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A bis(trifluoromethyl)-substituted phosphinine undergoes reversible
oxidative addition of primary and secondary alcohols at the low-
coordinate phosphorus(in) atom. This unprecedented reactivity con-
trasts the general inertness of uncoordinated phosphinines toward
protic substrates and provides a rare example of reversible alcohol
activation mediated by a main-group element compound. DFT
calculations suggest that a hydrogen-bonded methanol network
enables the transformation, offering a new concept for dynamic
E—H bond activation by electrophilic, aromatic phosphorus hetero-
cycles.

Phosphinines have emerged as versatile phosphorus hetero-
cycles, offering broad opportunities in coordination chemistry,
catalysis, small-molecule activation, and photoluminescent
materials." The targeted functionalization of the aromatic core
enables the fine-tuning of steric and electronic environments,
leading to distinctive coordination motifs, tailored optical
properties, and notable reactivity toward selected substrates.’
In numerous cases, transition-metal complexes bearing phos-
phinine ligands exhibit a pronounced reactivity at the inher-
ently reactive P—=C double bond, a consequence of significant
disruption of aromaticity upon coordination of the heterocycle
to the metal fragment.>” In contrast, uncoordinated phosphi-
nines are generally inert, particularly toward protic reagents.
In 2003, Le Floch and co-workers demonstrated, however,
that donor-functionalized SPS-type 2*-phosphinines (A, Fig. 1a)
undergo reaction with alcohols and secondary amines via
formal oxidative addition of the E-H bond (B, E = O, N) to the P(m)
atom.” In the presence of water, this process leads, after tautomer-
ization, to the formation of the corresponding 1,2-dihydrophos-
phinine oxides. More recently, we have shown that tetrapyridyl-
substituted phosphinines (C, Fig. 1b) can engage in a selective and,
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Fig. 1 Reaction of donor-functionalized phosphinines with alcohols,
amines and water (a) and (b), triple dehydrofluorination of electrophilic
phosphinine 1 with primary amines (c) and brief summary of this work.

importantly, fully reversible conversion with water to 1,2-di-
hydrophosphinine oxides (D). Mechanistic investigations suggest
that, in both cases, the E-H addition proceeds through P/S or P/N
cooperativity, facilitated by the additional donor functionality. Re-
aromatization of the phosphorus heterocycle and subsequent
water elimination drive the backward reaction. In fact, the activa-
tion of water is of current interest, as it represents a crucial step in
the splitting of water by transition metal complexes. Besides the
two examples mentioned above, only a few main-group-element-
based compounds such as carbenes, silylenes as well as P(m)
compounds are known to cleave heterolytically the strong O-H
bond in water and alcohols, in few cases even reversibly.®™°
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However, it should be emphasized that these compounds differ in
their electronic structure substantially from phosphinines and
generally display a higher intrinsic reactivity.

In a conceptually distinct approach, we recently developed
the CF;-substituted phosphinine 1 (Fig. 1c)."" DFT calculations
revealed that the LUMO of 1 is stabilized by approximately
0.8 eV relative to the unsubstituted parent phosphinine (CsHsP),
rendering the phosphorus atom significantly more electrophilic
(Fig. 2). We anticipated that such electron-deficient and donor-free
phosphinines would be capable of reacting also with less nucleo-
philic substrates at the phosphorus atom, extending beyond the
well-documented reactivity with strong nucleophiles such as orga-
nolithium compounds.’"* Indeed, phosphinine 1 undergoes a
cascade of dehydrofluorination reactions in the presence of pri-
mary amines, affording novel amidine-functionalized phosphi-
nines (E, Fig. 1).

DFT studies indicated that this transformation is driven by
sequential nucleophilic additions of the amine to the electro-
philic phosphorus atom, enabling concerted HF elimination
reactions. Encouraged by this unprecedented reactivity in
phosphinine chemistry, we have now turned our attention to
exploring the reactions of 1 with other protic reagents, such as
water and alcohols.

The bis(trifluoromethyl)-substituted phosphinine 1 shows a
resonance in the *'P NMR spectrum at § (ppm) = 250.6 (g, Jpr =
52.5 Hz). Much to our surprise, 1 is fully inert towards a reaction
with H,O, even if a solution of 1 in THF is heated for 16 h at
T =140 °C in the presence of H,O (Scheme 1).
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Fig. 2 Frontier Kohn—Sham orbital energies (eV) of the parent phosphi-
nine CsHsP, 1 and 5, the protodesilylated version of 1. P-Lone pair in red.
Calculated at the B3LYP-D3(BJ)/def2-TZVP level of theory.
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Scheme 1 Reversible reaction of 1 with methanol to 2 and subsequent
reaction to 3. TBAT: tetrabutylammonium difluorotriphenylsilicate.
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Fig. 3 3P NMR spectrum of the reaction of 1 with methanol, recorded
after 10 minutes and including an enlargement of the respective signals.
For trace amount of phosphinine-isomer 1a: see ref. 14 and Fig. S9.

1 5 1a

T /

==

240 220 200 180 160 120 100 80 60 40 20

140
5 (ppm)

Fig. 4 3P NMR spectroscopic monitoring of the reaction of 1 in CgDg
with 20 equiv. of MeOH over a period of 95 h. The maximal conversion was
reached after 45 h. The first 20 measurements were recorded at intervals
of 30 minutes, the next 7 at intervals of one hour, 9 at intervals of two
hours, and a further 12 at intervals of five hours. Phosphinine-isomer 1a
does not show any reactivity.

In contrast, the slightly more nucleophilic methanol (20 equiv.)
slowly reacts with 1, dissolved in C¢Ds, owing to the distinct
chemical shifts in the corresponding *'P NMR spectrum. After
1.5 h of reaction time, a new multiplet at 6 (ppm) = 24.9 occurs,
from which a large coupling constant of 'J,_; = 609 Hz is observed.
Further smaller coupling of the multiplet can be attributed to
additional P-F and P-H coupling (Fig. 3). The reaction of 1 with
MeOH (20 equiv.) was further monitored by means of *'P NMR
spectroscopy (Fig. 4). After 2 days, the maximum conversion of
60% to 2 is reached. Longer reaction times only lead to the
formation of side products at § (ppm) = 220.3, 127.6 and 85.1
(vide infra).

The fastest and highest conversion of 1 to 2 (90% after
90 min), along with a minimum formation of by-products, was
achieved when the reaction was performed in pure methanol at
room temperature. Using CD;0D instead of CH;0H, the signal
at § (ppm) = 23.3 splits into a triplet of quartets with */p_p =
93.0 Hz and *Jp_p = 14.2 Hz in the *'P NMR spectrum, respectively
into a triplet with “Jp 1, = 92.9 Hz in the *'P{"’F} NMR spectrum.
These results are in line with the formation of the A°-phos-
phinine 2, respectively the deuterated version 2-D (Scheme 1).

Much to our delight, single crystals of the reaction product
(2), suitable for X-ray diffraction, were obtained from this
concentrated solution in methanol at T = 4 °C and the mole-
cular structure of the R-enantiomer of 2 in the crystal is shown
in Fig. 5. The crystallographic characterization of 2 confirms
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Fig. 5 Molecular structure of the R-enantiomer of 2 in the crystal.
Displacement ellipsoids are shown at the 50% probability level. Selected
bond lengths (A) and angles (°): P(1)-C(1): 1.732(2); P(1)-C(5): 1.728(2);
P(1)-O(1): 1.603(2); O(1)-C(17): 1.448(2); C(1)-C(2): 1.388(3); C(2)-C(3):
1.413(3); C(3)-C(4): 1.376(3); C(4)-C(5): 1.413(3); C(1)-Si(1): 1.900(2). C(1)-
P(1)-C(5): 108.24(9).

the formation of the P-chiral /’>-phosphinine by formal oxida-
tive addition of the strong O-H bond in methanol to the P(u)
atom and verifies the observed *'P NMR spectroscopic data.
Due to the presence of the CH;-group at the oxygen atom, no
tautomerization to a secondary phosphine oxide can occur, as
observed earlier for the reaction of A and C with H,O (vide
supra). It should be mentioned here, that we could achieve for
the first time a direct activation of a strong O-H bond to the
P(m) atom in a phosphinine that cannot participate in coopera-
tive effects by additional donor-functionalities. We further
observed that both the conversion and the selectivity of the
O-H bond activation strongly depend on the concentration of
the phosphinine and methanol.

As mentioned above, fast and high conversion to 2 along
with little formation of by-products is generally observed when
high concentrations of phosphinine and methanol are present.
In contrast, a much slower conversion and larger amounts of by-
products are observed with low concentrations of phosphinine and
methanol.

However, in all cases we could not achieve a quantitative
formation of the A°-posphinine 2, even in pure methanol. This
observation indicates that the O-H activation reaction might be
reversible and that an equilibrium between 1 and 2 is present at
room temperature. Thus, all volatiles were removed from a
concentrated solution of 2 in methanol and the residue was
subsequently dissolved in C¢Ds. This process was repeated two
times. Remarkably, phosphinine 1 could be recovered almost
quantitatively, along with the by-product, that occurs at ¢ (ppm) =
220.3 in the *'P NMR spectrum. This dynamic reactivity of
phosphinine 1 towards methanol strongly resembles our earlier
observations, where the tetrapyridyl-functionalized phosphinine C
reacts reversibly with H,0.®> Remarkably, the insertion of the P(m)-
atom into the O-H bond of methanol is not restricted to this
substrate. We could verify that also ethanol as well as secondary
alcohols, such as isopropanol, react with phosphinine 1 reversibly
and with a maximum conversion of 80% to the activation
products 3 and 4, respectively (Scheme 1, 3: R = C,Hs, *'P{"’F} NMR:
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S (ppm) = 22.4, dt, “Jp_yy = 606.8 Hz, *Jp_c, = 10.1 Hz; 4: R = 'Pr,
SIp{"F} NMR: 6 (ppm) = 18.6, dt, YJp_yy = 607.2 Hz, *Jp_cy =
12.0 Hz, see SI). The sterically more demanding tertiary alcohol
‘Bu-OH and the significantly less nucleophilic phenol do,
however, not react with phosphinine 1. Compound 3 (R =
C,Hs) was also characterized crystallographically (see SI).

Subsequently, we turned our attention to the formed side
products, observed in the reaction of 1 with CH;OH. A closer
inspection of the NMR spectroscopic data (Fig. 4) revealed that
the signal of the species at d (ppm) = 220.3 can be attributed to the
protodesilylated phosphinine 5, as this compound shows a char-
acteristic quartet of two doublets in the proton-coupled *'P NMR
spectrum with *Jp_y; = 42.8 Hz (ortho-H, Fig. $45). Additionally, we
observed that 5 is formed when the maximum conversion to 2 is
reached, while the other two minor species are formed simulta-
neously. This suggests that methanol is not directly responsible for
the desilylation of phosphinine 1, but that product 2 undergoes
slow elimination of Me;Si-OCH; instead. In fact, the generated
siloxane could clearly be identified by means of multinuclear NMR
spectroscopy. Moreover, it has been shown for arenes, that MeO-
groups in ortho-position to a Si(CHj);-substituent have a strong
influence on the rate of protodesilylation reactions.'”> An alterna-
tive, intermolecular process for the elimination of Me;Si-OCH;3
can, however, not be excluded. The two minor side products,
which show resonances at ¢ (ppm) = 127.6 and ¢ (ppm) = 85.1
could so far not be identified.

From the frontier molecular orbitals (Fig. 2) it is obvious, that
phosphinine 5 should be even more electrophilic than 1, as its
LUMO is further stabilized by 0.2 eV. Consequently, 5 should be
even more prone to nucleophilic attack at the P(ur) atom than 1. For
this purpose, we attempted the targeted synthesis of 5 via proto-
desilylation of 1. While 2-TMS-substituted phosphinines usually
undergo facile protodesilylation in the presence of HCI/Et,O, this
procedure surprisingly failed in this case."®"” Nevertheless, 5 could
finally be obtained by reaction of 1 with tetrabutylammonium
difluorotriphenylsilicate (TBAT)/HCI (Scheme 1, SI).

Phosphinine 5 indeed reacts rapidly with methanol (see
Scheme 1). In the *'P{*°F} NMR spectrum, a new species can
be detected at ¢ (ppm) = 19.7, that again shows a doublet with
Yp_u = 623 Hz and an additional *Jp_; coupling of 14.1 Hz.
These NMR spectroscopic data are similar to the ones observed for
the O-H-activation product 2. Monitoring the reaction by means of
31p{'°F} NMR spectroscopy (see SI) reveals, that this compound is
only a transient species. In fact, several by-products are formed
during the course of the reaction, that show resonances at é (ppm) =
78.0 and between ¢ (ppm) = 10-35.

In order to propose a reasonable reaction mechanism for the
conversion of 1 to 2 (labelled A and B in the computational
study, respectively), we investigated the O-H bond activation
reaction computationally. The DFT calculations were per-
formed with Gaussian 16 (Revision C.01) at the TPSS/def2-
TZVPP level. First, we considered a direct oxidative addition
of the O-H bond to the low-coordinate phosphorus atom via
TS(A-B). From a thermodynamic point of view, this process
is not feasible, as the transition state is very high in energy
(+ 9.9 keal mol ™), as depicted in Fig. 6.

Chem. Commun.



Communication

FaCo_Ph
X

FaC” R SiMes
208! v
/ H
MeO~ 744
TS(A-B)
FiC~_Ph s
< —
FsC” R7 SiMes Facf\/l[Ph
BT s K
MeQ ™ . FaCTa P o SiMes
- I p TS(C-D) o
o) 17 OMe +28.3 MeQ™ H
MeO—-H’ \\ —_—
R
Ly +14. \
I:",&O‘c\ 147 ,y
»* FiC Ph
A x 3 7z \I N
0.0 o — s
FiC_~_Ph F,\ﬁof’{m\”’SIMea e 1.8
LU ey N
FsC SiMes H OMe S |
1 I FaC” R SiMes
MeO~/,5 1054 150
MeO , H

Fig. 6 Free energy profile (calculated with DFT at the TPSS/def2-TZVPP
level of theory, energies in kcal mol™) of CHzOH addition at 1. The upper
path represents a direct oxidative addition of the O-H bond to the phos-
phorus atom via a three-coordinate transition state. The lower path proceeds
via a tri-methanol hydrogen bonded network and cascade proton transfer.

However, the involvement of two additional methanol mole-
cules decreases the energy of the corresponding transition state
(TS(C-D)) considerably to +28.3 kcal mol™'. In TS(C-D), an
interaction of the oxygen atom of one methanol molecule with
the phosphorus atom (LUMO) occurs. This results in a more
basic character of the phosphorus lone-pair, while a network of
hydrogen bonding facilitates a cascade proton-transfer to the
phosphorus atom under formation of B. The involvement of a
network of substrate molecules, aggregated by hydrogen bonding,
has been postulated for other E-H bond activation reactions,
particularly by carbenes.” Interestingly, the energy profile for the
conversion 1 — 2 further illustrates that product 2 is energetically
stabilized against the starting phosphinine 1 by only 1.8 keal mol ,
and intermediate D is stabilized against 1 by 4.2 kcal mol .

This is perfectly in line with our experimental observation,
that the reaction of 1 with methanol is reversible. Moreover, our
here proposed mechanism for the O-H bond activation contrasts
the commonly accepted mechanisms for E-H activation reactions
by strongly nucleophilic carbenes via proton abstraction.®”

In conclusion, we have demonstrated that a bis(trifluoro-
methyl)-substituted phosphinine undergoes a reversible oxida-
tive addition of primary and secondary alcohols to the
low-coordinate phosphorus atom. With methanol and ethanol
as a substrate, the resulting /°>-phosphinines were charac-
terized crystallographically. This transformation represents
the first direct O-H bond activation at a non-donor-functio-
nalized phosphinine and establishes a rare case of reversible
alcohol activation by a main-group compound. Mechanistic
investigations show that a hydrogen-bonded methanol network
significantly lowers the activation barrier, in sharp contrast to
established pathways for E-H bond activation by strongly
nucleophilic main-group compounds. These findings expand
the reactivity landscape of electrophilic phosphinines beyond
strong nucleophiles and suggest new opportunities for exploiting
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such electron-deficient heterocycles in dynamic small molecule
activation.
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