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Cellular  automata  (CAs)  are  commonly  used  to simulate  spatial  processes  in ecology.  Although  appropri-
ate  for  modelling  events  that  occur  at discrete  time  points,  they  are  also routinely  used  to  model  biological
processes  that  take  place  continuously.  We  report  on a study  comparing  predictions  of  discrete  time  CA
models  to those  of  their  continuous  time  counterpart.  Specifically,  we  investigate  how  the  decision  to
model  time  discretely  or continuously  affects  predictions  regarding  long-run  population  sizes,  the  prob-
ability  of extinction  and  interspecific  competition.  We  show  effects  on predicted  ecological  outcomes,
ellular automaton
iscrete time
ontinuous time
patial  Gillespie simulator
nterspecific  competition

finding  quantitative  differences  in  all cases  and  in  the case  of  interspecific  competition,  additional  quali-
tative  differences  in predictions  regarding  species  dominance.  Our  findings  demonstrate  that  qualitative
conclusions  drawn  from  spatial  simulations  can  be critically  dependent  on  the decision  to  model  time
discretely  or  continuously.  Contrary  to our  expectations,  simulating  in  continuous  time  did  not  incur  a
heavy  computational  penalty.  We  also  raise  ecological  questions  on  the  relative  benefits  of reproductive
strategies  that  take  place in discrete  and  continuous  time.
. Introduction

Cellular automata (CAs) are commonly used to simulate
ynamic spatial processes in ecology, contributing to develop-
ents in both applied and theoretical research. In a simple CA
odel of birth-death processes, individuals inhabit discrete sites,

sually organised in a grid formation. Time progresses in dis-
rete steps and an update scheme specifies how individuals die or
ive birth into neighbouring sites at each step. For example, in
he applied literature CAs have been used to simulate the spatial
istribution of insect colonies (Perfecto and Vandermeer, 2008;
andermeer et al., 2008) and the effect of plant-soil feedbacks
n relative tree abundance (Mangan et al., 2010), while in micro-
ial ecology, Fox et al. (2008) used a CA to investigate the way in
hich plasmids invade bacterial populations. In contrast, Laird and
champ (2008) used a CA to explore theoretical questions relat-
ng to differences between interspecific competition in spatial and
on-spatial (homogeneous mixing) contexts while Roxburgh et al.

∗ Corresponding author at: School of Computing Science, University of Glasgow,
12  8QQ, UK. Tel.: +44 330 8138.
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304-3800 © 2013 Elsevier B.V.   
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(2004) investigated mechanisms leading to long-term species coex-
istence in the context of the intermediate disturbance hypothesis.
In addition, CAs have been used to validate simplifications required
to solve models analytically, such as in the theoretical work on pop-
ulation self-structuring reviewed in Lion and van Baalen (2008), as
well as in a range of publications on the evolution host–parasite
interactions (see e.g. Kamo and Boots, 2004; Best et al., 2011, for
parasite virulence and host resistance, respectively), the evolution
of altruism (e.g. Lion and van Baalen, 2007) and the evolution of
reproductive effort (Lion, 2010).

Among the assumptions embodied in CA models is that of dis-
crete time. This in turn introduces the need to make additional
assumptions in the form of modelling decisions regarding the
update scheme used to govern the order in which sites are con-
sidered and events take place. When these modelling decisions
are made carefully, CAs can form appropriate models for discrete
time spatial processes. However, they are often employed to sim-
ulate continuous time ecological processes or models, frequently
without acknowledgement that this introduces an additional layer
of approximation. Fortunately, these continuous processes can be
simulated directly using a discrete space version of the Gillespie

Open access under CC BY license.
algorithm (Gillespie, 1977). Following this algorithm, time is con-
tinuous in the sense that it progresses in arbitrarily small steps,
the length of which varies according to event rates, and these
are limited only by the precision of the computer on which it
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http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ecolmodel.2013.03.013&domain=pdf
mailto:Rebecca.Mancy@glasgow.ac.uk
mailto:Patrick.Prosser@glasgow.ac.uk
mailto:Simon.Rogers@glasgow.ac.uk
dx.doi.org/10.1016/j.ecolmodel.2013.03.013
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


al Mod

i
t
r
a
i
a
t

t
p
o
i
i
c
w
i
c
1
C
h

o
t
t
W
C
s
p
p
t
t
t
s
I
t
c
h

d
c
t
fi
r

2

t
t
l
c
(
t
t
t
d
o
a
O
m
h
t
t
t
m

R. Mancy et al. / Ecologic

s implemented. Although a little more mathematically involved
han discrete time approaches, the implementation of this algo-
ithm reduces the number of modelling decisions and thus allows

 stronger focus on the biology while enhancing comparabil-
ty between studies. Once understood, the approach can also be
pplied to non-spatial and continuous space problems, as well as
o evolutionary problems (see e.g. Meier et al., 2011).

Decisions about whether to simulate in continuous or discrete
ime, and in the latter case which update scheme to use, are not sim-
ly technical but should be made in direct relation to the dynamics
f the biological system under study. In order to compare stud-
es and make informed decisions about which approach to use, it
s important to understand any disparities in predictions between
ontinuous and discrete time simulations, especially in the case
here CAs are used to model continuous time processes. Although

t is known that CA update schemes (the order in which events are
onsidered) can affect ecological dynamics (Ruxton and Saravia,
998), differences in ecologically meaningful predictions between
As and corresponding continuous time simulation approaches
ave never been tested.

In  this paper, we assume stochastic real world processes that
ccur in continuous time with exponentially distributed waiting
imes between events, taking as a case study the asymmetric logis-
ic model of population growth on a lattice (Matsuda et al., 1992).

e regard this model as our benchmark and consider discrete time
A simulations as approximations to this model. Specifically, we
imulate this model stochastically in continuous time and com-
are outcomes with those of simulations conducted using two
robabilistic CA update schemes, a range of time step sizes and
wo methods for converting between the rates used in continuous
ime models and probabilities required for discrete time simula-
ion. We  conduct two experiments, focusing in the first on a single
pecies and in the second on competition between two  species.
n both experiments, we report long-run population sizes, and in
he context of interspecific competition, also predictions regarding
oexistence and competitive exclusion, using these outcomes to
ighlight disparities between discrete and continuous time.

In  the following sections we consider some of the modelling
ecisions that need to be made when using CAs, emphasising the
onversion from rates to probabilities required to approximate con-
inuous processes. We  describe our experimental protocol, provide
ndings from our two experiments and conclude with modelling
ecommendations.

. Modelling decisions of cellular automata

Provided that time steps are chosen carefully so that
hey match the periodicity of real ecological events, discrete
ime simulations can be appropriate when simulating eco-
ogical processes that occur synchronously (e.g. reproductive
ycles in cicadas) or where there are strong cyclical patterns
e.g. due to seasonality). Their use becomes more difficult
o justify when modelling continuous processes (e.g. disease
ransmission) or to validate analytic simplifications in con-
inuous time models. Nonetheless, justifications for employing
iscrete time simulations, decisions regarding particular choices
f update scheme and method of converting rates to prob-
bilities are rarely reported (although see Best et al., 2011;
vaskainen and Hanski, 2003, for articles including this infor-
ation). This makes replication almost impossible, as well as

indering comparisons between studies and the interpreta-

ion of any conflicting findings. In this study, we investigate
he extent of these problems by simulating the same sys-
em in continuous and discrete time, taking a continuous time

odel as our benchmark. We  limit our discussion to one or
elling 259 (2013) 50– 61 51

more  species living on a finite grid, and assume ecological
processes that take place continuously according to a well-
understood model.

Simple  CA models of ecological processes are usually con-
structed in the following way: organisms live on a grid of sites; time
progresses in discrete time steps and at each iteration individuals
persist, die, or give birth into neighbouring sites according to a set
of local transition rules. In probabilistic models, event probabilities
are often dependent on the configuration of occupied and empty
sites in the neighbourhood. CAs are relatively straightforward to
implement, requiring limited mathematical or modelling knowl-
edge (Berec, 2002; Breckling et al., 2011) but their very ease of
implementation belies a range of complexities. Specifically, impor-
tant modelling decisions arise as a result of the discrete nature of
time: these concern the order in which events are executed and the
way in which event rates are converted to probabilities.

The issue of event ordering arises because in discrete time,
events may  occur simultaneously at the same site (e.g. two  births
into the same site) and decisions thus need to be made about the
order in which events should take place and how to resolve com-
petition. An update scheme is therefore used to determine event
ordering. A large number of schemes have been proposed and
comparisons between these in the computing science, theoretical
physics and ecological literature demonstrate important differ-
ences in dynamics and steady state outcomes (e.g. Manzoni, 2012;
Ingerson and Buvel, 1984; Lumer and Nicolis, 1994; Schönfisch
and de Roos, 1999; Cornforth et al., 2002; Ruxton and Saravia,
1998).

Event frequency in continuous time is typically characterised
by event rates and the assumption that waiting times between
events are exponentially distributed. For use in CA models, these
rates must be converted into event probabilities. We use two dif-
ferent approaches in our study, one that allows for multiple events
and one that allows only a single event per time step �t. In the
first, we make use of the fact that for a process with exponen-
tially distributed waiting times, the number of events within a
specified time window follows a Poisson distribution. Thus, we
sample the number of events from a Poisson distribution with
parameter r�t where r is the instantaneous rate (note that this
only makes sense for births). When discrete time is viewed as an
approximation to a continuous process, this is similar to the �-
leaping idea proposed by Gillespie (2001). The second conversion
is a cruder approximation that allows a maximum of one event per
time step, bringing the simulation into line with most common CA
approaches (see e.g. Best et al., 2011, for a study where this con-
version is described explicitly). Probabilities in this approach are
computed from rates as described in Section 3.3. System dynam-
ics are expected to differ between conversion approaches and
although it is known that reducing the time step should limit this
effect (see e.g. Schönfisch and de Roos, 1999), it is unclear how
small �t needs to be before particular qualitative and quantitative
properties of ecological models are indistinguishable.

3. Experimental protocol

Following  Ruxton and Saravia’s (1998) comparison of CA update
schemes, we take as a case study one of the simplest spatial mod-
els, the asymmetric logistic model of population growth on a lattice.
We simulate a stochastic version of this model for different birth
and death rates using a model with exponentially distributed wait-
ing times between events. This is compared to simulations using

two CA update schemes, a range of time steps and two  methods
used to convert from rates to probabilities. In our analysis, we con-
sider the continuous time simulation as our benchmark and the
discrete time simulations as approximations to this. In Experiment



5 al Modelling 259 (2013) 50– 61

1
r
2
o
r

3

r
v
s
b
d
e
s
a
s
r
(
d
h

3

t
t
i
l
i

a
t
e
s
n
f
T
i
o
g
R
i
R

3

b
o
f

d
i

e
b
S
t
t
t
s
s

a

0

2000

4000

6000

8000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
in

al
 p

op
ul

at
io

n 
si

ze
2 R.  Mancy et al. / Ecologic

, we simulate a single species and consider differences in long-
un population sizes and probability of extinction. In Experiment
, we consider two species and compare interspecific competition
utcomes. Simulations are conducted for 1000 time steps and 100
epetitions unless otherwise stated.

.1. Continuous time model

The  lattice logistic model describes population growth that is
egulated by the local availability of empty sites. In the standard
ersion of the model, organisms live on an infinite network of
ites, each of which is connected to n randomly selected neigh-
ours. Organisms have two fundamental behaviours – birth and
eath – governed by rates, and can only give birth if there is an
mpty site in their neighbourhood (Matsuda et al., 1992).1 We
imulate the stochastic version of this continuous time model
s a Poisson process. This is implemented in the form of a
patial version of the Gillespie algorithm (Gillespie, 1977) that
esembles the algorithm proposed by Stundzia and Lumsden
1996) and that we refer to as Gill. The algorithms used are
escribed formally in Appendix A and the code is available from
ttp://rebeccamancy.github.io/gillespie-cellular-automaton/.

.2. Cellular automaton update schemes

We compare the outcomes of our continuous time simulations
o those of a range of CAs. We  select two update schemes among
hose considered by Ruxton and Saravia (1998), deliberately choos-
ng schemes in which site order is random and that differ in the
evel of structure introduced (Schönfisch and de Roos, 1999) to
nvestigate the effects of update timing and event orderings.

The  first scheme introduces structure by fixing the order of birth
nd death events and through delayed updating. At each genera-
ion, a new random site order is generated which is then used to
xecute death at all occupied sites and then birth at all occupied
ites probabilistically, after which the population is updated for the
ext generation. The scheme is implemented as RFd2S and RFd2M

ollowing the naming conventions in Ruxton and Saravia (1998).2

he second scheme introduces less structure since event ordering
s random and updates are fully asynchronous. We  generate a list
f (site, event) pairs, executing these in a new random order at each
eneration and updating the state of system after each event. In
uxton and Saravia (1998) this scheme is referred to as RR1 and is

mplemented here for the two forms of rate conversion as RR1S and
R1M.

.3. Rate conversion

We  use two methods to convert rates: in the first, multiple

irths are permitted whereas in the second, an additional layer
f approximation is introduced since at most one birth is per-
ormed. In the first approach, referred to as multiple births,3 we

1 In some versions of the lattice logistic model, death rate is also related to the
ensity  of neighbours. In the version we implement, death occurs at a constant rate

ndependent of overcrowding while reproduction is limited by resource constraints.
2 In the CA algorithm names, the first letter refers to site ordering, the second to

vent ordering, and the number to whether updating takes place immediately (1,
ecause a single array is required) or with a delay (2, as two  arrays are required).
pecifically,  R refers to the random order in which sites are visited, Fd indicates that
he order of birth and death events is fixed with death occurring first, 2 indicates
hat  two arrays are used to store the configurations to allow delayed updating, and
he final letter (see Section 3.3) refers to the approach to rate conversion. The same
cheme is referred to as RF2 in Ruxton and Saravia (1998), where no birth-first
chemes  are considered.

3 This method is applied only to births as each site is only visited once per gener-
tion so death can occur at most once.
Fig. 1. Box plot showing final population sizes for death-to-birth ratios ı under Gill.

draw a number of events n� where n� ∼ Poiss(r�t) where, as pre-
viously, r represents the instantaneous rate and �t is the time
step. This conversion makes the assumption that births within a
time step are independent.4 In the second, we assume that mul-
tiple births within a time step never occur so Pr(n� > 1) ≈ 0 and
thus that Pr(n� = 1) ≈ 1 − Pr(n� = 0) = 1 − e−r�t (see e.g. Fleurence and
Hollenbeak, 2007). Multiple births versions of the algorithms are
suffixed M and single births S.

3.4. General model parameters

In  our experiments, we consider Gill as our benchmark and
compare with the four CA update schemes RFd2S, RR1S, RFd2M
and RR1M, explained in Appendix A. We  simulate all schemes for
1000 time units on a regular square lattice of 100×100 sites using
a neighbourhood consisting of the 8 nearest neighbours (Moore
neighbourhood) and wrapping boundaries in the form of a torus
to mimic  the infinite lattice of the theoretical model.5 We  refer
to the population after 1000 time units as the final population; in
many cases this corresponds to the pseudo-steady state of the sys-
tem although time to convergence depends on parameter values.
We run 100 stochastic repetitions of all simulations and report
summary statistics where appropriate. Except where otherwise
indicated, all populations start with 1000 individuals randomly
distributed across sites. In each experiment, we hold the intrin-
sic birth rate of organisms constant at b = 1 and vary the death
rate in steps of 0.1 from 0.1 to 1.0 inclusive,6 giving death-to-birth
ratios, denoted ı, in the range 0.1–1.0. We  test time step values
in the set {20, 2−1, 2−2, 2−3, 2−4, 2−5, 2−6}. The simulation code
is programmed in Java and the full code release is available from
http://rebeccamancy.github.io/gillespie-cellular-automaton/, with
post-processing conducted in R.
4. Experiment 1: single population

In Experiment 1 we  explore final population sizes under Gill and
the four CA update schemes. Final population sizes under Gill for

4 A similar approach, known as tau-leaping, is used in approximations of the
standard  Gillespie algorithm (Gillespie, 2001).

5 Our choice of network topology is motivated by the prevalence of square lattices
in  the literature; we acknowledge the arguments for the use of hexagonal lattices
(Birch,  2006; Birch et al., 2007; Holland et al., 2007; White and Kiester, 2008). The
implemented model diverges from the theoretical model in that latter assumes an
infinite random regular network rather than an orthogonal lattice.

6 A similar approach is used by Ruxton and Saravia (1998) in choosing a death
rate  for their simulations; however, we test the full range of death rates throughout.

http://rebeccamancy.github.io/gillespie-cellular-automaton/
http://rebeccamancy.github.io/gillespie-cellular-automaton/
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ig. 2. Time series plot showing mean and range for ı = 0.7 (lower line) and ı = 0.6
upper line) under Gill.

he different death-to-birth ratios (ı) are shown in Fig. 1, demon-
trating small variance between runs. In general, populations with
ower values of ı are larger, and for values of ı = 0.6 and below, the
opulation grows rapidly and reaches quasi-stationarity; extinc-
ion occurs slowly for ı = 0.7 and rapidly for higher values (see
ig. 2). We refer to the transition between persistent populations
nd population extinction that occurs between ı = 0.6 and ı = 0.7 as
he persistence threshold (Adler and Nuernberger, 1994).

Comparing final population sizes and proportion of runs extinct
nder Gill and the CA algorithms, qualitative patterns differed little
etween the two single birth algorithms and we focus on RFd2S.
or all parameter values, RFd2S underestimates final population
ize and the largest differences in mean final population size occur
or the longest time steps and intermediate values of ı. The find-
ng that the largest deviations are found for the longest time steps
s expected. The deviation for intermediate values of ı can be
xplained by the occupancy level of grid: at these values, occupancy
s around 50% and population size is more sensitive to differences
etween the algorithms than at lower ı values where lack of avail-
ble sites dominates algorithm effects. Because final populations
nder Gill are small for ı = 0.7, differences between Gill and RFd2S
re also small, even though all RFd2S runs actually went extinct for
he four longest time steps (see Fig. 3(b) for proportions of runs
xtinct by t = 1000 under RFd2S).

Fig.  3(b) shows algorithm bias, the proportion under-estimate of
nal population size compared with Gill for RFd2S. Strongest bias
as found for ı close to the persistence threshold, and was worst for

onger time steps. The highest levels of algorithm bias are explained
y the higher extinction rates of RFd2S than Gill; nonetheless, even
or parameters where populations did not go extinct under either
lgorithm, bias increases as we increase step size and towards the
ersistence threshold. Comparing the proportion of runs that went
xtinct under Gill (Fig. 3(b)) with those of RFd2S (Fig. 1) shows that
opulations simulated under Gill are more resilient and this differ-
nce is most obvious at ı = 0.7 (31% runs extinct under Gill compared
ith 71% under RFd2S and 67% under RR1S for the shortest time

tep).
Similar patterns were seen in the relationship between accuracy

nd parameter values for the multiple births scheme RFd2M, except
hat this algorithm overestimated population sizes for all parame-
er values apart from ı = 0.7 (Fig. 4). In contrast, the RR1M scheme
ave large overestimates of final population size for all parameter
alues, and no run went extinct. The difference between the two
ultiple birth versions of the algorithms is very marked: although

imulating multiple births improves estimates when updating is
elayed until the end of a generation (RFd2M) it produces large
verestimates when updating takes place immediately (RR1M).

nder the RFd2M scheme, the increase in birth rate due to mul-

iple births is partially compensated by the increase in death rate
ince all organisms are considered for death at the next time step.
nder RR1M, births can take place into sites that have already been
elling 259 (2013) 50– 61 53

evaluated for death during the current generation and are there-
fore not evaluated for death until the following generation. In other
words, the effective birth rate is increased much more than the
corresponding death rate for RR1M; this algorithm gives a poor
approximation of Gill and we  consider it no further.

Finally, we  consider the minimum time step required to gen-
erate final population sizes that are statistically indistinguishable
from those of Gill on the basis of t-tests. Table 1 shows that RFd2S
performed slightly better than RR1S, but this effect is largely due
to the fact that sizes under RFd2S represent the highest point in
each birth-death cycle as population size is measured after births.
To simulate final population sizes that are statistically indistin-
guishable from Gill, an unidentified step sizes below below 2−6 is
required for RR1S for all ı > 0.1, whereas this is the case for RFd2S
only for ı close to the persistence threshold. Among the multi-
ple birth schemes, RFd2M performed better than both single birth
schemes for values of ı close to the persistence threshold, but less
well than RFd2S for low ı. The impact of simulating multiple births
in RFd2M also had a greater positive effect on algorithm bias for
larger step sizes where the largest errors were found under the sin-
gle births version. This is because with larger step sizes Gill tends
to generate more cases of multiple births within the equivalent of a
time step, so the single birth schemes are more inaccurate for larger
step sizes.

In  conclusion, Experiment 1 demonstrated relatively large dis-
crepancies in final population sizes between the continuous and
discrete time simulations, and these differed with time step and
death-to-birth ratio. Time steps need to be reduced to values of
2−3 or smaller for final population sizes to be statistically indistin-
guishable from those of the Gillespie simulator, although required
step size depended on both the update scheme and ı. It is there-
fore important for researchers who simulate in discrete time to be
explicit about the time step and update scheme employed. Simu-
lating multiple births to better emulate the possibility of multiple
births under Gillespie was a helpful strategy under RFd2M, at least
for values of ı near the persistence threshold, but not under RR1M
where it introduced heavy bias. Overall, the step sizes required
to accurately approximate continuous time are small, they have
a complex relationship with other model parameters and the com-
putational cost of simulation under sufficiently small step sizes is
high.

5. Experiment 2: interspecific competition

We now investigate the outcomes of interspecific competition
between two species. The question of interspecific competition is
of importance in a range of practical contexts such as when pre-
dicting the spread of invasive species and has also been studied
extensively in the mathematical biology literature (see Vandermeer
and Yitbarek, 2012, for a recent example in a spatial context). For
a range of simple deterministic models where competition is for a
single resource, it can be shown that there are four possible biolog-
ical outcomes at equilibrium: extinction of both species, competitive
exclusion of species one by species two, competitive exclusion of
species two  by species one and coexistence (Levin, 1974). The com-
petition model under logistic growth in the non-spatial case for
species subscripted 1 and 2 can be written as

ṗ1 = (b1p0 − d1)p1

ṗ2 = (b2p0 − d2)p2

where p represents the population density (subscript zero indicat-

ing density of empty sites), b the birth rate and d the death rate. The
equilibrium condition can be found by solving simultaneously for
ṗ1 = ṗ2 = 0, also showing that coexistence is possible only when
the two species have exactly the same death-to-birth ratio ı1 = ı2
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lgorithm bias (upper value in each cell; shading highlights size of algorithm bias) a

nd that a slight disadvantage for either species eventually leads
o its competitive exclusion. We  therefore also expected our spa-
ial model to be sensitive to small deviations around this point.
ince the conversion from continuous to discrete time introduces
ne adjustments to birth and death rates, any differences between
pdate schemes and methods of modelling time are likely to be
pparent around this point. The decision to simulate at this point

mplies that differences uncovered in the experiments described
elow constitute a worst case scenario; however, we  believe that
hey constitute a relevant and realistic one. For example, it is

able 1
aximum time step size giving indistinguishable final population sizes as Gill (2-tailed S

ı 0.1 0.2 0.3 0.4 0.5 

RFd2S 2−3 2−4 2−5 2−6 – 

RR1S  2−6 – – – – 

RFd2M 2−6 2−6 2−6 – 2−6

RR1M  – – – – – 

 indicates that final population sizes differed for all of the time steps considered; N/A in
hat this algorithm did not correctly predict extinction for these values.
 RFd2S (shading highlights difference in final population size) and (b) percentage
mber of extinct runs out of 100 under RFd2S (lower value).

not  unreasonable to assume that death-to-birth ratios of invasive
species will be similar to those of native species. Furthermore, many
of the studies in the theoretical literature that use CAs to validate
analytic simplifications (e.g. Lion and van Baalen, 2007) are con-
cerned with the evolution of altruism, where fine adjustments of
birth and death rates for otherwise similar species are of particular
interest.
We simulate interspecific competition for a range of birth-to-
death ratios, holding constant the relationship between species
such that ı1 = ı2 and with starting populations of 1000 for each

tudent t-test, unequal variances at the 5% level).

0.6 0.7 0.8 0.9 1.0

– – N/A N/A N/A
– – N/A N/A N/A
2−5 2−3 N/A N/A N/A
– – * * *

dicates populations that went extinct for both simulation approaches; * indicates
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pecies. We  use the same range of birth and death rates as in Exper-
ment 1 for species one and allocate exactly half these rates to
pecies two, referring to species one as having higher population
urnover. We  investigate the range of parameter values for which
he CA models predict the same interspecific competition outcomes
s Gill. In line with the stochastic nature of our simulations in which
ll populations would ultimately go extinct, we consider that qual-
tative predictions are the same when in both algorithms the same
pecies dominates over 50% of runs at time 1000 in the sense of
aving larger population size.

Fig. 5 shows final population sizes for Gill. Both species went
xtinct in all runs for values of ı of 0.8 and above. For values
f 0.5 and below, the population with the higher population
urnover (species one) demonstrated larger final population sizes,
lthough the difference failed to reach statistical significance for
 = 0.5. In contrast, for ı = 0.6, the species with slower population
urnover showed higher average population sizes. For ı = 0.7,
pecies one went extinct in most runs, and species two  also tended

0

2000

4000

6000

0.1 0.2 0.3 0.4 0.5 0.6 

F
in

al
 p

op
ul

at
io

n 
si

ze

Fig. 5. Box plot showing final population sizes for the two sp
s extinct out of 100 (lower value). Negatives represent underestimates compared

towards  extinction, but more slowly. Overall, higher population
turnover is the more effective strategy for low values of ı while
lower population turnover is the preferred strategy near to the
persistence threshold. Time series plots showed that for persistent
runs (ı < 0.7), the mean population sizes were stable, although
variability between runs was  large.

We now examine the conditions under which the CA schemes
give the same qualitative predictions as Gill. Fig. 6 shows the results
of interspecific competitions for RFd2S and RFd2M (findings for RR1S
were very similar to RFd2S and are not shown). Overall, RFd2M per-
formed better than RFd2S, making the same qualitative predictions
as Gill for a larger range of parameter values (for all values of ı for
step sizes 2−2 and smaller). In contrast, RFd2S predicted an advan-
tage for the population with slower turnover for larger step sizes
and all values of ı, and for lower values of ı this advantage was

strong. Under RFd2S, step size needed to be reduced to 2−4 before
qualitative predictions concurred with Gill for any value of ı, and
for ı = 0.4 and ı = 0.5 none of the time steps tested were sufficiently

0.7 0.8 0.9 1

Species

1

2

ecies under different death-to-birth ratios ı under Gill.
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000.  Shading indicates parameter sets giving the same qualitative predictions as G

mall for the two models to make the same predictions. Fig. 7 high-
ights the differences in competitive outcomes between the update
chemes and shows the time series plots for Gill, RFd2S and RFd2M
or ı = 0.1 and for the CA models, a time step of size 1. The time series
iffers very considerably between Gill (top) and RFd2S (middle), but
uch less between Gill and RFd2M (bottom).
We conducted robustness testing with different initial pop-

lation sizes, starting one species with a population size of 10
r 100 and the other with size 1000. Under Gill, the simulations
howed that for large differences in initial population size, popu-
ation turnover no longer dominated competitive outcomes, and

opulations with larger population sizes had the advantage. This
ffect seemed to be due to the species with larger initial size dom-
nating the grid in early stages. In the standard Gill simulation with
qual starting population sizes, higher population turnover led to
 value in each cell gives percentage of runs in which species one dominated at time

a larger number of births at the perimeter of populated areas giv-
ing the species more rapid access to unoccupied territories where
the birth rate was reduced less by competition. This effect was
compounded by the resulting faster increase in population size
leading to a higher species-level birth rate for the larger population.
With the same starting populations, both the discrete time mod-
els tended to under-predict the final size of the population with
faster turnover (species one) compared with Gill; these discrete
time models thus performed better when species two  had larger
initial size since this initial imbalance in population sizes also led
to dominance by species two  under Gill.
We also conducted robustness tests to check values that devi-
ated slightly from ı1 = ı2 by reducing death-to-birth ratios of
species one by rı of 5%, 10%, 15% and 20% thus giving species one
less of an advantage under Gill. Although the simulation paradigms
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Fig. 7. Time series plots (mean and

iffered less as we moved away from ı1 = ı2, differences were still
pparent for RFd2S for all rı for some time steps and values of ı.
or RFd2M, differences were seen for the 5% deviation from equal-
ty only. These tests showed that predictions remained sensitive to
he update scheme used for death-to-birth ratios deviating from
1 = ı2.

. Discussion and conclusions

Our  findings illustrate the importance of the decision to model
ime continuously or discretely, as well as the role of update scheme
nd step size when using CAs to approximate continuous time mod-
ls or processes. Experiment 1 showed that in comparison with Gill,
Fd2S and RR1S underestimated final population sizes for a sin-
le species, while RFd2M and RR1M gave overestimates. Although

imulating multiple births in RFd2M led to an improvement over
he single births version, the same was not true of RR1M which

ade large overestimates of population sizes. Algorithm bias var-
ed as a function of death-to-birth ratio, and differences were most
) for Gill, RFd2S and RFd2M, ı = 0.1.

apparent at values close to the persistence threshold. Experiment
2 demonstrated differences in interspecific competition as a func-
tion of update scheme, step size and death-to-birth ratio. In order to
provide the same qualitative prediction as Gill about species domi-
nance at time 1000, both RFd2S and RR1S required small step sizes,
although none of the values tested were sufficiently small for ı = 0.4
or ı = 0.5. In contrast, RFd2M predicted interspecies competition
outcomes fairly accurately, with a step size of 2−2 being sufficiently
small for all ı values.

Our  findings also demonstrate the importance of timescale: it is
obvious from Fig. 7 that selecting an earlier or later time at which to
sample final population sizes would lead to different comparisons
between the algorithms from those shown in Fig. 6. The dynam-
ics differ considerably between the algorithms and while more
extended runs show that Gill has reached a quasi-stationary equi-

librium, RFd2S has reached a steady state with extinction of species
one in all runs, and RFd2M has not yet converged. In Gill, species
two is more sensitive to extinction due to the smaller population
sizes, and in 100 longer runs (not shown), species two first went
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Table 2
Symbols used in algorithms.

Symbol Description Algorithms

i Species identifier All
t,  tmax Time, maximum time All
A,  B Habitat occupancy; index gives

site and entry contains species
identifier i

All

br
i
, dr

i
Per capita birth and death rate
for species i

Gill

Br
i
, Dr

i
Total population birth and
death rate summed over
individuals  of species i

Gill

Ni , N Number of individuals of
species i, total number of
organisms

Gill

�  Time until the next event
under  Gill

Gill

�  Total event rate Gill
8 R.  Mancy et al. / Ecologic

xtinct around time 33,000 while no populations of species one,
he species with higher population turnover, had gone extinct by
ime 50,000.

Although the importance in ecological modelling of selecting an
ppropriate CA update scheme has been highlighted previously for
ingle species models (Ruxton and Saravia, 1998), the particular
uestion of differences between continuous and discrete time sim-
lations, and the role of update schemes in the approximation of
ontinuous time processes have not been explored. This is despite
he pervasive use of CA models in the literature. Our simulations
emonstrate that the decision to model in continuous or discrete
ime matters, and that choice of CA update scheme affects both final
opulation sizes and the outcomes of interspecific competition.
s an approximation of the continuous time approach, the RR1M
cheme failed to provide accurate predictions for any of the step
izes examined and this scheme should be avoided. More inter-
stingly, step size had important effects on final population sizes
nd competitive outcomes, and to achieve accurate predictions
cross the range of values of ı, very small step sizes were required.
oubling step size also doubles execution time, so selecting a step

ize that is sufficiently small to guarantee accurate approximation
o Gill requires considerable computational power. We  tested our
ode on two machines,7 and although we did not specifically aim to
ptimise our code, runtime for Gill was shorter than all CA update
chemes for time steps of 0.5 and smaller, and on the second of the
wo machines, was shorter than RFd2M for all step sizes. We  suggest
hat whenever continuous time is assumed the Gillespie simulator
pproach should be selected. As noted in the introduction, this
pproach has the advantage of reducing the number of modelling
ecisions, enhancing comparability between studies and allowing
esearchers to direct their focus towards biological processes
ather than technical implementation. Where CAs are nonetheless
mployed, we recommend that researchers be explicit about both
heir choice of update scheme and step size, and that they conduct
obustness tests to check sensitivity to these parameters.

The differences between discrete and continuous time and the
ffect of update schemes have not been explored for stochastic
imulations of interspecies competition. Our simulations demon-
trated that RFd2S and RR1S required very small step sizes in order
o accurately predict competitive outcomes, and for large step sizes
oth made large qualitative errors about species dominance for
wo species with the same death-to-birth ratio. In contrast, RFd2M

ade relatively accurate predictions regarding species dominance
ith realistic step sizes. This result is perhaps surprising given the

maller step sizes required in the single species experiment and in
ight of Caron-Lormier et al.’s (2008) findings that in a continuous
pace paradigm, differences in predictions became worse for more
omplex systems. However, the disparity between our findings
nd those of Caron-Lormier et al. (2008) can probably be explained
y the limitations that the space available put on the degrees of
reedom in our system.

The  finding that the results of interspecific competitions can be
o sensitive to modelling assumptions is of concern. Although dif-
erent modelling paradigms often lead to quantitatively different
redictions, we also find that modelling decisions affect qualita-
ive conclusions about the direction of competitive advantage in
nterspecific competition. When modelling interspecific compe-

ition, it is therefore important to choose update schemes and

odel parameters with care. We  recommend that the decision to
imulate interspecific competition in discrete or continuous time

7 Tests were conducted by running simulations in serial with other CPU load mini-
ised to essential processes on (1) an iMac7,1 Intel Core 2 Duo @ 2.8 GHz with cache

ize 4 MB running java version 1.6.0 35 and (2) an Intel(R) Xeon(R) CPU E5606 @
.13GHz with cache size 8192 KB running java version 1.6.0 24.
delling 259 (2013) 50– 61

should be informed by, and ideally correspond to, the biological
processes under consideration. Nonetheless, RFd2M appears to rep-
resent a possible approximation for the continuous time lattice
logistic model of population growth. The recommendations that
researchers should explicitly state the update scheme and step size
apply as for single species simulations.

Throughout this paper, we  have assumed that CAs are used as an
approximation to continuous time models or processes, using Gill
as a benchmark. However, if we consider both discrete and continu-
ous time models as accurate representations of different real world
systems, their predictions can also be interpreted from an ecolog-
ical perspective. Our findings raise questions about the value to
populations of different reproductive strategies. For example, com-
paring the proportion of runs that went extinct under Gill and the
two update schemes RFd2S and RFd2M we  find that populations of
organisms with synchronised reproductive cycles are more sensi-
tive to extinction events than those with continuous reproduction,
and for long cycles (large time steps) this is true even when multi-
ple births are possible. In the context of interspecific competition,
our simulations showed advantages of slower population turnover
in populations of organisms with highly synchronised reproduc-
tive cycles whereas faster turnover had the competitive advantage
for continuously reproducing species, except near the persistence
threshold.

In conclusion, we  recommend that researchers exercise caution
if using CAs to simulate continuous time processes by checking that
their conclusions are not sensitive to the time step chosen, that
they justify and explicate their modelling decisions in full with ref-
erence to the biological system considered, and ideally that they
use continuous time models to simulate continuous processes.
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S Set of species Gill
ˇ,  ∂ Probability that the next event

is a birth, death (summed over
all species)

Gill

bp
i
, dp

i
Per capita probability of birth
and death within a given
timestep

RFd2S, RFd2M, RR1S

�t Size of a timestep (fixed value) RFd2S, RFd2M, RR1S
E List of (site, eventType) pairs RR1S
C List of (species, site) pairs for

occupied sites
RFd2S, RFd2M
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The overloaded procedures doDeath and doBirth work as follows.
Procedure call doDeath(B, site) (line 9) eliminates the organism at
the given site in B. In procedure call doBirth(i, A, B, site) (line 11), if
the given site is not occupied by species i in A then nothing happens;
otherwise a neighbouring site � is selected with uniform probabil-
ity and if � is unoccupied in A a birth of species i takes place into
site � in B. On completing a generation B is copied into A (line 13).

8 Note that if the site into which a birth is due to take place is already occupied, the
birth event does not take place. The same is true of all the algorithms presented here.
Although this approach gives rise to ‘wasted’ calculations, the alternative would be
to represent population structure explicitly and adjust rates according to occupancy;
however,  this would require updating birth rates at all neighbouring sites every time
an event took place and recalculating total birth rate, adding to computational load.
R. Mancy et al. / Ecologic

ppendix A. Algorithms

The  algorithms Gill, RFd2S, RFd2M and RR1S are explained below
sing the notation in Table 2. The algorithms are described for
ultiple species, where the species is denoted by an identifier

n the form of the subscript i. All algorithms take the following
rguments (additional arguments are described in the text of each
lgorithm): the maximum time tmax and habitat occupancy A, a
ata structure in which the index represents site and the entry is
ither empty or holds the value of i for the species living at the
ite. Superscripts r and p represent rates and probabilities respec-
ively.

lgorithm A.1. Gill algorithm for multiple species.

1 Gi ll(tmax , A, S, br, dr, N)
2 begin
3 t ← 0.0
4 while t ≤ tmax do
5 λ ← 0.0, lwb ← 0.0, p ← rand()
6 for i ∈ S do
7 Br

i ← br
i Ni

8 Dr
i ← dr

i Ni

9 λ ← λ + Br
i + Dr

i

10 for i ∈ S do
11 ∂ ← Dr

i /λ
12 β ← Br

i /λ
13 if p ≤ ∂ + lwb then do Death (i, A, N), break
14 lwb ← lwb + ∂
15 if p ≤ β + lwb then do Birth (i, A, N), break
16 lwb ← lwb + β

17 τ ← − ln (rand())/λ
18 t ← t + τ

.1. Gill

The Gill algorithm (space constrained Gillespie with multiple
pecies) is presented in Algorithm A.1. In addition to tmax and A, it
akes as arguments a set S of species, two vectors containing the per
apita birth and death rate for each species br and dr, and a vector N
ontaining the total number of organisms of each species currently
nhabiting the grid.

The  algorithm iterates until the maximum time is reached (outer
hile loop) and has three main sections: lines 6–9 compute the rel-
vant population level rates, lines 10–16 compute the next event
nd lines 17–18 compute the elapsed time. In lines 6–9 the popu-
ation level birth and death rates (Br and Dr) are computed for each
pecies by multiplying per capita rates by the number of organisms,
nd the total event rate � is computed as the sum of all event rates.
n lines 10–16, species are considered in turn and the probability

 ∈ [0, 1) that the next event is a death of the current species is com-
uted by normalising the species rate; the probability  ̌ ∈ [0, 1) that
he next event is a birth of the current species is calculated anal-
gously. The algorithm then compares ∂ and  ̌ to the uniformly
andom number p ∈ [0, 1) (generated in line 5), executing a sin-
le event if this value plus the current lower bound lwb is greater
han or equal to p (a death at line 13 or a birth at line 15). When

n event takes place the for loop is exited via the call to break.
he time to the next event � is then computed by drawing from an
xponential distribution with mean � (line 17) and time t increased
y this amount (line 18).
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The call to doDeath(i, A, N) (line 13) randomly selects a site in A
occupied by an organism of species i, sets this site to be empty and
decrements the population count Ni. Similarly, the call to doBirth(i,
A, N) (line 15) randomly selects a site in A occupied by an organ-
ism of species i and chooses with uniform probability between
neighbouring sites; if the chosen site is unoccupied a birth takes
place into this site and the population count Ni is incremented.8

Algorithm A.2. RFd2S algorithm for multiple species.

1 RFd2S(tmax, A, Δt, b
p, dp)

2 begin
3 t ← 0.0
4 while t ≤ tmax do
5 B ← A
6 C ← get Sites (A)
7 shuffle( C)
8 for (i, site ) ∈ C do
9 if dp

i ≥ rand() then doDeath(B, site)

10 for (i, site ) ∈ C do
11 if bp

i ≥ rand() then do Birth (i, A, B, site )

12 t ← t + Δt

13 A ← B

A.2. RFd2S algorithm

Algorithm A.2 shows RFd2S. As with Gill, this algorithm takes
arguments tmax and A, as well as the time step �t and two vectors
containing the per capita birth and death probability per time step
for each species bp and dp. These vectors are calculated from br

and dr using the standard conversion from rates to probabilities:
bp

i
= 1 − e−�t br

i (and analogously for dp).
Time progresses in regular steps �t (each constituting a gener-

ation) until tmax (lines 4 and 12). At each generation, A is copied
into B (line 5), then the set of occupied sites C is computed as a
list of (species, site) pairs and the order of sites is randomised using
a Knuth shuffle9 (lines 6–7). Lines 8–9 execute death events: for
each site in C,  a random number is drawn and if this is less than or
equal to the probability of death of the species at that site, a death
is executed on B. Lines 10–11 execute birth events in a similar way.
In our implementation, because every organism of a species has the same basic
birth rate, we can use sets rather than ordered lists to store organisms, reducing the
computational load.

9 Shuffling the site ordering for death events is actually unnecessary since death
events take place independently of one another.
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lgorithm A.3. RR1S algorithm for multiple species.

1 RR1S(tmax , A, Δt, bp, dp)
2 begin
3 t ← 0.0
4 while t ≤ tmax do
5 E ← getEvents(A)
6 shuffle( E)
7 for (site, eventT ype ) ∈ E do
8 if is Occupied(site, A) then
9 i ← get Species (site, A)

10 if eventT ype = death ∧ dp
i ≥ rand() then

doDeath(A, site)
11 if eventT ype = bi rth ∧ bp

i ≥ rand() then
doBirth (i, A, A, site)

12 t ← t + Δt

.3. RR1S algorithm

RR1S is presented in Algorithm A.3, and takes the same argu-
ents as RFd2S. At each �t increment (generation) the set of (site,

ventType) pairs is calculated where eventType is either a birth or
 death (line 5). The order of these pairs is randomised (line 6). In
ines 7-11, (site, eventType) pairs are considered in turn. It is possi-
le that a pair (site, birth) follows a pair (site, death) and the focal
ite is then unoccupied; this is tested for in line 8. For an occupied
ite (lines 9 to 11), if the event is a death then doDeath is called
ith argument A and affects this data structure directly. If it is a

irth event doBirth is called with A twice, so that births take place
n A directly.

.4.  Multiple births RFd2M and RR1M

lgorithm A.4. RFd2M algorithm for multiple species.

1 RFd2M(tmax, A, Δt, b
r, dp)

2 begin
3 t ← 0.0
4 while t ≤ tmax do
5 B ← A
6 C ← get Sites (A)
7 shuffle( C)
8 for (i, site ) ∈ C do
9 if dp

i ≥ rand() then doDeath(B, site)

10 for (i, site) ∈ C do
11 m ← Poiss Rand(Δtb

r
i )

12 for j ∈ [1.. m] do do Birth (i, A, B, site )

13 t ← t + Δt

14 A ← B

The multiple births algorithms RFd2M and RR1M differ only
lightly from the single births version, and therefore only RFd2M
s shown in Algorithm A.4. Firstly, instead of calculating the prob-
bility of birth within a timestep, a number of births m is drawn
rom a Poisson distribution with mean �tbr

i
(line 11) and corre-
pondingly the algorithms take br
i

as an argument (in place of bp
i
,

ine 1). Secondly, doBirth(i, A, B, site) is called m times (where m rep-
esents the number of births to attempt and may  be zero) at line
2.
delling 259 (2013) 50– 61

Note that Algorithm A.4 differs from Algorithm A.2 only in the
way births are performed, i.e. line 11 in Algorithm A.2 performs
zero or one birth and lines 11 and 12 in Algorithm A.4 perform zero
or many births.
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