use a
GPT-based validation to confirm that a meaningful change exists
between the revisions. This step acts as a quality control measure,
filtering out pairs that might have passed earlier heuristics but do
not represent substantive changes.

3.2  Distinguishing Atomic vs. Multiple Changes

For revision pairs that have been confirmed to contain changes, we
further classify whether these changes are atomic (a single change)
or multiple (several changes) with the following Hs heuristic:

4 https://sbert.net/: sentence-transformers/all-MiniLM-L6-v2.
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e We sentence-tokenize both 7, and 7,41, obtaining sets of sen-
tences Sy and Sy41.
e We define heuristic Hs : R(E,T) — {a,m} as a function that
maps a revision pair to a label indicating the type of change:
Hy(r¥ 1 = { ISyl =15, <3
m lf|Sy+1| — |S1,| >3

We reach the threshold of 3 for dividing atomic and multiple
change by selecting different values, specifically 1, 3 and 5, and man-
ually validating a sample of 100 instances for each. We found that 3
gave the best trade-off between coverage and precision, with 65% of
the sample signaling atomic change.

3.3 Identifying Negative Examples

With a set of “positive” instances (wikipage revision pairs at two
timestamps with demonstrable change(s) occurring between them),
we are now interested in sourcing negative examples. A dataset of
this nature (and derived classifiers) has applications in knowledge
base maintenance, to detect whether information in a KB needs up-
dating based on evidence from its Wikipedia counterpart; news veri-
fication, e.g., for determining if new information about an entity rep-
resents a genuine change or just noise; temporal question answering,
specifically for supporting systems that must reason about changing
facts; or content summarization, for identifying key inflection points
in an entity’s history.

Karla Estrada (2018-01-26 + 2019-12-10)
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Figure 1: Wikipedia revision history plotted in a timeline, with sta-
ble (not captured by KDE) regions shown within two red lines and
dense (highly active) regions in yellow shadow. Top: Karla Estrada.
Bottom: The Colessium at Ceaser’s Palace.

However, obtaining valuable (hard to tell apart) negative exam-
ples is not straightforward. It is not sufficient to randomly sample
wikipages that are very similar, as this would almost certainly lead
in capturing two almost identical snapshots. Therefore, it is impor-
tant that this phase samples these negatives from period of “low ac-
tivity”, thereby avoiding time periods where an entity’s wikipage
has undergone significant edits (e.g., a politician’s page during a
political campaign, where information about rallies, public appear-
ances or electoral promises is constantly added, modified and mod-
erated/removed). Within these downtime periods, we are interested in
satisfying the constraint: similar revisions which talk about the table-
derived information (in other words, questions and answers from the
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temporal QA dataset are mentioned). We implement this approach as
follows:

1. For each timeline, we identify “moments of change” using a
bayesian changepoint detection algorithm, which has been used
in the past for finding significant shifts in timelines, e.g., in the
context of social media activity [1]. Then, we apply kernel density
estimation (KDE) to identify dense regions around change points,
which denote active elongated periods around sudden spikes in a
wikipage’s revision history. We then proceed as follows:

2. We select revision pairs (ry, ry+1) where both years fall outside
these dense regions, ensuring we focus on stable periods. Figure 1
shows two representative examples of revision histories and illus-
trate where in those timelines we sample negatives from. Specif-
ically, we select the regions with stable revision activity and take
the revision pairs that fall within that region as our timestamps.

3. We then apply a flipped-sign version of Hy and H;. We do not
look into exact matching between the texts to identify the informa-
tion change, but rather try to ensure answer stability and structural
similarity via thresholding.

Finally, the final dataset R(E,T); for a given entity E and its
associated timeline(s) 7' comprises:

R(E,T)a = {(r¥,ry™") € R(E,T) | H0 A HY A Hy'} 5)
R(E,T)e ={(r!,r!™") € R(E,T) | /\H A Hs(r?,r?*!) = a}
1=0
(6)
4
R(E,T)m ={(r!,r?™") € R(E,T) | \ Hi A Hs(r,r?"!) = m}
1=0
@)

Thus, for a given entity £ and associated timelines 7', we have
R(E,T), = R(E,T)s UR(E,T),U R(E, T)m, where each pair is
linked to its triggering question-answer pairs from the temporal QA
dataset. Tables 1 and 2 contain examples of the TACTICAL-derived
dataset and summary statistics of the binary classification datasets
used in Section 4, respectively.

Data Statistics Change/No-change |  Atomic/Multiple
ch. n. Total | a. m. Total
# instances (rﬁ’, rf"'l) 2,327 8,278 10,605 | 773 1,554 2,327
# of unique titles 627 1,732 2,359 | 372 519 891
Instances to title ratio 3.7 4.8 - 2.1 2.9 -

Table 2: Statistics of our TACTICAL-derived dataset, showing fig-
ures for instances (revision pairs) for change (ch.), no change (n.),
atomic change (a.) and multiple change (m.).

Label Heuristic  Accuracy Instances
Change H2 0.72 9,859
H3 0.89 2,327
No-change H1 0.87 16,351
H2 0.99 8,278
Atomic-change HS5 (a) 0.93 773
Multiple-change ~ H5 (m) 0.95 1,554

Table 3: Human validation results and number of instances filtered
for the data collection heuristics.

In Table 3, we summarize the human validation we conducted for
different stages of these heuristics. All of them are the result of man-
uvally validating the outcome of each one on a random sample of 100
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instances, making the manual validation effort comprise 600 distinct
revision pairs as deemed relevant for the corresponding goal (e.g.,
capture change, or capture multiple-aspect change). As we can see,
the majority of them are extremely effective, with an accuracy rang-
ing from 0.72 in the worst case (although in practice this lower-than-
the-rest accuracy is less impactful due to instances steeming from H2
undergoing further validation in subsequent heuristics), to .99 in the
best case scenario’.

4 Experiment 1: Change Detection and
Typification

Our first goal, with a TACTICAL-derived dataset at hand, is to ana-
lyze its usefulness to train text classifiers on the tasks of distinguish-
ing meaningful vs. superficial, and atomic vs. multiple changes. As
we have seen, such classifiers could impact multiple knowledge man-
agement applications, in addition to the time-steering focus we pur-
sue in this paper. To this end, we first take the full datasets (cf. Ta-
ble 2) and produce four train/validation/test splits. These are Random
(randomly sampling revision pairs into one split); No-overlap (ensur-
ing revision pairs belonging to one entity are all placed in one split,
thereby avoiding contamination); and 7Fwd and TRvsd, where the
cutoff is longitudinal, forward and reversed (see Figure 2 for the data
distribution in these two temporal splits from Change/No-change).

Yearly Distribution of the TFwd split for Change/No-change Split
. Tain
mm Validation

800

g

Frequency
§

Year

Yearly Distribution of the TRvsd split for Change/No-change Split

= Tain

= Validation
- st

g

Frequency
§

Figure 2: Yearly distribution comparison for Change vs. No change.
Top: Forward distribution (TFwd). Bottom: Reversed distribution
(TRvsd).

5 All validation datasets are provided in the supplementary materials. Imple-
mentation details can be found in the Github Repository.

With these splits at hand, we fine-tune a number of BERT-based
[9] classifiers. We found their performance to be generally compet-
itive (full set of results in Figure 3), with the large models (BERT
and RoBERTa) performing highest in change vs. no change, and an
unsurprising dip in F1 for the time-capped splits (specifically, TRvsd
for change vs. no change; and TFwd for atomic vs. multiple change).
Regarding atomic vs. multiple change, we find a surprisingly high
performance in the TRvsd split by the ALBERT family of models. Per-
haps due to their smaller size, they suffer from less overfitting/bias
and are able to learn the dataset patterns better without defaulting to
the knowledge learned during pretraining.

Model
mm distilbert-base
B roberta-base

s bert-base
B bert-large

mm albert-base-v2
mm albert-large-v2

e roberta-large

Experiment: Change vs. No change

Experiment: Atomic change vs. Multiple change

Random MNo-overlap TFwd TRvsd
Dataset

Figure 3: Performance breakdown for different BERT-based models
for the different TACTICAL-derived test sets.
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5 Expt. 2: LLM Temporal Grounding via
TACTICAL Exemplars

It is common practice in the temporal grounding literature to in-
vestigate LLMs’ behavior when presented with temporal challenges.
As we have previously discussed, this has been approached in tasks
like temporal question answering (where performance is often mea-
sured in F1), as well as running LLMs on out-of-distribution tex-
tual samples and measuring their “understanding” of such samples
via pseudo-likelihood, perplexity or bits-per-character. In this experi-
ment, we build a novel evaluation dataset for probing LLMs’ timeline
knowledge of entities and events, which we derive from Wikipedia
lists, and show that a frozen pretrained LLM can be better enhanced
with TACTICAL-derived exemplars than baseline ICL methods.
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5.1 Dataset construction

Our aim in this experiment is to gauge the extent to which LLMs
are able to position in a timeline relevant facts surrounding entities
and events. Our methodology for probing this aspect involves, first,
a Wikipedia list for an entity F (e.g., en.wikipedia.org/wiki/Karla_
Estrada#Television), from which we create true statements such as
“Karla Estrada’s role in 2001 was Lilay”, and false statements such
as “Karla Estrada’s role in 2021 was Lilay”. This is done via GPT
prompting, and starting from the entities contained in TAQA. As we
can see, false statements are created by swapping the year of a true
statement. In order to test models’ sensitivity to the plausibility of the
false fact, we create three versions of this dataset: plus 1, plus 5 and
plus 10, which signal the years the negative examples are off from
the true counterpart.

5.2 Prompt Configurations

Following [20], we evaluate frozen LLMs on the binary classification
task of determining whether a given statement as derived from the
method described in Section 5.1 is true or not. We prompt multiple
LLMs and evaluate the effectiveness of different ICL approaches for
“setting their clock” and activate their temporal understanding of E/
via in context learning. We compare multiple prompting methods,
which we describe next:

e Baseline: A simple prompt where we only provide the description
of the task, with no exemplars

e ICL: Provide three true statements about £ in Q&A format as
described above

e TACTICAL: Provide two past revision pairs for £ from TACTI-
CAL, randomly sampled from R(E,T), U R(E,T)n

e ICL+TACTICAL: Combine ICL and TACTICAL exemplars
above

e ICL+TACTICAL-a: TACTICAL-derived exemplars are sam-
pled only from R(E,T),

o ICL+TACTICAL-m: TACTICAL-derived exemplars are sam-
pled only from R(E,T)m

We tested four frozen LLMs under each of these prompt settings,
namely Llama-3.2-3B and Llama-3.1-8B[13], Gemma-2-2B [32],
and Qwen-2.5-7B [35].

5.3 Classification Results

Our results, summarized in terms of F1 in Figure 4, clearly indi-
cate that the knowledge in TACTICAL is more effective for acti-
vating temporal knowledge in LLMs than ICL samples. We find that
in the hardest setup (+1), Gemma benefits the most from TACTI-
CAL examples, especially when combined with ICL samples. We
also observe a significant improvement in Qwen, with all TACTI-
CAL prompts reaching very similar F1. For easier setups, we find a
remarkably high performance when combining ICL examples with
TACTICAL examples in Gemma. We also find that passing in the
prompt exemplars of multiple changes (revision pairs signaling sig-
nificant changes in one year) produces the best result in about 60%
of the cases, whereas TACTICAL-only exemplars seem not to be as
effective, and show performance below baseline (no exemplars) or
ICL only setups in 80% of experiments.

The main takeaway is clear: Combining TACTICAL exemplars
with semi-structured information in the form of temporally grounded
Q& A pairs can help LLMs activate their temporal knowledge, with

Method
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- L e ICL+TACTICAL  wmm ICL+TACTICAL+Multiple

LLama3.2-3B
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Figure 4: Performance breakdown for different LLMs for the different
temporal grounding settings. Best viewed in colour.

the advantage of not requiring fine-tuning, which enables using this
method even for closed-source models only available via APIL.

5.4  Analyzing year-wise performance

To better understand how TACTICAL-based exemplars enhance
temporal abilities in LLMs, we analyzed both accuracy and confi-
dence across different years in our dataset. We divided our data by
year and examined Llama 3.2 model predictions under both ICL and
ICL+TACTICAL setups. Confidence was measured using the log-
probability of the model’s first predicted token.

As shown in Figure 5, the model’s confidence generally increases
with greater temporal distance between true and false instances, with
performance peaks visible near the model’s training cutoff years. The
consistent improvements across different years and splits demon-
strate that providing rich temporal context through TACTICAL ex-
emplars effectively enhances the model’s ability to make temporally-
aware predictions. Moreover, our analysis in Figure 6 reveals signifi-
cant improvements when using TACTICAL exemplars across years,
with the most notable gains occurring when both accuracy and con-
fidence increased simultaneously. A closer look also reveals the fol-
lowing insights: (1) Harder setups cause higher volatility, as we can
see from the differences between the easiest +1 split (mostly sta-
ble accuracy in the 0.3-0.5 range), but as the temporal gap increases
(especially in +10), there is significantly more volatility in model
performance, particularly in earlier years (2000-2010); (2) all three
splits show a generally improving trend from approximately 2010
onwards. In fact, 2010 seems to act as a “transition year”, where in
all cases we see a shift from high volatility to stable performance;
and (3) high confidence predictions (green points) almost exclusively
appear in recent years (2023+) and show the highest accuracy.

5.5 Relationship with popularity

To investigate whether entity popularity influences LLMs’ tempo-
ral understanding capabilities, we analyzed the correlation between
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Figure 5: Comparison of accuracy and confidence across years for
all three time-splits: +1 (top), +5 (middle) and +10 (bottom). The
numbers above each point represent the Accuracy (in the Y-axis) of
each data point for the Year (x-axis).
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Figure 6: Year-on-year performance (accuracy, model’s confidence
and both).

Wikipedia pageview statistics and model performance. We collected
pageview data for all 100 entity titles in our dataset, spanning from
January 1, 2001, to April 30, 2025. For each entity, we calcu-
lated the per-title macro F1 scores across three prompting config-
urations (Baseline, ICL, and ICL+TACTICAL) in the most chal-

lenging +1 setting. Table 4 presents performance metrics for the
five most and least popular entities based on pageview count, and
reveal important patterns. First, both high and low popularity en-
tities show substantial improvements when moving from Baseline
to ICL+TACTICAL prompting. High-popularity entities like Ka-
ley Cuoco (38.6M pageviews) show a 14-point accuracy improve-
ment from Baseline (0.38) to ICL+TACTICAL (0.52). Similarly,
less popular entities such as Wolfdogs Nagoya (52.9K pageviews)
demonstrate even more dramatic improvements, with accuracy in-
creasing by 29 points from Baseline (0.33) to ICL+TACTICAL
(0.62). Notably, the most significant relative improvements occur
for low-pageview entities, suggesting that TACTICAL-derived ex-
emplars particularly benefit LLMs’ temporal understanding of less
popular entities. This finding indicates that our approach can effec-
tively address knowledge gaps in the long tail of entity recognition,
where information might be less reinforced during pretraining due
to lower representation in the corpus. We acknowledge however that
pageviews is only a superficial metric for popularity, and leave for
future work an analysis of temporal grounding vs, e.g., incoming
links®.

Titles Baseline ICL ICL+T  Pageviews
Kaley Cuoco 0.38 0.51 0.52 38,583,136
Katey Sagal 039 0.50 0.51 18,622,787
Chrishell Stause 032 0.55 0.54 13,006,802
Gillian Jacobs 037 0.54 0.52 11,917,553
Lily Rabe 034 042 0.47 10,104,843
Titles Baseline ICL ICL+T. Pageviews
Wolfdogs Nagoya 0.33 0.48 0.62 52,927
Harvard Model Congress 0.39 047 0.50 51,973
Sean Shields 0.38 0.43 0.53 47,813
Davor Blazevi¢ 045 0.51 0.51 30,360
Japan Breeding Farms’- 033 035 0.41 2,261
Cup Classic

Table 4: Model performance (Accuracy) on top and bottom 5 titles
for different prompting settings (T: TACTICAL).

6 Conclusion and Future Work

In this work, we propose TACTICAL, a heuristic-based framework
for the extraction of entity timelines by leveraging Wikipedia’s revi-
sion histories. We systematically extract a dataset using TACTICAL
and conduct text classification experiments to evaluate the model’s
capability to detect meaningful changes. We also conduct an in-
context learning experiment on a set of frozen LLMs to reveal the
benefit of using the examples from TACTICAL in improving their
temporal fact recall ability. For the future, we would like to homoge-
nize our heuristics to be fully LLM-driven and use LLM-as-a-judge
along the way. Another interesting dimension to explore through this
work is Knowledge Editing. Despite the coarse-grained year-level
granularity in the dataset, we want to develop it further and create a
fully fledged temporal KE benchmark made of free-text examples,
a largely unexplored area. Developing such resources would pro-
vide insights into how factual knowledge evolves and how LLMs
can track or prioritize it.

6 Utilizing projects such as e.g., grank: https://github.com/brawer/
wikidata-qrank.
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