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Abstract
LISA, the Laser Interferometer Space Antenna, will usher in a new era in gravita-
tional-wave astronomy. As the first anticipated space-based gravitational-wave
detector, it will expand our view to the millihertz gravitational-wave sky, where a
spectacular variety of interesting new sources abound: from millions of ultra-compact
binaries in our Galaxy, to mergers of massive black holes at cosmological distances;
from the early inspirals of stellar-mass black holes that will ultimately venture into
the ground-based detectors’ view to the death spiral of compact objects into massive
black holes, and many sources in between. Central to realising LISA’s discovery
potential are waveform models, the theoretical and phenomenological predictions of
the pattern of gravitational waves that these sources emit. This White Paper is pre-
sented on behalf of the Waveform Working Group for the LISA Consortium. It
provides a review of the current state of waveform models for LISA sources, and
describes the significant challenges that must yet be overcome.
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1 Introduction

Waveforms, theoretical predictions for (GW) signals, play a vital role in GW
astronomy. Many GW signal are buried deep in instrumental noise. By using
waveforms as matched filters, such signals can be detected. Once a GW is found the
properties of its source can be inferred by further comparing the system to theoretical
waveforms. The Laser Interferometer Space Antenna (LISA), the recently adopted
ESA-led space mission in collaboration with NASA (Colpi et al. 2024; Amaro-
Seoane et al. 2017), will open a window on a new frequency band of GWs in the
mHz regime. In this band we will encounter a slew of new sources of GWs ranging
from local Galactic white-dwarf binaries to distant mergers of massive black holes
(MBHs), and many sources in between. Realizing the science potential of LISA
detection and measurement of GW signals will require new waveform models, which
will need to cover a much wider range of sources while being significantly more
accurate than the models used currently in ground based GW observations by LIGO,
Virgo, and KAGRA (Pürrer and Haster 2020; Ferguson et al. 2021).

A large class of GW sources expected for LISA feature the inspiral of a binary of
compact objects decaying under the emission of GWs, often leading to a merger at
the end. Producing theoretical waveforms for such events requires solving the
relativistic two body problem. This is a notoriously difficult problem with no known
closed form solution for radiating binaries. There are four main approaches to obtain
approximate solutions to the relativistic two-body problem from first principles. First,
numerical relativity (NR) takes the non-linear partial differential equations (PDEs) of
general relativity (GR), puts them on a grid, and evolves them on a supercomputer.
Second, one can make a weak field approximation and obtain a perturbative
analytical solution. This is known as the post-Minkowskian (PM) approximation, or
– when an additional simultaneous slow motion approximation is introduced – the
post-Newtonian (PN) approximation. Third, the gravitational self-force (GSF)
formalism expands the two-body dynamics in powers of the (small) ratio of the
masses of the two bodies. Finally, black hole perturbation theory (BHPT) uses
homogeneous perturbations of isolated black holes (BHs) and associated quasi-
normal mode (QNM) calculations to model the post-merger behaviour.

Each of these four approaches has its own natural domain of applicability. Due to
its computational cost NR is limited to a relatively low number of orbits before
merger and to systems with comparable masses. The PN and PM weak-field
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approximations limit their application to the early inspiral, while GSF theory is at its
best when dealing with binaries with relatively disparate mass-ratios. The post-
merger phase of binaries containing a BH can be modelled with BHPT. As illustrated
in Fig. 1, the natural domains of applicability of the four first-principle approaches to
the relativistic two-body problem are largely complementary, and building wave-
forms for LISA will require input from all four — sometimes for modelling a single
source. Effective waveform models like effective one-body (EOB) and the Phenom
family combine inputs from the different approaches to provide waveforms that can
straddle these domains.

The LISA Waveform Working Group (WavWG) serves as an interface between
the LISA Science Group — tasked with realizing LISA’s scientific mission — and
the wider scientific community developing waveform models and studying the
relativistic two-body problem. It serves to prioritize waveform development, inform
the wider community of LISA’s waveform modelling needs, and as a recruiting pool
for waveform related tasks and projects in the LISA Science Group.

In this White Paper, the WavWG discusses the current status of waveform
modelling and what further development is needed to realize LISA’s science. It is
organized in five main sections. In Sect. 2 we take a brief inventory of the sources
LISA is expected to observe along with their expected parameters. This sets the
primary goals for waveform model accuracy and parameter space coverage. Section 3
discusses what requirements LISA data analysis puts on waveform models in terms
of accuracy, efficiency, and format. The main approaches to modelling waveforms
from compact binaries are described in Sect. 4, discussing both their status to date,
and challenges to be overcome to meet LISA’s waveform requirements. Section 5
discusses methods for accelerating the production of waveform models. Finally,
Sect. 6 covers the modeling for beyond GR, beyond Standard Model, and cosmic
strings sources. We note that while stochastic signals are of considerable interest, this
paper does not address them as the focus here is on individual detectable sources. For
the reader’s convenience, we have provided a table of notation used throughout the
paper in Table 1 and a list of commonly used acronyms on the page proceeding this
introduction.

2 LISA sources

LISA will be sensitive to a wide range of GW sources in the mHz regime. In this
section, we take an inventory of anticipated sources that need to be modelled to
extract useful scientific results and are well-enough understood at this stage to be
modelled in some detail. A more extensive survey of LISA’s expected sources and
the science that can be done with them can be found in the White Paper produced by
the LISA Astrophysics Working Group (Amaro-Seoane et al. 2023). The short
summaries here mainly focus on the expected parameter ranges to provide a context
for the modelling approaches discussed in the rest of the White Paper. Conventional
long-lived astronomical sources include massive black hole binaries (MBHBs),
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extreme mass-ratio inspirals (EMRIs), intermediate mass-ratio inspirals (IMRIs),
Galactic binaries (GBs) and stellar-origin black hole binaries (SOBHBs). These
Sects. 2.1, 2.2, 2.3, 2.4, 2.5 present LISA sources in GR and the Standard Model.
Theoretically interesting but empirically speculative sources include cosmic strings
(CSs) and sources based on physics beyond GR and beyond the Standard Model are
discussed in Sects. 2.6 and 2.7. These sources, and resulting science, will also be
applicable to other mHz gravitational wave detectors (Luo et al. 2016; Hu and Wu
2017).

Fig. 1 A sketch of the natural domains of applicability of the four main approaches to solving the
relativistic two-body problem. The approaches are largely complementary and building waveforms for
LISA will require input from all four. The solid lines shown are illustrative of the reach of each approach.
The precise reach of each region depends on the source type and the accuracy requirements of the model.
In addition, the Effective-One-Body and Phenomenological models absorb information from the four main
approaches to produce more global models that can compute waveforms sourced by binaries across large
portions of the parameter space
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A key metric for the detectability of sources is their signal-to-noise ratio (SNR).
This is defined via the standard formula

SNR ¼
ffiffiffiffiffiffiffiffiffiffi
hhjhi

p
; ð1Þ

where h is the GW strain and h�j�i is the noise weighted inner product,

hh1jh2i ¼ 4<
Z ~h�1ðf Þ~h2ðf Þ

Snðf Þ df ; ð2Þ

with ~hiðf Þ denoting the Fourier transform of the strain, the star superscript (�)
denoting complex conjugation, and Snðf Þ the noise power spectral density of the
detector (Amaro-Seoane et al. 2017; Robson et al. 2019).

Unless otherwise stated this is computed for an observation period of up to 4
years.

2.1 Massive black hole binaries (MBHBs)

Coordinator: Enrico Barausse
Contributors: M. Bonetti, J. Garcia-Bellido

2.1.1 Description

In the local Universe, MBHs are observed in the centers of virtually all massive
galaxies (Gehren et al. 1984; Kormendy and Richstone 1995; Heckman and Best
2014), as well as in many low mass dwarf galaxies (Reines et al. 2011, 2013;
Baldassare et al. 2020). Their cosmic evolution is inextricably intertwined with that
of their host galaxies. The latter provide MBHs with gas out of which they grow by
accretion (thereby shining as quasars or active galactic nuclei (AGN)), and MBHs

Table 1 Frequently used
symbols throughout this White
Paper; G and c are set to 1
throughout

G Gravitational constant

c Speed of light

m1 Mass of the primary m1 [m2

m2 Mass of secondary m2\m1

M Total mass m1 þ m2

l Reduced mass m1m2=M

q Large mass ratio m1=m2

� Small mass ratio m2=m1

m Symmetric mass ratio m1m2=M2

Si Spin angular momentum of body i

ai Kerr spin parameter of body i Si=ðmicÞ
vi Dimensionless spin of body i aic2=ðGmiÞ � Sic=ðGm2

i Þ
e Orbital eccentricity

X Orbital frequency

lS String tension
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influence the evolution of their hosts by injecting energy into their surroundings
(AGN feedback) (Croton et al. 2006; Dickey et al. 2019; Sharma et al. 2020). This
co-evolution of MBHs and galaxies is reflected in the scaling relations between MBH
mass and galactic properties (Ferrarese and Merritt 2000; Gebhardt et al. 2000;
Barger 2004; Kormendy and Ho 2013; McConnell and Ma 2013; Schramm and
Silverman 2013), although the detailed physical processes leading to their emergence
are still not fully understood.

Present day galaxies/dark matter haloes are believed to have formed hierarchically
from the merger of smaller systems. Likewise, “seed” MBHs are expected to inhabit
at least a fraction of the high redshift progenitors of today’s galaxies (see Latif and
Ferrara 2016 for a review). These seed BHs are expected to grow by a combination
of gas accretion and mergers (Volonteri et al. 2008; Volonteri 2012; Lupi et al. 2014;
Mayer et al. 2015; Valiante et al. 2016; Regan et al. 2017; Wise et al. 2019). Their
coalescences, as well as those of the later generations of MBHs that they give rise to,
are indeed a prime target for LISA (Sesana et al. 2004, 2005; Klein et al. 2016;
Barausse et al. 2020a, 2023).

By detecting MBH mergers, LISA could confirm or disprove this hierarchical
scenario for the evolution of MBHs. Indeed, considerable uncertainties exist about
the timescale on which MBHs form a bound binary and eventually coalesce, after
two galaxies have merged. The main uncertainty is whether MBH pairs can
efficiently make their way from separations of hundreds of pc down to the sub-pc
scales on which gravitational waves dominate the dynamics (Begelman et al. 1980;
Yu 2002; Milosavljevic and Merritt 2003; Merritt and Milosavljevic 2005; Sesana
et al. 2007; Lodato et al. 2009; Khan et al. 2011; Preto et al. 2011; Colpi 2014;
Vasiliev et al. 2015; Sesana and Khan 2015; Dosopoulou and Antonini 2017;
Tremmel et al. 2018; Bortolas et al. 2020; Barausse et al. 2020a). First dynamical
friction and then stellar and/or gaseous hardening are the main drivers of the
evolution of MBHs on their path to coalescence. Triple or quadruple MBH
interactions, which naturally arise in models where the evolution of MBH pairs/
binaries is slow or even stalls (Bonetti et al. 2019; Ryu et al. 2018; Mannerkoski et al.
2021), should in any case ensure LISA detection rates of at least a few per
year (Bonetti et al. 2019; Barausse et al. 2020a).

Conversely, the observed detection rate will inform us about the efficiency with
which MBH binaries come together and merge in nature (Barausse et al. 2020a),
even though that information may be partly degenerate with the number of MBH
seeds formed at high redshift. In that respect, it is worth pointing out the possibility
that there may be massive primordial black holes (PBH) formed during the radiation
era that may act as seeds for the MBH population (Clesse and García-Bellido 2015;
García-Bellido 2019), resulting in high redshift MBHB mergers. PBHs of mass
� 106M� are believed to form at the electron-positron annihilation epoch (� 1
second after the Big Bang) (Carr et al. 2024). They could start accreting gas very
soon after recombination (� 400; 000 years after the Big Bang) and grow to become
supermassive (109M�) around z� 10 (470 Myr after the Big Bang). Close binaries of
million-solar-mass PBHs could form very early and merge in a few million years. If
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LISA detects MBHBs at z ¼ 25 (130 Myr after the Big Bang) we should be confident
they are PBH at [ 99:97% confidence interval.

2.1.2 Expected source parameters

Further information on the underlying astrophysics can be gained by measuring the
parameters of MBH binaries. Measurements of the component masses will allow for
constraining the initial mass function of the seed black holes at high redshift (Sesana
et al. 2004, 2005, 2011; Klein et al. 2016; Barausse et al. 2020a). Indeed, the latter
may form as relatively low-mass black holes (� 100� 1000M�), e.g. from the
collapse of the first generation of stars (Madau and Rees 2001), or they may be born
already as higher mass seeds of � 104 � 105M� (e.g. from the collapse of massive
quasi-stars (Begelman 2010), runaway instabilities in stellar clusters (Portegies Zwart
and McMillan 2000; Stone et al. 2017), instabilities of protogalactic disks (Volonteri
et al. 2008), etc.). Spin measurements, together with mass measurements, will clarify
the properties of the accretion process and its importance in the evolution of MBHs
relative to mergers (Berti and Volonteri 2008; Barausse 2012; Sesana et al. 2014).
Measurements of distance will allow for placing the detected system at the right
epoch in the history of the universe. Further help in this respect will naturally be
provided by sufficiently accurate/precise sky localization, which might allow for the
identification of an electromagnetic counterpart; and, therefore, a direct measurement
of photometric or spectroscopic redshift (Tamanini et al. 2016; Mangiagli et al.
2020). In the presence of independent redshift and distance measurements, one may
even attempt to construct a GW-based cosmography, potentially measuring the
Hubble constant or the density of matter/dark energy in our universe (Tamanini et al.
2016). Finally, measurements of the eccentricity and mass ratio will provide insight
on the mechanism driving MBH pairs to separations at which GW emission is
enough to lead to a merger within a Hubble time (Bonetti et al. 2019; Barausse et al.
2020a).

In more detail, current expectations on the parameters of MBHBs and their seeds
from astrophysical models are generally as follows:

● Source frame total masses range from a few 102 to a few 108M�, with possible

peaks around 103 and 105M� for respectively light and heavy seed formation in
some models. See, e.g., Fig. 2 of Barausse et al. (2020a).

● Comparable mass binaries with mass ratio � � m2=m1 between 0.1 and 1 are
expected to make up the bulk of LISA detections, although tails extending down
to �� a few �10�3 may be present (cf. Fig. 3 of Barausse et al. 2020a).

● Large uncertainties generally affect the prediction for spin magnitudes and
orientations. Moderate to large spins J0:7 are expected in models calibrated to
electromagnetic measurements (i.e. iron Ka) of MBH spins in local AGNs (Sesana
et al. 2014), but the spins of the first generations of MBH mergers are relatively
unknown. Similarly, spins may be approximately parallel at the peak of the star
formation z� 2� 3, where gas torques may align them with the orbital angular
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momentum to within 10� 30 degrees (Dotti et al. 2010), but the situation may be
different at higher and lower redshift.

● Eccentricity may be very significant and evolving in the LISA window (e[ 0:9
upon entrance into the LISA band and up to 0.1 at plunge) if triple/quadruple
MBH interactions are more efficient than gas and stellar interactions to drive the
binary’s evolution at � pc scales (Bonetti et al. 2019).

● Event rates and SNRs can vary significantly according to the underpinning
astrophysical model (Sesana et al. 2011; Klein et al. 2016; Barausse et al. 2020a):
in light seed scenarios rates may be as low as a few per year, especially if
feedback from supernova explosions is included (Barausse et al. 2020a), which
results in most events having small total masses and thus low SNRs (below 100).
More generally, the number of light seed detections may be threshold
limited (Bonetti et al. 2019; Barausse et al. 2020a). This is again especially
true if supernova feedback is included, as most events have SNRs of a few tens in
that case. In heavy seed scenarios, instead, irrespective of whether supernova
feedback is included or not, rates and SNRs tend to be larger, i.e. roughly a few
tens of detections in 4 years and SNRs up to several thousands.

● Environmental effects from gas and stars generally have negligible impact in the
LISA observation window (Barausse et al. 2014), except under certain
circumstances (Garg et al. 2022; Caputo et al. 2020). In addition, they might
leave a recognizable imprint in the eccentricity distribution of detected events
(Roedig and Sesana 2012). The same applies to MBH triple/quadruple
interactions, which are expected to cause the aforementioned very high “relic”
eccentricity when the binaries enter the LISA band (Bonetti et al. 2019).

● When delays between galaxy and MBH mergers are accounted for, the highest
number of detections is expected around z� 2� 4 (Barausse et al. 2020a).

In addition to the large parameter space described above, waveform templates for
MBHBs will also need to accurately represent the waveform for many hundreds or
thousands of cycles before merger — see, e.g., Fig. 16 of Mangiagli et al. (2020).

2.2 Extreme mass-ratio inspirals (EMRIs)

Coordinator: Huan Yang
Contributors: S. Akcay, P. Amaro Seoane, S. Bernuzzi, J. Gair, A. Heffernan,
T. Hinderer, S. A. Hughes, S. Isoyama, G. Lukes-Gerakopoulos, A. Nagar, Z. Pan,
Z. Sam, C. F. Sopuerta, V. Witzany

2.2.1 Description

EMRIs are binaries in which one member is substantially more massive than the
other. The canonical EMRI is expected to be a stellar mass compact body (typically a
black hole of 10–100M�) captured by a BH of 105–107 M� by multibody scattering
processes in the core of a galaxy (Amaro-Seoane 2018b). EMRIs can also form via
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the capture of other compact objects such as neutron stars or white dwarfs, though
the small mass of these objects reduces their detectability with LISA (Hopman and
Alexander 2006). A consequence of the large mass-ratio of EMRIs is the quite slow
inspiral of the smaller body, executing 104–105 of orbits as it moves through the
black hole’s strong field (Finn and Thorne 2000; Berry et al. 2016). Binaries
involving a MBH orbited by a substellar object, such as a brown dwarf, are called
extremely-large mass-ratio inspirals (XMRIs) and these are potential LISA sources if
they form around the MBH in the centre of the Milky Way (Amaro-Seoane 2019;
Gourgoulhon et al. 2019). Measuring the gravitational waves generated by the
strong-field orbits of E/XMRIs will make it possible to map the properties of massive
black holes with great precision (Babak et al. 2017a; Vazquez-Aceves et al. 2023).
See Table 2 for Summary of the anticipated parameters for LISA MBHB sources.

2.2.2 Expected source parameters

The expected LISA detection rate of EMRIs depends on several astrophysical
ingredients (Babak et al. 2017a), including the mass/spin function of MBHs at
different redshifts, the fraction of MBHs living in stellar cusps, stellar-mass compact
objects (COs) capture rate per MBH, the characteristic mass of stellar-mass COs and
their orbit eccentricities. The mass function of MBHs is usually modelled as a power

law dn=d logM ¼ n0 M=3� 106M�ð Þð�0:3;0:3Þ
(Gair et al. 2010), with n being the

MBH number density and n0 2 ð0:002; 0:005Þ Mpc�3. MBHs can be extremely
spinning with a 	 0:998, slowly spinning with v1 	 0 or of an extending spin
distribution in the range 0
 v1 
 1, depending on their growth channels (accretion
and/or mergers) (Dotti et al. 2013; Sesana et al. 2014; Pan and Yang 2020b). The
fraction of MBHs living in stellar cusps is determined by how frequently MBHs

Table 2 Summary of the anticipated parameters for LISA MBHB sources

Parameter Notation Astrophysically relevant range

Total mass in the detector frame M 105–107M�
Mass ratio ð[ 1Þ q 1–10

Dimensionless spin jvij 0–0.998

Eccentricity entering LISA band einit 0–0.99

Eccentricity at last stable orbit emerge \0:1

Signal to noise ratio SNR 10–104

The total mass of a massive binary in the source frame ranges from 102–108M� while moving to the
detector frame picks up a factor of � 10 giving the range 103–109M�. This is squeezed on both ends by
another factor of 10 (SNR and LISA band constrain the low and high limits respectively) giving a possible
range of 104–108M� with the majority of sources expected between 105–107M� (Barausse et al. 2020a).
The mass ratio, q is expected to range from 1–1000, again with the majority of sources expected to be in
the 1–10 range (Barausse et al. 2020a). The maximum spin of 0.998 comes about because if a MBH
accretes gas, the radiation emitted by the disk and falling into the hole has negative angular momentum,
preventing a spin up past v ¼ 0:998 (Thorne 1974)
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merge, when the stellar cusps are destroyed, and their regrowth time after mergers.
COs in stellar cusps captured by MBHs generically reside in low angular momentum
orbits with large eccentricities, which subsequently decay to the range of 0\e\0:2
at the final plunge (Babak et al. 2017a). The capture rate depends on the cusp
relaxation time and the density profile of the cusp (Amaro-Seoane and Preto 2011).
Taking into account of all these uncertainties with semi-analytic models, Babak et al.
(2017a) forecasted that there will be several to thousands of EMRIs detected by
LISA per year, assuming the contributing COs are BHs with mass 10 or 30M�, and a
detection threshold of SNR ¼ 20. On the other hand, recent rate studies predicted
that accretion disk-assisted EMRI formation may be more common for LISA
detection (Pan and Yang 2021a; Pan et al. 2021; Derdzinski and Mayer 2023), thanks
to the high efficiency of disks in transporting stellar-mass black holes towards galaxy
centers. These disk-assisted EMRIs tend to have negligible eccentricity comparing to
the EMRIs formed by gravitational capture.

For XMRIs their extremely slow evolution means they will spend millions of
years in the LISA band. Although the event rate of an XMRI forming is quite low,
their long duration in band means in the Galactic centre there could be a few dozen
sources, some of which may be highly eccentric. Due to the short distance between
the centre of the Galaxy and the solar system, the SNRs can range from 10 to 104

(Amaro-Seoane 2019; Gourgoulhon et al. 2019). See Table 3 for Summary of the
anticipated parameters for LISA EMRI sources.

2.2.3 Science with EMRIs

Constraining model parameters of EMRIs from their GW signals benefits from the
large number of cycles completed in the LISA band (Babak et al. 2017a; Huerta and
Gair 2009; Pan and Yang 2020b): all intrinsic parameters of an EMRI (the redshifted
masses, the MBH spin magnitude, and the CO orbit eccentricity at plunge) can be
measured with fractional uncertainty � 10�6–10�4; external parameters are mainly
determined by the GW amplitude and its modulation with time, where the luminosity
distance DL, the source sky location Xs and the MBH spin direction Xa can be
measured with fractional uncertainty rðlnDLÞ 	 SNR�1, median solid angle

uncertainties rðXsÞ 	 0:05ðSNR=100Þ�5=2deg2 and rðXaÞ 	 30rðXsÞ, respectively.
In light of the source location constraints in both radial and transverse directions, a
fraction of low-redshift EMRIs are expected to be traced back to their host galaxies
without the aid of any electromagnetic counterparts (Pan and Yang 2020b).

To identify the nature of the secondary in an EMRI, in the case of a light black
hole or a neutron star, the only potentially detectable parameter beyond its mass will
be the component of its spin parallel to its orbital angular momentum (Witzany 2019;
Skoupy et al. 2023). The detectability in the aligned-spin case has been discussed in
Piovano et al. (2021) while more generic waveform model is being developed to
address it in the general precessing-spin scenario (Drummond et al. 2024). For less
compact objects, such as white dwarfs or brown dwarfs, there is a possibility of
gaining some information about their quadrupoles (Rahman and Bhattacharyya
2023). However, all of the parameters of the secondary beyond its mass may be
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poorly constrained and partially or wholly degenerate with parameters controlling
other sub-leading effects.

Detection of EMRIs will provide critical information with which to understand the
growth history of MBHs and their environment. Different growth mechanisms, i.e.,
via mergers and/or via gas accretion, predict significantly different mass and spin
distribution for MBHs (King et al. 2008; Berti and Volonteri 2008; Barausse 2012;
Sesana et al. 2014). With a population of EMRI events, the co-evolution of MBH
masses and spins over cosmic time can be measured to further reveal how they are
formed and how they grew (Berti and Volonteri 2008; Barausse 2012; Sesana et al.
2014; Pan and Yang 2020b). N-body calculations have shown that EMRI rates
sensitively depend on stellar distribution at galactic centers, so that the rate inferred
from observation will also be able to constrain various distribution models (Babak
et al. 2017a). Environmental effects, including the interaction with possible accretion
disk around the MBH and close stellar objects near the EMRI system, may induce
sizeable phase shifts to the EMRI waveform (Barausse et al. 2014; Bonga et al. 2019;
Derdzinski et al. 2019, 2021). The accretion channel has illustrated that MBHs with
AGNs will account for a significant number of EMRIs (Pan et al. 2021). Estimates of
the resulting GW phase correction vary over many orders of magnitude (0.1–104 rad
/ year), depending on the assumed disk model (Yunes et al. 2011b; Barausse et al.
2015). Tidal resonances induced by the tidal field of nearby stars and stellar-mass
black holes can generate a phase correction of Oð1Þ in a significant fraction of the
phase space (Gupta et al. 2022b). The main uncertainty comes from the population of
nearby stellar-mass objects, which may come from the (disk)-migrating stellar-mass

Table 3 Summary of the anticipated parameters for LISA EMRI sources

Parameter Notation Astrophysically relevant range

Total mass in the detector frame M 105–107M�
Mass ratio ð[ 1Þ q 103–106

Dimensionless spin maxjvij 0–0.998

Eccentricity entering LISA band einit 0–0.8

Eccentricity at last stable orbit emerge 0–0.2

Signal to noise ratio SNR 20–100

Total masses of 104–107M� can be seen by LISA (Gair et al. 2010) with those greater than 107M� ending
outside the LISA band, although a rapidly spinning MBH may be detectable with a few 107M� as the
ISCO is closer to the MBH (Amaro-Seoane 2018b). Regardless of formation channel, the smaller compact
body as a typicalOð10ÞM� stellar mass black hole has an expected mass ratio of 103–106, or even 104–107

if neutron star EMRIs are included. Using MBH of 3� 106M� as a basis, the “loss-cone” EMRIs are
expected to have high eccentricities, capped at � 0:8 entering the LISA band (Hopman and Alexander
2005), while the accretion channel tends to have smaller eccentricities (Pan et al. 2021). Evolving a large
sample of compact bodies from capture results in a flat eccentricity distribution for the last stable orbit in
the range 0\e\0:2 (Babak et al. 2017a). A small tail of outlying higher eccentricities is possible. There is
also the possibility of GW bursts from unbound / hyperbolic systems (Berry and Gair 2013a, b). Babak
et al. (2017a) predicts the loudest EMRIs to have SNR� 100 for an observation time of a year

123

Waveform modelling for LISA Page 13 of 250     9 



objects in the AGN or leftovers from the previous AGN life cycle (Fig. 6 of Pan and
Yang 2021b), or simply from the mass segregation effect (Emami and Loeb
2020, 2021).

By precisely mapping the background spacetime geometry of a MBH (Ryan 1995;
Barack and Cutler 2007; Barausse et al. 2020b), EMRIs can be used to check
whether the Kerr metric description is accurate and GR holds in the strong-field
regime (Barausse et al. 2020b). At the innermost stable circular orbit (ISCO) of a
typical MBH, the curvature scale is higher than Solar-system curvatures but lower
than curvatures of some well-observed compact-binaries (Yunes et al. 2016).
Consequently, modified gravities satisfying existing observational constraints
generically predict very small deviations from GR in the standard EMRI scenario.
However, since EMRIs are expected to be highly sensitive to small departures from
the standard Kerr black hole background paradigm (Bambi 2011; Cardoso and Pani
2019), EMRIs will allow us to further tightly constrain any deviations caused by an
additional scalar or vector channel for radiation in the long-term dissipation of energy
and angular momentum (Chamberlain and Yunes 2017). In fact, even in the case
where the field of the primary is just a generic stationary axisymmetric GR vacuum
field, we should be able to determine the matter multipoles of the primary (Ryan
1995) and check possible violations of the no-hair theorem (Carter 1971), e.g., a
deviation from the Kerr solution in the quadrupole moment (Glampedakis and Babak
2006; Barack and Cutler 2007).

In addition, as is true for all extragalactic LISA sources, various cosmological
dispersion and propagation effects can be tightly constrained from EMRI signals
(Chamberlain and Yunes 2017).

2.3 Intermediate mass-ratio inspirals (IMRIs)

Coordinator: Carlos F. Sopuerta
Contributors: M. Dhesi, M. Hannam, T. Hinderer, D. Neilsen, H. Pfeiffer, H. Sundar,
N. Warburton

2.3.1 Description

An IMRI is a binary system with mass ratio in the range 10.q.104 placing it
between comparable mass binaries and EMRIs. IMRIs can come in two flavors, both
of which contain an intermediate mass black hole (IMBH) with mass in the range
102–104M� . There is little observational evidence for BHs in the IMBH mass range,
mainly because their main formation channel is inside globular clusters, the interiors
of which are very difficult to observe (Greene et al. 2020). However, recent GW
observations with ground-based detectors have found a population of BHs formed
from binary black hole (BBH) mergers with a total mass greater than 102 M� (Abbott
et al. 2023a, 2024). The largest confidently observed remnant (of GW190521) has a
mass of � 150M� (Abbott et al. 2020b, d). At the other end of the mass range, we
have evidence of BHs with masses in the range 104–105M� from observations of
dwarf galaxies out to redshift � 2:4 (Mezcua et al. 2018; Greene et al. 2020). These
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may correspond to an interpolation of the mass function observed for low MBH
mass (Reines et al. 2013).

The two flavors in which IMRIs are expected to appear are: (i) Light IMRIs. A
stellar-origin black hole (SOBH), or another sufficiently massive and compact object,
inspiraling into an IMBH. For instance, dwarf galaxies or globular clusters may
contain an IMBH which could capture an SOBH (Arca-Sedda et al. 2021). In this
case, it is quite likely that the merger occurs outside the LISA frequency band, at
higher frequencies. It is thus possible that an IMRI can be observed during its inspiral
with LISA and have its merger seen by ground-based GW observatories (only for
light IMBHs, with mass .103 M� (Gair et al. 2011)). (ii) Heavy IMRIs. Dynamical
friction can produce the orbital decay of globular clusters into a galactic nucleus
allowing the formation of an IMBH-MBH binary system, with the MBH in the LISA
mass range (105–107M�) (Matsubayashi et al. 2007; Arca-Sedda and Gualandris
2018). Another possible channel to form heavy IMRIs is the merger of a dwarf
galaxy satellite with its main galaxy (Bellovary et al. 2019). A third possibility is the
formation of an IMBH in a galactic nuclei via hierarchical mergers (Gerosa and
Fishbach 2021) via migration traps in AGN (Bellovary et al. 2016). Interestingly,
GW190521 may have occurred in such an environment (Graham et al. 2020).

For more information on possible formation channels, and the uncertain event
rates for these binaries, see the LISA Astrophysics Working Group White
Paper (Amaro-Seoane et al. 2023) and Fragione and Leigh (2018), Jani et al.
(2019), or the IMRI reviews (Amaro-Seoane 2018a, b). The nature of the different
formation channels for IMRIs (both light and heavy) may lead to distinct IMRI
dynamics so that LISA detections may shed some light on what are the most viable
formation scenarios. See Table 4 for Summary of the anticipated parameters for LISA
IMBH sources.

2.3.2 Science with IMRIs

As we only have evidence for IMBHs at the two ends of the mass range that defines
these objects, the search for IMRIs with LISA is especially relevant with huge
discovery potential. Event rates and parameter estimates for IMRIs can provide
valuable information about the formation and growth of IMBHs in globular clusters,
as well as details of stellar dynamics in those systems. This information is often
difficult to glean from electromagnetic observations (Greene et al. 2020).

For heavy IMRIs the masses and spin of the MBH can be measured to within an
relative error of a fraction of a percent (Huerta et al. 2012). Unlike EMRIs, where the
spin on the secondary can be difficult to constrain (Piovano et al. 2021; Burke et al.
2024), the spin of the IMBH can be constrained to within � 10% (Huerta et al.
2012). IMRIs spend a long time orbiting in the strong field and due to their high SNR
(relative to EMRIs) this makes then uniquely precise probes of GR and the Kerr
hypothesis (Miller 2004). They can also be sensitive to modifications to Einstein’s
equations of GR or the presence of dark matter (Sopuerta and Yunes 2009; Dai et al.
2022).
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Finally, multiband GW astronomy observations of light IMRIs consisting of
observing the inspiral in the LISA detector and the merger in ground-based detectors
(Aasi et al. 2015; Acernese et al. 2015; Sathyaprakash et al. 2012; Reitze et al. 2019)
offers a range of increased science potential (Jani et al. 2019; Amaro-Seoane and
Santamaría 2010; Sesana 2016). In particular, observing the inspiral with LISA can
place tight constraints on the sky location and the merger time which can allow for
targeted alerts for electromagnetic counterparts to the merger. Conversely, knowledge
of the source parameters from ground-based observations of the merger can allow
researchers to perform targeted searches for IMRIs in the archived LISA data (Wong
et al. 2018). Multiband observations can also enhance the potential for performing
tests of GR by breaking degeneracies between some parameters in the waveform
models (Datta et al. 2021).

2.4 Galactic binaries (GBs)

Coordinator: Milton Ruiz
Contributors: V. Korol, H. Lim, V. Paschalidis, S. L. Shapiro, A. Tsokaros

2.4.1 Description

Our Galaxy is home to a variety of stellar binaries formed by white dwarfs, neutron
stars, and black holes. Approximately a million years before their anticipated merger,
these compact binaries transition into the millihertz GW frequency band accessible
with LISA. Given such long evolution timescales, these systems will manifest as
nearly-monochromatic sources of gravitational waves. Furthermore, these compact
binaries will be detectable in large numbers by LISA, potentially emerging as the
most numerous GW source within the millihertz band (Postnov and Yungelson 2014;
Wagg et al. 2022; Lamberts et al. 2019; Marsh 2011).

Table 4 Summary of the anticipated parameters for LISA IMRI sources

Parameter Notation Heavy IMRIs Light IMRIs

Binary mass M 104–107M� 102–104M�
Mass ratio ([ 1) q 10–104 10–104

Dimensionless spin maxjvij 0–0.998 0–0.998

Eccentricity entering LISA band einit 0–1 0–0.9995

Eccentricity at last stable orbit or leaving LISA band emerge 0–0.9 0–0.9

Signal to noise ratio SNR 10–102 10–103

By defintion, light IMRIs’ primary BH is from 102M� to 104M�, i.e., an IMBH, while heavy IMRIs’
primary BH is a MBH (Amaro-Seoane et al. 2023). Again the definition of an IMRI has a mass ratio from
comparable (10) up to 105, above which the binary is defined as an EMRI. Eccentricity can be quite high
for light IMRIs entering the LISA band (Amaro-Seoane 2018a). The initial eccentricity for heavy IMRIs is
largely unknown. SNRs are taken from Table 11 of the Astrophysics Working Group White Paper (Amaro-
Seoane et al. 2023)
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Galactic compact binaries represent a key source class for the LISA mission.
Firstly, their existence as GW sources is confirmed, as several have already been
identified and characterised with electromagnetic telescopes (see e.g. Kupfer et al.
2024; Digman et al. 2023; Carvalho et al. 2022; Johnson et al. 2023; Yu et al. 2020;
Biscoveanu et al. 2023; Wolz et al. 2020). Gravitational radiation from some of these
known sources has already been measured indirectly by monitoring binary orbital
contraction over extended periods (Hermes et al. 2012; Burdge et al. 2019; Munday
et al. 2022). Secondly, as we can anticipate their GW signatures before the mission,
these binaries have been suggested as “verification sources” for LISA (e.g. Stroeer
and Vecchio 2006; Finch et al. 2023; Littenberg and Lali 2024; Shah et al. 2012b;
Kilic et al. 2021). Most notably, Galactic compact object binaries accessible to LISA
promise a wealth of insights into stellar and binary evolution. This encompasses
understanding the nature of compact objects, unravelling the physical processes that
govern binary interactions, and exploring their role in the formation and evolution of
the Milky Way – see the LISA Astrophysics White Paper (Amaro-Seoane et al. 2023)
for a review. Finally, it is noteworthy that a substantial portion of these binaries will
not be individually resolvable by LISA, contributing to an unresolved stochastic
foreground that will act as an additional source of noise for the instrument. Therefore,
accurate characterization of this foreground is crucial to ensuring the precise
characterization of other LISA sources.

Here we consider Galactic double compact objects, which we refer to as GBs,
specifically those where at least one component is a compact object other than a
black hole (binaries with two stellar origin black holes are treated in the next section).
These can be categorised into various subtypes: binary white dwarfs (BWDs), with
the subset of accreting BWDs, known as AM Canum Venaticorum or AM CVns in
literature; binary neutron stars (BNSs); and mixed systems. The mixed systems
encompass white dwarfneutron stars (WDNSs), which can emerge as ultra-compact
X-ray binarys (UCXBs) in electromagnetic radiation, white dwarf-black holes
(WDBHs), and binary black holeneutron stars (BHNSs).

2.4.2 Masses, mass-ratios, eccentricities, and known LISA verification sources

Observing GB using electromagnetic observatories poses a significant challenge due
to their inherently small size and dimness (in some cases the entire absence of
electromagnetic emissions). These features, when combined with selection effects
and incompleteness of dedicated electromagnetic surveys, has limited our ability to
know the true distributions of their parameters such as orbital separations, component
masses, mass ratios, and eccentricities. Thus, much of our understanding of these
binaries primarily hinges upon population synthesis studies. However, electromag-
netic observations using Sloan Digital Sky Survey (SDSS) and Gaia have recently
improved our understanding (Postnov and Yungelson 2014; Maoz et al. 2018; Brown
et al. 2020; Kilic et al. 2021).

Binary population synthesis studies (e.g., Table 6 in Amaro-Seoane et al. 2023)
show that for frequencies less than approximately 2 mHz, the BWDs form an
unresolved foreground for LISA (see also Evans et al. 1987; Lipunov et al. 1987;
Hils et al. 1990; Ruiter et al. 2010). Binaries with frequencies greater than
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approximately 2 mHz and/or closer than a few kpc do not overlap with this
background (Evans et al. 1987; Nelemans et al. 2001; Amaro-Seoane et al. 2023;
Ruiter et al. 2010; Korsakova et al. 2024) and are called “resolvable“. However, not
all resolvable GBs are detectable, and unresolved GBs can also be detectable. Only
binary systems with a significant SNR may be detected by LISA within a 4-year
mission. Theoretical estimates suggest that among the hundreds of millions of
binaries in the Galaxy, the number of resolvable binaries are about 6000–10000
BWDs, 100–300 WDNSs, 2–100 BNSs, 0–3 WDBHs and 0–20 BHNSs (Amaro-
Seoane et al. 2023; Ruiter et al. 2010; Korsakova et al. 2024). However, the number
of detectable binaries above the noise are about 6000 BWDs, 100 WDNSs, 30 BNSs,
3 WDBHs, 3 BHNSs and 2 hot subdwarf binaries (Nelemans et al. 2001; Kupfer
et al. 2024).

The chirp mass, a key distinctive parameter among compact binary classes, varies
significantly across different binary systems. For instance, BWDs typically peak at a
chirp mass of around 0:25M� (e.g. Korol et al. 2022; Li et al. 2020; Edlund et al.
2005), while BNS tend to have a chirp mass around 1:2M� (Lau et al. 2020; Korol
and Safarzadeh 2021). Systems comprising BHs and neutron stars (NSs) exhibit even
higher chirp masses. However, it is important to note that LISA’s limited ability to
measure frequency derivatives for f\2 mHz, and thus the chirp mass may introduce
potential classification ambiguities (Lau et al. 2020; Korol and Safarzadeh 2021). For
example, a nearby BWD system may be misidentified as a more distant BNS.
Another discriminative feature could be the eccentricity measurements (Lau et al.
2020; Andrews and Mandel 2019). BWDs, typically formed via isolated binary
evolution, are expected to be circularised due to recurrent mass transfer episodes.
Contrastingly, BNS systems detectable in the LISA band might present measurable
eccentricities due to natal kicks imparted by the supernova explosions that birth the
NSs. Nevertheless, some rare eccentric BWD can form in globular clusters or via
triple interactions (e.g. Kremer et al. 2018; Willems et al. 2007).

There are approximately 30 GBs, identified through electromagnetic detection,
that have been confirmed as resolvable verification targets for the LISA mission.
Notably, 18 of these are expected to be detectable within merely 3 months of
scientific operations (Kupfer et al. 2024), proving invaluable in the early stages of the
mission by assisting in the validation of LISA’s performance relative to pre-launch
expectations. These GBs are characterised by orbital periods ranging from � 300 to
� 6000 seconds, equivalent to GW frequencies approximately between 0.5 and 6
mHz. Their total mass typically lies between 0.5 to 1:0M�, with mass ratios roughly
between 0.1 and 0.7. Their estimated SNRs can exceed 100 after four years of
integration (Finch et al. 2023; Liang et al. 2024; Kupfer et al. 2018).

Certain types of binaries can be sources of low and high frequencies, and hence
can straddle both the LISA and ground-based detector bands. This is true for mixed
binaries when unstable mass transfer leads to merger. Gravitational waves from the
inspiral and merger of WDNSs may go from LISA to ground-based from potential
oscillations of the NS after merger and/or its eventual collapse to a BH (Paschalidis
et al. 2009, 2011a, b; Sun et al. 2018; Kang et al. 2024). The same straddling of
LISA/ground-based frequency bands holds for stellar-mass black hole
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binaries (Sesana 2016; Toubiana et al. 2020; Moore et al. 2019). See Table 5 for
Summary of the anticipated parameters for LISA GB sources.

2.4.3 Modeling requirements & methods to improve/remove the Galactic
background

GBs can be classified as detached or interacting (mass-transferring), depending on
whether significant mass transfer occurs between the components. This classification
is crucial for modelling their GW signals accurately. Although these systems are
practically monochromatic to first order, the frequency does evolve with time. In
particular, there is a difference in how the frequency evolves for detached binaries
and interacting binaries. The orbital evolution of detached binaries is driven by the
emission of gravitational waves, causing a gradual inward spiral of the binary
(manifested as a negative frequency derivative in the GW signal). On the other hand,
in accreting binaries, the redistribution of mass between the components results in an
increase in their separation (leading to a positive frequency derivative in the GW
signal) (Postnov and Yungelson 2014; Paschalidis et al. 2009). This leads to different
requirements for waveform modelling. Note also that the shortest period binaries can
be tidally-locked and corotating (Bildsten and Cutler 1992). For binaries near the
Roche separation, tidal effects may have a non-negligible contribution to the phase
evolution of the wave (Broek et al. 2012; Yu et al. 2021). Understanding the
frequency evolution will help determine if mass transfer is taking place (Breivik et al.
2018; Littenberg et al. 2020) and/or tidal interactions are at play. A large number of
mass-transferring systems may constrain the physics of mass transfer and the
efficiency of angular momentum removal from the disk/companion system and its
reinjection back into the orbit (Paschalidis et al. 2009).

Some of the GW sources that LISA will observe may be part of triple or higher-
order multiple systems (e.g. Toonen et al. 2016; Rajamuthukumar et al. 2023). This
includes sources in the Galactic disc that form through isolated triple evolution, as
well as those in dense environments. When a BWD system — as the most common
Galactic LISA source — is part of a larger system with an additional stellar or even a
substellar object, the gravitational interaction with the substellar object introduces a
modulation in the observed GW frequency due to the Doppler and related effects.
This is a consequence of the motion of the BWD around the centre of mass of the
three-body system. As the orbit of the tertiary must be larger than that of the inner
binary for the system to remain stable, the modulation timescale will be longer than
the GW frequency produced by the inner BWD. However, to detect this modulation
with LISA, it should also be shorter than the mission’s lifetime (Seto 2008; Tamanini
and Danielski 2019; Katz et al. 2022).

Signals from many GBs will be below the BWD confusion background, which is
generated both by detached and interaction/mass-transferring BWDs. Efforts have
been made to remove this background in order to resolve more binaries (see
e.g. Crowder and Cornish 2007; Littenberg 2011; Bouffanais and Porter 2016;
Littenberg et al. 2020). Notice that the modeling of this confusion background may
provide insight about the BWD population in the Milky Way (and nearby satellite
galaxies).
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2.5 Stellar origin black hole binaries (SOBHBs)

Coordinators: Antoine Klein and Ilya Mandel
Contributor: D. Gerosa

2.5.1 Description

Stellar origin BH binaries are BBHs with component masses ranging from a few
solar masses up to about � 50–100M�, where models of pair-instability supernovae
predict a mass gap to appear (Woosley 2017; Farmer et al. 2019; Woosley and Heger
2021). Those systems are in a mass range such that they can be observed by both
LISA and by ground-based detectors, as they sweep through a few decades in
frequency during the last stage of their inspiral. This broad coverage of the GW
frequency spectrum makes it possible to probe the evolutionary history of such
binaries (Sesana 2016; Mandel et al. 2018).

A circular BBH with two 45M� components will merge in about 10 years from a
GW frequency of � 10 mHz (Peters 1964; Sesana 2016). It is thus possible to track
its evolution from the LISA band to the ground-based detector band, taking
advantage of LISA’s ability to better measure some of the system properties at low
frequency and the improved measurements of parameters such as the remnant spin
from high-frequency data. Of particular interest for LISA is the sky localisation
capability, which is typically limited to tens of square degrees for BBHs in current
ground-based detector data (Abbott et al. 2023a, 2024). The long duration of
observations in the LISA band means that the detector will complete multiple orbits
around the Sun, and thus effectively act as an instrument with a baseline of order the
size of the orbit. The accuracy of sky localisation can be estimated as Mandel et al.
(2018)

Table 5 Summary of the anticipated parameters for LISA GB sources

Parameter Notation BWD WDNS BNS

Total chirp mass M 0.1–1M� 0.4–1:2M� 1–2:2M�
Mass ratio ([ 1) q 1–10 1–5 1–1.6

Eccentricity in LISA band einit 0 0–1 0–1

Signal to noise ratio SNR \1000 \1000 \1000

BWDs can have a chirp mass between 0.1–1M� Korol et al. (2017), mass ratios of 1–10 (which can reach
100 for AM CVns systems) and spins ranging from seconds to hours (Pelisoli et al. 2022; Kilic et al.
2021). WDNSs and BNSs will have chirp masses in the range 0.4–1:2M� (Korol et al. 2024) and
1.0–2:2M� (Vigna-Gómez et al. 2018; Wagg et al. 2022; Kruckow 2020) respectively. These binaries
should exhibit spin periods ranging from seconds down to milliseconds, consistent with those observed in
current systems, and near any eccentricity (Vigna-Gómez et al. 2018; Lau et al. 2020). As these sources are
considered nearly monochomatic in the LISA band, their eccentricity is expected to evolve only a neg-
ligible amount inband
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where the GW frequency f should be replaced by the detector bandwidth for a source
that evolves out of the band during the observation, and SNR is the signal-to-noise
ratio. For a 2 AU baseline, this would yield sub-degree localization, though the exact
localization accuracy would depend on the source location in the orbital plane.
Another example could involve the measurements of BH spins and spin-orbit
misalignments, which store information about formation scenarios (Vitale et al. 2017;
Stevenson et al. 2017; Zevin et al. 2017; Farr et al. 2017; Gerosa and Fishbach 2021).
While we may expect that high-frequency ground-based observations are best suited
to measure mass ratios and spin-orbit couplings, which enter the waveform at higher
orders in the orbital frequency, LIGO-Virgo-KAGRA Collaboration (LVK) obser-
vations to date have demonstrated the challenge of making such measurements
precisely (Abbott et al. 2023a). LISA could observe J105 orbital cycles and
therefore assist in making precise constraints for the handful of systems that will be
observed by both LISA and ground-based detectors (Klein et al. 2022).

Beyond individual sources, LISA could track changes in the source population as
binaries evolve in frequency. For example, LVK observations indicate that the
majority of black holes in merging BBHs have masses .40M� (Abbott et al. 2023b),
low to moderate spins (Roulet et al. 2020; Galaudage et al. 2021; Callister et al.
2021), and most have circularized by the time of merger (Romero-Shaw et al. 2019).
On the other hand, LISA could observe BBHs while they are still eccentric, which
would likely indicate dynamical formation (Abbott et al. 2016a; Romero-Shaw et al.
2021). The appearance of sources at higher frequencies would on its own indicate
high birth eccentricity (McNeill and Seto 2022).

Another possibility worth mentioning is the detectability of a third body,
particularly a massive black hole (MBH), through its impact on the binary’s GW
signature. Nuclear clusters around an MBH have been proposed as a possible BBH
merger site, with possible assistance from gas in an active galactic nucleus (O’Leary
et al. 2009; Bellovary et al. 2016; Tagawa et al. 2020). Mandel et al. (2018) argued
that even when the orbital period of a binary of mass Mbin around an MBH of mass
MMBH � Mbin is much longer than the observation duration Tobs, the orbital
acceleration of the binary due to the MBH could still be detectable provided the GW
frequency fGW exceeds

fGWJ0:02Hz
MMBH
106 M�

� ��1 a

pc

� �2 Tobs
5yr

� ��2 SNR

8

� ��1

; ð4Þ

where a is the distance from the binary to the MBH. A BBH merger in a massive
globular cluster of a similar mass could carry a comparable signature.

2.5.2 Expected source parameters

Judging by evidence from ground-based observations, the majority of BBHs
observed so far have chirp masses between 5 and � 40M� (Abbott et al. 2023b),
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though BH masses could extend down to the maximum neutron star mass and up to
the IMBH mass range, especially if hierarchical mergers in dense dynamical
environments fill the mass gap from pair-instability supernovae (Yang et al. 2019b;
Mapelli et al. 2021; Gerosa and Fishbach 2021). LISAwill be particularly sensitive to
more massive BBHs.

Most observed BBHs have mass ratios q.4 (Abbott et al. 2023b), which is
consistent with the bulk of model predictions, but systems with more extreme mass
ratios are possible, such as GW190814, which involved a � 23M� BH and a
� 2:6M� companion (Abbott et al. 2020c). As mentioned above, most observed
BBHs have low to moderate companion spins, though it remains unclear whether this
is a generic feature of stellar-mass BHs (Mandel and Fragos 2020; Fishbach and
Kalogera 2022). Lastly, high eccentricities and generic spin-orbit misalignments
could be a telltale sign of dynamical formation in dense stellar environments or in
hierarchical triples (see Mandel and Farmer 2022; Mapelli 2020 for reviews of
formation channels).

BBHs emit the bulk of their orbital energy above the LISA frequency band;
therefore, moderate SNRs are expected except for fortuitously nearby sources
(Sesana 2016). The minimal SNR for detection of BBHs will be influenced by the
technical challenges associated with searching for signals with a complicated
morphology and many in-band cycles (Moore et al. 2019). Furthermore, beyond an
SNR threshold for detection, signals must also show evidence of frequency evolution
in order for masses to be measurable, so that BBHs can be identified among the much
larger population of signals from double white dwarfs (Lau et al. 2020). See Table 6
for Summary of the anticipated parameters for LISA SOBHB sources.

2.6 Cosmic strings

Coordinators: Barry Wardell
Contributors: D. Chernoff, J. Wachter

2.6.1 Description

Strings are effectively one-dimensional stress energy sources. If a network of strings
is generated at early times then it can have many cosmological consequences
including the production of gravitational waves (see Vilenkin and Shellard 2000 for a
general review) that are potentially observable by LISA. String sources at energy
scales comparable to those postulated in Grand Unified Theories (GUTs) have been
ruled out by observations of the CMB (see Ade et al. 2014 for Planck-derived limits;
the energy scale of the string-forming phase transition is \4:7� 1015 GeV,
somewhat less than the characteristic GUT energy scale � 1016 GeV). However,
String Theory suggests new sources—fundamental strings and D-branes wrapped on
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small dimensions— in the context of certain inflationary string theory scenarios
(Witten 1998; Sen 1998b; Horava 1999; Dvali and Tye 1999; Sen 1998a; Giddings
et al. 2002; Jones et al. 2002; Sarangi and Tye 2002; Kachru et al. 2003b; Copeland
et al. 2004; Jones et al. 2003; Kachru et al. 2003a; Dvali and Vilenkin 2004;
Henry Tye 2008). Macroscopic cosmic strings (CSs) are created and stretched to
superhorizon scales by inflation (see Chernoff and Tye 2015; Baumann and
McAllister 2015 for a review). Extensions to the Standard Model that introduce new
symmetry breakings in-between the GUT and electro-weak scale can also produce
viable strings Dror et al. (2020); Dunsky et al. (2022).

Irrespective of the detailed microscopic origin, these CSs may evolve to generate a
network with some common features: after the Universe enters its radiation
dominated phase the long, horizon-crossing strings begin to collide, break, reconnect
and form small, sub-horizon scale loops. All string elements are dynamical, radiating
gravitational waves and possibly other quanta (Brandenberger 1987; Srednicki and
Theisen 1987; Bhattacharjee et al. 1992; Damour and Vilenkin 1997; Wichoski et al.
2002; Peloso and Sorbo 2003; Vachaspati 2010; Sabancilar 2010; Long et al. 2014).
Isolated loops, for example, radiate their entire rest mass energy and eventually
disappear. Together the string elements generate a stochastic GW background
(Vilenkin 1981b; Vachaspati and Vilenkin 1985; Hogan and Rees 1984; Accetta and
Krauss 1989; Bennett and Bouchet 1991; Caldwell and Allen 1992; Siemens et al.
2007; DePies and Hogan 2007; Olmez et al. 2010; Sanidas et al. 2012, 2013;
Binetruy et al. 2012; Kuroyanagi et al. 2012, 2013; Sousa and Avelino 2013; Blanco-

Table 6 Summary of the anticipated parameters for LISA SOBHB sources

Parameter Notation Range for majority of sources

Chirp mass M 5–40

Mass ratio ([ 1) q 1–4

Effective spin maxjveff j 0–0.3

Eccentricity entering LISA band einit 0–1

Eccentricity at last stable orbit emerge Out of band

Signal to noise ratio SNR \50

The most recent data release from LVK indicates a mass distribution of BBHs centred around
5–40M� (Abbott et al. 2023b), however their masses could theoretically extend down to neutron star mass
(2M�) and up towards IMBH (100M�) (Yang et al. 2019b; Mapelli et al. 2021; Gerosa and Fishbach 2021;
Woosley and Heger 2021). LVK observations also show a mass ratio and effective spin magnitude dis-
tribution between 1–4 and 0–0.3 respectively (Abbott et al. 2023b), with more extreme mass ratio binaries
observed (Abbott et al. 2020c) and the possibility of higher spins theoretically possible (Mandel and Fragos
2020; Fishbach and Kalogera 2022). Binary eccentricity decays with increasing gravitational-wave fre-
quency roughly as e / f �18=19 (Peters 1964), so sources that appear in the LISA band would circularise by
the time they reach the LVK detector band; therefore, existing LVK observations do not constrain LISA

band eccentricies. If we consider a SNR threshold for detection of 12, then 1� ð12=50Þ3 	 98:6% of
sources in an isotropic homogeneous Universe would have SNR\50
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Pillado et al. 2014; Sousa and Avelino 2014; Blanco-Pillado and Olum 2017;
Chernoff and Tye 2018; Ringeval and Suyama 2017; Blanco-Pillado et al. 2018a; Cui
et al. 2019; Jenkins and Sakellariadou 2018) and GW bursts (Damour and Vilenkin
2000, 2001; Siemens et al. 2007; Binetruy et al. 2009; Olmez et al. 2010; Regimbau
et al. 2012; Kuroyanagi et al. 2012, 2013; Aasi et al. 2014a; Ringeval and Suyama
2017; Chernoff and Tye 2018; Abbott et al. 2018; Jenkins and Sakellariadou 2018).
Detection and measurement of the string-generated gravitational waves by LISAwill
be informative for cosmology and high energy physics (see the White Paper from the
LISA Cosmology Working Group for a summary (Auclair et al. 2023)).

The physics of CSs is sensitive to (1) the set of fields to which the string couples,
(2) whether the strings are global or local, (3) the ratio of the characteristic string
width to curvature scale. Here, we assume that the strings are minimally coupled
(they interact with each other but only radiate gravitational waves), local and well-
described in the classical limit by the Nambu–Goto action (see Aoyama et al. 2004
for a brief description and Zwiebach 2006 for string-theory applications). We refer to
this as the “minimally coupled-string network”. There are additional possibilities but
this defines a wide, interesting arena for this White Paper.

Average properties of the minimally coupled string network are encapsulated in
the Velocity One Scale (VOS) model (Martins and Shellard 1996, 2002; Martins
et al. 2004; Sousa and Avelino 2013). It turns out that all quantitative features depend
primarily on the string tension lS , or GlS=c

2 in dimensionless terms. In particular,
the total density in string components is parametrically small when the tension is
small.

The VOS model is a valuable guide for forecasting the observations LISA may
make. For specific numerical estimates below we assume minimally coupled local
strings and adopt the following secondary parameters: intercommutation probability
� 1 (intersecting field theory strings break and reconnect with probability of order
unity (Shellard 1987) whereas string theory strings do so with smaller probability
(Jackson et al. 2005)), number of string species 1 (multiple species exist in realistic
string constructions, for a review see Chernoff and Tye (2015)), fraction � 0:2 of
long length strings chopped into loops of size � 0:1 of the horizon (for review of the
small and large components inferred from simulation see Chernoff 2009; Auclair
et al. 2023) and rate of gravitational energy loss dE=dt ¼ CGl2Sc implied by
dimensionless parameter C ¼ 50 (Vachaspati and Vilenkin 1985; Burden 1985;
Garfinkle and Vachaspati 1987; Blanco-Pillado and Olum 2017). Broadly speaking,
changes to these adopted secondary values do not qualitatively change the network
properties predicted by the VOS model. Many network properties are not included in
VOS and have not yet been addressed in simulations. For example, isolated loops
should evolve under the force of radiative backreaction (see Wachter and Olum 2017;
Blanco-Pillado et al. 2018b; Chernoff et al. 2019; Blanco-Pillado et al. 2019) but that
process is not included in current numerical simulations and so it is difficult to
accurately incorporate into statistical descriptions. These model-dependent, as
opposed to parameter-dependent, uncertainties are important systematic deficiencies
in our understanding and hard to quantify.
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2.6.2 Tension limits

The most well-studied modern scenario involves Type IIB string theory and low
tension strings produced at the end of brane inflation. Strings — not monopoles nor
domain walls — are produced when a brane and anti-brane pair annihilate and
initiate the Big Bang cosmology (Jones et al. 2002; Sarangi and Tye 2002). The
primary parameter, string tension, cannot currently be calculated a priori from theory.
Instead we must turn to observations.

Empirical upper bounds on GlS=c
2 have been derived from null results for

experiments involving lensing (Vilenkin 1981a; Hogan and Narayan 1984; Vilenkin
1984; de Laix 1997; Bernardeau and Uzan 2001; Sazhin et al. 2003, 2006;
Christiansen et al. 2008), GW background and bursts (Vachaspati and Vilenkin 1985;
Economou et al. 1992; Battye et al. 1997; Damour and Vilenkin 2000, 2001, 2005;
Siemens et al. 2006; Hogan 2006; Siemens et al. 2007; Abbott et al. 2009a, b; Aasi
et al. 2014a; Abbott et al. 2018, 2019a, 2021e), pulsar timing (Bouchet and Bennett
1990; Caldwell and Allen 1992; Kaspi et al. 1994; Jenet et al. 2006; DePies and
Hogan 2007; Blanco-Pillado and Olum 2017; Blanco-Pillado et al. 2018a), cosmic
microwave background radiation (Smoot et al. 1992; Bennett et al. 1996; Pogosian
et al. 2003, 2004; Tye et al. 2005; Wyman et al. 2005; Pogosian et al. 2006; Seljak
et al. 2006; Spergel et al. 2007; Bevis et al. 2007; Fraisse 2007; Pogosian et al. 2009;
Ade et al. 2014). It has long been recognized (Chernoff and Tye 2015) that all such
bounds are model-dependent and typically involve observational and astrophysical
uncertainties. Constraints from the CMB power spectrum rely on well-established
gross properties of large-scale string networks and are relatively secure. Limits from
optical lensing in fields of background galaxies rely on the theoretically well-
understood deficit angle geometry of a string in spacetime but require a precise
understanding of optical selection effects. Bounds from big bang nucleosynthesis
rely on changes to the expansion rate from extra gravitational energy density but only
constrain the strings formed prior to that epoch. Roughly speaking, these limits imply
GlS=c

2.3� 10�8 � 3� 10�7 (see Siemens et al. (2007) for comparisons of limits).
More stringent bounds on tension generally invoke additional assumptions (Battye
and Moss 2010). Gravitational wave experiments (Siemens et al. 2007; Abbott et al.
2009a, 2018, 2019c) can monitor the occurrence of bursts. In particular, the LVK set
a bound GlS=c

2.4� 10�15 based on non-detection of assumed cusp-like bursts
(Abbott et al. 2021a). Long-term pulsar timing searches for a stochastic background
have set the bound of GlS=c

2.1:5� 10�11 (Jenet et al. 2006; Ringeval and Suyama
2017; Blanco-Pillado and Olum 2017; Blanco-Pillado et al. 2018a). In the future
LISA may achieve limits as low as GlS � 10�17 for Nambu-Goto strings (Auclair
et al. 2023; Arun et al. 2022).

2.6.3 Loop sources for LISA

The VOS model for the minimally coupled string network generates a loop size
distribution weighted towards small sizes (Chernoff and Tye 2018). For string
tensions GlS=c

2 � 10�7 the string loops are the most important elements of the
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network for GW science (Auclair et al. 2023). Small tensions imply weak GW
damping. The undamped string is a non-linear oscillator with a fundamental period
T ¼ ‘=ð2cÞ and frequency f ¼ 1=T. The Fourier transform of its motion yields
power in all harmonics nf for n
 1. A survey of the loop dynamics reveals large scale
motions and distinctive small scale feature: cusps (infinitesimal bits of the string that
move at the speed of light twice per fundamental period) and kinks (discontinuous
changes of slope that perpetually circumnavigate the loop). Gravitational wave
emission is sourced not only by the large scale oscillations but also by cusps and
kinks. All long-lived loops are expected to possess cusps or kinks else they
intercommute and produce kinks. Cusp-generated power decays with harmonic n
asymptotically / n�4=3, kink-generated power / n�5=3 and kink-kink collisions
/ n�2 (Vachaspati and Vilenkin 1985; Damour and Vilenkin 2000, 2001; Binetruy
et al. 2009). At high frequencies, cusps dominate if they are present. Conversely, the
period-averaged area of the sky illuminated by gravitational radiation increases from
cusps to kinks to large scale modes.

There are three scenarios for LISA detections. (1) Loop decay creates a stochastic
GW background from a large number of unresolved sources (Auclair et al. 2023). (2)
Specific cusp or kink containing sources produce bursts of emission that stand above
the general background (Bartolo et al. 2022). (3) A few nearby loops, possibly
associated with the Galaxy, produce emission that is strong, smooth and always on
DePies and Hogan (2009); Chernoff (2009); Khakhaleva-Li and Hogan (2020); Jain
and Vilenkin (2020).

2.6.4 Science with cosmic strings

(1) Interesting fundamental results are destined to emerge whether or not LISA
detects evidence of gravitational radiation from strings. A positive result for the
stochastic background will allow the inference of the string tension; a negative result
will provide upper limits on the tension of any string component that might be
present (Auclair et al. 2023). If the network has a String Theory origin then either
determination helps guide progress towards a realistic model scenario for String
Theory that incorporates the Standard Model.

(2) A positive detection (either background, burst or nearby loop) is also
fundamentally significant for cosmology because loops of macroscopic size are
created during an epoch of inflation, supporting the inflationary paradigm (Guth
1981; Linde 1982; Albrecht and Steinhardt 1982). The universe’s precise inflationary
scenario remains a profound problem for cosmology and for fundamental physics.
The almost scale-invariant density perturbation spectrum predicted by inflation is
strongly supported by cosmological observations, in particular the cosmic microwave
background radiation (Ade et al. 2014).

A negative detection is also very informative. The production of string-like
structures is a rather generic theoretical prediction whenever inflation does occur
(Jeannerot et al. 2003; Dunsky et al. 2022). A negative result might be explained if
the strings are unstable and/or couple to additional fields that promote their decay.
This sort of result will guide the search for models that allow such interactions.
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2.7 Beyond GR and beyond standard model sources

Coordinator: Paolo Pani, Helvi Witek
Contributors: N. Afshordi, R. Benkel, G. Bozzola, R. Brito, A. Cárdenas-Avendaño,
E. Maggio, M. Okounkova, V. Paschalidis, C. Sopuerta

2.7.1 Introduction

BHs and compact binaries, and their GW emission have tremendous potential to
probe for new physics beyond the Standard Model in the strong-field, nonlinear
regime of gravity. LISA is likely to detect loud sources, such as MBHBs and EMRIs,
which will allow us to test the nature of BHs, the validity of GR in the strong-field,
highly-dynamical regime of gravity, or the presence of additional fundamental fields
with unprecedented precision. These observations can help us address fundamental
questions such as Arvanitaki and Dubovsky (2011); Yunes and Siemens (2013); Berti
et al. (2015); Barack et al. (2019b); Cardoso and Pani (2019); Barausse et al.
(2020b): (i) What is the nature of dark matter, and how can BH detections with LISA
aid the search for new particles? (ii) What is the nature of gravity? Are there new
fundamental fields and GW polarizations, as predicted by some extensions of GR and
of the Standard Model? (iii) How do gravitational waves propagate over cosmolog-
ical distances? (iv) Are the massive objects observed at galactic centers consistent
with the rotating BHs predicted by GR? (v) Do exotic compact objects other than
BHs and neutron stars exist in the universe? This complex topic in the context of
LISA science is discussed in depth in the White paper of LISA’s Fundamental
Physics Working Group (Arun et al. 2022). Here we briefly summarize the most
relevant sources for probing fundamental physics with LISA as a guide for the
modelling of gravitational waveforms in GR and beyond.

2.7.2 Black holes and ultralight fields

2.7.2.1 Description Ultralight bosonic fields such as axions, axion-like particles or
dark photons are predicted in several particle and theoretical physics models. A
remarkable example is the string axiverse scenario, which predicts a multitude of
axion-like particles emerging naturally from string theory compactifications (Arvan-
itaki et al. 2010). These ultralight particles play a crucial role in diverse areas of
physics and have been proposed (i) as a solution to the strong CP problem in
quantum chromodynamics (QCD) (Peccei and Quinn 1977), (ii) as compelling dark
matter candidates (Hui et al. 2017; Ferreira 2021) and (iii) in cosmology (Marsh
2016). Excitingly, we can employ BHs to search for (or constrain) ultralight bosons
in a mass range that is complementary to traditional particle colliders or direct
detection experiments (Arvanitaki and Dubovsky 2011; Brito et al. 2015c; Bertone
et al. 2020; Arvanitaki et al. 2015; Brito et al. 2017a, b). This surprising connection
between BHs and particle physics is provided by the superradiant instability of
BHs (Press and Teukolsky 1972; Starobinsky 1973; Bekenstein 1973; Teukolsky and
Press 1974; Detweiler 1980b; Shlapentokh-Rothman 2014; Brito et al. 2015c): low-
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frequency bosonic fields scatter off a rotating BH superradiantly, thereby extracting
mass and angular momentum from the BH. Fields of mass-energy lB are efficiently
confined in the vicinity of a BH with mass M if the gravitational coupling
MlB.0:4 (Dolan 2007; Witek et al. 2013; Pani et al. 2012; East 2017; Wang et al.
2022), corresponding to lB.10�16ðM=106M�Þ eV. In this case they efficiently form
a bosonic condensate (“cloud”) around the BH. An alternative formation scenario
involves accretion of such ultra-light fields onto BHs (Clough et al. 2019; Bamber
et al. 2021) in the same mass range. If the bosonic field is complex, this process gives
rise to hairy BHs (Herdeiro and Radu 2014, 2015; Herdeiro et al. 2016; Santos et al.
2020).

The details of the cloud’s formation depends on the initial parameters such as the
BH spin and the gravitational coupling between BH and bosonic field (Brito et al.
2015b; Ficarra et al. 2019; East and Pretorius 2017). Once formed, the condensate
dissipates by emitting a quasi-monochromatic GW signal (Yoshino and Kodama
2014; Arvanitaki et al. 2015; Brito et al. 2015b; Okawa et al. 2014; Zilhão et al.
2015b; Brito et al. 2017a, b; East and Pretorius 2017; East 2018; Siemonsen and East
2020; Zhu et al. 2020; Brito et al. 2020). The presence of boson clouds can also
significantly affect the dynamics of binaries, e.g., through “dragging” of the
cloud (Zhang and Yang 2020), dynamical friction (Traykova et al. 2021) or tidal
effects (Cardoso et al. 2020). Numerical simulations of comparable-mass BH binaries
interacting with a high-density bosonic cloud have shown that scalar clouds may
condense around the binary to form “gravitational molecules” (Ikeda et al. 2021),
that yield scalar radiation. This interaction may yield a GW phase shift (Bamber et al.
2023) that is also present for low-eccentricity initial data (Cheng et al. 2024). The
post-merger quasinormal ringdown frequency are changed in the presence of a scalar
cloud (Choudhary et al. 2021). In EMRIs the GW signal is modified relative to the
vacuum case (Macedo et al. 2013b; Wong 2020) and the presence of a secondary BH
yields resonances (Baumann et al. 2019a, b, 2020; Berti et al. 2019). The detection
of EMRIs can be used to infer the boson’s mass (Hannuksela et al. 2019, 2020).

2.7.2.2 Expected source parameters All “traditional” GW sources in the LISA
band, including compact, comparable-mass BH binaries, EMRIs, and isolated
spinning massive BHs, are potentially affected by bosonic clouds. Therefore, they are
also good sources to act as cosmic laboratories for ultralight fields. Because the
underlying mechanism only relies on the gravitational coupling, but is independent
from the coupling of the bosons to the Standard Model of particle physics, they probe
all types of bosons, i.e., (pseudo-) scalars such as axion-like particles (Peccei and
Quinn 1977; Arvanitaki et al. 2010), ultralight dark matter (Hui et al. 2017; Ferreira
2021), ultralight vector (Goodsell et al. 2009; Baryakhtar et al. 2017) and
tensor (Brito et al. 2020; Dias et al. 2023) fields. LISA sources are particularly
well suited for detecting or constraining ultra-light bosons in the mass range
lB 2 10�19; 10�15½ � eV (Brito et al. 2017a, b; Isi et al. 2019b; Stott 2020; Brito et al.
2020) (and even wider for massive spin-2 fields (Dias et al. 2023)), and they are
suited for multi-wavelength searches in combination with ground-based instru-
ments (Ng et al. 2020).
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2.7.3 Binary black holes as probes of the nature of gravity

2.7.3.1 Description Does GR, our Standard Model of gravity, truly describe
gravitational phenomena at all scales? It is expected to break down at high-energy
scales as signaled by the presence of singularities inside BHs or at the Big Bang. At
these scales a more complete theory of quantum gravity is needed that consistently
combines gravity and quantum mechanics. However, GR cannot be quantized with
standard approaches and it is not renormalizable. Therefore, GR (or a quantized
version thereof) is not a viable candidate for quantum gravity. While a complete
theory of quantum gravity remains elusive, most candidates predict similar
extensions to GR such as higher curvature corrections or (non-minimial) coupling
to new fields. BHs provide an ideal probe to search for such beyond-GR theories
because, e.g., the presence of additional fields may endow BHs with scalar hair (or
“charges”), thus violating the no-hair theorems of GR (Hawking 1972; Bekenstein
1996). More specifically, new fundamental fields arise in several low-energy
effective field theories of gravity (Berti et al. 2015), e.g., in the low-energy limit of
quantum gravity, in the Horndeski class of scalar-tensor theories (Horndeski 1974;
Deffayet et al. 2009) tensor-vector-scalar theories (Moffat 2006), and in theories with
quadratic curvature corrections (Kanti et al. 1996; Alexander and Yunes 2009; Kanti
and Tamvakis 1995; Cano and Ruipérez 2022). Such fields also arise in extensions of
the Standard Model of particle physics, e.g., hidden U(1) fields (including “dark
photons”) in mini-charged dark matter models (Cardoso et al. 2016c) , primordial
magnetic monopoles (Preskill 1984), darkly charged dark-matter (Fan et al. 2013),
and the aforementioned bosonic clouds formed around BHs due to the superradiant
instability.

In comparable-mass compact binaries, the coalesence of such “hairy” BHs
generates additional scalar radiation that accelerates the inspiral and yields a GW
phase shift. Furthermore, new polarization channels can exist in modified gravity
theories. The detection or absence of such extra polarizations will be an important
probe for new physics. In addition to modifications to the background solutions and
the GW emission, modified theories of gravity may also change the physical
properties of the gravitational waves once they are emitted, e.g., by changing the
dispersion relation, the polarization and the way they interact with matter and with
the detector (Yunes and Siemens 2013). As modifications to the propagation of
gravitational waves accumulate with the distance traveled, and the capability to put
constraints on the mass of the graviton (Compton GW wavelength) scales with the
chirp mass, comparable-mass binaries are the most effective systems for measuring
these effects (Barausse et al. 2020b).

EMRIs will provide an excellent probe of the multipolar stucture of its primary
object and, thus, test if the primary is consistent with the Kerr BH metric predicted by
GR. GW measurements will reveal details of both the conservative (time-symmetric)
and the dissipative (time-asymmetric) sectors of the gravitational theory. Additional
degrees of freedom, such as dynamical scalar or vector fields, will introduce
modifications to the motion of bodies, and additional sources of GW energy and
angular momentum emission. Given that in most modified theories the gravitational
field is described by a spin-2 metric tensor field and by additional fields (Berti et al.
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2015), the interaction between matter and the new fields may give rise generally to an
effective “fifth force”, leading to deviations from the universality of free
fall (Nordtvedt 1968), or in other words, to violations of the “strong” equivalence
principle. How well a beyond-GR theory may be constrained depends on the relative
PN order at which the correction enters and on the dimensions of the extra
couplings (Cardenas-Avendano et al. 2020; Yunes et al. 2016; Chamberlain and
Yunes 2017). For example, the best GW tests of theories with higher-order curvature
invariants, such as the Gauss–Bonnet invariant (Metsaev and Tseytlin 1987;
Campbell et al. 1992; Kanti et al. 1996) or the Pontryagin density (Alexander and
Yunes 2009), involve small-mass BHs whose curvature is larger than that of
supermassive BHs. Therefore, the best probes of higher curvature corrections are
IMRIs and EMRIs in the LISA band (Sopuerta and Yunes 2009; Gair et al. 2013) or
stellar-mass BBHs detected with ground-based GW instruments.

2.7.3.2 Expected source parameters Both MBHBs and EMRIs can be employed to
test gravity and the nature of compact objects with LISA; see the LISA Fundamental
Physics White Paper (Arun et al. 2022) for details. For example, with nearly equal-
mass BHs, one can perform null tests with inspiral-merger-ringdown consistency and
BH spectroscopy, as well as searching for specific deviations with parametrized
inspiral and ringdown waveforms; see (Berti et al. 2015; Franchini and Völkel 2024;
Colleoni et al. 2024). Given the different nature and mass range of the gravitational-
wave sources that will be detected with LISA, tests of gravity with LISA will be
complementary to the suite of tests that has been performed by the LVK
collaboration (Abbott et al. 2019e, 2021c, d). The beyond-GR modifications in the
modelling of these signals (including PN theory, BH perturbation theory, effective-
one-body approaches, and numerical relativity) are discussed in Sect. 6.

With EMRIs one can constrain the multipolar structure of the primary object’s
spacetime with exquisite precision, thus testing whether the primary object is
consistent with the Kerr BH metric predicted in GR , see, e.g., Cárdenas-Avendaño
and Sopuerta (2024) and references therein. The parametrization of the waveforms
will depend on the type of test carried out. For instance, when testing the geometry of
the dark objects inhabiting galactic centers assuming GR, the parameters would
describe the deviations from Kerr, e.g., multipole moments, tidal parameters or post-
Kerr parameters. On the other hand, when testing GR, the parameters would describe
the modifications of GR, e.g., additional coupling constants, length scale of extra
dimensions or higher-order corrections.

With both types of sources one can search for novel radiation channels due to
extra polarizations or additional charges present in beyond-GR theories.

2.7.4 Testing the Kerr-hypothesis: BH mimickers and echoes

2.7.4.1 Description Exotic compact objects (ECOs) are horizonless objects which
are predicted in some quantum gravity extensions of GR (Nicolini et al. 2006; Bena
and Warner 2008; Giddings 2014; Koshelev and Mazumdar 2017; Abedi et al. 2020)
and in the presence of exotic matter fields in the context of GR (Liebling and
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Palenzuela 2023; Giudice et al. 2016; Cardoso and Pani 2019). The theoretical
motivations for ECOs are the regularity of their inner structure and the overcoming of
semi-classical puzzles such as that of the information loss (Myers 1997; Das and
Mathur 2000; Mathur 2009). These ideas have inspired a plethora of models
including gravastars (Mazur and Mottola 2004, 2023), boson stars (Feinblum and
McKinley 1968; Kaup 1968; Ruffini and Bonazzola 1969; Colpi et al. 1986; Seidel
and Suen 1991), Proca stars (Brito et al. 2016a), wormholes (Einstein and Rosen
1935; Morris and Thorne 1988; Damour and Solodukhin 2007), fuzzballs (Mathur
2005, 2009) and others (Bowers and Liang 1974; Gimon and Horava 2009; Prescod-
Weinstein et al. 2009; Brustein and Medved 2017; Holdom and Ren 2017;
Buoninfante and Mazumdar 2019).

ECOs are classified in terms of their compactness, reflectivity and possible extra
degrees of freedom related to additional fields (Cardoso and Pani 2019; Wang and
Afshordi 2018). Two important categories are (Cardoso and Pani 2017): ultracom-
pact objects, whose exterior spacetime has a photon sphere, and clean-photon-sphere
objects (ClePhOs), so compact that the round-trip time of the light between the
photon sphere and the object’s surface is longer than the instability timescale of
photon orbits. If the remnant of a merger is an ultracompact object, the ringdown
signal differs from the BH ringdown at early stages and is dominated by the modified
QNMs of the object (Urbano and Veermäe 2019; Maggio et al. 2020). Conversely if
the remnant of the merger is a ClePhO, the prompt ringdown is nearly
indistinguishable from that of a BH because it is excited at the light ring (Cardoso
et al. 2016a). The details of the object’s interior appear at late times in the form of a
modulated train of GW echoes (Cardoso et al. 2016a, b; Price and Khanna 2017;
Correia and Cardoso 2018; Burgess et al. 2018; Huang et al. 2020). The time delay
between echoes depends on the compactness of the object and/or the energy scale of
new physics (Oshita et al. 2020a), whereas the amplitude is related to the reflectivity
of the object (Cardoso and Pani 2019).

Many of these ECOs could be ruled out based on theoretical grounds. Horizonless
compact objects are affected by an ergoregion instability when spinning sufficiently
fast (Friedman 1978; Comins and Schutz 1978; Yoshida and Eriguchi 1996;
Kokkotas et al. 2004). The endpoint of the instability could be a slowly spinning
ECO (Cardoso et al. 2014; Brito et al. 2015c) or dissipation within the object could
lead to a stable remnant (Maggio et al. 2017, 2019a). Furthermore, ultracompact
horizonless objects might be generically affected by a light-ring instability at the
nonlinear level (Cardoso et al. 2014; Cunha et al. 2017, 2023). Current and future
GW detectors will constrain models of ECOs in almost all the regions of their
parameter space (Cardoso et al. 2008; Fan and Chen 2018; Barausse et al. 2018;
Maggio et al. 2020). In particular, searching for echoes in the post-merger signal of
MBHBs with LISA (Maggio et al. 2019b) will provide a clean smoking gun of
deviations from the standard, “vacuum”, BH prediction. Furthermore, EMRIs could
constrain the reflectivity of the primary object to unprecedented levels (Maggio et al.
2021a).
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2.7.5 Expected source parameters

The source parameters depend on the specific signal used to search for and constrain
ECOs. The echo signal depends on the parameters of the remnant (in particular mass
and spin), on its compactness, and especially on its effective reflectivity, which is
zero for a classical BH (Cardoso and Pani 2019; Maggio et al. 2021b). The
reflectivity can be generically a complex function of the frequency and of other
remnant parameters. In an inspiral, besides the standard binary parameters, ECOs are
characterized by anomalous multipole moments and nonvanishing tidal deformabil-
ity, sharing in this case properties similar to those of BHs in modified gravity
theories. In an EMRI, besides the different multipolar structure (Glampedakis and
Pappas 2018; Raposo et al. 2019; Raposo and Pani 2020; Bianchi et al. 2020, 2021;
Bena and Mayerson 2020, 2021; Herdeiro et al. 2021a; Bah et al. 2021; Fransen and
Mayerson 2022; Loutrel et al. 2022; Vaglio et al. 2022) and tidal deformability (Pani
and Maselli 2019; Piovano et al. 2023) of the central object, a key parameter is again
the (frequency-dependent) reflectivity (Maggio et al. 2021a).

3 Modelling requirements from data analysis

Ideally, waveform models should be infinitely accurate, evaluate instantly and be
available in any format desired. In practice, none of these are achievable. The
practical accuracy, efficiency and format requirements are set by the way LISA data
is analyzed. This section starts with a brief overview of how LISA data analysis is
expected to work. (For a more detailed description, see the White Paper from the
LISA Data Challenge Working Group (2022).) The remaining sections discuss how
data analysis sets requirements on the accuracy, efficiency and formats of waveform
models, providing the necessary framing for the discussion of waveform models in
the rest of this White Paper.

3.1 Data analysis for LISA

Contributor: Tyson Littenberg

The foundation of gravitational wave data analysis is rooted in the conceptual
simplicity of the measurement: observing relative changes in the separation between
a collection of “proof masses” in free fall due to leading-order perturbations in the
underlying spacetime metric, which propagate (effectively) uninhibited through the
Universe. This is in stark contrast to, for example, electromagnetic observations,
where the photons’ propagation from source to detector is influenced by intervening
material (e.g., dispersion, scattering, absorption, reprocessing), and then undergoes
complicated interactions with the instruments themselves (e.g., focusing optics,
filters, diffraction, absorption by the detector) before registering as a signal. This is
not to take away from the heroic effort and ingenuity required to develop the
measurement system that is sensitive to the unfathomably small space-time
perturbations themselves. However, given a detector that can achieve the necessary
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sensitivities, it is a tractable task to derive its response to incident gravitational waves
from first principles.

As a result, GW data analysis methods have primarily developed around a forward
problem, where the detector response is predicted from a hypothetical source and that
predication is then tested against the data (Jaranowski and Krolak 2005). There are
notable exceptions, particularly in some searches for unmodelled GW transients in
ground-based interferometer data (Drago et al. 2021), which approach the analysis as
an inverse problem, starting with the observed data and working backward to solve
for the input signal.

Any analysis is only as good as the models that go into it. The phenomenal
sensitivity, accuracy and precision of GW observations is not achievable without
highly accurate, coherent models for the gravitational waveforms themselves (the
focus of this whitepaper), as well as the detector response and noise characteristics.

Under the assumption that the noise is Gaussian, the likelihood that the
hypothetical model, parameterized by h, would produce the observed data d is

pðdjhÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2pCÞp e�

1
2r

yC�1r; ð5Þ

where r ¼ d�Pi hi is a vector of all residual data samples after the discrete GW
signals hi have been subtracted, C is the noise covariance matrix Cij / hnijnji, and n
is noise such that, in the absence of any GW signals, d ¼ n. The likelihood is testing
whether the residual is consistent with the ansatz that, in the absence of discrete
gravitational waves, the data is Gaussian characterized by C. Note the emphasis on
discrete gravitational waves – a stochastic background of GW signals appears in the
data model as a “noise” term, which modifies C with particular covariances that set it
apart from instrument noise. See Romano and Cornish (2017) for a detailed look at
how the likelihood is derived, simplifications that produce slightly different forms of
the equation in the literature, and a unified treatment of discrete and stochastic
signals.

Also note that Eq. (5) does not prescribe a representation of the data. The game, as
it were, is to represent the data in a way that minimizes the number of non-zero
components of C�1 and thereby minimize the computational cost of evaluating the
likelihood. It is the case under the assumption of stationary noise (i.e. C is constant
over the observation time) that the discrete Fourier transform diagonalizes C, which
is why much of the GW analysis literature is based in the Fourier domain. For LISA,
due to the long duration signals expected, the assumption of stationary noise will be
dubious at best, and so analysis methods may trend towards other representations for
the data (e.g., time-frequency methods with short Fourier transforms, discrete
wavelet transforms, etc.), but the fundamental likelihood function remains the same.

The closest analog to the LISA analysis of individual sources is found in the
analysis of ground-based interferometer data from the LVK collaboration, which are
heavily reliant on waveform models. There are two major differences between LVK
and LISA that limits the applicability of the analogy. First: At current detector
sensitivities, the rate of detectable sources is such that they are still sparsely
distributed through the data, with typical signals present in the most sensitive
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frequency band of the detectors for Oð10 sÞ at a rate of Oða few=weekÞ. LISA, on the
other hand, will be signal-dominated, with tens of thousands of continuous Galactic
sources overpowering the instrument noise below Oð3 mHzÞ and, depending on the
rate and mass distribution of massive black hole mergers, several extremely high
SNR mergers in band for OðweeksÞ to OðmonthsÞ, overwhelming any other
contributions to the data stream. Thus, whereas the LVK searches are primarily “data
mining” endeavors, sifting through a large volume of noisy data for rare and
comparatively weak signals, LISA’s primary challenges are twofold: Source
confusion due to the large number of sources simultaneously detectable; and model
accuracy due to both the large number of waveform cycles over which models must
stay phase coherent, and to contend with such high SNRs so as to not contaminate
lower-amplitude sources with residual power.

The second key difference between the LVK collaboration and LISA experiences
is the volume of the parameter space itself. Ground-based searches for compact
mergers span a mass range for the components of O(1–100) M�. While challenging,
this mass range is small enough that precomputed grids of template waveforms
covering the parameter space can be used when searching for candidates (see, e.g.,
Abbott et al. 2016d, 2023a). The LISA parameter space for comparable-mass black
hole mergers, for example, is several orders of magnitude larger, spanning
Oð103 � 108 M�Þ, both eliminating the possibility of using grid-based methods
and expanding the range of possible mass ratios encountered by the analysis. To date,
the most successful prototype LISA analyses have used stochastic sampling
algorithms (Katz 2022; Littenberg and Cornish 2023; Lackeos et al. 2023), still
relying on template waveforms but using data-driven methods to concentrate
waveform calculations in the high-probability regions of parameter space. While
LVK analysis of compact mergers is hierarchical, with clear distinction between the
“search” and “parameter estimation“ steps, those two functions blur together for
many prototype LISA pipelines. Stochastic sampling algorithms put more pressure
on the computational efficiency of waveform calculations, since template generation
is part of the analysis pipeline itself, as opposed to pre-computing and then reusing a
(large) table of waveforms generated on a fixed grid.

Note that while 3rd generation ground-based GW detectors will trend towards
higher event rates, signal durations and signal strengths, the LISA forecasted
maximum signal strengths are uniquely in excess of signal-to-noise ratios
� 104 (Kaiser and McWilliams 2021). As a result, while the continued improvement
of ground-based detectors and analysis methods naturally leads to evolution of the
waveform models that directly benefit analysis of LISA data, the waveform
development for 3rd generation detectors is necessary but not sufficient to fully
achieve LISA’s potential. LISA puts unique pressure on the accuracy, breadth of
parameter space and computational efficiency of waveform models.

It is also worth considering that the signal-processing part of the LISA science
ground segment is divided between two paradigms: the so called “low latency” and
“global” analyses. The global analysis is the joint fit to all GW signals in the data,
and it is here where waveform accuracy is most important, in order to prevent
mismatches with loud signals from contaminating weaker signals that are
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simultaneously present in the data stream. The global analysis is computationally
intensive, and having efficient waveform generation tools is necessary for it to be
tractable. However, the global-fit processing speed is more forgiving than that of the
low-latency analyses, since the goal is to produce thorough source catalogs with a
relatively relaxed release schedule on a OðmonthlyÞ to OðyearlyÞ cadence.

For the low-latency analysis the trade-off is inverted, as computational speed and
localization information are prioritized over all else. The low-latency pipelines will
run � daily, and will likely use a subset of the data (e.g. by bootstrapping based on
the most recently completed analysis). The primary goal is to provide actionable
information for joint multimessenger observations of transients. There are other
functions of the low-latency pipelines, for example providing source-subtracted
residuals to the instrument team for assessment of detector performance etc., but
under the purview of waveform generation time is of the essence. One thing to
therefore consider at the architectural level of the waveform generation software is
the need for tools that can be responsive to different demands on the speed/accuracy
spectrum for processing sources, depending on the primary goal of the analysis.

3.2 Accuracy requirements

Coordinators: Deborah Ferguson and Maarten van de Meent
Contributors: M. Haney, R. O’Shaughnessy

Inaccuracies in waveform models affect the analysis of LISA data in three main
ways. First, if the modelled waveforms do not sufficiently resemble the signals
produced by Nature, this can hamper our ability to detect and identify sources in the
data. Second, errors in the model will introduce some level of bias in the estimation
of the source parameters, and could potentially masquerade as beyond-GR effects.
Finally, if particularly loud sources are not perfectly subtracted from the data stream,
their residuals can contaminate the searches for other sources. Below, we discuss the
impact of these effects and how they lead to accuracy requirements for LISA
waveform models.

3.2.1 Detection and identification

The impact of modeling errors on detection rates are fairly well understood in the
case of a matched filter search for a single source in the data (Flanagan and Hughes
1998; Lindblom et al. 2008; McWilliams et al. 2010). Suppose we have some

waveform model, hmodelðk~Þ, depending on some set of parameters k~, and we are
looking for some true waveform htrue in the data, then the fitting factor (Apostolatos
1995) is defined by
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F ¼ max
k~

hhtruejhmodelðk~Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhtruejhtrueihhmodelðk~Þjhmodelðk~Þi

q ; ð6Þ

where h�j�i is the noise weighted inner product from (2). The fitting factor measures
the effective loss in SNR due to using an imperfect model. Consequently, if the used
models have a fitting factor F for a particular source, the maximum range at which
such a source can be detected is reduced by a factor F. Whether this has any impact
on the detection rate depends on the type of source. Some LISA MBHB sources are
so loud (in the higher mass seed scenario) that even the earliest (and therefore
furthest) such events would be easily detectable (Barausse et al. 2020a), in which
case the fitting factor of the used model has little to no effect on the detection rate.
For other, quieter sources (such as EMRIs, SOBHBs, or GBs) the detection rate is
more range limited, and a poor fitting factor F could lead to a reduction of the
number of detections by a factor F 3 (assuming a uniform distribution of the source
through a spatially flat universe). An appropriate norm for what degree of loss of
sources is deemed admissible for achieving LISA’s science goals needs to be
established. An additional consideration here is that increasing the number of
unresolved sources could adversely affect the searches for others sources such as any
cosmological GW backgrounds (Pan and Yang 2020a).

The above is valid for an idealized case, where the search is conducted using a
continuous bank of templates. In practice, a search would use a discretized template
bank, meaning that the effective fitting factor is increased due to the template
spacing. Moreover, as noted in Sect. 3.1, a fully coherent search of the LISA data
seems infeasible. Instead, LISA pipelines will most likely employ semi-coherent
(Gair et al. 2004; Chua et al. 2017) or stochastic (Gair et al. 2008b; Cornish 2011)
search strategies. In a semi-coherent search, template and data are both partitioned
into short segments, and the template–data overlap for each segment is maximized
over several extrinsic parameters. Waveforms used in such a search need only to stay
phase-coherent over the shorter segments. For example, it was shown in Chua et al.
(2017) that templates with [ 97% overlap accuracy over J106 s will still be
sufficient to detect [ 50% of EMRIs detectable with fully coherent, precise
templates.

3.2.2 Parameter estimation

LISA parameter inference nominally involves a joint multi-source fit for all available
sources in the data (Vallisneri 2009; Babak et al. 2008a, b, 2010). For the purposes of
the discussion below, we approximate this process as independent parameter
inference for individual sources, resolving the source from detector noise and the
confusion noise of all other signals in the data. Within that context, the impact of
waveform sytematics on parameter inference has been historically estimated using
well-understood analytic techniques; see, e.g., Vallisneri and Yunes (2013); Cutler
and Vallisneri (2007). The most frequently used ingredients in analytic waveform
standards are the match or faithfulnessM, which is the overlap between a signal htrue
and template htemplate maximized over the coalescence time and phase of the template;
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the Fisher matrix oahðkÞjobhðkÞh i; and the inner product oahjdhh i between
derivatives of the waveform and residuals dh between two signal approximations.
The simplest and most conservative waveform accuracy standards for parameter
inference are expressed in terms of limits on the mismatch 1�M, which nominally
must be .1=SNR2 to avoid introducing systematic bias comparable to the statistical
error for a single source (Flanagan and Hughes 1998; Lindblom et al. 2008;
Chatziioannou et al. 2017). For a population of sources, in principle systematic
biases could stack in hierarchical population inference, and the most conservative
threshold would be 1=ðNsSNR2Þ where Ns is the typical number of sources (Wysocki
et al. 2019). However, these thresholds are likely to be much too conservative for
many applications, see, e.g., Pürrer and Haster (2020).

Because the impact of systematic biases depends strongly on the nature and scale
of the bias relative to astrophysical features, general conclusions about systematic
bias cannot be drawn, and (barring negligible systematic error) must be assessed for
each science goal individually by performing hierarchical population inference. For
example, most SOBHBs in quasicircular orbits are in wide, relatively slowly-
evolving orbits in the LISA band. For 90% of LISA-relevant SOBHBs (in population
models consistent with current LVK observations), 2PN-accurate waveforms are
sufficiently faithful for parameter estimation without biases (Mangiagli et al. 2019).
At the other extreme, MBHBs will have extremely high amplitudes, with minute
statistical error (Lang and Hughes 2008; Babak et al. 2008a, b, 2010). Nominally, the
very conservative accuracy thresholds described above would suggest a mismatch

error target of order 1=ðNsSNR2Þ ’ Oð1=ð10 � ð1000Þ2ÞÞ ’ 10�7, for statistical
errors to be small compared to statistical errors for the recovered population of
MBHBs from O(10) detections with O(1000) SNR as could occur in certain MBHB
formation scenarios (Barausse et al. 2020a). This threshold may be needed for
applications that require joint inference on all massive MBHBs (e.g., tests of general
relativity), but can be dramatically relaxed for any astrophysical interpretation of the
MBHB population. Further studies will be necessary to establish specific require-
ments on waveform accuracy for each context in which parameter estimation is
critical.

3.2.3 Contamination

Contamination effects occur when the residual from one source cannot be fully
removed and impedes the interpretation of other, subdominant sources in the data.
For such strong sources, systematic errors may be larger than statistical errors (Cutler
and Vallisneri 2007). Though measurement error may have little impact on the
astrophysical interpretation of the strong sources, the potentially substantial residuals
produced by inaccurate models of their gravitational waves will introduce artifacts
which contaminate downstream data analysis (Vallisneri 2009; Babak et al.
2008a, b, 2010; Porter 2015). For instance, for numerical relativity waveforms,
insufficiently resolved grids can cause significant residuals even for simulations with
precisely the same parameters as the observed signal (Ferguson et al. 2021). The
impact of errors arising from such imperfect modeling of strong sources can only be
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properly assessed with full joint hierarchical inference, using realistic models and
contamination targets. Because of the diversity of sources that could be contaminated
by residuals left by imperfect models for MBHB sources, much remains to be done to
comprehensively assess key questions: How do modelling residuals from loud
sources impact the detection and identification of other sources? Which sources are
most affected? And what are the implications for the required modelling accuracy?

3.3 Efficiency considerations

Coordinators: Mark Hannam and Jonathan Thompson
Contributors: A. Chua and M. Katz

We shall discuss here the efficiency requirements imposed by search and inference
for the two main classes of strong-field source that will be observable by LISA:
MBHs and EMRIs. Relatively weaker-field sources such as GBs and SOBHs are a
lesser concern; modeling of their signals (to the accuracy required for data analysis)
is significantly easier, and computational cost is dominated by the need to attain a
sampling resolution that is adequate for the typical duration, bandwidth and
abundance of each source type. Thus the efficiency requirements for these sources
may be addressed on the analysis end with suitable approximations, or at the
modeling–analysis interface where techniques such as those in Sect. 5 may be
applied.

3.3.1 Extreme-mass-ratio inspirals

EMRIs are the only LISA sources that combine the issue of strong-field complexity
with that of long-lived signals (potentially staying in band for years), and thus they
pose great challenges for both waveform modeling and data analysis. The main
problem in EMRI search is information volume: the space of LISA-observable
EMRIs is gargantuan, requiring 1030–1040 templates to cover in a naive grid-based
search (Gair et al. 2004).1 This is unfeasible regardless of waveform efficiency. One
possible solution relies on semi-coherent filtering, which essentially returns less
informative templates that cover larger regions in parameter space, allowing
extensive searches to be performed in a viable amount of time. Assuming that
computing performance in the 2030 s lies around the 102-teraflop regime (achievable
at present with � 103-node clusters), semi-coherent segments of .106 s would
enable the analysis to be completed over the mission lifetime (Gair et al. 2004).

In practice, EMRI search will probably use semi-coherent filtering within
stochastic algorithms, rather than template banks. Thus the estimates in Gair et al.
(2004) are very conservative, as stochastic searches are generally far more efficient
than grid-based searches at the same number of template evaluations, even with a

1 As a point of reference, banks of at most 105–108 templates are needed to detect LVK BBH mergers
(Moore et al. 2019), and searches are often conducted with smaller banks of around 104 templates in
practice (Sakon et al. 2024).
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large multiplier (e.g., repeated runs) to ensure proper coverage of the parameter
space. Note, however, that a potentially large number of additional templates will be
required in the assessment of detection significance for each candidate source,
although it remains unclear whether such an assessment will eventually be performed
in the search or inference stage.

The efficiency requirements for inference are more straightforward, in that LISA
analysis algorithms will be built on similar tools to those used in LVK parameter
estimation, like Markov Chain Monte Carlo (MCMC) (Littenberg and Cornish 2023;
Strub et al. 2024; Katz et al. 2025, e.g.). An estimated 106–109 templates will be
required per source posterior distribution. If we want to produce a posterior in less
than 10 days we need waveforms that can be produced in .1ms. LISA will detect
� 104 sources, so parallelization resources are inherently considered in our scaling
estimate considering each individual source posterior as a single parallelized process
taking .10 days. The estimated number of template evaluations per posterior also
assumes that the prior regions for posterior sampling can be sufficiently localized to
begin with; this is certainly possible in principle, but may require multiple search
stages beforehand in a hierarchical approach.

3.3.2 Massive black hole sources

Generally, MBH sources are expected to be detectable for �week to hours prior to
the merger. Due to this detection time frame and large signal-to-noise ratio of MBH
binaries, coherent analysis over the full waveform template will most likely be
employed for both search and parameter estimation. Therefore, from a waveform
production perspective, these two analyses are roughly the same even if search and
parameter estimation employ different schemes for achieving their various goals
(Cornish and Shuman 2020). One way a search algorithm may differ from a
parameter estimation algorithm for MBHs, in terms of the waveform generation, is in
the use of higher-order harmonics. Recent work (Katz et al. 2020; Marsat et al. 2021)
has shown the importance of higher-order modes in parameter estimation for LISA.
However, as detailed in Cornish and Shuman (2020), searching over the dominant
harmonic may be acceptable for initially and roughly locating sources throughout the
high-dimensional parameter space. With this said, this is a matter of adding or
removing modes (that we assume are available in a model), not altering the
fundamental waveform generation method.

Given this idea that the waveform generation is similar for both search and
parameter estimation for MBHs, the following discusses how efficiency requirements
relate to the stages of waveform creation. As discussed in Sect. 5.1, there are
generally two main parts to waveform creation in the context of LISA: sparse,
accurate waveform calculations and a scaling method to achieve a full waveform
from the sparse information. MBH waveforms can be generated beginning with
sparse calculations of the amplitude and phase for each harmonic mode with an
accurate waveform model. Depending on the specific analysis type, these sparse
calculations are then upsampled to the desired search or parameter estimation
settings. Producing accurate and upsampled waveforms directly from the accurate
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waveform generator is unnecessary and time-consuming: various methods allow for
the upsampling of sparse, smooth functions in an accurate and much more efficient
manner (e.g. see García-Quirós et al. 2021; Katz et al. 2021). This construction leads
to two different waveform generation efficiency requirements. The first is the overall
waveform (including upsampling). With similar requirements to EMRIs given in the
section above, we expect to collect at least � 106 MCMC samples for a given source
posterior distribution. To accomplish this in � 10 days, we need to generate
waveforms at a rate of � =1s on a single central processing unit (CPU) core.

The other efficiency requirement deals with the separation of the accurate
waveform generation from the scaling operation. Generally, the scaling operation is
the bottleneck for LISA where waveforms can have up to � 106–108 data points.
Therefore, the requirement on the scaling part is that a waveform on a single CPU
core be scaled in � 1 second or less. This condition, therefore, also sets the
requirement for the accurate waveform portion assuming its sparsity prevents it from
becoming the bottleneck. This requirement is that the sparsely sampled, accurate
waveform must be of a similar or lower order of magnitude in timing when compared
with the scaling operation.

3.4 Interface and data format requirements

Contributor: Tyson Littenberg

An additional key consideration for optimally supporting LISA analyses is the need
for a flexible interface between waveform generation software and analysis pipelines.
It is important for verification and validation of pipelines, and as a means for cross-
checking results, to have independently developed algorithms targeting the same
sources. (There is also the added benefit of a constructive competition between
development teams.) As per the previous discussion around Eq. (5), different analysis
pipelines will likely be built around different representations of the data. Template
generation is generally the computational bottleneck, and so it needs to be optimized
for the application. At the same time, the benefits of having independent pipelines
become liabilities if the analyses are not interfacing to the same waveform generation
tools. As a result, it is of paramount importance that the waveform and pipeline
development teams are collaborating early and often to avoid unnecessary or
redundant transformations of the waveforms by the analysis pipelines (consider, e.g.,
a waveform that is initially computed in the time domain but then output in the
Fourier domain, being called by an analysis pipeline that uses a discrete wavelet
domain representation of the data).

The demand for flexibility of the waveform-analysis interface affects more than
just the choice of a basis set used to represent the template. There have been
promising developments in low-cost likelihood evaluations that use the instantaneous
amplitude and phase of the template waveform, sampled on an adaptive grid, to
concentrate computations to regions where the signal is changing most rapidly (Cor-
nish and Shuman 2020; Marsat et al. 2021). Such considerations are difficult to
retroactively incorporate in established template generation algorithms, but present
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opportunities for increased efficiency if they are part of the original waveform
algorithm designs.

4 Modelling approaches for compact binaries

Detecting and inferring the parameters of compact binaries systems requires waveform
template which, in turn, necessitates solving the relativistic two-body problem. Unlike
in the Newtonian counterpart, it is not possible to only solve for the motion of the two
bodies; one must solve for the dynamical evolution of the full spacetime. In general
there are no known closed-form solutions to the nonlinear Einstein field equations for
radiating binaries and so a variety of techniques have been developed to compute
solutions either numerically or via perturbative expansions. The three main approaches
that directly solve the Einstein field equations are numerical relativity (NR), post-
Newtonian/Minkowskian (PN/PM) theory, and gravitational self-force (GSF).

Each of these approaches has strengths and weaknesses that leads them to being
best employed in different regions of the binary configuration parameter space.
Numerical Relativity directly solves the Einstein field equations to produce exact
solutions up to numerical error. Post-Newtonian theory analytically computes
relativistic corrections to the binary’s motion and GW emission as a series expansion
in powers of the orbital velocity as a fraction of the speed of light. The closely related
post-Minkowskian approach expands field equations around flat Minkowski
spacetime in powers of the gravitational constant without any restriction of the
velocity of the binary. Gravitational self-force expands the Einstein field equations in
powers of the (small) mass ratio. Figure 2 gives a quantitive description of the
strengths and weakness of each approach in the orbital separation – mass-ratio
parameter space for non-spinning quasi-circular binaries.

In addition to the above approaches there are also effective frameworks that attempt to
cover large portions of the parameter space. The physically motivated Effective-One-
Body model takes inspiration from the solution to the Newtonian problem and describes
the binary as the motion of a test body in spacetime of a deformed single black hole.
Much progress can be made analytically with this approach by absorbing post-
Newtonian and post-Minkowskian corrections, and further calibration can be applied
using numerical results from the NR and GSF methods. The Phenomenological
(Phenom) waveform models do not attempt to solve the relativistic two-body problem.
Instead they aim to directly model the waveforms by building upon fast post-Newtonian
models with further calibration from NR and GSF. The EOB and Phenom models are
heavily used in analysis of GW data from current ground-based detectors.

In this section we outline the status of the above approaches and discuss the
required development needed to reach the accuracy requirements outlined in
Sect. 3.2. Concerns about the speed of waveform generation are addressed in Sect. 5.
The status and requires for LISA of these approaches can be found in Sect. 4.1 for
numerical relativity, Sect. 4.2 for weak-field post-Newtonian and post-Minkowskian
expansions, Sect. 4.3 GSF, Sect. 4.5 for EOB, and Sect. 4.6 for Phenomenological
models. These sections focus on modelling within GR; see Sect. 6 for a discussion on
modelling in alternate theories of gravity.
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4.1 Numerical relativity

Coordinators: Mekhi Dhesi, Deborah Ferguson and Deirdre Shoemaker
Contributors: Sebastiano Bernuzzi, Gabriele Bozzola, Katy Clough, Deborah
Ferguson, William Gabella, Miguel Gracia, Roland Haas, Mark Hannam, Eliu
Huerta, Sascha Husa, Larry Kidder, Pablo Laguna, Carlos Lousto, Geoffrey
Lovelace, David Neilsen, Vasileios Paschalidis, Harald Pfeiffer, Geraint Pratten,
Hannes Rüter, Milton Ruiz, Stuart Shapiro, Jonathan Thompson, Antonios Tsokaros,
Miguel Zilhao

Fig. 2 Region of applicability of different approximation techniques for non-spinning quasi-circular binary
BH inspiral. The 1PA region is a prediction derived from fitting NR data to an expansion of the form (14).
The shaded regions indicate ranges within which the cumulative orbital phase-error is less than p=4 and
p=16 radians, respectively. Recent direct calculations of post-adiabatic (1PA) waveforms suggest the 1PA
region shown is over-optimistic for m[ 0:1, but they have borne out the prediction for m\0:1 (Albertini
et al. 2022b). The gray lines show the location of binaries with 10 (resp. 100 and 1000) orbits left before
they reach the ISCO. This figure is reproduced from van de Meent and Pfeiffer (2020)
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4.1.1 Description

Numerical relativity (NR) solves Einstein’s field equations through direct numerical
integration on supercomputers (see e.g. the books by Alcubierre 2008; Bona et al.
2009; Baumgarte and Shapiro 2010; Gourgoulhon 2012; Shibata 2016), providing
the spacetime geometry and dynamics of the system in addition to the gravitational
radiation emitted. Such solutions of the full nonlinear field equations without
approximations are critical to our understanding of highly dynamic regimes without
symmetries, such as the late inspiral and merger of compact binaries.

The first steps at numerical solutions of Einstein’s equations date back several
decades (Hahn and Lindquist 1964; Smarr et al. 1976) and tremendous progress since
then enabled the first simulations of inspiraling and merging binary black
holes (Pretorius 2005a; Campanelli et al. 2006a; Baker et al. 2006a). These
breakthroughs initiated an explosive growth of the field, as illustrated, e.g. in the
reviews by Lehner (2001); Centrella et al. (2010); Duez and Zlochower (2019);
Foucart et al. (2022). By now, NR has become a critical part of the modeling the
gravitational waves of the late inspiral and merger phase of coalescing binaries (e.g.
Mroue et al. 2013; Husa et al. 2016; Boyle et al. 2019; Hamilton et al. 2024), which
in turn underpins the analyses of all observed gravitational waves from coalescing
binaries.

In order to solve Einstein’s field equations, modern NR codes generally use the
3?1 approach (Arnowitt et al. 1962; York, Jr. 1979) in which the four-dimensional
spacetime is sliced into three-dimensional hypersurfaces, and Einstein’s equations are
reformulated as a Cauchy problem with constraints. The first stage in numerically
solving a compact binary inspiral is the construction of initial data, for which
Einstein’s constraint equations are reformulated as elliptic equations either in the
context of the conformal-thin-sandwich formulation (York 1999; Pfeiffer and York
2003) or the puncture approach (Brandt and Brügmann 1997). The resulting coupled
nonlinear partial differential equations are solved with custom-purpose elliptic
solvers (Pfeiffer et al. 2003; Ansorg et al. 2004; Gourgoulhon et al. 2016). Numerous
improvements over the years increased the generality of the physical conditions that
can be achieved and the numerical quality of the solution, e.g. Lovelace et al. (2008);
Foucart et al. (2008); Grandclement (2010); Ruchlin et al. (2017); Ossokine et al.
(2015). Moreover, entirely new codes were developed (Dietrich et al. 2015b; Rashti
et al. 2022; Assumpcao et al. 2022; Vu et al. 2022; Papenfort et al. 2021). The time
evolution is encoded in a set of coupled, hyperbolic partial differential equations with
suitable gauge conditions and boundary conditions, where three main approaches
have emerged: the generalized-harmonic formulation (Pretorius 2005b; Lindblom
et al. 2006; Szilagyi et al. 2009), the Baumgarte–Shapiro–Shibata–Nakamura
formulation (Shibata and Nakamura 1995; Baumgarte and Shapiro 1998) and
different versions of the Z4 formulation of Einstein’s equations (Bona et al. 2003;
Bernuzzi and Hilditch 2010; Ruiz et al. 2011; Weyhausen et al. 2012; Hilditch et al.
2013; Alic et al. 2012, 2013) (see Table 7). Gravitational radiation is typically
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computed as gravitational strain (Reisswig and Pollney 2011) and must be
propagated to future null infinity (see review by Bishop and Rezzolla 2016), which
is often accomplished by extrapolation of GW modes extracted at finite radius (Boyle
and Mroue 2009). Alternatively, Cauchy-Characteristic Extraction (Bishop et al.
1996; Handmer and Szilagyi 2015; Moxon et al. 2023) directly yields the waveforms
at infinity, with improved recovery of non-oscillatory GW modes and GW memory
effects (Mitman et al. 2020). Gauge conditions and transformations at future null
infinity must be treated with care (Lehner and Moreschi 2007) to yield well-behaved
numerical waveforms with well-defined waveform modes (Mitman et al. 2022).
Cauchy codes have difficulty resolving the memory effect (Boyle et al. 2019; Mitman
et al. 2020). Instead, most approaches to computing the memory effect use Cauchy
NR waveforms (or NR calibrated waveform models) and the asymptotic Einstein
equations to determine the unresolved memory effect in the Cauchy simulations that
is required to satisfy Einstein’s equations (Favata 2009; Talbot et al. 2018; Boersma
et al. 2020; Khera et al. 2021; Mitman et al. 2021a; Liu et al. 2021a). This
approximate approach agrees with the Cauchy-Characteristic extracted waveforms,
though comparisons over a wider range of the BBH parameter space would be useful.

Once BBH simulations became possible, the NR community quickly achieved
many firsts, including the first simulations of unequal-mass BBH coalescences (Baker
et al. 2006b; Herrmann et al. 2006), the first with spinning binaries (Campanelli et al.
2006b), the first targeted eccentricity mergers (Hinder et al. 2010) and first
comparisons with PN calculations (Baker et al. 2007b; Buonanno et al. 2007a;
Hannam et al. 2008; Boyle et al. 2007). NR calculations of the merger revealed
features of the non-linear regime, among them that BHs with spins positively aligned
with the orbital angular momentum merge at higher frequency (Campanelli et al.
2006b), spin hang-up configurations (Lousto and Zlochower 2011a), as well as the
calculation of the recoil velocity imparted on the remnant BH (Baker et al. 2006b;
Gonzalez et al. 2007b; Herrmann et al. 2006); in particular it was found that BH
spins oriented approximately parallel to the orbital plane can lead to recoil velocities
of several 1000’s km/s (Campanelli et al. 2007a; Gonzalez et al. 2007a; Campanelli
et al. 2007b).

Analysis of GW observations requires waveforms that cover the entire frequency
band of the relevant detector at high accuracy. This has motivated large efforts to
improve the accuracy of NR simulations (Boyle et al. 2007; Husa et al. 2008;
Szilagyi et al. 2009; Scheel et al. 2015; Rosato et al. 2021; Etienne 2024), length of
the inspiral (Mroue et al. 2013; Szilágyi et al. 2015), and coverage of increasingly
large portions of parameter space in increasing detail. Parameter space exploration
was initially performed through community-wide Numerical INJection Analysis
(NINJA) (Aylott et al. 2009; Ajith et al. 2012) and Numerical-Relativity-Analytical-
Relativity (NRAR) (Hinder et al. 2014) collaborations, which also yielded important
cross-checks between different codes (Hannam et al. 2009; Hinder et al. 2014).
Newer and more extensive parameter space surveys are listed in Table 7. Waveform
models developed with NR information are described in Sect. 4.5 and 4.6. NR
surrogate models (Blackman et al. 2017b; Varma et al. 2019a) are directly built on
NR simulations, and are particularly important for the analysis of high-mass BBH
systems like GW190521 (Abbott et al. 2020b, d). NR simulations can also be directly
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used for GW data-analysis, where they serve as synthetic signals (Schmidt et al.
2017) for quantifying the response of GW search and parameter-estimation
pipelines (Aasi et al. 2014b; Abbott et al. 2017), and to conduct indirect analyses
of observations (Abbott et al. 2016c; Lange et al. 2017; Gayathri et al. 2022).

NR also offers important information for the ringdown phase, characterized by an
exponential decay as the remnant BH settles into a Kerr black hole. NR results
determined the remnant parameters (mass, spin, recoil velocity) (Barausse and
Rezzolla 2009; Healy et al. 2014; Hofmann et al. 2016; Healy and Lousto
2017, 2018; Varma et al. 2019a, c; Jiménez-Forteza et al. 2017). Detailed NR
calculations of the emitted gravitational waves during merger and ringdown yield the
initial amplitudes and phases of quasi-normal ringdown modes and underpin
theoretical studies of what information about nonlinear processes are accessible
through the emitted gravitational waves (Mitman et al. 2023; Cheung et al. 2023),
and how the ringdown phase can be used to test GR and to probe the no-hair and area
theorems (Abbott et al. 2021c, d; Ghosh et al. 2021; Islam 2021; Capano et al. 2023;
Finch and Moore 2022; Isi et al. 2021; Cotesta et al. 2022).

Due to our focus on the role of NR in the LISA mission, this section primarily
covers vacuum spacetimes with a short discussion on environmental effects that
include matter; the important work of NR with neutron stars is not included.

4.1.2 Suitable for what sources?

The coalescence of BBHs is a primary source for LISA for a vast range of BH mass.
Those BBH systems that merge in the LISA band require NR to produce the
waveforms during the late inspiral and merger. In order to quantify the mass ranges
that merge in the LISA band, we compute the masses for which the frequency of
ringdown and inspiral are both in the LISA band. The dominant quasi-normal mode

for a non-spinning black hole has a frequency of f ¼ 12:07mHz M=106M�ð Þ�1

(Berti et al. 2006), which will be within the LISA band for BH masses of roughly
104 � 108M�. Turning to the inspiral, NR simulations of massive BBHs typically
cover a few tens of orbits before merger, starting at GW frequencies of

f � 1mHz M=106M�ð Þ�1
, placing this part of the inspiral into LISA band for

103 � 107M�. This estimate implies that BBHs of mass 104 � 108M� will have at
least part of its waveform within coverage of NR. NR is capable of modeling these
binaries for comparable mass ratios of less than 1:20, with attempts to reach
1:1000 (Lousto and Healy 2023).

NR simulations become increasingly costly with increasing mass-ratio and with
very large spins, whereas there is only minor dependence of computational cost on
other BBH parameters like spin-direction and orbital eccentricity. Parameter space
coverage is improving over time. The next section describes what parameters NR
currently covers and in Sect. 4.1.5 we discuss where efforts are needed to achieve
complete coverage of the potential range of source parameters.
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4.1.3 Status of the field

Since the breakthrough in NR in 2005/2006 (Pretorius 2005a; Campanelli et al.
2006a; Baker et al. 2006a) and the subsequent “gold-rush” to explore nonlinear
phenomena in black hole and neutron star mergers, NR has now matured into a
reliable tool for accurately computing gravitational waveforms needed to characterize
GW data. In this section we briefly describe the landscape of current and future
numerical relativity codes, their cross-validation and the parameter space coverage of
currently available numerical waveforms.

The community has developed a number of successful NR codes that target a
variety of goals for BBH spacetimes including covering increasing fractions of the
parameter space (so far mostly comparable mass ratios and moderate spins),
increasing number of GW cycles, accuracy of waveforms and interactions with
matter. Table 7 provides a comprehensive list of currently available NR codes, some
of which are briefly described in Appendix A. Their capabilities have been sufficient
for the detection and characterization of GW signals with current ground-based GW
detectors. However, data collected with future space- or next generation ground-
based instruments will have a higher SNR and its interpretation requires much
improved NR waveforms.

In particular, LISA sources present a formidable challenge to NR (see Sect. 4.1.5),
both with regard to the characteristic features of the target BBH systems (e.g., high
spins, large mass ratios, eccentric orbits, etc.) and the quality of the GW data due to,
e.g., high signal-to-noise ratios and sources remaining in band for very long times.
Computational simulations that meet the accuracy requirements for these demanding
BBH configurations, for sufficiently long times, will require exascale computational
resources. It will also require continued research in NR to develop new algorithms,
computational techniques and software to tackle these challenges faced by existing
code bases. Some new codes are under development, and they are included in
Table 7.

Given the complexity of NR codes, cross-validation is an important component of
code verification and it is by no means trivial that results obtained with different code
bases agree. They employ, for example, different theoretical formulations of
Einstein’s equations for the evolution and initial data and different methods for the
GW extraction. They also employ different numerical techniques (e.g, pseudo-
spectral or high-order finite differences discretization) and numerical implementa-
tions, e.g., for the grid structure. First systematic code comparisons and studies on the
integration of NR with data analysis and analytical approximations have been
conducted in Baker et al. (2007a); Aylott et al. (2009); Aasi et al. (2014b); Hannam
et al. (2009); Hinder et al. (2014); Lovelace et al. (2016). For example, the NINJA
project (Aylott et al. 2009; Aasi et al. 2014b) focused on building a NR data analysis
framework and to develop first injection studies. The initial study presented a sample
of 23 NR waveforms of BBHs with moderate mass ratios q.4, considering only the
dominant the ‘ ¼ jmj ¼ 2 GW mode. The follow-up study increased to 60 NR
waveforms. While no cross-validation between the NR waveforms were performed,
NINJA was crucial to identify technical and conceptual issues, that a hybridization
with PN or EOB may be needed and that more than only the dominant GW mode
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may be necessary. The Samurai project (Hannam et al. 2009) conducted a detailed
cross-validation of gravitational waveforms obtained with five different NR codes. It
focused on one BBH system, namely an equal-mass, non-spinning, quasi-circular
(eccentricity .0:0016) binary completing about six orbits before their merger.
Focusing on the dominant ‘ ¼ jmj ¼ 2 multipole, it was found that the waveforms’
amplitude and phase agree within numerical error. It was also found that these NR
waveforms were indistinguishable for SNR
 14 and would yield mismatches of
.10�3 for binaries withM � 60M� (using the anticipated detector noise curves at the
time). The Numerical-Relativity–Analytical-Relativity (NRAR) collaboration (Hinder
et al. 2014) made important strides towards constructing more accurate inspiral-
merger-ringdown waveforms by combining analytical and NR computations, and by
defining new accuracy standards that would be needed for GW parameter estimation.
The collaboration pushed cross-validation of NR codes to new frontiers by
considering quasi-circular BBHs (with initial eccentricity 
 2 � 10�3) with both
unequal mass (up to q
 3) and moderately spinning BHs (up to vi � � 0:6)
completing about 20 GW cycles before merger. The study also included a binary of
non-spinning BHs with q ¼ 10, the highest mass ratio for quasi-circular binaries at
the time. For the first time, the seven involved NR codes performed 22 targeted
simulations to meet the required accuracy standards. They employed the same
analysis code to estimate the uncertainties due to the numerical resolution and
waveform extractions. The simulations exhibited a relative amplitude error in the
‘ ¼ jmj ¼ 2 multipole of .1% and a cumulative phase error of .0:25rad. Finally,
Lovelace et al. (2016) presented a comparison of targeted simulations for the first
GW event, GW150914, concluding that the waveforms were sufficiently accurate to
effectively analyse LIGO data for comparable events. A comparison between
different time evolution formulations of Einstein’s equations, namely BSSN and Z4c,
was performed in Zlochower et al. (2012); Hilditch et al. (2013).

The cross-validation studies between different NR codes have been crucial for
building confidence in their results. As summarized above, they have been conducted
in limited regions of parameter space (e.g., low mass ratios, some moderate spins,
low eccentricity). As the demand on NR waveforms increases, such as covering a
larger region of parameter space, including eccentric or spin-precessing BBHs,
including higher multipoles (typically up to ‘ ¼ 8) that are excited by asymmetric
systems and further improving their accuracy, extended validation studies become
important. With the technical and computational developments, the numerical data
becomes more and more sensitive to mismatches, e.g., in the initial data, evolution or
wave extraction. Therefore, a careful study of the initial data and initial parameters,
of wave extraction techniques (e.g., extrapolation of waveforms extracted at finite
radii vs. Cauchy characteristic extraction vs. Cauchy characteristic matching) or the
choice of asymptotic Bondi–van der Burg–Metzner–Sachs frame will be needed (Mit-
man et al. 2021b).

The starting point for any simulation is the construction of constraint satisfying
initial data. After decades of work (see, e.g., Cook 1994; Brandt and Brügmann
1997; Cook 2000; Ansorg et al. 2004; Pfeiffer 2005; Gourgoulhon 2007; Lovelace
2009; Lovelace et al. 2008; Ruchlin et al. 2017; Tichy 2017 and references therein),
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multiple codes are now capable of generating BBH initial data where the BHs are on
a quasi-circular orbit or where the orbit has non-zero eccentricity.

Several groups worldwide have created public catalogs of BBH merger
simulations with approximately 5, 700 waveforms available at the time of this
writing (Mroue et al. 2013; Jani et al. 2016; Healy et al. 2017; Boyle et al. 2019;
Healy et al. 2019; Healy and Lousto 2020, 2022; Hamilton et al. 2024; Ferguson
et al. 2023); see also Table 7. Nowadays, NR waveforms survey several
configurations in the extensive BBH parameter space spanned by their mass ratios,
spin magnitudes and directions, and eccentricity. Figure 3 illustrates the portion of
the parameter space covered by the publicly available waveforms at the time of this
paper’s publication. Focussing on quasi-circular binaries, it shows that the parameter
space is best sampled for moderate mass ratios and spins.

Fig. 3 Parameter space coverage of public waveform catalogs in the quasi-circular limit. Shown are mass-
ratio q, projections of the BH spins onto the orbital angular momentum (v1=2 z), and magnitude of spin-
components orthogonal to the orbital angular momentum ðv1=2?) for waveform catalogs of different NR
groups. Data as of June 2023
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Consequently, there are three dimensions in the BBH parameter space — spin,
mass ratio and eccentricity — that require further waveform development. For
example, most runs with spinning BHs concentrate on spins v.0:9, because
simulating BHs with spin closer to the extremal Kerr limit is technically challenging.
It requires a much higher numerical resolution and, more importantly, the initial data
is more difficult to construct. There are some codes capable of constructing initial
data for BHs with spins above v ¼ 0:95; see, e.g., Lovelace et al. (2008); Healy et al.
(2018); Zlochower et al. (2017). Another challenging regime in BBH simulations is
that of unequal mass binaries. Most simulations in the public catalogs cover the
regime q.8 for spinning BHs, and up to q.18 for nonspinning binaries, as can be
seen in Fig. 3. However, simulations above q ¼ 20 are scarce: the first high-mass
ratio simulations up to q ¼ 100 (Sperhake et al. 2011) (see also Fernando et al.
2019b) and, more recently, up to q ¼ 1024 (Lousto and Healy 2023) were achieved
for head-on collisions. The frontier for quasi-circular inspirals are mass ratios of
q ¼ 128 (Lousto and Healy 2020; Rosato et al. 2021). New techniques such as
worldtube excision to model intermediate mass ratios of q ¼ 100-104 are under
development (Dhesi et al. 2021; Wittek et al. 2023).

In quasi-circular orbits, NR BBH simulations are well sampled in the regime of
moderate mass ratios and spins, including precessing spins. As Fig. 3 illustrates, the
parameter space is best sampled over spins when the mass ratio is less than 1:4.
Increasing spins to the Kerr limit is challenging both as the resolution required for
highly spinning black holes increases and, more importantly, the initial data are
harder to construct. Some codes, however, are capable of pushing beyond v ¼ 0:95
(Lovelace et al. 2008; Healy et al. 2018).

Most NR simulations to-date have focused on quasi-circular inspirals because it is
expected that any eccentricity present during a binary’s formation will have been
emitted through GW radiation by the time of merger (Peters 1964); however, there
are several astrophysics scenarios that predict eccentric MBHBs (Armitage and
Natarajan 2005; Bonetti et al. 2019), produced eccentric numerical relativity
waveforms (Hinder et al. 2008; Huerta et al. 2017, 2019; Ramos-Buades et al. 2020a;
Hinder et al. 2018) and other beyond circular evolution such as head on (Zilhão et al.
2014b), hyperbolic (Healy et al. 2009a; Nelson et al. 2019) and zoom-whirl (Healy
et al. 2009b; Gold and Brügmann 2010, 2013).

Arguably the most challenging regime to simulate is that of highly unequal mass
BBHs. While codes have been pushed to simulate up to 1:128 mass ratio (Lousto and
Healy 2020), there are few simulations above 1:20 and fewer with generic spins and/
or eccentricity. The community has yet to achieve routine production of highly
spinning (v[ 0:9) and highly unequal (q[ 20) configurations with or without
eccentricity. Higher order modes are excited with greater amplitudes as the binary
parameters move away from non-spinning and equal mass. Fortunately, NR codes
routinely produce well resolved higher order modes up to and including about ‘ ¼ 8.

In summary, the BBH parameter space is currently covered as follows:

● Non-spinning BBH mergers with mass ratio q
 18 (Jani et al. 2016; Healy et al.
2017, 2019; Mroue et al. 2013; Boyle et al. 2019; Ajith et al. 2012; Gonzalez et al.
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2009; Hinder et al. 2014; Husa et al. 2016)— see Lousto and Zlochower (2011b);
Lousto and Healy (2020) for binaries with mass ratios q ¼ 64; 100, and 128.

● BBHs with moderate random spins and q
 8 (Jani et al. 2016; Mroue et al. 2013;
Healy et al. 2017, 2019; Hinder et al. 2014; Hamilton et al. 2024; Boyle et al.
2019), aligned-spin binaries of v
 0:85 with q
 18 (Husa et al. 2016; Healy and
Lousto 2020), and a few with very high spins (v� 0:99) (Zlochower et al. 2017;
Scheel et al. 2015; Liu et al. 2009).

● Eccentric BBHs with q
 32 (Hinder et al. 2008; Huerta et al. 2019; Ramos-
Buades et al. 2020a; Gayathri et al. 2022; Healy and Lousto 2020) with limited
cycles.

Note that BBH simulations in GR are scale-invariant with respect to the total mass of
the system; therefore, a BBH waveform can be re-scaled for both ground-based and
space-based gravitational wave detectors without having to repeat the NR
computation. However, the mass scaling will determine the physical starting
frequency of the signal, and therefore whether the NR waveform covers the entire
sensitivity band of the detector.

4.1.4 Environmental effects

The NR community has made great strides in simulating binaries in a matter-rich
environment. This Whitepaper focuses on ways the environment directly impacts the
predicted gravitational waves; for EM signatures of BBH mergers, we refer to the
Astrophysics Working Group White Paper (Amaro-Seoane et al. 2023) and
references therein.

The gravitational waves emitted during the merger of a BBH in an accretion disk
are likely unaffected by the accreting matter (Bode et al. 2010), although (Fedrow
et al. 2017) indicates that accretion disk densities greater than 106 � 107 g cm�3

would alter the coalescence dynamics enough to be relevant for ground-based GW
detectors.

In addition to EM counterparts, there are other possible sources for LISA modeled
by NR. One such class of signals arises from the magnetorotational collapse of a
supermassive stars; see, e.g., Smith et al. (2017) for a recent review and Shibata et al.
(2006) for early NR work. Recently the GW signatures from such collapsing
supermassive stars were calculated in Shibata et al. (2016); Sun et al. (2017), where it
was shown that LISA could observe such events out to redshift z ’ 3. Sun et al.
(2017) also computed possible EM counterparts and predicted that these systems
could be sources of very long gamma-ray bursts.

Another potential source of gravitational waves detectable by LISA that is
currently unmodeled comes from instabilities in accretion disks around BHs. The
particular case of the Papaloizou–Pringle instability (Papaloizou and Pringle 1984) of
self-gravitating disks has been studied in Kiuchi et al. (2011) without BH spin, and in
Wessel et al. (2021) including spin. In Wessel et al. (2021) it was shown that BH spin
could potentially increase the duration of the near monochromatic signal from the
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instability, and that LISA could detect gravitational waves generated by the
Papaloizou-Pringle instability around 105M� BHs out to redshift z ’ 1.

Finally, for a detailed discussion of environmental effects and the challenges they
could present for precision tests of GR, such as dark matter environments, we refer
the interested reader to the Fundamental Physics White Paper (Arun et al. 2022) and
references therein.

4.1.5 Challenges in NR

Improvements in hardware and numerical techniques continue to speed up
simulations, yet some corners of the binary parameter space continue to demand
challenging simulations that are costly in terms of runtime and computational
resources. Three of the most pressing challenges facing NR are (i) producing
waveforms that cover the anticipated parameter space of unequal mass, highly
spinning, and eccentric binaries, (ii) producing long-lived waveforms with sufficient
numbers of GW cycles, and (iii) producing these waveforms at standards of accuracy
set by LISA’s sensitivity.

Parameter coverage: The BBH parameter space for the LISA mission, as
summarized in Table 2 has mass ratios that span from 1:1 to 1:1000, BH spins from 0
to 0.998, and a wide range of eccentricities. As discussed in x 4.1.3, almost all NR
simulations to date are for q
 8, v
 0:8 and e 	 0; and, therefore, there is significant
work to be done to supply waveforms that cover the full potential parameter space for
LISA. We also discuss LISA waveform catalogs.

Producing waveforms for systems with large mass ratios is a challenge for the
broader waveform community with various approaches existing to bridge the gap
between NR solutions and small mass ratio approximations. This is especially
relevant for IMRIs. High-mass ratios are demanding due to the need to resolve the
smaller mass black hole and provide appropriate gauge conditions (Rosato et al.
2021). As discussed in Sec. 4.1.3, several new codes are being developed by the NR
community with the goal of having simulations with large mass ratios (q[ 50) be
routinely possible. In addition to pushing the NR capacity to larger mass ratios, new
methods for modeling IMRIs are currently being explored (Schutz 2017; Dhesi et al.
2021), which combine black-hole perturbation theory and NR techniques to
significantly increase the numerical efficiency of simulations. Coordination between
the GSF and NR communities as well as the construction of open source platforms to
share NR (Boyle et al. 2019; Healy et al. 2017; Jani et al. 2016) and GSF
waveforms, such as the Einstein Toolkit (Löffler et al. 2012) and the Black
Hole Perturbation Toolkit (BHPToolkit 2024), will streamline and
accelerate such endeavors.

A second challenge is producing many generic simulations with BH spins that are
very large in magnitude, i.e., approaching 1. The simplest approach to solving the
initial data problem is to use the Bowen and York method (Bowen and York 1980;
Brandt and Brügmann 1997); however, this method cannot construct BHs with high
spins, vJ0:93 (Cook and York 1990; Dain et al. 2002; Lovelace et al. 2011). In
addition, resolving the region of spacetime near the horizons requires
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computationally expensive, very high resolution. This is exacerbated in evolution
methods using excision to handle the singularities (Scheel et al. 2015). As mentioned
previously, NR codes have successfully achieved some high spins, including several
aligned-spin binaries with spins (v� 0:99) (Zlochower et al. 2017; Scheel et al. 2015;
Liu et al. 2009) by using new formulations that move beyond the conformally flat
ansatz for puncture methods (Ruchlin et al. 2017) and new techniques for handling
the excision region (Scheel et al. 2015).

Finally, several astrophysical scenarios produce non-zero eccentricity in the LISA
frequency band (Armitage and Natarajan 2005). NR is capable of and has been
producing eccentric runs (Hinder et al. 2008; Huerta et al. 2019; Ramos-Buades et al.
2020a; Gayathri et al. 2022; Ramos-Buades et al. 2022b; Joshi et al. 2023); the
challenge is simulations must start with the BHs more widely separated than in quasi-
circular configurations. This is again a computational cost.

The source modeling community has continued to improve the modeling of these
sources, developing inspiral-merger-ringdown models that combine analytical
approximations (Hinderer and Babak 2017) with eccentric NR waveforms (Hinder
et al. 2008; Huerta et al. 2017; Ramos-Buades et al. 2020a; Hinder et al. 2018;
Huerta et al. 2018; Cao and Han 2017; Chiaramello and Nagar 2020; Liu et al. 2020;
Gayathri et al. 2022; Ferguson et al. 2023).

Gravitational wave cycles: The LISA frequency band may contain thousands of
GW cycles, depending on the total mass of the massive binary, thus observing BBH
signals for months or even years. Given the accuracy of approximate waveform
models calibrated with NR (Hannam et al. 2014; Bohé et al. 2017; Khan et al. 2016;
Blackman et al. 2017b; Husa et al. 2016), and the recent developments in the self-
force community (Dhesi et al. 2021; Albertini et al. 2022b), it is likely unrealistic and
unnecessary to use NR to describe the entire evolution of binary systems, from
inspiral to ringdown. We point the reader to the rest of Sect. 4 for descriptions on the
approaches for modeling the inspiral and inspiral-merger-ringdown waveforms.

Accuracy Massive BBH mergers in LISA could have high (up to 1� 104) signal-
to-noise (SNR) ratios and NR must model these loud signals accurately enough not
only to infer the correct source properties, but also to subtract the signal from LISA
data, revealing quieter, high-interest signals that may lay underneath. The full
implications of these requirements for NR waveform accuracy have yet to be
assessed, but an initial study (Ferguson et al. 2021) suggests that NR waveforms will
require a substantial increase in accuracy, compared to today’s most accurate
waveforms, to be indistinguishable from a high-SNR observation with the same
source properties. A similar assessment for next-generation ground-based detectors
concluded that NR waveforms will need an order of magnitude more accuracy to
avoid bias in the inferred source properties for the high signal-to-noise sources that
these detectors will observe (Pürrer and Haster 2020). The impact of using
insufficiently accurate templates is highlighted in Fig. 4.

These accuracy requirements are even more challenging for NR if the BHs are
precessing, if one or both BHs are spinning nearly as rapidly as possible, or if one
BH is much more massive than the other. Let us illustrate how quickly computational
cost rises, by quantifying computational cost increases relative to a fiducial baseline
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simulation with mass-ratio q0 and initial frequency MX0. Cost increases arise for
multiple reasons.

First, the explicit evolution schemes used in NR codes are subject to the Courant-
Friedrichs-Levy (CFL) condition, which limits the possible time step to the dynamic
time of the smaller BH, Dt / m2. As the mass ratio increases, the number of time-
steps per unit M ¼ m1 þ m2 of evolution time will therefore increase as

fCFL � q

q0
: ð7Þ

Second, the total inspiral time of a BBH can be estimated by PN expansions Blanchet

(2024) as T / 1=mðMXÞ�8=3, where MX is the initial dimensionless frequency of a
binary. A change in mass ratio and initial frequency will modify the computational
cost in proportion to T, i.e. by a factor

fXlow ¼ m
m0

� ��1 X
X0

� ��8=3

: ð8Þ

Thirdly, LISA has higher accuracy requirements than current NR simulations. We

Fig. 4 Illustration of how numerical errors in a template may leave a residual in high-SNR signals. The left
panel represents a BBH at high SNR (detector mass Mdet ¼ 5� 106M�, aligned spin of v ¼ 0:2 on the
larger BH at distance DL ¼ 30Gpc and at inclination i ¼ 15�). The black line is the characteristic strain
(2f ~hðf Þ) obtained at high numerical resolution from all spherical harmonic modes. The blue dashed line is
the corresponding quantity obtained from a low resolution simulation, with the light blue line denoting the
difference to the high-resolution waveform. The solid red line is a high resolution template containing only
the ðl;mÞ ¼ ð2; 2Þ mode, with the light red line showing the difference to the black line. If this system were
searched for with the low-resolution (or (2,2)-mode only) waveforms, then the shaded lines would remain
as residuals after subtraction. The SNR of the residual due to resolution in the left panel is 342, clearly
indicating the need for higher accuracy NR simulations. The right panel represents a more frequently
expected system, where the SNR is 200, DL ¼ 158Gpc and i ¼ 0�. Here, the residual due to resolution has
an SNR of 2.4. Figure adapted from Ferguson et al. (2021). The LISA noise curve can be found at Robson
et al. (2019)
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denote by fsðAÞ the increase in computational cost that is needed to reduce the
truncation error s by a factor A[ 1, i.e. s ! s=A.

A fourth cause for increased computational cost arises from the desire of
achieving a certain overall phase error, which is important for GW waveform
modeling. For longer simulations, phase accuracy must be preserved over more

cycles. From PN theory, the orbital phase to merger scales as U / m�1ðMXiÞ�5=3. To
achieve a fixed overall phase-error (say, 1 radian), the relative phase error must
decrease / 1=U, yielding an increase in computational cost by a factor

fU � fs
m
m0

� ��1 X
X0

� ��5=3
 !

: ð9Þ

The challenge now is that in order to achieve higher mass ratio simulations starting at
similar (or lower) initial frequency, and possibly also achieving higher accuracy, each
of the factors just outlined increases very rapidly and that these factors multiply for
an overall cost increase by a factor

C ¼ fCFL fXlow fs fU: ð10Þ
To obtain concrete numerical estimates, we assume that fs is a power law, fsðAÞ ¼ Aa.
This assumption is satisfied for finite difference codes, where a convergence order of
k in ð3þ 1Þ dimension yields a ¼ 4=k. In terms of a, the overall cost increase is
given by

C� q

q0

� �2þa X0

X

� �8=3þ5a=3

Aa; ð11Þ

where we have also used m 	 1=q, which is valid at large q.
We can now make concrete estimates: Increasing the mass-ratio by a factor of 2,

lowering the initial frequency by a factor of 1/2, and increasing accuracy by a factor
of 2, and assuming the NR code under consideration maintains perfect 8-th order
convergence into the regime of longer, more accurate simulations at higher mass-
ratio (i.e. a ¼ 1=2), increases the computational cost two orders of magnitude. More
ambitiously, increasing the mass-ratio by a factor of 10, reducing initial frequency by
a factor 1/4 and increasing accuracy by a factor 10 increases the computational cost
by five orders of magnitude. Codes based on spectral methods, e.g. SpEC, will likely
result in a smaller fs; even so, increases in computational cost are very challenging as
one goes to longer simulations at higher mass-ratio.

The NR codes that have been instrumental in providing public BBH waveforms
use either a spectral method or box-in-box mesh refinement. These methods scale
well to the order of 1000 cores, but they cannot scale to hundreds of thousands or
millions of cores. For example, codes using high-order finite-difference stencils incur
ever-increasing inter-core communication costs as the number of cores increases and
this cost eventually becomes prohibitive. These codes are parallelization bound and
do not parallelize beyond current usage. Since individual computer cores are no
longer dramatically increasing in speed (Moore’s law has 4) assessment of systematic
bias in simulated LISA signals with currently available waveforms, and 5) the
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development of NR waveform for all potential parameters at the necessary accuracy.
For a more general discussion on waveform accuracy, see Sec. 3.2.

4.1.6 Future codes and catalogs

The LISA data analysis groups could have access to NR waveforms via a bespoke
LISA catalog or as a public catalog. A bespoke catalog would have NR waveforms
created specifically to meet those aforementioned requirements, potentially interfac-
ing and merging existing catalogs and extending with its own dedicated entries
(similar to the LVK catalog (P. Schmidt et al. 2017). If a bespoke LISA catalog is not
created or deemed unnecessary due to a possible future abundance of NR public
waveforms (current catalogs are indicated in Table 7) we will need a software
interface with existing NR waveform catalogs that is curated and cultivated with
time. A full catalog of NR waveforms achieving all requirements will take time,
possibly until the launch of LISA. We put forth the following priorities for the NR
waveforms: 1) an accuracy assessment of current and near-term achievable NR
waveforms, 2) the assessment of current and near achievable parameter space, 3) the
development of NR waveforms for the most likely LISA events at the required
accuracy, 4) assessment of systematic bias in simulated LISA signals with currently
available waveforms, and 5) the development of NR waveform for all potential
parameters at the necessary accuracy.

4.2 Weak field approximations (post-Newtonian/post-Minkowskian)

Coordinators: Laura Bernard and Chris Kavanagh
Contributors: A. Antonelli, G. Faye, J. Garcia-Bellido, M. Haney, F. Larrouturou,
A. Le Tiec, O. Long

4.2.1 Description

The PN formalism is an approximation method in GR that is well suited to describe
the orbital motion of—and the GW emission from—binary systems of compact
objects, in a regime where the typical orbital velocities are small compared to the
vacuum speed of light c and the gravitational fields are weak. It has played and
continues to play a central role in the construction of template banks for the detection
and analysis of GW signals generated by binary systems of black holes and/or
neutron stars, which are now routinely observed by the LVK collaboration’s detectors
(Abbott et al. 2019b, 2021b, 2023a). More precisely, PN results are at the core of
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Table 7 List of numerical relativity evolution codes

Code Open Source Public catalog Formulation Hydro Beyond GR

AMSS-NCKU Y – BSSN/Z4c – Y

Cao et al. (2008, 2013); Cao and Hilditch (2012); Hilditch et al. (2013)

BAM – – BSSN/Z4c Y –

Brügmann et al. (2008b); Husa et al. (2008); Thierfelder et al. (2011); Dietrich et al. (2015a)

Dietrich et al. (2018); Gonzalez et al. (2023b); Hamilton et al. (2024)

BAMPS – – GHG Y –

Bugner et al. (2016); Hilditch et al. (2016); Renkhoff et al. (2023)

Dendro-GR Y – BSSN/CCZ4 – Y

Fernando et al. (2019b, 2023)

Einstein Toolkit Y – BSSN/Z4c Y Y

Löffler et al. (2012); Einstein Toolkit (2024)
�Canuda Y – BSSN – Y

Okawa et al. (2014); Zilhão et al. (2015b); Witek et al. (2019)
�IllinoisGRMHD Y – BSSN Y –

Etienne et al. (2015)
�LazEv – BSSN/CCZ4 – –

Campanelli et al. (2006a); Zlochower et al. (2005)

Healy et al. (2017, 2019); Healy and Lousto (2020, 2022)
�Lean Partially – BSSN – Y

Sperhake (2007); Berti et al. (2013)
�MAYA – BSSN – Y

Jani et al. (2016)
�NRPy? Y – BSSN Y –

Ruchlin et al. (2018)
�SphericalNR – – spherical BSSN Y –

Mewes et al. (2018, 2020)
�Spritz Y – BSSN Y –

Cipolletta et al. (2020); Spritz Code (2024)
�THC Y BSSN/Z4c Y –

Radice and Rezzolla (2012); Radice et al. (2014a, b); Dietrich et al. (2018)
�WhiskyMHD – BSSN Y –

Giacomazzo and Rezzolla (2007); WhiskyMHD (2024)

ExaHyPE Y – CCZ4 Y –

Köppel (2018)

FIL – – BSSN/Z4c/CCZ4 Y –

Most et al. (2019)

GR-Athena?? Y – Z4c Y –

Daszuta et al. (2021)

GRChombo Y – BSSN/CCZ4 – Y

Clough et al. (2015); GRChombo (2024); Andrade et al. (2021)

HAD – – CCZ4 Y Y

HAD (2010); Liebling (2002); Lehner et al. (2006)
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several classes of waveform models, including phenomenological waveforms and
effective one-body waveforms (see Sects. 4.5 and 4.6).

In PN theory, the general relativistic corrections to the Newtonian motion and to
the leading GW emission (i.e. Einstein’s quadrupole formulas) are computed in a
systematic manner in powers of the small PN parameter v2=c2 �GM=ðc2rÞ, where v
and r are the typical binary relative velocity and separation, M is the sum of the
component masses, and v2 �GM=r for bound orbits. Indeed, the most promising
sources of gravitational waves for existing and planned interferometric detectors are
bound systems of compact objects. By convention, a contribution of “nPN” order
refers to equation-of-motion terms that are Oð1=c2nÞ smaller than the Newtonian

Table 7 continued

Code Open Source Public catalog Formulation Hydro Beyond GR

Illinois GRMHD – – BSSN Y –

Etienne et al. (2010); Sun et al. (2022)

MANGA/NRPy? Partially – BSSN Y –

Chang and Etienne (2020)

BH@H/NRPy? – – BSSN – –

Ruchlin et al. (2018); BH@Home (2024)

MHDuet Y – CCZ4 Y Y

Palenzuela et al. (2018); Liebling et al. (2020); MHDuet Code (2024)

Nmesh – – GHG Y –

Tichy et al. (2023)

SACRA – BSSN/Z4c Y Y

Yamamoto et al. (2008); Kiuchi et al. (2017); Kuan et al. (2023)

Shibata and Traykova (2023); Shibata and Yoshino (2010); SACRA (2024)

SACRA-SFS2D – – BSSN/Z4c Y –

Fujibayashi et al. (2018); Shibata et al. (2021)

SGRID Y – BSSN – –

Tichy (2006, 2009)

SpEC – GHG Y Y

SpEC (2024); Boyle et al. (2019); Mroue et al. (2013); SXS catalog (2024)

SpECTRE Y – GHG Y –

Kidder et al. (2017); Deppe et al. (2023)

SPHINCS_BSSN – BSSN SPH –

Rosswog and Diener (2021)

We indicate if a code is open-source, if it has been used to produce public gravitational waveform catalogs,
the formulation of Einstein’s equation used (GHG: generalized harmonic, BSSN: Baumgarte–Shapiro–
Shibata–Nakamura, CCZ4 / Z4c variants of the Z4 formulation, GCFE: generalised conformal field
equations), if a code implements general relativistic hydrodynamics, and if it is capable of simulating
compact objects beyond general relativity. SPH refers to smooth particle hydrodynamics. An asterisk
indicates codes that are either (partially) based on the open-source Einstein Toolkit or are co-funded by its
grant. Note this table was created jointly for this paper and Foucart et al. (2022)
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acceleration, or, in the radiation field, smaller by that factor relative to the standard
quadrupolar field.

The PN approximation dates back to the pioneering works of Lorentz and Droste
(1917), as well as Einstein et al. (1938) and Fock (1939), who computed the leading
1PN corrections to the Newtonian equations of motion in a system of N point masses.
During the 1980s, those results were extended to 2.5PN to provide a rigorous basis
for interpreting binary pulsar observations (Damour and Deruelle
1981a, b, 1985, 1986). For binary systems of compact objects, the state of the art
corresponds to gravitational waveforms that include all of the relativistic corrections
up to 4PN order (Damour et al. 2016; Marchand et al. 2018; Foffa and Sturani 2019;
Foffa et al. 2019), in the simplest case of nonspinning bodies moving along a
sequence of quasi-circular orbits.

Another complementary weak field approximation can be found by relaxing the
small velocity assumption of the PN approximation and demanding only that
GM=ðc2rÞ � 1. This scheme, known as the PM approximation, has a long and
venerable history, in the context of both unbound scattering where velocities can be
arbitrarily large (Westpfahl and Goller 1979; Westpfahl and Hoyler 1980) and far-
zone–near-zone matching for bound orbits within certain PN schemes (see e.g.,
Blanchet 2024).

As discussed below, much work has recently been dedicated to (i) push this
accuracy to 4.5PN order, (ii) include the effects of the spins of the compact objects
(see also Table 8), (iii) generalize the results from circular to eccentric orbits, and (iv)
explore the overlap and synergies with other approximation methods (PM
approximation, small-mass-ratio approximation, effective one-body model). The
reader is referred to the review articles by Futamase and Itoh (2007); Blanchet
(2011); Schäfer (2009); Blanchet (2024); Foffa and Sturani (2014); Rothstein (2014);
Porto (2016); Schäfer and Jaranowski (2024); Levi (2020) and to the texbooks by
Maggiore (2007); Poisson and Will (2014) for more information.

4.2.2 Suitable for what sources?

The PN approximation is well suited to describe the dynamics and gravitational
emission of compact binary systems in the early inspiral stage. While it can in
principle be applied to model BH binaries of any mass ratio, it is expected to be more
accurate for comparable to intermediate mass BHBs, as the gravitational field should
remain small until the final cycles. For mass ratio above qJ100, when the small
body remains for long timescales close to the supermassive BH, the gravitational
field is strong and the weak-field approximation will lose accuracy (see Fig. 2).

The PM approximation is best suited to close hyperbolic encounters (CHE), which
could be detected with LISA for a population of massive PBH in dense clusters
forming part of the halos of galaxies, as studied in García-Bellido and Nesseris
(2017); García-Bellido and Nesseris (2018) using a leading order PN approximation
scheme. It also provides valuable resummations of terms in the PN approximation
and is used to improve bound compact binary coalescence models when combined
with PN results.
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PN waveforms are ideally suited to model binaries that are in an early stage of
their inspiral while in the LISA band such as SOBHBs and GBs.

4.2.3 Status

4.2.3.1 Equations of motion and waveforms without spin For an isolated, non-
spinning compact binary system, the phase evolution and GW modes during the
inspiral stage are currently known up to 4.5PN and 4PN, respectively (Marchand
et al. 2020; Henry et al. 2021; Larrouturou et al. 2022a, b; Blanchet et al. 2022;
Trestini et al. 2023; Henry 2023; Blanchet et al. 2023b, c). As for the LISA
requirements, it was established in Mangiagli et al. (2019) that the 2PN waveform
will be enough for the parameter estimation of roughly 90% of the
detectable SOBHBs, while the 3PN waveform phasing is needed for the systems
that will merge within the mission lifetime. Nevertheless it will be quite valuable to
push the current accuracy up to 4.5PN order for at least two main reasons. The first
one is that it may be necessary for the parameter estimation of black hole binaries

Table 8 State-of-the-art of known PN results for both the conservative and dissipative dynamics as well as
for the gravitational flux

Dynamics Dissipative flux

PN order Non-spinning Spinning Non-spinning Spinning

SO SS Higher spins SO SS Higher spins

0
p

– – – – – – –

1
p

– – – – – – –

1.5 –
p

– – – – – –

2
p

–
p

– – – – –

2.5
p p

– –
p

– – –

3
p

–
p

– – – – –

3.5
p p

–
p ðS3Þ p

– – –

4
p

–
p p ðS4Þ p p

– –

4.5 � p
–

p ðS3Þ p
–

p
–

5 � –
p p ðS4Þ p p

– –

5.5 � p ðS5Þ p p p
–

6
p ðS6Þ p p p p ðS3Þ

6.5 H
p p p

7 H
p

Contrary to the text, everything is stated as absolute order. For example, the 6PN absolute order for the
non-spinning flux in the table corresponds to the 3.5PN relative order results as stated in the text.
Hereditary effects enter at 2.5PN order and subsequent odd PN orders in the non-spinning dynamics and
usually contain non-local contributions. An instantaneous expression can be obtained by performing a low-
eccentricity expansion. SO and SS refer to spin-orbit and spin-spin interactions respectively. � means that
only a partial result is known at those orders. At 5 and 5.5PN order, the results were obtained by the
combination of PN traditional techniques with scattering amplitudes and self-force. H means that the
dynamics is known at all leading order in the spin
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with large masses. The second one is that this accuracy will be very beneficial for the
calibration of numerical waveforms, and for testing the second-order self-force
computations.

For quasi-circular orbits, the gravitational phase /ðtÞ is computed via the so-called

energy flux-balance equation, dEdt ¼ �FGW, where E is the conserved energy and

FGW is the flux of radiation emitted. Both quantities are functions of the
gravitational phase, which is thus obtained by a simple integration. The amplitude
and polarizations are obtained by the same radiative multipole moments that are used
when computing the flux, as explained later. For recent reviews, see Buonanno and
Sathyaprakash (2014); Goldberger (2007); Foffa and Sturani (2014); Porto (2016);
Blanchet (2024).

At 4PN precision, three different techniques are used to compute the binding
energy: the canonical Hamiltonian formulation of General Relativity (Jaranowski and
Schäfer 2013, 2015; Damour et al. 2014b, 2015, 2016), the Fokker Lagrangian
approach (Bernard et al. 2016, 2017a, b; Marchand et al. 2018; Bernard et al. 2018)
and effective field theory (EFT) (Foffa and Sturani 2013a, b; Galley et al. 2016; Porto
2016; Foffa and Sturani 2019; Foffa et al. 2019; Blümlein et al. 2020a). All of these
methods derive the energy as a conserved quantity associated with the equations of
motion for two point-like particles, and naturally give physically equivalent results.
The Hamiltonian approach has been pushed up to 6PN, yielding incomplete
results (Bini et al. 2020c), see Sect. 4.2.3.4. Exploiting synergies between traditional
PN methods and EFT, the logarithmic contributions in the energy have also been
computed up to 7PN (Blanchet et al. 2020).

The flux of gravitational radiation can be expressed as a generalisation of the
famous Einstein quadrupole formula (Einstein 1918; Landau and Lifschits 1975), as
Thorne (1980)

FGW ¼
X
‘
 2

G

c2‘þ1
a‘ U

ð1Þ
L U ð1Þ

L þ b‘
c2

V ð1Þ
L V ð1Þ

L

� �

¼
X
‘
 2

G

c2‘þ1
a‘ I

ð‘þ1Þ
L I ð‘þ1Þ

L þ b‘
c2

J ð‘þ1Þ
L J ð‘þ1Þ

L

� �
þ F tails ;

ð12Þ

where L is a multi-index, the UL (resp. VL) are the mass (current) radiative multipole
moments and the IL (resp. JL) are the mass (current) source multipole moments, the
fa‘; b‘g are collections of numbers and the superscript (n) denotes n time derivatives.
To connect radiative moments to sources moments, their non-linear interactions
(occurring during the propagation from the source to the detector) have been singled
out in F tails. The radiative moments are also directly involved in the computation of
polarisations (Thorne 1980), and thus their determination is crucial.

The contribution F tails is known up to 4.5PN order, using traditional PN
methods (Marchand et al. 2016), and was confirmed by an independent PN re-
expansion of resummed waveforms (Messina and Nagar 2017). The computation of
the required moments is currently done using the Multipolar-post-Minkowskian-
post-Newtonian (MPM-PN) algorithm (Blanchet 2024). The major piece of this work
is the derivation of the mass quadrupole (‘ ¼ 2) up to 4PN order: the main result has
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been obtained (Marchand et al. 2020; Larrouturou et al. 2022a, b; Blanchet et al.
2022; Trestini et al. 2023), including the tail-of-memory contribution (Trestini and
Blanchet 2023). The other moments involved are the mass octupole and the current
quadrupole, already known at the required order (3PN) (Faye et al. 2015; Henry et al.
2021), and higher moments that are either known or trivial (i.e. needed at the
Newtonian order only), see notably Blanchet et al. (2008). Collecting all these
results, the complete flux of gravitational radiation at infinity is fully known at
4PN (Blanchet et al. 2023b) and 4.5PN in the case of circular orbits (Marchand et al.
2016). In the case of horizonless objects such as neutron stars, the flux-balance
equation is used to compute the gravitational phase for circular orbits at
4.5PN (Blanchet et al. 2023c). However, if at least one object is a black hole, one
must include an extra contribution due to the absorption of gravitational waves by the
black hole horizon(s) (Poisson and Sasaki 1995; Tagoshi et al. 1997; Alvi 2001;
Porto 2008; Chatziioannou et al. 2013). Note that two other methods are able to deal
with high PN multipole moments, both currently developed up to 2PN: the direct
integration of the relaxed equations (DIRE) (Will and Wiseman 1996) and
EFT (Leibovich et al. 2020). As half-PN orders are often easier to compute than
integer ones, one can probably push the results up to 4.5PN order, including the
amplitudes of the gravitational modes. A first step in this program is to control the
dissipative, radiation reaction effects in the equations of motion. Table 8 summarizes
the current knowledge regarding PN dynamics and flux without spin.

Finally, there have been some works trying to map the BMS (Bondi–Metzner–
Sachs) flux-balance laws to equivalent PN results in the harmonic gauge (Compère
et al. 2020c). By transforming the metric from harmonic coordinates to radiative
Newman-Unti (NU) coordinates, they were able to obtain the mass and angular
momentum aspects and the Bondi shear as a function of the quadrupole
moment (Blanchet et al. 2021). In particular, they rederive the displacement memory
effect (see also Favata 2009) and provide expressions for all Bondi aspects relevant
to the study of leading and subleading memory effects (Blanchet et al. 2023a).

4.2.3.2 Equations of motion and waveforms with spin In the last decade, the
effects of the proper rotation of the components of binary systems have been
included in the orbital equations of motion to 4PN order, extending previous works
dating back to the 1970s Barker and O’Connell (1975). In the post-Newtonian
terminology, the spin variable S is rescaled as S ¼ cSphys ¼ Gm2v, with v the

dimensionless spin parameter comprised between 0 and 1. The leading spin
interactions, the so-called spin-orbit interaction (SO), couple the mass m1 of a
particle with the spin of the other, hence those contributions scale as Gm1

c2 � S2
c �Oð 1c3Þ

and are regarded as being of 1.5PN order. Meanwhile the first effect due to spin-spin
interaction, scaling as G

c2 � S1
c � S2

c �Oð 1c4Þ, is quadratic in spin (SS) and arises at 2PN
order. We refer to the successive subleading PN contributions to a given spin
interaction (e.g. SO or SS) as the next-to-leading (NL), next-to-next-to-leading
(NNL) and so on. Moving beyond the 2PN two-body dynamics including SO
interactions (Damour 1982), it becomes increasingly difficult to resort to an explicit
model, where the bodies are described as small balls of fluid (Will 2005). The most
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efficient strategy consists in adopting an effective point of view and considering that
the two objects are point particles endowed with a classical spin.

The definition of spin in GR was first introduced by Mathisson (1937), and
rephrased later by Tulczyjew (1959). The covariant equations of evolution obeyed by
a spinning test particle were obtained in their usual form by Papapetrou (1951) and
later generalized by Dixon (1974) to bodies endowed with higher-order multipole
moments. The equations of motion and precession served as a starting point to
investigate the dynamics of binary systems at next-to-leading (NL: 2.5PN) (Tagoshi
et al. 2001; Faye et al. 2006) and NNL (3.5PN) order linear in spin (SO
interactions) (Marsat et al. 2013b), assuming that all Dixon moments other than the
masses and the spins vanish. The metric is obtained by solving iteratively Einstein’s
equations in harmonic coordinates (Bohe et al. 2013) for the pole-dipole stress-
energy tensor. Later, to compute the SS corrections, first contributing at NL (3PN)
order (Bohé et al. 2015), the Dixon quadrupoles were added, so as to account for the
self deformation of the bodies produced by their own spins.

The direct computation of a generalized Lagrangian (i.e. depending on the
accelerations) for two spinning particles, using EFT in harmonic coordinates, was
performed in stages from the mid-2000’s on by integrating out the gravitational field
entering the full ‘field plus matter’ Lagrangian with the help of standard Feymann
diagram expansions (Porto and Rothstein 2006; Porto 2006; Levi and Steinhoff
2015b). The NL S1–S2 (3PN) interactions (Porto and Rothstein 2008b; Levi 2010b)
were computed first, before the NL S1–S1 (3PN) contributions (Porto and Rothstein
2008a) and NL SO (2.5PN) interactions (Levi 2010a; Porto 2010) were considered.
Equivalent results were obtained in parallel by means of Hamiltonian methods based
of the Arnowitt–Deser–Misner (ADM) formulation of GR (Steinhoff et al.
2008a, b, c).

After the canonical treatment of the spin was better understood (Steinhoff et al.
2008c; Steinhoff and Schäfer 2009), the computations of the Hamiltonian were
pushed up to NNL (3.5PN) order for the SO (Hartung and Steinhoff 2011a; Hartung
et al. 2013), to NNL (4PN) order for the S1–S2 interactions (Hartung and Steinhoff
2011b) and to NL (3PN) order for the S2 interaction (Hergt et al. 2010). A fully
equivalent Lagrangian for the latter effects was found using EFT (Levi 2012). Once
the EFT degrees of freedom and the gauge choice corresponding to the spin-
supplementary condition were clearly identified, the PN leading terms to all orders in
spins were computed (Vines and Steinhoff 2018), then beyond leading order
corrections were added (Levi and Steinhoff 2015a; Levi et al. 2021; Levi and Teng
2021) and the spin part of the harmonic Lagrangian was completed up to the NNNL
(5PN) order (Kim et al. 2023c, b).

Note that reaction forces, dissipative in essence, are absent from the previous
treatments, which exclusively describe the conservative dynamics. Nonetheless, they
can be computed from balance equations (Zeng and Will 2007), or more directly
from the Papapetrou evolution equations, or from the conservation of an appropriate
stress-energy tensor (Wang and Will 2007). One may even construct a Schwinger–
Keldysh Lagrangian where each degree of freedom is formally doubled. This was
done for the NL SO and SS effects at 4PN and 4.5PN respectively in (Maia et al.
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2017a, b), and to all orders in spin in (Siemonsen et al. 2018) (see also the approach
developed for ADM Hamiltonians (Wang et al. 2011) at leading SO and SS orders).

Knowing the near-zone dynamics of two spinning particles, one can insert the
corresponding PN metric into the right-hand side of Einstein’s equations in harmonic
coordinates, which yields the expression of the effective non-linear source entering
the integrand of the multipole moments, as defined in the multipolar post-
Minkowskian (MPM) formalism (Blanchet 1998), or, equivalently, in EFT (Ross
2012); hence one gets the relevant mass, current and gauge moments in the spinning
case (Porto et al. 2012). The expression for the radiative moments in terms of the
former quantities has been derived for general isolated systems (Faye et al. 2015), but
the hereditary terms therein are more delicate to evaluate than for mere point-mass
particles on circular orbits, since the orbital plane is now generically precessing.
They have however been handled for the leading (Blanchet et al. 2011) and
NL (Marsat et al. 2014) SO interactions, which required the full integration of the
(approximately) conservative dynamics up to the considered order.

Finally concerning the gravitational radiation, the GW flux has been obtained to
NNL (4PN) order both for the SO and SS contributions (Bohé et al. 2015; Cho et al.
2022b). The GW phase, built from the radiative moments and the Noetherian energy,
has been obtained within the MPM formalism at the NNL (4PN) order for the SO
contributions (Bohé et al. 2013; Marsat et al. 2014) (in continuation of previous
works at leading order (2PN) (Kidder et al. 1993; Kidder 1995) and NL (3PN)
orders (Blanchet et al. 2006)), at the NL (3PN) order for the SS terms (Bohé et al.
2015), and at leading order for the spin cube contributions (Marsat 2015). Similar
results were obtained with the EFT formalism (Porto et al. 2011) for which state-of-
the-art results are also the NNL (4PN) order (Cho et al. 2022b). The waveform
modes have been obtained to NNL (3.5PN) order (Henry et al. 2022) in the quasi-
circular orbit approximations. By contrast, the radiation amplitude has been
computed up to the NL (2PN) order only (Buonanno et al. 2013), although it is
currently provided in a ready-to-use form for precessing quasi-circular orbits to the
even lower 1.5PN order (Arun et al. 2009b).

See Table 8 for a summary of on the current knowledge about the PN spinning
dynamics and flux.

4.2.3.3 Eccentric-orbit waveforms The modeling of inspiral waveforms from
compact binaries in eccentric orbits commonly relies on the quasi-Keplerian
parametrization (QKP) as a semi-analytic representation of the perturbative, slowly
precessing post-Newtonian motion. The conservative motion as well as instantaneous
and hereditary contributions to the secular (“orbital averaged”) evolution of the
orbital elements are known to 3PN order, in both modified harmonic and ADM-type
coordinates (Damour et al. 2004; Memmesheimer et al. 2004; Arun et al.
2008a, b, 2009a) and to 4PN order in the ADM-type coordinates only (Cho et al.
2022c).

The complete 3PN-accurate GW amplitudes from non-spinning eccentric binaries
have been derived using the multipolar post-Minkowskian formalism, including all
instantaneous, tail and non-linear contributions to the spherical harmonic modes
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(Mishra et al. 2015; Boetzel et al. 2019; Ebersold et al. 2019). Going beyond the
usual approximation of radiation reaction as an adiabatic process (and the associated
“orbital averaging” in QKP), Damour et al. (2004); Königsdörffer and Gopakumar
(2006); Moore et al. (2016); Boetzel et al. (2019) provide post-adiabatic, oscillatory
corrections to the secular evolution of GW phase and amplitude.

For spinning eccentric binaries that have component spins aligned with the orbital
angular momentum, the effects of spin-orbit and spin-spin couplings on the binary
evolution and gravitational radiation have been worked out to leading order in QKP
(i.e., up to 1.5PN and 2PN in the equations of motion) (Klein and Jetzer 2010).
Subsequent work has aimed to extend the treatment of spins in QKP to higher PN
orders (Tessmer et al. 2010, 2013). The waveforms modes to NL (3PN) order for
aligned spins and eccentric orbits have been derived in Khalil et al. (2021); Henry
and Khalil (2023), including tail and memory contributions. While the instantaneous
contributions were derived for generic motion, the hereditary contributions were
computed first in a small-eccentricity expansion, then extended to larger eccentric-
ities using a resummation. Regarding precessing eccentric systems, gravitational
waveforms have been obtained to leading order in the precessing equation (Klein
2021). A fully analytical treatment has also been proposed up to 2PN order in the
spin, including higher harmonics (Paul and Mishra 2023).

In practice, the semi-analytic approach of QKP requires a numerical evolution of
the orbit described by a coupled system of ordinary differential equations (ODEs)
and a root-finding method to solve the Kepler problem, and therefore lacks the
computational efficiency required for most data analysis applications. The post-
circular (PC) formalism (Yunes et al. 2009) provides a method to recast the time-
domain response function h(t) into a form that permits an approximate fully analytic
Fourier transform in stationary phase approximation (SPA), under the assumption
that the eccentricity is small, leading to non-spinning, eccentric Fourier-domain
inspiral waveforms as a simple extension to the quasi-circular PN approximant
TaylorF2. More recent work has extended the PC formalism to 3PN, with a bivariate
expansion in eccentricity and the PN parameter (Tanay et al. 2016; Moore et al.
2016), and has included previously unmodeled effects of periastron advance (Tiwari
et al. 2019).

The parameter space coverage of Fourier-domain waveforms in the PC formalism
is limited by the necessary expansion in small eccentricity. Newer models aim for
validity in the range of moderate to high eccentricities, by utilizing numerical
inversions in SPA and resummations of hypergeometric functions to solve orbital
dynamics (Moore et al. 2018; Moore and Yunes 2019) or by applying Padé
approximation on analytic PC schemes expanded into high orders in eccentricity. A
semi-analytic frequency-domain model for eccentric inspiral waveforms in the
presence of spin-induced precession has been developed with the help of a shifted
uniform asymptotics (SUA) technique to approximate the Fourier transform, a
numerical treatment of the secular evolution coupled to the orbital-averaged spin-
precession, and relying on a small eccentricity expansion (Klein et al. 2018).
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4.2.3.4 Insight from scattering One can gain surprising insight in the relativistic
two-body problem by investigating unbound orbits. Studying such systems implies
analyzing the scattering of compact objects and the approximation to the two-body
problem most naturally applicable to it, the PM expansion. Recently, there has been
renewed interest in the subject, as it has been realized that PM information from
unbound systems can be transferred to bound ones, as done for instance via
Hamiltonians (Damour 2016, 2018; Antonelli et al. 2019) or between gauge-
invariant quantities (Kälin and Porto 2020a, b; Bjerrum-Bohr et al. 2020; Cho et al.
2022a; Saketh et al. 2022). Moreover, PM expansions can be independently obtained
from scattering-amplitude calculations (Arkani-Hamed et al. 2021), as done at 3PM
order (Bern et al. 2019a, b; Kälin et al. 2020a; Cheung and Solon 2020a; Kälin et al.
2023) for the nonspinning sector (see also earlier results at 2PM order (Cheung et al.
2018; Bjerrum-Bohr et al. 2018; Cristofoli et al. 2020; Kosower et al. 2019; Kälin
and Porto 2020c) and preliminary results at 4PM (Bern et al. 2021b, 2022; Dlapa
et al. 2022a, b, 2023)). Another method that has been successfully used is the
worldline quantum field theory approach (Mogull et al. 2021; Jakobsen et al. 2021;
Mougiakakos et al. 2021).

The 3PM radiative contribution, which cancels a divergence in the 3PM
conservative part, has been obtained in Damour (2020b); Bjerrum-Bohr et al. (2021);
Herrmann et al. (2021a, b); Di Vecchia et al. (2021a, b, 2020). The radiative effects in
PM expansions have been further explored in Brandhuber et al. (2021); Damgaard
et al. (2021); Riva and Vernizzi (2021); Manohar et al. (2022) and the radiative
contributions to the scattering problem were obtained in a PN expansion (Bini et al.
2020e, 2021; Bini and Geralico 2021a, b, 2022a, b; Bini et al. 2023).

A Hamiltonian including spin-orbit coupling at the 2PM approximation has been
obtained (Bini and Damour 2018) by extracting the dynamical information from a
scattering situation with the help of “scattering holonomy” (Bini and Damour 2017;
Kälin and Porto 2020b). Likewise effects at ‘spin-squared’ have been determined at
the 2PM level using both amplitude (Kosmopoulos and Luna 2021) and the EFT
formalism (Liu et al. 2021b; Chung et al. 2020; Bern et al. 2021a; Bautista et al.
2023; Jakobsen et al. 2022a, b). To 3PM order, SO and SS contributions have been
determined (Jakobsen and Mogull 2023). Effects of arbitrary orders in spin in the
scattering angle have also been studied by means of purely classical methods (Vines
2018; Siemonsen et al. 2018; Aoude et al. 2022). Those results have been recovered
at 1PM order through the computation of quantum scattering amplitudes for
minimally coupled massive spin-n particles and gravitons in the classical limit, as n
goes to infinity (Maybee et al. 2019). Notably, the tree-level amplitude has been
found to generate the full series of black-hole spin-induced multipole moments (Gue-
vara et al. 2019). Tidal effects in PM expansions have also been investigated (Cheung
and Solon 2020b; Bini et al. 2020b; Cheung et al. 2021; Bern et al. 2021c; Kälin
et al. 2020b; Aoude et al. 2021; Haddad and Helset 2020; Mougiakakos et al. 2022).

The aforementioned results have naturally prompted discussions and comparisons
between the GW astrophysics and scattering-amplitude communities, which is made
possible by the use of pivotal gauge-invariant quantities for comparisons. The
scattering angle of unbound compact-object interactions is one such pivotal quantity
that, at least in a perturbative sense through the orders so-far considered, is thought to
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encapsulate the complete conservative dynamics. Not only does it provide a common
ground to exchange information between independent PM calculations (Cristofoli
et al. 2019) or between PM and EOB schemes (Damour 2016, 2018; Vines 2018;
Vines et al. 2019; Antonelli et al. 2020c; Damgaard and Vanhove 2021; Khalil et al.
2022; Damour and Rettegno 2023), but it has also proven extremely useful to PN
theory.

The PM expansion of the scattering angle allows one to extract previously
unknown PN information through a synergistic combination of constraints from its
simple mass-ratio dependence and gravitational self-force (GSF) results, as first
realized at 5PN (Bini et al. 2019, 2020a). Such construct has been exploited to
partially calculate the 6PN dynamics (Bini et al. 2020c, d), allowing a nontrivial
check at 3PM-6PN order of the 3PM result (Blümlein et al. 2020b; Cheung and
Solon 2020a), as well as to the generic spin-orbit and aligned bilinear-in-spin sectors
at NNNL (Antonelli et al. 2020a, b) (see also Siemonsen and Vines (2020) for more
on the interface between PM and GSF theory). GSF scattering observables can also
provide a powerful handle on PM dynamics across all mass ratios. Calculations of
the scattering angle to first-order (second-order) in the mass ratio fully determine the
complete two-body Hamiltonian through 4PM (6PM) order (Damour 2020a).

4.2.3.5 First laws and gauge invariant comparisons The orbital dynamics of a
binary system of compact objects exhibits a fundamental property, known as the first
law of binary mechanics, that takes the form of a simple variational relation. This
formula relates local properties of the individual bodies (e.g. their masses, spins,
redshifts, spin precession frequencies), to global properties of the binary system (e.g.
gravitational binding energy, total angular momentum, radial action variable,
fundamental frequencies). The first law was first established for binary systems of
nonspinning compact objects moving along circular orbits (Le Tiec et al. 2012b), as a
particular case of a more general variational relation, valid for systems of black holes
and extended matter sources (Friedman et al. 2002). This first law was later extended
to generic bound eccentric orbits (Le Tiec 2015), including the effect of the GW tails
that appear at the leading 4PN order (Blanchet and Le Tiec 2017), as well as to
spinning compact binaries, for spin aligned or anti-aligned with the orbital angular
momentum (Blanchet et al. 2013). In the context of the small mass-ratio
approximation (see Sect. 4.3), analogous relations were established for a test particle
or a small self-gravitating body orbiting a Kerr black hole, by accounting for the
conservative part of the first-order gravitational self-force (GSF) (Le Tiec 2014a;
Fujita et al. 2017). These various first laws of binary mechanics have proven useful
for a broad variety of applications, including to:

● Determine the numerical values of the “ambiguity parameters” that appeared in
the derivations of the 4PN two-body equations of motion (Jaranowski and Schäfer
2012; Jaranowski and Schäfer 2013, 2015; Damour et al. 2014b, 2016; Bernard
et al. 2016, 2017a, b);

● Compute the exact first-order conservative GSF contributions to the gravitational
binding energy and angular momentum for circular-orbit nonspinning black hole
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binaries, allowing for a coordinate-invariant comparison to NR results (Le Tiec
et al. 2012a);

● Calculate the GSF-induced correction to the frequency of the ISCO for
Schwarzschild (Le Tiec et al. 2012a; Akcay et al. 2012) and Kerr ISCO (Isoyama
et al. 2014; van de Meent 2017);

● Calibrate the potentials that enter the EOB model for circular orbits (Barausse
et al. 2012b; Akcay et al. 2012) and mildly eccentric orbits (Akcay and van de
Meent 2016; Bini et al. 2016a, b), and spin-orbit couplings for spinning
binaries (Bini et al. 2015);

● Test the cosmic censorship conjecture in a scenario where a massive particle
subject to first-order GSF falls into a nonspinning black hole along unbound
orbits (Colleoni et al. 2015);

● Define the analogue of the redshift variable of a particle for black holes in NR
simulations, this allowing further comparisons to the predictions of the PN and
GSF approximations (Zimmerman et al. 2016; Le Tiec and Grandclément 2018);

● Provide a benchmark for the calculations of the first-order GSF-induced
frequency shift of the Schwarzschild innermost bound stable orbit (Barack et al.
2019a) and the second-order GSF contribution to the gravitational binding energy
(Pound et al. 2020).

The first law of binary mechanics for circular orbits has been extended to account for
finite-size effects such as the rotationally-induced and tidally-induced quadrupole
moments of the compact objects (Ramond and Le Tiec 2021, 2022). Other interesting
directions would be to extend the first law to generic precessing spinning compact
binaries, and to establish it in the context of the PM approximation and for unbound
orbits.

4.2.4 Environmental effects

The evolution of relativistic magneto-hydrodynamics, circumbinary disks around
supermassive binary black holes has been studied in the weak-field approximation.
This relies on the techniques of matched asymptotics to analytically describe a non-
spinning binary system up to 2.5PN order (Johnson-McDaniel et al. 2009; Mundim
et al. 2014), on which the magnetic field is then numerically evolved (Noble et al.
2012; Zilhão et al. 2015a). These results have later been extended to spinning, non-
precessing binary black-holes (Gallouin et al. 2012; Ireland et al. 2016) and to
spinning, precessing black-hole spacetimes (Nakano et al. 2016).

Another astrophysical environmental effect concerns the presence of a third body
around a massive binary back hole. Hierarchical triples may undergo several type of
resonances (Kuntz 2022), that can result for example in von Zeipel–Kozai–Lidov
oscillations (von Zeipel 1910; Kozai 1962; Lidov 1962). This is an interchange
between the eccentricity of the two-body inner orbit and its inclination relative to the
plane of the third body studied. Such an effect is particularly interesting for LISA as
it involves high eccentricity systems and can result in an enhancement of
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gravitational radiation. A general-relativistic treatment of triple hierarchical systems
has been performed in a weak-field approximation up to 2.5PN order in the
dynamics (Bonetti et al. 2016). The quadrupolar and octupolar waveforms have also
been obtained by numerically integrating the three-body system trajectories from the
PN expansion (Bonetti et al. 2017; Will 2017; Chandramouli and Yunes 2022). Other
studies on the von Zeipel–Kozai–Lidov oscillations in GR have employed an
expansion in powers of the ratio between the two semi-major axes up the
hexadecapole order (Bonetti et al. 2017) and later to second-order in the quadrupolar
perturbation (Will 2021). Finally, an effective two-body approach to the hierarchical
three-body problem has been proposed (Kuntz et al. 2021) and the mass quadrupole
to 1PN order was derived under this formalism (Kuntz et al. 2023).

4.2.5 Challenges

Post-Newtonian information in data analysis enters primarily through the use of
semi-analytical models (see Sects. 4.5, 4.6). To avoid parameter estimation biases
due to waveform uncertainties, developments in PN theory will be needed to increase
the accuracies of these models for the next generation of GW detectors (see Sect. 3
and Pürrer and Haster (2020) for a discussion in the context of third-generation
ground-based detectors).

One of the most significant challenges in the PN formalism will be the completion
of the 5PN order. First, due to the so-called “effacement principle” (Damour 1983),
the point-particle approximation breaks at this order. Finite-size and tidal effects have
to be taken into account, the latter being known up to 7.5PN (Flanagan and Hinderer
2008; Vines et al. 2011; Damour et al. 2012b; Bini et al. 2012; Henry et al. 2020). In
addition, due to the complexity of the computations involved, it seems highly
unlikely to achieve the derivation of the complete gravitational phase at 5PN during
the next decade, even if partial results are already obtained. In this regard, the
interplay with GSF and scattering amplitudes will be crucial to make significant
progress in this direction.

Exploiting the links between asymptotic symmetries and hereditary effects in the
PN formalism should improve the matching to NR as memory effects are starting to
be included in NR waveforms (Mitman et al. 2021b) (see also Sect. 4.1).

Regarding spinning binary systems, although the orbital dynamics are known up
to the 4PN order, it might not be sufficient for LISA data analysis. In the near future
one should primarily focus, at lower orders, on the exterior gravitational field, outside
the matter source, extending to infinity. Indeed, new multipole moments will have to
be computed to reach the same level of accuracy for the GW amplitude as for the
flux, notably the 3PN SS contributions to the current quadrupole. The next step will
consist in moving on to 4PN order, to do as well as the current equations of
evolution. For this purpose, the NNL SS piece of the 4PN mass quadrupole will be
required.

Another important topic, in order to combine information coming from the PN
framework and numerical relativity, will be to connect the magnitude of the spin used
in PN expressions to the rigorous definitions employed in numerical simula-
tions (Brown and York 1993; Ashtekar et al. 2001). The problem of comparing the
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spin axis is even more intricate since, for now, its direction has not been given a
satisfactory unambiguous meaning in any of these schemes (Owen et al. 2019).

Regarding eccentric waveforms, most current models have focused on a low
eccentricity expansion and non-spinning or aligned spin systems. It is crucial to make
progress in both directions. First one has to go beyond the small eccentricity
approximation, as some have started investigating (Moore et al. 2018; Moore and
Yunes 2019). Second, it will be important to have reliable fully precessing and
eccentric waveforms in order to span all the parameter space expected for LISA
sources.

Notwithstanding the amount of work and progress already made, studies of the
scattering of compact objects still explore a relatively uncharted territory. Obvious
extensions of the work reported above will involve pushing scattering calculations of
both spinning and nonspinning systems to higher PM orders in the conservative
sector, both from a fully classical and amplitude approach. Such new information
would help in obtaining new nontrivial PN information via the continued exploitation
of the scattering angle’s mass-ratio dependence, as well as continuing the fruitful
exchange between the communities. The interconnectedness of the PM, PN and GSF
approximations should also be explored in the context of tidal effects (information
from PM is available, e.g., Cheung and Solon 2020b). Scattering studies should also
explore dissipative radiation-reaction effects. It is important to push these calcula-
tions, so that the accuracy gained in the dissipative dynamics goes on par with that of
the conservative sector.

4.3 Small-mass-ratio approximation (gravitational self-force)

Coordinators: Marta Colleoni and Adam Pound
Contributors: S. Akcay, E. Barausse, B. Bonga, R. Brito, M. Casals, G. Compere,
A. Druart, L. Durkan, A. Heffernan, T. Hinderer, S. A. Hughes, S. Isoyama,
C. Kavanagh, L. Kuchler, A. Le Tiec, B. Leather, G. Lukes-Gerakopoulos, O. Long,
P. Lynch, C. Markakis, A. Maselli, J. Mathews, C. O’Toole, Z. Sam, A. Spiers,
S. D. Upton, M. van de Meent, N. Warburton, V. Witzany

4.3.1 Description

When the secondary object in a binary is significantly smaller than the primary, we
can treat the mass ratio � ¼ m2=m1 ¼ 1=q as a small parameter and seek a

perturbative solution for the spacetime metric, gab ¼ gð0Þab þ �hð1Þab þ �2 hð2Þab þ . . . The

background metric gð0Þab then describes the spacetime of the primary in isolation,

typically taken to be a Kerr BH. At zeroth order, the secondary behaves as a test mass

in the background, moving on a geodesic of gð0Þab . At subleading orders, it generates
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the perturbations hðnÞab , which then exert a self-force back on it, accelerating it away

from geodesic motion and driving the inspiral. These perturbations hðnÞab also encode

the emitted waveforms.
The perturbative field equations and trajectory of the secondary are determined

using GSF theory, a collection of techniques for incorporating a small gravitating
object into an external field (Poisson et al. 2011; Harte 2015; Pound 2015b; Barack
and Pound 2019; Pound and Wardell 2021). Using matched asymptotic expansions
(or EFT (Galley and Hu 2009)), the small object is reduced to a point particle, or
more generally to a puncture in the spacetime geometry, equipped with the object’s
multipole moments. For a compact object, higher moments scale with higher powers
of the small mass m2, such that one additional multipole moment appears at each
order in �. This multipolar particle (or puncture) is found to obey a generalized
equivalence principle, behaving as a test body in a certain effective, smooth, vacuum

metric gð0Þab þ �hRð1Þab þ �2 hRð2Þab þ . . . (Mino et al. 1997b; Quinn and Wald 1997;

Detweiler 2001; Detweiler and Whiting 2003; Gralla and Wald 2008; Pound 2010a;
Gralla 2011; Harte 2012; Detweiler 2012; Pound 2012b; Gralla 2012; Harte 2015;
Pound 2017; Upton and Pound 2021).

The regular fields hRðnÞab that influence the secondary’s motion can be calculated

directly, using a puncture scheme in which they are the numerical variables (Barack
et al. 2007; Vega and Detweiler 2008). Alternatively, they can be extracted from the

full fields hðnÞab using a mode-by-mode subtraction (Barack and Ori 2000, 2003a, b;

Barack et al. 2002; Heffernan et al. 2012, 2014; Heffernan 2022) or other
methods (Casals et al. 2009; Wardell et al. 2014), as reviewed in Barack (2009);
Wardell and Warburton (2015); Pound and Wardell (2021). In either approach, the
perturbative field equations can be solved using the methods of BHPT (Regge and
Wheeler 1957; Zerilli 1970b; Teukolsky 1973; Wald 1973; Chrzanowski 1975; Wald

Fig. 5 Geodesics of Kerr spacetime. Left: a non-resonant geodesic, which fills a toroidal shape. Right: a
resonant geodesic. Images taken from Barack and Pound (2019)
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1978; Kegeles and Cohen 1979; Sasaki and Tagoshi 2003; Martel and Poisson 2005;
Barack and Lousto 2005; BHPToolkit 2024; Pound and Wardell 2021).

A key feature of this model is its clean separation of time scales: because the self-
force is small, inspirals occur slowly, over � 1=� orbits. On the time scale of a few

orbits, the secondary’s trajectory is approximately a bound geodesic of gð0Þab

(illustrated in Fig. 5), which in Kerr spacetime is generically triperiodic, undergoing
radial, polar, and azimuthal motion with frequencies Xr, Xh, and X/ (Schmidt 2002;
Mino 2003; Fujita and Hikida 2009; Grossman et al. 2012; Pound and Wardell 2021).
Over the long inspiral, the frequencies slowly evolve due to dissipation. The field
equations can therefore be solved using a two-timescale expansion (Mino and Price
2008; Hinderer and Flanagan 2008; Pound 2010b, 2015c; Miller and Pound 2021;

Flanagan et al. 2024; Pound and Wardell 2021), hðnÞab ¼PkA2Z h
ðn;kAÞ
ab ðJB; xaÞeikAwA .

Here xa are spatial coordinates, and all time dependence is encoded in the set of
system parameters JA (the secondary’s orbital energy, angular momentum, and Carter
constant, the primary’s mass and spin, etc.), and the set of orbital phases wA. The
parameters JA evolve slowly, on the inspiral time scale t� 2p=ð�XÞ, while the phases
wA evolve on the orbital time scale t� 2p=X, with evolution equations of the form
Hinderer and Flanagan (2008); Van De Meent and Warburton (2018); Miller and
Pound (2021); Flanagan et al. (2024); Pound and Wardell (2021)

dJA

dt
¼ �GA

ð1ÞðJBÞ þ �2GA
ð2ÞðJBÞ þ Oð�3Þ; dwA

dt
¼ Xð0Þ

A ðJBÞ þ �Xð1Þ
A ðJBÞ þ Oð�2Þ:

ð13Þ
Formulating the problem in this way enables practical methods of solving the Ein-
stein equations (Miller and Pound 2021; Pound and Wardell 2021) as well as
facilitating rapid waveform generation (Van De Meent and Warburton 2018; Pound
and Wardell 2021; Lynch et al. 2022).

The two-timescale description will frame much of the discussion below. However,
there are some special cases of interest that it does not apply to, such as scattering
orbits (Hopper 2018; Hopper and Cardoso 2018; Long and Barack 2021; Barack and
Long 2022; Long 2022). Even in an inspiral, there are regions of parameter space in
which the approximation breaks down: at the end of the inspiral, when the secondary
transitions into a final plunge into the primary (Buonanno and Damour 2000; Ori and
Thorne 2000; Apte and Hughes 2019; Burke et al. 2020; Compère et al. 2020b;
Compère and Küchler 2022), and during resonances, which occur when at least two
of the frequencies XA have a rational ratio, causing a linear combination of phases,
kAwA, to become approximately stationary (Tanaka 2006; Flanagan and Hinderer
2012; Lukes-Gerakopoulos and Witzany 2022). Such resonances can arise from a
variety of physical causes, outlined below, with significant observational
consequences.

Many of the core tools in GSF modelling, as well as advanced codes described in
the sections below, have been consolidated in the open-source Black Hole
Perturbation Toolkit (BHPToolkit 2024), which provides a hub for GSF code
development, as well as in the Black Hole Perturbation Club (BHPClub 2024). In
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particular, the Fast EMRI Waveforms (FEW) package (Katz et al. 2021), which
exploits GSF models’ multiscale structure, has provided a flexible framework for
rapid waveform generation.

4.3.2 Suitable for what sources?

Historically, the GSF approximation has been motivated by EMRIs, with mass ratios
in the interval 10�7.�.10�3 as far as LISA sources are concerned (see Table 3). The
GSF model’s accuracy for a typical EMRI can be estimated from the evolution
Eq. (13). On the inspiral time scale, the solutions for the orbital phases, and therefore
the GW phase, take the form

wA ¼ 1

�
wð0Þ
A þ �wð1Þ

A þ Oð�2Þ
h i

: ð14Þ

Following (Hinderer and Flanagan 2008), the leading term in this expansion is
referred to as adiabatic order (0PA), and the nth subleading term as nth post-adia-
batic order (nPA). An adiabatic approximation, which has large phase errors � �0

over an inspiral, is expected to suffice for detection of EMRIs using the semi-
coherent searches discussed in Sect. 3.3.1. A 1PA approximation, which will have
phase errors � � � 1 rad over the final year of inspiral, should suffice for parameter
extraction even for loud EMRIs with SNR [ 50.

A large and growing body of evidence (Fitchett and Detweiler 1984; Anninos
et al. 1995; Favata et al. 2004; Le Tiec et al. 2011, 2012a; Sperhake et al. 2011;
Le Tiec et al. 2013; Nagar 2013; van de Meent 2017; Zimmerman et al. 2016;
Le Tiec and Grandclément 2018; Rifat et al. 2020; van de Meent and Pfeiffer 2020;
Warburton et al. 2021; Wardell et al. 2023; Albertini et al. 2022b; Ramos-Buades
et al. 2022b) suggests that the GSF approximation can also accurately model IMRIs
(see Table 4). It can even provide a useful model of CO binaries with comparable
masses when it is re-expressed as an expansion in powers of the symmetric mass

ratio m � m1m2=ðm1 þ m2Þ2 ¼ �þ Oð�2Þ. We refer to Le Tiec (2014b) for an early
review and Albertini et al. (2022b); Ramos-Buades et al. (2022b) for recent analyses
of the accuracy of 1PA models in the 1.q.100 regime. Further study is required to
assess whether 1PA models meet expected accuracy requirements for specific classes
of astrophysical sources in this range of mass ratios.

Besides compact binary inspirals, the GSF approximation can be used for other
classes of sources. A leading-order GSF model, comprising a point source on a
geodesic trajectory, should be suitable for XMRIs (Amaro-Seoane 2019; Gourgoul-
hon et al. 2019) and fly-by burst signals (Hopper 2018; Hopper and Cardoso 2018;
Long and Barack 2021; Barack and Long 2022; Long 2022). GSF theory may also be
relevant for modelling gravitational waves from cosmic strings (Blanco-Pillado et al.
2018b; Chernoff et al. 2019; Blanco-Pillado et al. 2019). Inspirals of less compact
bodies into MBHs (e.g., white or brown dwarfs or main-sequence stars prior to tidal
disruption), and three-body “binary EMRIs”, can be modelled by including
sufficiently high multipole moments in the particle or puncture (Steinhoff and
Puetzfeld 2012; Chen and Han 2018; Rahman and Bhattacharyya 2023).
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4.3.3 Status

The current status of GSF models is summarized in Fig. 6, which also summarizes
the necessary inputs for a waveform model at 0PA and 1PA order.

4.3.3.1 Adiabatic approximation At leading order in the two-timescale expansion,

only the geodesic frequencies Xð0Þ
A and time-averaged dissipative piece GA

ð1Þ of the
first-order self-force are required to drive the evolution (Mino 2003, 2005). The
secondary’s motion in this approximation can be regarded as an adiabatic inspiral
through a sequence of geodesic orbits (Hinderer and Flanagan 2008; Hughes et al.
2005). The waveform can then be built from a corresponding sequence of “snapshot”
Fourier mode amplitudes together with the leading phases in Eq. (14). Alternatively,
outside the two-timescale scheme, a time-domain field equation can be solved with
an adiabatically inspiraling source particle (Sundararajan et al. 2008; Barausse et al.
2012a; Taracchini et al. 2014a; Harms et al. 2014; Rifat et al. 2020).

GA
ð1Þ is most conveniently computed using “flux-balance” formulas (Gal’tsov

1982; Drasco et al. 2005; Sago et al. 2005; Isoyama et al. 2013, 2019), in which the
“work” done by the dissipative self-force balances the fluxes of gravitational waves
to infinity and down the horizon (or flux-like quantities in the case of the Carter
constant). Methods of computing fluxes in GSF theory are well developed (Press and
Teukolsky 1973; Teukolsky and Press 1974; Nakamura et al. 1987; Martel 2004;
Poisson 2004; Sundararajan et al. 2007, 2008; Zenginoglu and Khanna 2011; Harms
et al. 2014), and have been numerically implemented for generic (inclined and
eccentric) geodesics about a Kerr BH (Hughes 2000; Glampedakis and Kennefick
2002; Drasco and Hughes 2006; Fujita et al. 2009). The fluxes have also been

calculated analytically (by expanding hð1Þab in a PN series (Mano et al. 1996; Mino

Fig. 6 Progress in modelling EMRIs using GSF methods. ‘1SF’ and ‘2SF’ indicate calculations involving
the first or second-order self-force, respectively, and ‘spin effects’ indicates calculations that take into
account the secondary’s spin (the spin of the primary is accounted for in all ‘Kerr’ calculations). ‘Snapshot
calculations’ (single tick) are ones in which self-force effects are calculated on fixed geodesic orbits
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et al. 1997a; Sasaki and Tagoshi 2003)) to high PN order for circular (Fujita
2012, 2015; Shah 2014), eccentric (Tagoshi 1995; Munna et al. 2020; Munna and
Evans 2020), and generic orbital configurations (Sago et al. 2006; Ganz et al. 2007;
Sago and Fujita 2015).

After decades of progress (Cutler et al. 1994; Finn and Thorne 2000; Hughes
2001; Fujita and Iyer 2010; Pan et al. 2011b; Gralla et al. 2016; Burke et al. 2020;
Chua et al. 2021; Fujita and Shibata 2020), adiabatic inspirals and waveforms are
now being computed for generic orbits in Kerr, both numerically (Hughes et al.
2021) and within the analytical BHPT-PN framework mentioned above (Isoyama
et al. 2022).

Once fluxes and waveform mode amplitudes have been computed across the
parameter space, adiabatic waveforms can be efficiently generated using a
combination of neural network and reduced-order techniques (Chua et al. 2021;
Katz et al. 2021), a method that lends itself to graphical processing unit (GPU)
acceleration techniques; see Sect. 5.2. This approach should ultimately meet the
efficiency requirements described in Sect. 3.3.1. However, due to the high-
dimensional parameter space, significant work remains to populate the parameter
space. As a consequence, data analysis development has so far relied on
semirelativistic “kludge” models that seek to capture all the qualitative features of
EMRI waveforms while sacrificing accuracy (Barack and Cutler 2004; Babak et al.
2007; Chua and Gair 2015; Chua et al. 2017; EMRI Kludge Suite 2024). These
models typically combine (i) post-Newtonian information about the orbital
dynamics, (ii) qualitative (and sometimes quantitative) features of the fully
relativistic 0PA orbital evolution, and (iii) a post-Newtonian (e.g., Peters and
Mathews 1963) multipolar formula for the emitted waveform. The most advanced of
such models, the Augmented Analytical Kludge (Chua et al. 2017), is available in the
the FEW package (Katz et al. 2021).

4.3.3.2 Post-1-adiabatic self-force effects: 1SF The 1PA terms in the two-timescale

expansion (Xð1Þ
A and GA

ð2Þ) take as input the conservative piece of the first-order self-

force (1SF, / hð1Þab ) and the dissipative piece of the second-order self-force (2SF,

/ hð2Þab ). Once these ingredients have been computed, a 1PA waveform-generation

scheme takes the same form as a 0PA one (Miller and Pound 2021; Pound and
Wardell 2021).

Numerical computations of the full first-order self-force have made tremendous
progress, evolving from Lorenz-gauge calculations (Barack and Lousto 2005; Barack
and Sago 2007, 2010; Dolan and Barack 2013; Akcay et al. 2013; Osburn et al. 2014;
Isoyama et al. 2014; Wardell and Warburton 2015) to more efficient methods relying
on radiation gauges (Keidl et al. 2010; Shah et al. 2011; Pound et al. 2014; Merlin
and Shah 2015; van de Meent and Shah 2015; van de Meent 2016; Merlin et al.
2016; van De Meent 2017). These developments culminated in 1SF calculations
along generic bound geodesics in Kerr spacetime (van de Meent 2018), and work is
still ongoing to further improve 1SF methods (Toomani et al. 2022; Dolan et al.
2022; Panosso Macedo et al. 2022).
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High-precision numerics and BHPT-PN methods have also made possible high-
order PN expansions of numerous conservative invariants, such as the Detweiler
redshift (Shah et al. 2012a, 2014; Bini and Damour 2014a; Hopper et al. 2016;
van de Meent and Shah 2015; Johnson-McDaniel et al. 2015; Kavanagh et al. 2016;
Bini et al. 2018a; Bini and Geralico 2019c), the periastron advance (van de Meent
2017; Bini and Geralico 2019a), and other invariants (Nolan et al. 2015; Shah and
Pound 2015; Bini and Geralico 2015; Bini et al. 2018b; Bini and Geralico 2019b;
Munna and Evans 2022), which have played a key role in the synergies with PN
theory and EOB described in Sects. 4.2 and 4.5.

Modern 1SF calculations mostly rely on frequency-domain methods and mode-

by-mode subtraction or puncture schemes to calculate hRð1Þab . However, there have

also been advances in time domain (TD) calculations based on either finite-difference
schemes (Barack and Giudice 2017; Hughes et al. 2005; Long and Barack 2021;
Da Silva et al. 2023) or spectral methods (Canizares and Sopuerta 2009, 2010, 2011;
Field et al. 2009; Diener et al. 2012; Markakis et al. 2021; Da Silva et al. 2023;
Vishal et al. 2024), along with improved time-stepping methods (O’Boyle et al.
2022; Markakis et al. 2023; Da Silva et al. 2023; O’Boyle and Markakis 2023).
There is also ongoing work to directly obtain the retarded Green function (Casals
et al. 2013; Wardell et al. 2014; Casals et al. 2019; Yang et al. 2014; O’Toole et al.
2021), which would then allow direct evaluation of the self-force (Mino et al. 1997b;
Quinn and Wald 1997).

As at 0PA, calculations of the self-force and of GW amplitudes across the
parameter space have been used to simulate self-forced inspirals (Warburton et al.
2012; Osburn et al. 2016; Van De Meent and Warburton 2018; Lynch et al.
2022, 2024) and generate waveforms (Lackeos and Burko 2012; Osburn et al. 2016).
To date, this has only been done for equatorial orbits and quasi-spherical
orbits (Lynch et al. 2024), due to the computational expense of current 1SF
calculations for generic orbits.

4.3.3.3 Post-1-adiabatic self-force effects: 2SF The dissipative piece of the second-
order self-force (GA

ð2Þ) contributes to the GW phasing at the same 1PA order as the

first-order conservative self-force, but calculations of it are less mature. After years of
development of the governing formalism (Rosenthal 2006; Detweiler 2012; Pound
2012b; Gralla 2012; Pound 2012a, 2015a, 2017; Upton and Pound 2021) and of
practical implementation methods (Pound and Miller 2014; Warburton and Wardell
2014; Wardell and Warburton 2015; Pound 2015c; Miller et al. 2016; Miller 2017;
Pound and Wardell 2021; Durkan and Warburton 2022; Spiers et al. 2024b), (Pound
et al. 2020; Warburton et al. 2021; Wardell et al. 2023) recently carried out the first
concrete calculations of physical second-order quantitities in the restricted case of
quasicircular orbits around a Schwarzschild BH. These calculations culminated in the
first complete 1PAwaveforms in Wardell et al. (2023). Figure 7 shows a comparison
between one of these 1PAwaveforms and an NR waveform for q ¼ 10. As alluded to
in Sect. 4.3.2, the 1PA approximation agrees well with NR even at this moderate
mass ratio. These 1PAwaveforms have also more recently been extended to include a
slowly spinning primary (Mathews et al. 2024). Section 4.3.5 discusses the next
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major barrier in GSF calculations: 2SF calculations with a rapidly spinning primary,
eccentricity, and inclination.

4.3.3.4 Transient resonances Resonances are a ubiquitous feature of the strong-
field dynamics around BHs in GR (Brink et al. 2015a, b), and their observational
imprints on waveforms can be significant. Transient self-force resonances, between
the orbital frequencies Xr and Xh, will have strong observational consequences for
EMRIs (Mino 2005; Tanaka 2006; Levin and Perez-Giz 2008; Apostolatos et al.
2009; Flanagan and Hinderer 2012). Essentially all LISA-type EMRIs pass through
at least one dynamically significant resonance, leading to a large, Oð1= ffiffi

�
p Þ (i.e.,

0.5PA) contribution to the waveform phase (Ruangsri and Hughes 2014; Berry et al.
2016; Mihaylov and Gair 2017). The magnitude of this effect depends sensitively on
the orbital phase at the resonance. As a result, modelling it requires 1PA accuracy
prior to resonance. There are ongoing efforts to understand the impact of these
resonances and include them in evolutions (Gair et al. 2012; Flanagan et al. 2014;
van de Meent 2014a; Isoyama et al. 2013; Lewis et al. 2017; Isoyama et al.
2019, 2022; Lukes-Gerakopoulos and Witzany 2022; Nasipak and Evans 2021;
Nasipak 2022; Gupta et al. 2022b).

There also occur resonances between the r and u frequencies and between the h
and u frequencies. These do not change the intrinsic inspiral dynamics, but they can
lead to a strong net emission of linear momentum that results in a ‘kick’ to the
system’s center of mass (Hirata 2011; van de Meent 2014b). The maximum kick
velocity can reach � 30; 000� �3=2 km/s (depending on the primary spin and on the
orbital eccentricity): for IMRI systems, these values could be comparable to the
escape velocities from globular clusters, which are typically of the order of a few tens
of km/s (Merritt et al. 2004; Antonini and Rasio 2016).

4.3.3.5 Merger and ringdown The two-timescale expansion breaks down as the
secondary object approaches the separatrix between bound and plunging orbits.
There, the secondary enters a gradual transition across the separatrix (Buonanno and
Damour 2000; Ori and Thorne 2000; Burke et al. 2020; Compère et al. 2020b)
followed by an approximately geodesic plunge. The transition motion has been

Fig. 7 1PA GSF waveform for a quasicircular, nonspinning binary with mass ratio q ¼ 10 (orange). The
inset shows a zoomed portion of the waveform near the merger. Also included for comparison are the 0PA
GSF waveform (blue, inset only) and the waveform for the same binary produced using an NR simulation
in the SXS catalog (Boyle et al. 2019) (SXS:BBH:1107, in black). The three waveforms are aligned in time
and phase at t ¼ 320M , when the orbital separation is 	 13:83M . Image reproduced from Wardell et al.
(2023)
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mostly studied within the EOB framework using resummed PN expansions (Buo-
nanno and Damour 2000; Buonanno et al. 2006; Nagar et al. 2007; Damour and
Nagar 2007, 2009; Bernuzzi and Nagar 2010; Bernuzzi et al. 2011a, b; Pan et al.
2014) or within the GSF approach using simplifying approximations (Ori and Thorne
2000; Sundararajan 2008; Kesden 2011; Taracchini et al. 2014a; Apte and Hughes
2019; Compère et al. 2020b; Burke et al. 2020). Merger-ringdown waveforms have
been generated from the final plunge at first order (Folacci and Ould El Hadj 2018;
Rom and Sari 2022), and complete inspiral-merger-ringdown waveforms have been
generated by solving time-domain equations for first-order perturbations sourced by
the combined inspiral-transition-plunge motion (Barausse et al. 2012a; Taracchini
et al. 2014a; Harms et al. 2014; Rifat et al. 2020; Islam et al. 2022). Only recently,
(Compère and Küchler 2021, 2022; Küchler et al. 2024) took a first step toward 1PA/
2SF inspiral-merger-ringdown waveforms by developing a systematic expansion of
the transition motion and metric perturbation that matches to the two-timescale
expansion for quasicircular, equatorial inspirals into a Kerr BH.

4.3.3.6 Spin and finite-size effects When its multipole structure is accounted for,
the secondary obeys the Mathisson–Papapetrou–Dixon equations of a test
body (Mathisson 1937; Papapetrou 1951; Dixon 1970a, b, 1974) in the effective
metric; such a result is expected to hold to all perturbative orders for both BHs and
material bodies (Thorne and Hartle 1984; Harte 2012, 2015).

The spin contributes first-order conservative and second-order dissipative forces in
the equations of motion, leading to 1PA, Oð�0Þ contributions to the final inspiral
phase (Mathews et al. 2022). Spin also generally breaks the integrability of Kerr
geodesic motion (Suzuki and Maeda 1997); the resulting potential phenomena, like
prolonged resonances, can leave a significant imprint on the gravitational waves
(Rudiger 1983; Suzuki and Maeda 2000; Ruangsri et al. 2016; Witzany 2019;
Zelenka et al. 2020) and may contribute Oð1Þ to the GW phase. Away from these
resonances, the spinning-particle motion is perturbatively separable to linear order in
spin (Witzany 2019) and easily incorporated into a two-timescale approxima-
tion (Witzany et al. 2020; Mathews et al. 2022).

For dissipative effects, a spin-flux balance law has been established (Akcay et al.
2020), and GW fluxes were computed for a variety of binary configurations (Mino
et al. 1996; Tanaka et al. 1996; Han 2010; Harms et al. 2016a, b; Lukes-
Gerakopoulos et al. 2017; Nagar et al. 2019a; Akcay et al. 2020; Zelenka et al. 2020;
Piovano et al. 2020; Skoupý and Lukes-Gerakopoulos 2021). Waveforms from
generic inspirals into a Schwarzschild BH have also been computed including 1SF
and first-order conservative spin effects (Warburton et al. 2017) but excluding
dissipative spin effects. Waveforms including all 1PA spin effects from circular
equatorial inspirals into Schwarzschild (Mathews et al. 2022) and Kerr BHs (Piovano
et al. 2021) have been produced, and the spin’s complete 1PA contribution to the GW
phase has been calculated for eccentric equatorial inspirals into a Kerr BH (Skoupý
and Lukes-Gerakopoulos 2022). A formulation of the first-order conservative spin-
forced motion for generic orbits about a Kerr BH (Drummond and Hughes 2022a, b)
paved the way for calculations of the spin’s complete impact on fully generic 1PA
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waveforms, beginning with recent snapshot computations of energy and angular
momentum fluxes (Skoupy et al. 2023).

The secondary’s higher moments are unlikely to contribute at 1PA order. The tidal
quadrupole’s contribution to the acceleration scales with �4 (Binnington and Poisson
2009) and can therefore only become relevant for non-compact objects. The spin also
induces a quadrupole deformation of the secondary, which creates an acceleration
� �2 (Steinhoff and Puetzfeld 2012; Rahman and Bhattacharyya 2023) that is
unlikely important for EMRIs (up to resonances) but might be relevant for
IMRIs (Rahman and Bhattacharyya 2023).

4.3.4 Environmental effects

In the preceding sections, we have focused on the simplest GSF model: an isolated
vacuum BH orbited by a single body. This will not fully describe astrophysical small-
mass-ratio binaries. Accreting matter will be present at some level, and there are
likely to be additional bodies nearby. Accounting for these effects will be necessary
to achieve the stringent accuracy requirements that EMRIs, in particular, place on
GSF models.

There are three ways we can modify GSF models to include such effects: (i)
perturbatively, by adding “small” matter fields or metric perturbations to the
spacetime, which then exert small forces on the secondary; (ii) non-perturbatively, by
modifying the background spacetime and introducing “large” matter fields; (iii) by
changing boundary conditions, imagining (for example) modifications very near the
BH horizon or non-asymptotically flat perturbations due to external matter. Section 6
discusses how these classes of modifications can also be used to incorporate beyond-
GR effects.

Although important aspects of the astrophysical environment of EMRIs are
uncertain, it is expected that there will be other stellar-mass bodies nearby. These
bodies create an additional metric perturbation, which should be sufficiently small to
be treated as a linear perturbation. The influence of the perturbation is generally
negligible, except at moments when two or more of the orbital frequencies
characterising the perturbed EMRI system become commensurate. At those times, an
EMRI experiences a tidal resonance (Yang and Casals 2017), an orbital resonance
akin to the mean motion resonance known from planetary dynamics (Yang et al.
2019a). Calculations across the parameter space showed that a single resonance can
dephase the waveform by several radians over the inspiral (Bonga et al. 2019; Gupta
et al. 2021a, 2022a, b), and that most EMRIs will cross multiple tidal resonances
before plunge. If LISA can reliably measure these resonances, they can be used to
learn about the tidal environment of EMRI systems.

Accretion and gas interactions will also be present at some level in any
astrophysical EMRI system. Order-of-magnitude estimates suggest they will be
negligible unless the primary BH powers an AGN (in which case it would be
surrounded by an accretion disk with which the secondary is likely to inter-
act) (Barausse et al. 2014, 2015; Barausse and Rezzolla 2008; Suková et al. 2021).
Since AGNs are believed to make up 1–10% of local galaxies, only a comparable
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fraction of EMRIs are expected to be significantly affected by accretion and gas
interactions. For those systems, accretion onto the primary and secondary, as well as
dynamical friction from the disk and planetary-like migration within it, are expected
to cause secular effects comparable to those of GW fluxes (Barausse et al.
2014, 2015; Barausse and Rezzolla 2008). Recently work has begun to incorporate
the disk and other potential nonvacuum effects into GSF models by adding torques to
0PA Kerr models (Speri et al. 2023) or by working perturbatively on an exact
nonvacuum background, assuming a spherically symmetric dark matter distribu-
tion (Cardoso et al. 2022b; Destounis et al. 2023b).

The direct gravitational pull from AGN disks is likely to be negligible (Barausse
et al. 2014), but if more dense disks/rings exist in nature, the effect may be
significant (Barausse et al. 2007). Exact spacetime solutions describing thin disks or
rings around BHs (Lemos and Letelier 1994; Basovník and Semerák 2016; Semerák
and Čížek 2020) show that orbits in such situations are non-integrable, exhibiting
characteristic phenomena like chaos and prolonged resonances (Semerák and Suková
2015). If these effects are significant in realistic scenarios, GSF models should be
able to account for them through perturbative corrections on top of a Kerr
background (Yunes and Gonzalez 2006; Le Tiec et al. 2021; Gupta et al. 2022b;
Polcar et al. 2022).

4.3.5 Challenges

The principal goal of GSF waveform modelling is to develop complete 1PA models
for generic orbital configurations around a spinning, Kerr BH. To be complete, these
models must include the spin of the companion, transitions across resonances, and
the final plunge. They must also be sufficiently modular to incorporate beyond-GR
and environmental effects, and there are strong motivations to explore other regions
of the parameter space, such as scatter orbits and comparable masses. We summarize
here the main challenges in developing and implementing such models.

4.3.5.1 Post-1-adiabatic calculations 1PA models are currently missing two
ingredients: the effects of the companion’s spin for generic binary configurations,
and dissipative 2SF effects; see Fig. 6. Both must be incorporated into a unified two-
timescale expansion of the field equations, the orbital motion, and the spin evolution.

While substantial work remains to calculate 1PA spin effects for generic binary
configurations, these calculations can leverage existing methods for point-particle
sources. Therefore, 2SF calculations represent the overriding obstacle to 1PA
accuracy. Practical 2SF calculations have, thus far, been restricted to quasicircular
orbits in a Schwarzschild background (Pound et al. 2020; Warburton et al. 2021;
Wardell et al. 2023). As discussed in Sect. 2.2, the majority of EMRIs are expected to
have significant eccentricity and may have highly precessing orbital planes when
they enter the LISA band, meaning 2SF techniques need to be extended to cover
generic orbital configurations. They must also be extended to the realistic case of a
Kerr background.
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Eccentricity and inclination bring multiple challenges. Most recent self-force
calculations have utilized decompositions into Fourier modes (the natural setting of
the two-timescale expansion) and angular harmonics. Eccentric, inclined orbits can
require � 105 modes, all of which will couple to one another in the second-order
source. The sum of Fourier modes can also suffer from poor convergence: in the

existing 2SF puncture scheme, the source for hRð2Þab has finite differentiability on the

puncture’s worldline, leading to slow power-law convergence (the Gibbs phe-
nomenon). At first order, similar problems were overcome using methods of
extended solutions (Barack et al. 2008; Warburton and Barack 2011; Hopper and
Evans 2013; Akcay et al. 2013; Osburn et al. 2014; van de Meent and Shah 2015;
van de Meent 2018) that restore exponential convergence. These have inspired a new
scheme, applicable at second order, known as the method of extended effective
sources (Leather and Warburton 2023), which has been demonstrated in the case of a
scalar-field toy model for eccentric orbits about a Schwarzschild BH. Work now
remains to apply it to gravitational perturbations, both at first and second order, and
to orbits in Kerr spacetime.

The extension to Kerr spacetime brings more challenges. Second-order calcula-
tions in Schwarzschild have so far relied on directly solving the perturbative Einstein
equations, which are not separable in Kerr spacetime. At first order, this problem was
overcome using radiation-gauge methods, in which the metric perturbation is
reconstructed from a solution to the (fully separable) Teukolsky equation (Teukolsky
1973; Chrzanowski 1975; Kegeles and Cohen 1979). One path to 2SF calculations is
to extend that method to second order (Campanelli and Lousto 1999; Green et al.
2020; Toomani et al. 2022; Spiers et al. 2023). The standard method of metric
reconstruction (Chrzanowski 1975; Kegeles and Cohen 1979) fails beyond linear
order, but recent work found an extension to all orders (Green et al. 2020; Toomani
et al. 2022). Recent work on second-order flux-balance laws (Grant 2023; Sam 2024)
also suggests that 1PA rates of change of energy and angular momentum (though
perhaps not the Carter constant) can be computed directly from a solution to the
second-order Teukolsky equation, without the need for metric reconstruction.

An additional obstacle is that in radiation-gauge implementations, the first-order
metric perturbation has gauge singularities that extend away from the particle. There
is a rigorous procedure to extract physical 1SF quantities despite these singulari-
ties (Pound et al. 2014; Merlin et al. 2016; van De Meent 2017), but the singularities
become ill defined in the second-order field equations (Toomani et al. 2022). Several
avenues are being explored to resolve this problem (Toomani et al. 2022; Dolan et al.
2022; Osburn and Nishimura 2022; Dolan et al. 2024).

There are also challenges common to all these 2SF calculations: at second order,
the field equations have a noncompact source that falls off slowly at large
distances (Pound 2015c) and is burdensome to compute due to the strong nonlinear
singularity at the particle (Miller et al. 2016). Recent work (Upton and Pound 2021;
Spiers et al. 2023) has shown that both problems might be mitigated by using gauges
adapted to the lightcone structure of the perturbed spacetime. However, additional
work will be required to implement these gauge choices in a practical numerical
scheme.
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4.3.5.2 Covering the parameter space Even once numerical implementations of all
necessary ingredients are available, spanning the full EMRI parameter space remains
a considerable challenge at both 0PA and 1PA orders. This is due to the high
dimensionality of the parameter space and the high computational burden of self-
force calculations, particularly at second order. Covering the EMRI parameter space
will likely involve a combination of (i) using analytic results to reduce the region of
the parameter space where high-precision interpolation of numerical data is required,
(ii) better interpolation methods, and (iii) improvements in computational efficiency
of current numerical calculations. We address each of these three below in the context
of 0PA inspirals, 1PA inspirals, and waveform calculations. Computing adiabatic
inspirals requires interpolating the rates of change (GA

ð1Þ) of the orbital energy,

angular momentum, and Carter constant across the four-dimensional parameter space
of the primary spin and three orbital elements. For an adiabatic model sufficiently
accurate to build 1PA corrections upon, we need to interpolate GA

ð1Þ to better than a

relative accuracy of ��1. The central challenge is then constructing such a high-
accuracy interpolant over the 4D parameter space. Recent work has demonstrated
advantages of Chebyshev interpolation for this purpose (Lynch et al. 2022). The
region of the parameter space, and the accuracy of the interpolation of the numerical
data, can also be reduced by constructing global fits informed by analytic results.

At 1PA order we must also compute the change in the mass of the primary during
the inspiral (Miller and Pound 2021), and so the parameter space grows to five
dimensions. There are also corrections due the spin of the secondary, but fortunately,
these can be added on separately. At 1PA order the accuracy requirements of the
contributions are much lower, at � 10�2–10�3 relative (Osburn et al. 2016). This
should allow analytic results to assist in reducing the parameter space that numerical
results need to cover. Such analytical results could be obtained by extending BHPT-
PN calculations. Alternatively, they could be obtained from EOB dynamics,
following the programme in (Han and Cao 2011; Han 2014, 2016; Han et al. 2017;
Zhang et al. 2021a, b; Shen et al. 2023). Regions of high eccentricity may also be
more easily covered using advanced time-domain codes (Canizares et al. 2010; Field
et al. 2009; Diener et al. 2012; Markakis et al. 2021; Barack and Giudice 2017; Long
and Barack 2021; O’Boyle et al. 2022; Da Silva et al. 2023; Vishal et al. 2024).

4.3.5.3 Extending the parameter space The challenges above are centered on
“vanilla” regions of the parameter space: the inspiral phase away from resonances,
which is amenable to a two-timescale expansion. However, it is also critical to
include accurate transitions across resonances, particularly in the EMRI regime. In
addition to the dominant r-h resonances that occur in a self-forced inspiral, prolonged
resonances may occur due to spin, external matter, or a non-Kerr central
object (Apostolatos et al. 2009; Destounis et al. 2021; Lukes-Gerakopoulos and
Witzany 2022). Similarly, the transition from inspiral to plunge can also be
important, particularly for more comparable masses (Rifat et al. 2020; van de Meent
and Pfeiffer 2020; Albertini et al. 2022b). Both resonances and the plunge will
require matching the two-timescale expansion to specialized approximations in those
parameter regions (van de Meent 2014a; Berry et al. 2016; Pound and Wardell 2021;
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Lukes-Gerakopoulos and Witzany 2022; Compère and Küchler 2021, 2022; Gupta
et al. 2022b).

There are also reasons to compute self-force effects on scattering orbits, whether
to model hyperbolic, burst sources or to inform PM and PN dynamics, as described
in 4.2.3.4 (and possibly to infer properties of bound, self-forced orbits (Kälin and
Porto 2020b; Gonzo and Shi 2023)). Explorations of scatter orbits have only recently
begun (Barack and Long 2022; Long 2022; Barack et al. 2023; Whittall and Barack
2023). While bound-orbit self-force calculations can utilize the orbit’s discrete
Fourier spectrum, scatter orbits have a continuous spectrum (Hopper and Cardoso
2018; Hopper 2018), suggesting some clear advantages to simulations in the time
domain (Barack et al. 2019a; Barack and Long 2022; Long 2022).

In addition to including more of the two-body GR parameter space, considerable
work must be done to include possible beyond-GR and environmental effects in GSF
models. Fortunately, the GSF model is relatively modular. This means most
additional effects can be added separately, as described in Sect. 6.4, and are readily
incorporated into frameworks such as FEW (Katz et al. 2021). However, modelling
these additional effects will be particularly challenging if they are not amenable to a
two-timescale treatment, or if they are too large to be treated perturbatively.

4.4 Perturbation theory for post-merger waveforms (quasi-normal modes)

Coordinators: Stephen R. Green and Laura Sberna
Contributors: E. Berti, R. P. Macedo, P. Mourier, N. Oshita, M. van de Meent

4.4.1 Description

Following a compact binary merger, the remnant object settles into a stationary state
through a process known as the “ringdown”. The ringdown signal is interesting
because it involves a collection of discrete modes that encode information about the
final object. For a BH merger, the no-hair theorems of general relativity predict that
the final state is itself a Kerr BH (see, e.g., Chrusciel et al. 2012), yielding precise
predictions for the ringdown frequencies. We consider this case here.

At late times, the ringdown is best described using BHPT. This involves

expanding the spacetime metric gab ¼ gð0Þab þ �gð1Þab þ �2 gð2Þab þ ::: (Regge and

Wheeler 1957; Zerilli 1970a, b) and solving the Einstein equation order by order

in �. At zeroth order, the background metric gð0Þab describes the remnant Kerr BH. At

first order, gð1Þab satisfies the Einstein equation linearized about Kerr. Rather than work
directly with the metric perturbation, it is convenient to use instead the Newman-
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Penrose formalism, expressing the perturbation in terms of the (complex) Weyl
curvature scalars. Equations for the s ¼ �2 linearized Weyl scalars w0 and w4

famously decouple yielding a separable wave-like equation discovered by Teukol-
sky (Teukolsky 1972, 1973; Press and Teukolsky 1973; Teukolsky and Press 1974).

Both w0 and w4 uniquely describe gð1Þab up to gauge and perturbations to other Kerr
spacetimes (Wald 1973), and in particular describe the GW degrees of freedom, with
w4 most relevant for gravitational radiation at infinity. Similarly, spin-weight s ¼ �1
and s ¼ 0 Teukolsky equations describe electromagnetic and scalar-field perturba-
tions, respectively.

Homogeneous solutions to the Teukolsky equation can be obtained by imposing
boundary conditions corresponding to the physical requirement that radiation is
outgoing at the BH horizon and outgoing at infinity. For each spin weight, this
eigenvalue problem admits a countably infinite, discrete spectrum of complex-
frequency quasinormal modes (QNMs) (Press 1971; Chandrasekhar and Detweiler
1975), see Fig. 8. Each QNM is labelled by three integers: two spin-weighted
spheroidal-harmonic quantum numbers used to separate the angular dependence
(‘
 2, �‘
m
 ‘) and an “overtone number” n
 0, which sorts the frequencies in
ascending order of the absolute value of their imaginary part. Negative (real)
frequency modes are related to modes with negative m by the symmetry
�x�

n‘m ¼ xn‘�m. Kerr quasinormal frequencies (QNFs) have a strictly negative
imaginary part, hence the modes decay with time, due to absorption by the BH
horizon and radiation to infinity. These frequencies are moreover uniquely
determined by the Kerr mass and spin in agreement with no-hair theorems. For
detailed reviews on QNMs, see, e.g., Kokkotas and Schmidt (1999); Nollert (1999);
Berti et al. (2009, 2018).

In contrast to normal modes, QNMs of Kerr do not form a complete basis, and
therefore cannot fully describe the ringdown for all times, even at linear order. At
early times, the linear response to a perturbation is dominated by a “direct” emission
of radiation (also known as the prompt response) (Jensen and Candelas 1986; Leaver
1986; Nollert 1999). At late times, the perturbation is dominated by a power-law
“tail” (associated with a branch cut in the frequency plane of the Green’s function of
the Teukolsky equation), which arises due to the asymptotic properties of the wave-

0.4 0.6 0.8
MωR

−0.3

−0.2

−0.1

0.0
M

ω
I

n = 0

n = 1

� = m = 2

0.4 0.6 0.8
MωR

−0.3

−0.2

−0.1

0.0

M
ω

I

� = 3, m = 2

� = 2, m = 1

n = 0
a

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Fig. 8 Real and imaginary parts of the Kerr quasinormal mode frequencies, coloured by the BH spin (from
a ¼ 0 in dark blue to a ¼ 0:9 in yellow). Left: ‘ ¼ m ¼ 2 fundamental and first overtone modes. Right:
modes with different angular numbers ð‘;mÞ
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equation potential at large distances from the horizon (Leaver 1986; Price 1972).
QNMs are most important at intermediate times, and for realistic inspirals they tend
to dominate the majority of the post-merger signal. They have therefore proven
extremely relevant for waveform modeling, either to analyze the ringdown in
isolation or for combined inspiral-merger-ringdown waveforms. Indeed, a single
QNM can be used to infer the mass and spin of the remnant, whereas additional
modes or inspiral information enable consistency checks on GR (Detweiler 1980a;
Dreyer et al. 2004; Berti et al. 2006; Isi et al. 2019a; Abbott et al. 2021d).

4.4.2 Suitable for what sources?

LISA is expected to detect the ringdown of MBHB and IMRI sources for which the
merger occurs during the LISA observational time, and for which remnant QNFs fall
within the LISA frequency band (Berti et al. 2006, 2007a, 2016). For EMRIs, the
ringdown is likely to be too weak to resolve, a potential exception being those with
near-extremal primaries (Compère et al. 2018; Oshita and Tsuna 2023).

One can easily estimate the mass range of remnants with ringdowns within the
LISA band. Indeed, the longest lived (fundamental, ‘ ¼ m ¼ 2; n ¼ 0) QNM has
frequency f0 ’ 0:4=ð2pMfinalÞ, with the exact value depending on the remnant’s spin.
For this to lie within the LISA band, ½10�4; 10�1� Hz, the mass of the remnant must
therefore fall within the range ½108; 105� M�. Ringdown modelling will be
particularly important for MBHBs at the higher end of the mass spectrum, since
their inspiral will take place outside the LISA band and contribute little to the
SNR (Baibhav et al. 2020).

4.4.3 Status

At linear order in BHPT and for most of the duration of the signal, the ringdown is
well described by a superposition of QNMs. For a given BH mass and spin, the Kerr
QNFs were first computed numerically in Detweiler (1980a). The most accurate and
reliable numerical method is Leaver’s continued fraction approach (Leaver 1985;
Nollert 1993; Onozawa 1997) (see Mathematica notebook and data at Berti 2024)
and in particular its spectral refinement (Cook and Zalutskiy 2014; Hughes 2000)
(implemented in the Python package qnm (Stein 2019)). Kerr QNFs can also be
estimated analytically using WKB (Wentzel-Kramers-Brillouin) or WKB-inspired
approximations (Blome and Mashhoon 1981; Schutz and Will 1985; Seidel and Iyer
1990; Kokkotas 1991; Dolan and Ottewill 2009; Dolan 2010). QNM modeling
should be performed in a certain preferred BMS frame (Magaña Zertuche et al. 2022;
Mitman et al. 2022). Afterwards it can be transformed to a different desired reference
frame, e.g., a frame co-precessing with the binary (Hamilton et al. 2021, 2023), a
frame set prior to a merger kick (Gerosa and Moore 2016), or the post-Newtonian
preferred frame appropriate to modeling the early inspiral (Mitman et al. 2022).

In addition to the frequencies, the QNM component of the ringdown signal also
comprises the amplitude and phase of each mode. Unlike the frequencies, these
quantities are not uniquely determined by the remnant, but rather depend on the
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particular initial conditions that led to its formation. In principle, the amplitudes and
phases can be computed from the spacetime right after the formation of a common
BH horizon (Leaver 1986; Berti and Cardoso 2006a), and hence from the binary
parameters (Kamaretsos et al. 2012a, b). However, this data is hard to predict
analytically, and moreover challenging to extract from NR simulations. Common
practice is therefore to calibrate the desired mode amplitudes and phases by fitting
against NR simulations (Berti et al. 2007b; Kamaretsos et al. 2012a; London et al.
2014; Baibhav et al. 2018; London 2020; Magaña Zertuche et al. 2022; Forteza et al.
2023; Baibhav et al. 2023). Alternatively, initial data can be estimated at the level of
the Teukolsky equation using an Ori-Thorne procedure (Taracchini et al. 2014a; Lim
et al. 2019; Hughes et al. 2019; Apte and Hughes 2019; Lim et al. 2022).

For binary BH mergers of comparable masses, the linear ringdown model—a
superposition of a finite number of QNMs with arbitrary amplitudes and phases—has
been extensively compared against NR simulations. At late times (J10M after the
peak of the waveform), the general consensus is that the linear model provides a
good, stable, and consistent fit to the numerical waveform. At these times, the
waveform is well described by a small number of overtones (dominated by the
‘ ¼ m ¼ 2 multipole and overtones with n.2), and fitting for the frequencies and
decay rates allows for accurate inference of the remnant mass and spin (Buonanno
et al. 2007a; Baibhav et al. 2018; Giesler et al. 2019; Cook 2020; Jiménez Forteza
et al. 2020; Ota and Chirenti 2022; Li et al. 2022; Magaña Zertuche et al. 2022;
Baibhav et al. 2023). More surprisingly, several studies indicate that the linear model
applies even at much earlier times, provided higher ð‘;m; nÞ modes are included in
the model (Giesler et al. 2019; Cook 2020; Jiménez Forteza et al. 2020; Magaña
Zertuche et al. 2022). However, the relevance of the linear model at these times
(.10M after the peak of the waveform) and, in particular, the role of spherical-
spheroidal mode mixing, nonlinear modes and higher overtones (n[ 2), is still
actively debated (Bhagwat et al. 2020; Magaña Zertuche et al. 2022; Forteza and
Mourier 2021; Mitman et al. 2023; Ma et al. 2022a, 2023a, b; Baibhav et al. 2023;
Nee et al. 2023; Zhu et al. 2024).

A complete linear-order model of the post-merger signal should also include back-
scattering of radiation against the background potential. This is well approximated by
a power-law tail h� t�ntail at late times, where ntail ¼ 7 for generic gravitational
perturbations of Kerr (Price 1972; Barack 2000; Tiglio et al. 2008). So far the tail
contribution has not been confidently identified in NR simulations of binary BH
mergers, so it is usually neglected in waveform modeling.

At very early times (around the peak amplitude) we expect higher order BHPT to
become relevant. Beyond-linear-order perturbations satisfy the same equations as at
linear order, but now with source terms made up of lower-order perturbations (Gleiser
et al. 1996; Campanelli and Lousto 1999; Brizuela et al. 2009; Nakano and Ioka
2007; Pazos et al. 2010; Loutrel et al. 2021; Spiers et al. 2023). It is therefore natural
to expect the signal to deviate from a simple superposition of linear QNMs. Such
deviations could include new driven frequencies that are combinations of the first-
order QNFs (Lagos and Hui 2023; Bucciotti et al. 2023), or corrections to the first
order modes, in terms of the mode amplitudes, phases, and frequency spec-
trum (Sberna et al. 2022; Ripley et al. 2021). Indeed, a driven second-order mode
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(which in quasicircular mergers appears in the ‘ ¼ m ¼ 4 multipole, sourced by the
square of the ‘ ¼ m ¼ 2 fundamental mode) was recently identified in binary BH
simulations (London et al. 2014; Ma et al. 2022a; Cheung et al. 2023; Mitman et al.
2023; Khera et al. 2023). Notably, the amplitude of the second-order mode is
comparable to the amplitude from linear order, raising questions about perturbative
convergence.

Detailed second-order calculations remain challenging, and are complicated by
aspects of metric reconstruction and regularization of singularities. Nevertheless,
second-order Kerr perturbations in the ringdown context were recently calculated
numerically (Ripley et al. 2021). Additional analytic progress in the higher-order
ringdown has included the development of a bilinear form under which Kerr QNMs
are orthogonal (Green et al. 2023; Cannizzaro et al. 2024) (see also London 2023),
new methods to reconstruct the metric in the presence of a first-order source (Green
et al. 2020), and the use of analytic approximations (Bucciotti et al. 2023). These
calculations have considerable overlap with the self-force problem, where significant
progress has recently been made at second order, see Sect. 4.3.3.

4.4.4 Challenges

The main challenges in post-merger signal modeling using BHPT concern the
inclusion of higher modes, the instability and quick damping of overtones, non-QNM
ringdown components (e.g., from tails or the prompt response), and nonlinear effects.

Higher ð‘;m; nÞ modes are predicted by BHPT to arise in generic binary mergers.
However, there is no consensus on whether it is consistent to include more than a few
overtones (n
 1) in a purely linear model (Giesler et al. 2019; Baibhav et al. 2023;
Nee et al. 2023). The challenge lies in the fact that higher overtones decay rapidly,
and therefore are relevant at early times, when nonlinearities are also expected to
become more significant. Despite providing good fits to the signal, higher overtones
might simply play the role of fitting noise, nonlinearities, or non-QNM components
(such as tails or the prompt response) in the signal. For asymmetric binaries (with
precession, eccentricity, or unequal mass ratios) angular modes beyond ‘ ¼ m ¼ 2
may also have significant amplitudes (see e.g. Capano et al. 2023; Magaña Zertuche
et al. 2022; Li et al. 2022; Oshita 2023), and their fundamental (n ¼ 0) modes have
lifetimes similar to the fundamental ‘ ¼ m ¼ 2 mode.

Recent theoretical studies also indicate that the QNM spectrum itself could be
unstable (Nollert 1996; Aguirregabiria and Vishveshwara 1996; Vishveshwara 1996;
Jaramillo et al. 2021, 2022a; Cheung et al. 2022; Konoplya and Zhidenko 2023),
with overtones particularly sensitive to nonlinear perturbations, small environmental
effects, and deviations from vacuum general relativity. However the experimental
implications of this instability are not fully understood.

The size of power-law tail contributions due to back-scattering has yet to be
estimated for binary BHs in full GR. Baibhav et al. (2023) cautioned that, at the
linear level, the tail contribution can be comparable to that of high-overtone QNMs
with n ’ 5. The tail might play an even larger role in eccentric binary mergers, as
suggested by perturbative solutions (Albanesi et al. 2023) and some NR simulations
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(Carullo and De Amicis 2023). This should motivate a more careful study of the
contribution of back-scattering effects in the post-merger signal.

No study has yet quantified which (if any) LISA-band ringdown sources will
require higher-order perturbation theory. Ideally, starting from a first-order pertur-
bation, a nonlinear model would predict detailed corrections including the amplitude
of driven modes, shifts in amplitudes and phases for first-order modes, and any
frequency drifts. Some initial progress towards such a model includes agnostic fits of
numerical relativity waveform catalogues (Baibhav et al. 2023), numerical
studies (Ripley et al. 2021), and developments in BH perturbation theory (Green
et al. 2023; Spiers et al. 2023).

Some studies have speculated that nonlinearities could be stronger for near-
extreme remnants, whose spectrum contains long-lived modes with commensurate
frequencies. In this limit, nonlinear effects could lead to gravitational turbu-
lence (Yang et al. 2015) and connect with the Aretakis instability of extremal
BHs (Aretakis 2012). To assess these possibilities, it will be necessary to extend
calculations beyond scalar-field toy models (Yang et al. 2015) to full general
relativity, see for example (Redondo-Yuste et al. 2024).

4.5 Effective-one-body waveform models

Coordinators: Tanja Hinderer, Geraint Pratten
Contributors: S. Akcay, A. Antonelli, S. Bernuzzi, A. Buonanno, J. Garcia-Bellido,
A. Nagar, L. Pompili

Fig. 9 Theoretical inputs to the EOB framework. The EOB theory draws on a variety of perturbative
results from numerous approaches in different regimes, as well as from NR simulations, as illustrated here
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4.5.1 General description

The effective-one-body (EOB) approach was originally introduced in Buonanno and
Damour (1999, 2000); Damour et al. (2000); Damour (2001); Buonanno et al. (2006)
with the aim of providing GW detectors with semianalytic waveform models for the
entire coalescence of compact-object binaries (i.e., the inspiral, plunge, merger and
ringdown), resumming PN information around the strong-field test-body limit. Since
the breakthrough in NR in 2005 (Pretorius 2005a; Campanelli et al. 2006a; Baker
et al. 2006a), the EOB framework has incorporated information from the NR
simulations, thus producing highly-accurate waveform models for GW observations
(e.g., see the review articles by Damour 2008; Buonanno and Sathyaprakash 2014;
Damour and Nagar 2016 and discussion below). Over the years, the EOB framework
has been extended to the scattering problem, and has incorporated analytical
information from other methods, such as the PM approach and GSF theory, as
illustrated in Fig. 9; see e.g. Berkovits et al. (2022); Buonanno et al. (2022) for
overviews of the role of string perturbation theory, QFT, and worldline EFT.

The EOB waveform models consist of three main building blocks: (1) the
Hamiltonian, which describes the conservative dynamics, (2) the radiation-reaction
(RR) force, which accounts for the energy and angular momentum losses due to GW
emission, and (3) the inspiral-merger-ringdown waveform modes, built upon improved
PN resummations for the inspiral part, and functional forms calibrated to NRwaveforms
for the merger-ringdown signal. We now briefly review these three key ingredients.

A fundamental pillar of the EOB approach is the map of the real two-body
dynamics into that of an effective test mass or test spin in a deformed Schwarzschild
or Kerr background, with the deformation parameter being the symmetric mass ratio
m ¼ l=M , where l ¼ m1m2=M is the reduced mass and M ¼ m1 þ m2 is the total
mass. More specifically, the real or EOB Hamiltonian, HEOB, is related to the
effective Hamiltonian, Heff , by Buonanno and Damour (1999)

HEOB ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2m

Heff
l

� 1

� �s
: ð15Þ

Interestingly, such a relation agrees with calculations in quantum electrodynam-
ics (Brezin et al. 1970) aimed at deriving an approximate binding energy for charged
particles with comparable masses in the eikonal approximation; it has been shown to
hold exactly at 1PM order (Damour 2016), and it has been extensively used in
scattering-theory computations (Damour 2016; Vines 2018; Vines et al. 2019;
Damour 2018). The above energy-map (15) achieves a concise resummation of PN
information into the Hamiltonian via a small number of terms. In the center-of-mass
frame, the EOB equations of motion read:

dr
dt

¼ oHEOB

op
;

dp
dt

¼ � oHEOB

or
þ F ;

dS1;2

dt
¼ oHEOB

oS1;2
� S1;2; ð16Þ

where r and p are the canonical variables, notably the relative position and
momentum, respectively, F is the RR force, and Si with i ¼ 1; 2 are the spins of the
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compact objects. For example, in the nonspinning limit, where the dynamical vari-
ables reduce to ðr;/; pr; p/Þ, the effective Hamiltonian in the gauge of (Buonanno
and Damour 1999; Damour et al. 2000) reads

Heff ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AmðrÞ l2 þ AmðrÞ �DmðrÞ p2r þ

p2/
r2

þ Qmðr; prÞ
" #vuut ; ð17Þ

where the potentials AmðrÞ and �DmðrÞ differ from the Schwarzschild ones due to PN
corrections depending on m. The higher-order (yet) unknown PN corrections in AmðrÞ
might be informed to NR simulations. The potential QmðrÞ is a non-geodesic term that
needs to be introduced at 3PN order (Damour et al. 2000) to preserve the mapping
(15), and reduces to zero in the test-mass limit.

Precessing-spin EOB waveforms for the inspiral-merger-ringdown were first built
in Buonanno et al. (2006) using the nonspinning EOB Hamiltonian (Buonanno and
Damour 1999, 2000; Damour et al. 2000) augmented with a spinning PN
Hamiltonian (Blanchet 2024). The EOB Hamiltonian for spinning objects was first
developed in Damour (2001), and then in Damour et al. (2008a); Nagar (2011);
Damour and Nagar (2014b); Balmelli and Damour (2015). These papers follow the
structure of the Hamiltonian advocated in Damour (2001) that in the large mass-ratio
limit reduces to the one of a (nonspinning) test mass on a Kerr background.
Furthermore, another line of research, which started in Barausse et al. (2009);
Barausse and Buonanno (2010), built EOB Hamiltonians for spinning objects such
that, in the large mass-ratio limit, they reduce to the one of a test spin on a Kerr
background (Barausse et al. 2009; Barausse and Buonanno 2011). The two different
spinning Hamiltonians were comprehensively compared in Rettegno et al. (2020);
Khalil et al. (2020).

In the original EOB model (Buonanno and Damour 2000), the radiation-reaction
force of Eq. (16) was given by a suitable Padé resummation of the PN-expanded
energy flux at 2.5PN order, following the seminal work of Damour et al. (1998).
Subsequently, the (quasi-circular) radiation-reaction force, that is the flux of angular
momentum, has been expressed as the sum of factorized and resummed multipoles
according to the procedure introduced in Damour and Nagar (2007); Damour et al.
(2009). This approach was then first extended to spinning bodies in Pan et al. (2011b)
and then improved in Taracchini et al. (2012, 2014b); Nagar and Shah (2016);
Messina et al. (2018); Nagar et al. (2019a); Cotesta et al. (2018) by means of
additional factorizations and resummation of the orbital and spin parts, and the
inclusion of higher-order PN terms.

The factorization of each waveform multipole proposed in Damour et al. (2009)
reads

hinsp�plunge
‘m ðtÞ ¼ hðN ;�Þ

‘m Sð�Þeff T‘m eid‘m ðq‘mÞ‘ hNQC‘m ; ð18Þ

where hðN ;�Þ
‘m is the Newtonian contribution and � denotes the parity of the mode. The

factor T‘m resums an infinite number of leading-order logarithms arising from tail
effects (Damour and Nagar 2007) (see also Faye et al. 2015), the term eid‘m is a

123

Waveform modelling for LISA Page 89 of 250     9 



residual phase correction due to sub-leading order logarithms in hereditary contri-
butions, and the functions q‘m are the residual amplitude corrections. These functions
were originally obtained as PN-expansions (Damour et al. 2009), but in some ver-
sions of the EOB models, it was found useful to further resum them using Padé
approximants for improved strong-field robustness (Nagar and Shah 2016; Messina
et al. 2018; Nagar et al. 2019a). Another approach consists of calibrating effective
high-order PN parameters entering the q‘m’s to improve their accuracy, doing so
either using NR data (Taracchini et al. 2012, 2014b; Cotesta et al. 2018; Pompili
et al. 2023) or second-order GSF results (van de Meent et al. 2023).

The factor hNQC‘m is the phenomenological next-to-quasi-circular (NQC) correc-
tion (Damour et al. 2003) to the waveform that is informed by NR simulations, and it
is designed to correctly shape the waveform during the late plunge up to merger,
where the motion is not quasi-circular and the resummed quasi-circular waveform
lacks information. The complete EOB waveform is constructed by attaching the

merger-ringdown mode, hmerger�RD
‘m ðtÞ, to the inspiral-plunge one, hinsp�plunge

‘m ðtÞ, at a
suitable matching time t ¼ tmatch, around the peak of the EOB orbital frequency
(which approximately corresponds to merger time), that is Buonanno and Damour
(2000):

h‘mðtÞ ¼ hinsp�plunge�merger
‘m ðtÞH t‘mmatch � t

� �þ h
ringdown
‘m ðtÞH t � t‘mmatch

� �
; ð19Þ

where HðtÞ is the Heaviside step function. Inspired by results for the infall of a test
mass into a BH (Davis et al. 1972) and the close-limit approximation (Price and
Pullin 1994), several EOB waveform models used a superposition of QNMs for the
dominant mode (Buonanno and Damour 2000; Damour 2001; Buonanno et al.
2007a, b; Damour and Nagar 2009; Pan et al. 2011a; Barausse et al. 2012a; Tarac-
chini et al. 2012; Damour et al. 2013; Pan et al. 2014; Taracchini et al. 2014b; Babak
et al. 2017b). More recently, an NR-informed fit of the amplitude and phase has
become standard (Damour and Nagar 2014a). This framework is similar in spirit to
the rotating source approximation developed in Baker et al. (2008), but with sig-
nificant technical differences. An important input into the merger-ringdown part of
the EOB model is the mapping between progenitor binary parameters and the mass
and spin of the final remnant. This is needed to determine the frequency of QNMs of
the remnant, and it is obtained from NR results (Jiménez-Forteza et al. 2017; Hof-
mann et al. 2016).

There is considerable freedom in modeling and resumming the EOB Hamiltonian,
radiation-reaction force and GW modes, and spin effects. Those different choices,
together with variations in the gauge adopted and deformations of the potentials in
the Kerr spacetime, have led to two main EOB families: SEOBNR (e.g., see Bohé
et al. 2017; Cotesta et al. 2018; Ossokine et al. 2020; Ramos-Buades et al. 2023) and
TEOBResumS (e.g., see Damour and Nagar (2014b); Nagar et al. (2018, 2020b);
Gamba et al. (2022), which we discuss in detail in Sects. 4.5.3 and 4.5.4 below. The
EOB waveform program advances along two interrelated directions. The first
comprises theoretical advances on the underlying structure and mapping of analytical
results from PN, PM and GSF approaches. The second involves testing and refining
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the models using NR information and rendering them available for use in data
analysis. The EOB waveform models are intrinsically in the time domain (TD),
which provides a more direct relation between source physics and asymptotic
radiation than frequency-domain models. Modeling both the dynamics and radiation
is useful for gaining deeper insights into strong-field nonlinearities and it enables
more thorough tests of the robustness of different aspects of the waveform based on
examining the behavior of various characteristic quantities under changes in the
binary’s parameters, and on comparing different gauge-invariant quantities between
EOB, NR, or perturbative results— for example the binding energy and fluxes (Boyle
et al. 2008; Damour et al. 2012a; Le Tiec et al. 2012a; Bernuzzi et al. 2015b;
Ossokine et al. 2018; Antonelli et al. 2019), periastron advance (Le Tiec et al.
2011, 2013; Hinderer et al. 2013), scattering angles (Damour et al. 2014a; Hopper
et al. 2023; Khalil et al. 2022; Damour and Rettegno 2023) or spin-precession
invariant (Hinderer et al. 2013) and redshift (Le Tiec et al. 2012a; Barausse et al.
2012b; Bini and Damour 2016; Akcay et al. 2012). At the same time, this also makes
EOB models computationally more expensive than IMR waveform models, which
describe only the asymptotic GW signals in the frequency domain (FD), as discussed
in Sect. 4.6. However, the computational cost is not an insurmountable problem.
Much recent work has significantly improved the computational efficiency of EOB
models through the development of optimized codes (Devine et al. 2016; Knowles
et al. 2018; Nagar and Rettegno 2019; Rettegno et al. 2020; Gamba et al. 2021), by
building reduced-order models (ROMs) (Field et al. 2014; Pürrer 2014, 2016; Lackey
et al. 2017, 2019; Cotesta et al. 2020; Gadre et al. 2024; Tissino et al. 2023; Khan
and Green 2021; Thomas et al. 2022; Pompili et al. 2023), implementing the post-
adiabatic approximation (Nagar and Rettegno 2019; Rettegno et al. 2020; Gamba
et al. 2021; Mihaylov et al. 2021), and making use of machine-learning
methods (Schmidt et al. 2021; Dax et al. 2023; Tissino et al. 2023; Thomas et al.
2022; Khan and Green 2021). Close Hyperbolic Encounters could also be searched
for with both ground- and space-based interferometers using machine learning
(Morrás et al. 2022).

EOB waveform models have been constructed for quasi-circular non-spin-
ning (Buonanno and Damour 2000; Buonanno et al. 2007a, b; Damour and Nagar
2008; Damour et al. 2008c, d; Buonanno et al. 2009; Pan et al. 2011a; Damour et al.
2013; Nagar et al. 2020a) and spinning (Buonanno et al. 2006; Pan et al. 2010; Nagar
2011; Damour and Nagar 2014b; Taracchini et al. 2012, 2014b; Bohé et al. 2017;
Cotesta et al. 2018; Pan et al. 2014; Babak et al. 2017b; Ossokine et al. 2020; Nagar
et al. 2018, 2019b; Akcay et al. 2021; Gamba et al. 2022; Pompili et al. 2023;
Ramos-Buades et al. 2023; Nagar et al. 2020b; Nagar and Rettegno 2021) binaries,
building also on further developments of EOB Hamiltonians (Damour et al.
2000, 2015; Damour 2001; Damour et al. 2008a; Balmelli and Jetzer 2015; Balmelli
and Damour 2015; Barausse and Buonanno 2010, 2011; Khalil et al. 2020) and
resummations of the radiative sector (Damour et al. 2009). Furthermore, orbital
eccentricity (Bini and Damour 2012; Hinderer and Babak 2017; Chiaramello and
Nagar 2020; Nagar et al. 2021a; Khalil et al. 2021; Ramos-Buades et al. 2022a;
Albanesi et al. 2022b) (see also Cao and Han 2017; Liu et al. 2022) and matter
effects (Bernuzzi et al. 2015b; Hinderer et al. 2016; Steinhoff et al. 2016; Akcay et al.
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2019; Steinhoff et al. 2021; Matas et al. 2020; Gonzalez et al. 2023a) (see Sect. 6.5),
as well as information from PM (Damour 2016, 2018; Antonelli et al. 2019;
Damgaard and Vanhove 2021; Khalil et al. 2022; Damour and Rettegno 2023) and
conservative GSF information (Damour 2010; Yunes et al. 2010a, 2011a; Barausse
et al. 2012b; Akcay et al. 2012; Antonelli et al. 2020c; Nagar and Albanesi 2022;
Albertini et al. 2022a, b; van de Meent et al. 2023) have been also incorporated in
EOB models. The required effort to advance the EOB modeling involves: (1)
obtaining new analytical information and mapping it into the EOB framework; (2)
resumming the results into full waveform models with additional flexibility for
calibrations to NR; and (3) testing and comparing models to assess their performance
and accuracy. We describe each of the two main EOB families in more detail in
Sects. 4.5.3 and 4.5.4 below.

4.5.2 Suitable for what sources?

Inspiral-merger-ringdown signals from massive black-hole binaries (MBHBs) will be
within the LISA band (see Sect. 2.1), making EOB models naturally applicable for
these sources. The bulk of MBHB events observable by LISA are expected to have
mass ratios q.10, but some systems may have mass ratios of up to several hundreds.
Most tests and calibrations of EOB models have been for q.20, but the fact that
EOB models interpolate between this regime and the test-body limit with information
from BH perturbation theory makes them structurally well-suited for larger-q
systems. Spin precession and eccentricity effects, both simultaneously relevant for
MBHBs and IMRIs, have mainly been separately included in EOB models, and there
has been recent progress on going beyond this, e.g. Gamba et al. (2024); Liu et al.
(2024). These considerations apply not only for MBHBs but also for describing
intermediate mass-ratio binaries (IMRIs) discussed in Sect. 2.3. Importantly, EOB
models have been either validated (Albertini et al. 2022a, b) or improved using
perturbation-theory and GSF information (Yunes et al. 2010a, 2011a; Barausse et al.
2012b; Antonelli et al. 2020c; Nagar and Albanesi 2022; van de Meent et al. 2023),
which is relevant for IMRIs and also EMRIs. EOB models are also suitable to stellar-
origin binaries Sect. 2.5, whose early-inspiral signals will be within the LISA band.
For inspirals, EOB models provide a more accurate though less efficient description
than pure PN-based models. Using EOB waveforms will further be important for
connecting the LISA portion of SOBHB signals with the corresponding merger
signals measurable in future ground-based detectors. The EOB approach also allows
for the inclusion of additional physical effects, for instance, from gravity theories
beyond GR and environmental effects as explained in Sect. 6.5.

As discussed in Sect. 4.5.6, while EOB models are naturally suited to the above
sources, significant further advances in the modeling accuracy, complexity of
physical effects, robustness over a wide range of parameter space, and efficiency will
be required for their use in LISA data analysis.
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4.5.3 The SEOBNR waveform models

The EOBNR family of waveform models 2 has been developed with two main goals:
i) make use of the most accurate analytical information for the two-body dynamics
and gravitational radiation (PN, PM, GSF) and results from NR and Teukolsky-code
simulations to build physical, highly-accurate waveform models of compact-object
binaries, and ii) make them available to GW detectors for searches and inference
studies. The history, since 2007, and the current status of EOBNR models are
illustrated in Table 9. These models have been implemented into the LIGO
Algorithms Library (LALsuite) (LIGO Scientific Collaboration et al. 2024), and
more recently in the open-source Python package pySEOBNR (Mihaylov et al.
2023). These codes were then reviewed by the LVK Collaboration. Here we
summarize the main milestones, focusing on the binary BHs, while leaving details of
the modeling improvements (two-body inspiraling dynamics, transition merger to
ringdown, RR effects, GW modes, resummation of EOB potentials, etc.) to the
corresponding publications.

Building on the original work on the EOB framework (Buonanno and Damour
1999, 2000; Damour et al. 2000; Buonanno et al. 2006), the first EOBNR model
calibrated to nonspinning NR waveforms was developed in Buonanno et al. (2007b),
following initial comparisons to NR equal-mass nonspinning binaries in Buonanno
et al. (2007a), in which the importance of including overtones in the EOB description
of the merger-ringdown signal was pointed out. EOBNRv1 was employed by Initial
and Enhanced LIGO, and Virgo for the first searches of coalescing binary
BHs (Ochsner 2010; Abadie et al. 2011, 2012; Aasi et al. 2013). The calibration
to spinning binaries with equal masses was considered in Pan et al. (2010),
employing an EOB Hamiltonian for a test mass in a deformed Kerr space-
time (Damour et al. 2008a). The nonspinning waveforms with higher modes were
first modeled in (Pan et al. 2011a) with the improved factorized waveforms (Damour
and Nagar 2007; Damour et al. 2009; Pan et al. 2011b), thus marking the second
generation of EOBNR models.

The third-generation of EOBNR models encompassed significant advances in
including spin effects in the two-body dynamics and radiation, resumming
perturbative information, and calibration to NR simulations. An EOB Hamiltonian
for a test spin in a deformed Kerr spacetime was derived in Barausse et al. (2009);
Barausse and Buonanno (2010, 2011). It included all PN corrections in the test-body
limit, at linear order in the test-body’s spin. To enforce the presence of a photon orbit
(and peak of the orbital frequency) for aligned-spin binary BHs, it used a logarithmic
(instead of Padé) resummation of the EOB potentials. Those improvements led to the
aligned-spin model SEOBNRv1 (Taracchini et al. 2012), and the first spin-precessing
model, SEOBNRv2P (Pan et al. 2014), which adopted the co-precessing frame
description of (Buonanno et al. 2003; Schmidt et al. 2011) to efficiently handle
precessional effects. Those models also included information for the merger-
ringdown waveforms from the test-body limit, notably from time-domain Teukolsky

2 The generic name SEOBNRvnEPHM indicates that the version vn of the EOB model is calibrated to NR
simulations (NR), includes spin (S) and precessional (P) effects, eccentricity (E) and higher modes (HM).
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waveforms obtained in Barausse et al. (2012a). With the availability of a larger set of
accurate SXS NR waveforms, and further analytical results from PN theory, the
model was upgraded to SEOBNRv2 (Taracchini et al. 2014b), with its precessing
version known as SEOBNRv3P (Babak et al. 2017b), which is often also referred to
simply as SEOBNRv3. The aligned-spin versions of these third-generation SEOBNR
models were used in the template bank of the modeled searches in the gstLAL and
pyCBC pipelines, and for parameter-estimation of GW signals detected during the
first observing run (O1) of Advanced LIGO (Abbott et al. 2016b, e, 2019b).

The fourth generation of models included substantial and more efficient (via
Markov-chain–Monte-Carlo methods) re-calibrations of the aligned-spin baseline
models, such as SEOBNRv4 (Bohé et al. 2017), and phenomenological ansatzes for
the merger-ringdown based on (Damour and Nagar 2014a). The SEOBNRv4 model
was completed by including higher modes (Cotesta et al. 2018), arbitrary spin
orientations (Ossokine et al. 2020), and extended to eccentric and hyperbolic orbits
for aligned spins in Ramos-Buades et al. (2022a), using GW modes recast in
factorized form in Khalil et al. (2021) (see also Cao and Han (2017); Liu et al.
(2020, 2022); Hinderer and Babak (2017) for other eccentric EOBNR models). These
updated models for quasi-circular orbits were used for the template banks of modeled
searches, and extensively for inference studies during the second (O2) and third (O3)
runs of Advanced LIGO and Virgo (Abbott et al. 2019b, 2020a, c, d, 2021b, 2023a).

Among the highlights of the fifth generation of models, they were calibrated to NR
waveforms with larger mass-ratios and spins using a catalog of 442 SXS
simulations (Pompili et al. 2023), and they incorporate for the first-time information
from second-order GSF in the nonspinning modes and radiation-reaction force (van de
Meent et al. 2023). The models include several higher modes, notably the jmj ¼ ‘
modes for ‘ ¼ 2-- 5 and the ð2;�1Þ, ð3;�2Þ and ð4;�3Þ modes. Differently from
the SEOBNRv3P and SEOBNRv4 Hamiltonians, the SEOBNRv5 reduces in the test-
body limit to the one of a test mass in the Kerr spacetime. The accurate precessing-
spin dynamics of SEOBNRv5PHM (Ramos-Buades et al. 2023) was obtained
including partial precessing-spin information in the EOB Hamiltonian in the co-
precessing frame by orbit averaging the in-plane spin components of the full
precessing Hamiltonian at 4PN order (Khalil et al. 2023). Furthermore, the evolution
equations for the spin and angular momentum vectors were computed in a PN-
expanded, orbit-averaged form for quasi-circular orbits, similarly to what was done
in Estellés et al. (2021); Ackley et al. (2020); Akcay et al. (2021), but with important
differences due to the distinct gauge and spin supplementary conditions (Khalil et al.
2023), and the inclusion of orbit-average in-plane spin effects. Thanks to a simpler
(but more approximated) precessing-spin inspiraling dynamics, which allows for the
use of the post-adiabatic approximation (Rettegno et al. 2020; Mihaylov et al. 2021),
and the new high-performance Python infrastructure pySEOBNR (Mihaylov et al.
2023), the computational efficiency of the SEOBNRv5PHM models has improved
significantly, generally � 8–20 times faster than the previous generation
SEOBNRv4PHM. This is particularly important in view of the use of these waveform
models with next-generation detectors on the ground and with LISA, which have a
much broader bandwidth.

123

    9 Page 96 of 250 N. Afshordi et al.



Furthermore, SEOBNR waveform models have also been used to extend the NR
surrogate models (see Sect. 5.1) to lower frequencies, by hybridizing them (Varma
et al. 2019b; Yoo et al. 2022, 2023), and to build IMR phenomenological waveform
models (see Sect. 4.6). For the latter, SEOBNR models have been employed to
construct time-domain hybrid NR waveforms, and also to calibrate the phenomeno-
logical models in regions of the parameter space where NR waveforms are not
available (Khan et al. 2016; Pratten et al. 2020; Estellés et al. 2022b).

Quite importantly for LISA and next-generation detectors on the ground, the
computational efficiency of the time-domain SEOBNR models can also be improved
by building surrogate and ROM versions (Pürrer 2014, 2016; Bohé et al. 2017; Gadre
et al. 2024; Pompili et al. 2023). Lastly, the efficient and flexible pySEOBNR
infrastructure (Mihaylov et al. 2023), which uses Bayesian algorithms to calibrate
waveforms against NR simulations, will allow to swiftly include and test new
analytical information (PN,PM,GSF) (and their possible resummations) as soon as
they become available. This is crucial to improve waveform models by at least two
orders of magnitude to match the expected waveform accuracy requirements.

Extensions of the SEOBNR models to extreme mass-ratio inspirals were obtained
in Yunes et al. (2010a, 2011a); Taracchini et al. (2014a, 2014b), and applications to
non-vacuum binary systems and gravity theories beyond GR are discussed in
Sect. 6.5.

4.5.4 The TEOBResumS waveform models

The TEOBResumS model builds upon early EOB developments at the Institut des
Hautes Etudes Scientifiques (IHES) that define the basics structure of the model. The
name suggests the key features: arbitrary compact binaries with tidal (T) and generic
spins (S) interactions are modeled by making systematic use of analytical
resummations. This name has first appeared in the tidal model of Bernuzzi et al.
(2015b) and in the tidal and spinning model of Nagar et al. (2018). The latter include
the factorized waveform described above (Damour et al. 2009; Damour and Nagar
2009), the systematic resummation of EOB potentials via Padé approxi-
mants (Damour et al. 2002, 2008a; Damour and Nagar 2009; Nagar 2011; Damour
et al. 2013), NQC corrections (Nagar et al. 2007; Damour and Nagar 2007; Damour
et al. 2008c, d, 2013), attachment of the ringdown around the peak of the orbital
frequency (i.e., light-ring crossing) (Damour and Nagar 2007; Damour et al. 2013),
the concept of centrifugal radius for incorporating spin-spin interactions (Damour
and Nagar 2014b), resummed gyro-gravitomagnetic functions (Damour et al. 2008a;
Nagar 2011; Damour and Nagar 2014b) and the factorized NR-informed ringdown
waveform (Damour and Nagar 2014a). These developments made heavy use of
results in the test-mass limit obtained by means of a new approach to black hole
perturbation theory (Nagar et al. 2007; Damour and Nagar 2007; Bernuzzi et al.
2011a, b; Harms et al. 2014) to understand each physical element entering the
structure of the waveform and striving for physical completeness, simplicity,
accuracy and efficiency. Currently, TEOBResumS-GIOTTO is a unified framework
to generate inspiral waveforms for any type of quasi-circular compact binary and
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complete inspiral-merger-postmerger waveforms for BBH and BHNS bina-
ries (Riemenschneider et al. 2021; Gonzalez et al. 2023a).

TEOBResumS-Dalı́ is the model’s extension to generic orbits and describes
bound orbits with arbitrary eccentricity (Chiaramello and Nagar 2020; Nagar et al.
2021a; Nagar and Rettegno 2021; Bonino et al. 2023), hyperbolic orbits and
scattering (Nagar et al. 2021b; Gamba et al. 2023a; Hopper et al. 2023). The key
features of the models are summarized in Table 10 and described in the following. An
extension of the model that relies on GSF-informed potentials (Akcay and van de
Meent 2016; Nagar and Albanesi 2022) so as to generate extreme-mass-ratio-
inspirals (EMRIs) is available (Albertini et al. 2022a, b), and work on scalar-tensor
gravity (building upon Julié and Deruelle 2017; Julié 2018c) is also currently in
progress (Jain et al. 2023; Jain 2023a, b).

The structure of the spin-aligned effective TEOBResumS Hamiltonian is

Heff ¼ Horbital
eff þ HSO

eff ; ð20Þ
where Horbital

eff incorporates even-in-spin contributions (spin-spin couplings), while
HSO

eff incorporates odd-in-spin ones (spin-orbit couplings). The spin-orbit contribution
reads

HSO
eff ¼ GSS þ GS�S�; ð21Þ

where ðGS ;GS� Þ are the gyro-gravitomagnetic functions and S � S1 þ S2, while S� ¼
m2=m1S1 þ m1=m2S2 are useful combinations of the spins (Damour et al. 2008a, b;
Nagar 2011). In the large-mass-ratio limit, S becomes the spin of the largest black
hole, while S� reduces to q times the spin of the small body. The orbital contribution
Horbital

eff incorporates the three EOB potentials (A, D, Q). The A function employs the
full 4PN information (Damour et al. 2015) augmented by an effective 5PN term,
parametrized by the coefficient ac6, which is informed by NR simulations. In
GIOTTO, both (D, Q) are kept at 3PN accuracy. In the latest versions of Dalı́, the
full 5PN information is being currently explored (Nagar et al. 2023). The spin-orbit
sector includes next-to-next-to-leading-order (NNLO) analytical information (Nagar
2011) in the (resummed) gyro-gravitomagnetic functions (Damour and Nagar 2014b)
augmented by an effective N3LO coefficient c3 that is informed by NR simulations.
Spin-spin couplings are incorporated using the concept of centrifugal radius (Damour
and Nagar 2014b), rc, and starting from NLO accuracy. TEOBResumS can deal with
generically oriented spins, thus incorporating the precession of the orbital plane and
the related modulation of the waveform. Spin-precession in the quasicircular case is
incorporated with an efficient yet accurate hybrid EOB-post-Newtonian
scheme based on the common “twist approach” (Akcay et al. 2021; Gamba et al.
2022; Gonzalez et al. 2023a).

In GIOTTO, the radiation reaction and multipolar waveform (up to ‘ ¼ m ¼ 8) are
implemented as an upgraded version of the factorized and resummed procedure
introduced in Damour et al. (2009); see Nagar et al. (2020b); Messina et al. (2018). In
addition, NR information is used to determine NQC waveform corrections (multipole
by multipole) so as to correctly shape the waveform around merger. The latter is then
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attached to a NR-informed, phenomenological description of the ringdown based on
Nagar et al. (2020b). Importantly, NR information is included in such a way to
maintain consistency between waveform and fluxes (Riemenschneider et al. 2021).
The leading-order horizon absorption terms are implemented in the model since its
early version (Damour and Nagar 2014b). In Dalı́, the radiation reaction on generic
orbits is obtained by incorporating generic Newtonian prefactors in the factorized
quasicircular EOB waveform (Chiaramello and Nagar 2020; Nagar et al. 2021a).
This approach, which is extended to include resummed 2PN terms, has been verified
against exact Teukolsky fluxes for highly eccentric and hyperbolic geodesics and
currently provides the best available representation of the radiation reaction (Placidi
et al. 2022; Albanesi et al. 2021, 2022a). A new paradigm to incorporate PN results
into EOB, which promises a further boost in performance, has been recently
proposed in Albanesi et al. (2022b). The inclusion of matter effects and application to
probing the nature of compact objects is discussed in Sect. 6.5.

On the algorithmic side, the development of TEOBResumS has introduced two
key analytical acceleration techniques, namely the post-adiabatic (PA) approximation
of the EOB dynamics (Nagar and Rettegno 2019) and the EOBSPA (Gamba et al.

Table 10 Current/default physics incorporated in TEOBResumS

Physical content GIOTTO DALI

Analytic
information

A(r) Pseudo 5PN, resummed Pseudo 5PN, resummed

D(r) 3PN, resummed 5PN, resummed

Qðr; pr� Þ 3PN 5PN (local)

GS ;GS� 3.5PN 3.5PN

rc NLO NLO

NR information a6c Effective parameter in A(r)

cN3LO Effective parameter in GS ;GS�

NQCs Ensure correct transition between plunge and merger

Ringdown Phenomenological model, quasi-circular

BBH NR Validation
region

q
 10 and test-mass with jv1;2j 
 0:99; 10\q\128
no-spins

Spins Aligned U U

Precessing U -

Orbital dynamics Circular Generic (bound & open)

CP modes Inspiral to merger ð‘; jmjÞ
 8

Merger/ringdown ð‘; jmjÞ ¼ ð2; 2Þ; ð2; 1Þ; ð3; 2Þ; ð3; 3Þ; ð4; 2Þ; ð4; 4Þ; ð5; 5Þ
TEOBResumS is developed open source and publicly available at https://bitbucket.org/eob_ihes/
teobresums/. Symbols are defined in the text. Historical milestones in the model developments and the
associated references as well as robustness tests and the detailed parameter space coverage can be found on
the Wiki page and are continuously updated. TEOBResumS can also be installed via pip install
teobresums. The code is interfaced to state-of-art GW data-analysis pipelines, including Bilby and
PyCBC. The code uses semantic versioning since the deployment of the GIOTTO version. Earlier versions
of TEOBResumS are implemented in LALsuite (LIGO Scientific Collaboration et al. 2024) and
reviewed by LVK
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2021). The PA approximation is an iterative procedure to solve the circularized EOB
dynamics at given radii (or frequency) thus bypassing the need to numerically solve
the system of ODEs. Performances are reported in e.g. Nagar and Rettegno (2019);
Nagar et al. (2019b); Riemenschneider et al. (2021); Tissino et al. (2023) and show
that TEOBResumS’s waveform generation times are competitive with some of the
fastest waveforms and machine learning approximants for long signals (i.e. BNS
inspirals), while retaining the original EOB accuracy. The EOBSPA is a technique to
generate multipolar FD EOB waveforms using the stationary phase approximation.
Gamba et al. (2021) illustrates that the EOBSPA is computationally competitive with
current phenomenological and surrogate models, and can generate (virtually)
arbitrarily long and faithful waveforms up to merger for any BNS. Currently, the
EOBSPA is also the only alternative to PN methods for efficiently generating
intermediate-mass binary black hole inspiral waveforms for LISA (Gamba et al.
2021).

4.5.5 Environmental effects

The EOB approach provides considerable freedom for incorporating yet unknown
effects, such as beyond-GR gravity (see Sect. 6.6), exotic BH-like objects, or
environmental effects. Analyzing the presence of such effects critically relies on
accurate GR waveforms for comparison and benefits from the techniques developed
for GR. While the modeling of astrophysical environments has not yet been explored
directly within the EOB waveforms program, there is in principle no obstruction to
incorporating them. For example, perturbative and numerical studies of environ-
mental effects are already available (as discussed in Sects. 4.2, 4.3 and 4.1) and have
identified key distinctive features, which could be mapped into EOB models
similarly to what has already been accomplished for other physical effects. Likewise,
existing capabilities of using EOB-baseline models for parameterized tests of GR
could be extended to include environmental effects in a parameterized, phenomeno-
logical way at the level of waveforms. These two approaches could be useful for
different purposes.

4.5.6 Challenges

Employing EOB waveforms for GW signals of LISA sources requires a significant
continued effort to improve the accuracy and include all physical effects. Importantly,
the waveform models must incorporate the simultaneous effects of high spins at
generic orientations, eccentricity, and large mass ratios q, all of which also require
many more higher modes. Furthermore, we require additional flexibility to discover
new physics from beyond GR and the Standard Model of particle physics, as
discussed in Sect. 6. In terms of accuracy, the models must describe high signal-to-
noise-ratio events of MBHBs, at more than an order of magnitude higher than the
calibration standards achieved to date, and they have to be tested for the expected
LISA detector response.

The effort to meet these requirements involves substantial further model
developments on the theoretical and computational fronts. On the theoretical side,
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advances on the structure of the EOB models to incorporate more information from
perturbative schemes are essential. This effort relies on inputs from higher-order
calculations with more realistic physics from PN, PM, and GSF to develop robust
EOB models for a wide range of the parameter space. While several proof-of-
principle studies have been carried out on including PM and GSF information, more
work is needed to incorporate them in full state-of-the-art models in a way that can
readily be updated as more information becomes available. This also applies to the
inclusion of memory effects. Methods for including precessing-spins and moderate
eccentricity effects (where the systems circularize before merger) are in place but
only separately. In principle, the EOB Hamiltonian is fully generic but other
components of the model are not, and require further structural developments to
incorporate larger eccentricities, as well as the simultaneous effect of precessing
spins. Further considerations will also be required on the sets of dynamical variables
used to evolve the inspirals, for example, action-angle variables versus the canonical
Cartesian coordinates, or a mixture of them. The higher complexity when including
both precession and eccentricity effects is challenging, and requires due care to
ensure gauge-invariant comparisons. As for existing models, insights from the small-
mass-ratio limit will likely prove useful to address this challenge.

On the practical side, significant further work on testing, calibrating, and
optimizing the EOB models against NR results is crucial to attain the accuracy
required for LISA sources discussed in Sect. 3.2. This in turn relies on the availability
of accurate NR waveforms over a wider parameter space, as detailed in Sect. 4.1.
Current EOB models are only calibrated in the aligned-spin sector. However, this
would need to be changed, and the calibration be extended to precessing spins to
achieve the much higher accuracy requirements of LISA sources.

Furthermore, accurate waveforms for LISA that include eccentricity, precessing
spins, large mass ratio, higher modes, and means to test for new physics have a
highly complex structure characterized by a large number of different frequencies.
Accurately capturing these features significantly slows down the computations of
waveforms and enlarges the dimensionality of the parameter space. While EOB
waveforms are a priori less efficient than closed-form models, there exist a number of
approaches to overcome these shortcomings, as discussed above in Sects. 4.5.1,
4.5.3 and 4.5.4.

4.6 Phenomenological waveform models

Coordinators: Sascha Husa, Maria Haney
Contributors: M. Colleoni, M. Hannam, A. Heffernan, J. Thompson

4.6.1 Description

After the binary black hole breakthrough of 2005, a pragmatic approach to
developing waveform models for compact binary coalescence was required. Such
models needed to describe the waveform from inspiral to ringdown, be tuned to NR,
and suit a wide range of GW data analysis applications. Key requirements for broad
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applicability were (and still are) computational efficiency and broad coverage of the
parameter space. This has led to several generations of frequency-domain and more
recently also time-domain models, which have been implemented in the open source
LALSuite framework (LIGO Scientific Collaboration et al. 2024) under the name
of IMRPhenom, and which are constructed in terms of piecewise closed form
expressions for the amplitude and phase of spherical harmonic modes. A careful
choice of the closed-form expressions allows the maximal compression of
information about the waveform into a small number of coefficients that vary across
the parameter space. More recently, fast ODE integration techniques have also been
developed to model the evolution of the component spins in precessing binaries
(Estellés et al. 2022a). The principal objective of the phenomenological waveform
program has been to deliver waveform models that keep up with requirements of data
analysis applications and are updated to become increasingly accurate as detectors
become more sensitive.

To construct the models, one proceeds in three stages: First, an appropriate
piecewise ansatz is developed for simple functions, e.g. the amplitude and phase of
spherical or spheroidal harmonics. This ansatz is split into regions, for example
corresponding to the inspiral, merger, and ringdown, where physical insight about the
different regions can be exploited. Figure 10 shows the three regions used in current
models, where in each such region closed-form expressions are developed to
approximate a discrete data set of calibration waveforms. Future upgrades may
increase the number of regions to increase accuracy. The analytical ansatz attempts to
incorporate physical insight, e.g. regarding perturbative information concerning the
inspiral and ringdown. For the inspiral, an ansatz is typically constructed as a
deformation of a post-Newtonian description. In the ringdown, black hole
perturbation theory can be used to link features in the waveform to the quasinormal
frequencies determined by the final mass and spin of a black hole. The ansatz is then
fitted to each waveform in a calibration data set, resulting in a set of generalized
coefficients for each waveform. This stage is usually referred to as the “direct fit”.
The input data consist of NR data and perturbative descriptions at low frequency,
such as post-Newtonian expansions or EOB models. Most typically, these types of
input data are used in the form of hybrid waveforms, which are constructed by gluing
inspiral approximants to shorter NR data. For the PhenomD, PhenomX and
PhenomT models, waveforms from the SEOBNR family have been employed to
construct such hybrids (Khan et al. 2016; Pratten et al. 2020; Estellés et al. 2022b).
Finally, the coefficients are interpolated across the parameter space, which we will
refer to as the “parameter space fit”. In both stages of fits it is essential to avoid both
overfitting and underfitting.

Waveform model development has been increasingly “data driven”, adapting
phenomenological descriptions to the available data sets, while also using physical
insight and perturbative information. The inspiral descriptions, for example, extend
post-Newtonian expansions, and the black hole ringdown is formulated in terms of
exponentially damped oscillations with complex frequencies that depend on the
dimensionless spin of the remnant. In addition, approximate maps have been used, e.
g. to map the non-precessing waveforms to precessing ones. Such maps:

123

    9 Page 102 of 250 N. Afshordi et al.



● Allow to increase the region of the parameter space where the models can be
employed before sufficiently extensive catalogues of NR waveforms are available.

● Give guidance for future more sophisticated models that are calibrated to NR.

The “phenom” approach sketched above facilitates the development of simple and
robust codes and very rapid evaluation of the waveforms, and is also well suited to
benefit from parallelisation, e.g., through GPUs (Katz et al. 2020) or similar
hardware. Phenom models have already been used in computationally efficient
parameter estimation studies of MBHB sources for LISA (Katz et al. 2020). Initially,
only frequency domain models were developed (Ajith et al. 2007, 2008, 2011;
Santamaria et al. 2010; Hannam et al. 2014; Husa et al. 2016; Khan et al. 2016; Bohé
et al. 2016; London et al. 2018; Khan et al. 2019, 2020; Dietrich et al. 2019b, c;
Thompson et al. 2020; Pratten et al. 2020; García-Quirós et al. 2020, 2021; Pratten
et al. 2021; Colleoni et al. 2023), since they are naturally adapted to matched filter
techniques carried out in the frequency domain. More recently, time domain models
have also been developed (Estellés et al. 2021, 2022a, b), which can simplify
modelling complex phenomena such as precession or eccentricity.

Four generations of such models have been constructed to date in the frequency
domain, progressing from the ‘ ¼ jmj ¼ 2 mode for quasi-circular non-spinning
binaries to multi-mode precessing waveforms, as will be described in Sect. 4.6.3. The
flexibility of the phenomenological approach is also well suited to parameterize
unknown information, e.g., beyond-GR effects (see Sect. 6.6).

4.6.2 Suitable for what sources?

Massive black hole binaries have already been modelled with the phenom approach,
i.e., comparable-mass black-hole binaries, described in Sect. 2.1. The bulk of such
binaries detected by LISA is expected to have mass ratios q ¼ m1=m2 up to � 10
(see Sect. 2.1.2), where phenom models have already been calibrated to NR. The
main challenge to model such binaries for LISA is to significantly increase the

Fig. 10 Illustration of the regions used in Phenom models exemplified by the IMRPhenomX model. The
plots show the Fourier domain amplitude (left) and phase derivative (right) of the ‘ ¼ 2;m ¼ �2 spherical
harmonic mode. Vertical lines mark the frequencies of the ISCO for the remnant black hole, the MECO
(minimum energy circular orbit as defined in Cabero et al. (2017), see also Blanchet (2002)) and the
ringdown frequency of the fundamental mode. Figure adapted from Pratten et al. (2020)

123

Waveform modelling for LISA Page 103 of 250     9 



accuracy, corresponding to the much higher expected values for the signal-to-noise-
ratio (SNR) with LISA. However, a tail up to mass ratios of a few times 103 also has
to be expected (Sect. 2.1.2). The latest generation of phenom models has indeed
already been calibrated to perturbative numerical waveforms that correspond to
solutions of the Teukolsky equation (Pratten et al. 2020; García-Quirós et al. 2020) at
mass ratios of 	 103. Significant progress will still be required regarding both the
input calibration waveforms and the models to increase the accuracy, in particular for
larger spins and the inspiral. Developments and challenges toward computing large
mass ratio NR waveforms are discussed in Sect. 4.1, including synergies between
traditional numerical methods, analytical and self-force methods. In principle, the
phenom approach may be well suited to some EMRI systems as well. Extension to
EMRIs seems most feasible for non-precessing quasi-circular systems, but may not
be practical for precessing or eccentric systems, where the signal can be extremely
complex.

Stellar-origin binaries (Sect. 2.5) and Galactic binaries (Sect. 2.4) are types of
sources for which the phenomenological approach is likely to provide a well suited
framework. It can be adapted to produce computationally efficient models that can be
tuned to data analysis requirements. However, to our knowledge, no work has yet
been carried out in this direction. Finally, one of the strengths of the phenom
approach is precisely that it allows for the easy inclusion of approximate
phenomenological models of physical effects. In this sense, parameterised modifi-
cations to GR or models of environmental effects would in principle be
straightforward to include.

4.6.3 Status

To date four generations of FD models have been developed, as well as a first
generation of time domain models, which correspond to the most recent FD models
in terms of parameter space coverage and accuracy. These models have been
implemented in the LIGO Algorithms library (LALsuite) (LIGO Scientific Collab-
oration et al. 2024) and reviewed by the LIGO-Virgo-KAGRA collaboration. With
the exception of (Hamilton et al. 2021; Thompson et al. 2024), these models have
only been calibrated to non-precessing quasi-circular numerical waveforms, and
precession has been implemented via the “twisting” approximation (Hannam et al.
2014; Bohé et al. 2016; London et al. 2018; Khan et al. 2019, 2020; Pratten et al.
2021; Estellés et al. 2021), which is based on the fact that in the inspiral the
precession timescale is much smaller than the orbital timescale. Consequently, the
precessing motion contributes little to the GW luminosity, and the inspiral rate is
dominated by the non-precessing dynamics. One can thus approximately map non-
precessing to precessing waveforms, and in a further step one can use fast PN
approximants to describe the Euler angles that rotate the orbital plane and waveform.
An effective analytical single-spin description for the Euler angles including next-to-
next-to-leading order (NNLO) orbit-averaged PN effects has been developed in
Marsat et al. (2013a), and a double spin approximation based on a multiple-scale
analysis (MSA) has been developed in Chatziioannou et al. (2017). A key
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shortcoming of implementations of the twisting-up approach in the frequency
domain (Hannam et al. 2014; Bohé et al. 2016; London et al. 2018; Khan et al.
2019, 2020; Pratten et al. 2021) has been the use of the SPA, which is not appropriate
for the late inspiral, merger and ringdown. Possible strategies for going beyond the
SPA have been discussed in Marsat and Baker (2018), but will require further study
and testing. Further shortcomings of the twisting-up approach have recently been
discussed in Ramos-Buades et al. (2020b).

Before discussing the current generation of models we briefly summarize the
historical development of the first three generations:

(i) The first generation consists of the PhenomA model for the l ¼ jmj ¼ 2
modes of non-spinning binaries (Ajith et al. 2007, 2008).

(ii) Second generation models PhenomB (Ajith et al. 2011) and PhenomC
(Santamaria et al. 2010) included non-precessing spins, where the two spin
degrees of freedom are described by a single effective spin. Also, the
precessing PhenomP (Hannam et al. 2014) model was constructed from
PhenomC using an approximate “twisting-up” map between precessing and
non-precessing waveforms.

(iii) The PhenomD (Husa et al. 2016; Khan et al. 2016) model for the
l ¼ jmj ¼ 2-mode significantly improved the fidelity of the phenomenolog-
ical ansatz and the quality of the NR calibration. Several models have been
derived from IMRPhenomD:

● PhenomPv2 (Bohé et al. 2016) updates the PhenomP model for
precession.

● PhenomHM (London et al. 2018) adds subdominant harmonics based on
an approximate map from the l ¼ jmj ¼ 2 mode to subdominant
harmonics.

● PhenomPv3 (Khan et al. 2019) upgrades the NNLO effective single-spin
description of precession that had been used for the first two versions of
PhenomP to a double-spin description based on the MSA approximation
(Chatziioannou et al. 2017).

● PhenomPv3HM (Khan et al. 2020) includes subdominant harmonics in
the twisting-up construction.

● Matter effects have been included in terms of tidal phase corrections
(Dietrich et al. 2019c, b) and amplitude corrections of NS-BH systems
(Thompson et al. 2020).

The PhenomD model has been implemented for use in the LISA data
challenge infrastructure (Babak and Petiteau 2024), and has been used in the
“Radler” edition of the LISA data challenge. The PhenomD and PhenomPv2
models have been used for parameter estimation for observed GW events
since the first detection of gravitational waves, the GW150914 event
(Abbott et al. 2016f). Its derivatives including subdominant harmonics have
also been used to analyse events during the third observing run. A detailed
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study of waveform systematics (Abbott et al. 2017) found these models to
be accurate enough for the GW150914 event, but also highlighted the need
for further improvements. This is consistent with a more recent study
concerning the need for further improvements for upcoming upgrades to
ground-based GW detectors (Pürrer and Haster 2020).

The PhenomX (Pratten et al. 2020; García-Quirós et al. 2020, 2021; Pratten et al.
2021) family provides a thorough upgrade of third generation phenom models.
PhenomXAS (Pratten et al. 2020) replaces PhenomD for the dominant mode,
increasing the accuracy by roughly two orders of magnitude in terms of mismatch:

● The number of NR waveforms used for calibration is increased from 20 to � 400.

● Teukolsky waveforms are included in the data set in order to extend the model to
EMRI waveforms.

● Final spin and mass include EMRI information derived from circular geodesics.

● Both spin degrees of freedom are calibrated to numerical data.

● Heuristic parameter space fits have been replaced by the systematic hierarchical
fitting approach described in Jiménez-Forteza et al. (2017). An ansatz is selected
among classes of polynomial and rational functions by minimizing not only the
RMS errors, but also information criteria that approximate a full Bayesian
approach, which avoids overfitting and underfitting. This method has, however,
not yet been applied to dimensions larger than 3 (i.e. precession or spinning
eccentric binaries).

PhenomXHM (García-Quirós et al. 2020) extends PhenomXAS to the sub-dominant
modes, and PhenomXPHM (Pratten et al. 2021) adds precession via the twisting-up
procedure, and allows to switch between the NNLO and MSA descriptions for the
Euler angles. A first calibration of Phenom models to precessing NR simulations has
recently been presented in the frequency domain (Hamilton et al. 2021, 2023),
paving the way for further increasing the accuracy of precessing and eventually
generic models in the future. Another important step in improving precessing models
has been the incorporation of the mode asymmetry associated with large recoils
(Brügmann et al. 2008a; Ramos-Buades et al. 2020b; Kalaghatgi and Hannam 2021)
in the frequency domain (Ghosh et al. 2024; Thompson et al. 2024). Extensions to
BNS and BHNS systems following the approaches of third generation models are in
progress (Colleoni et al. 2023; Abac et al. 2024).

The fourth generation PhenomX family demonstrates that a significant increase in
the accuracy of phenom models can be paired with a significant decrease in
computational cost. Consequently, PhenomX provides the fastest Inspiral-Merger-
Ringdown (IMR) waveforms currently available for data analysis without GPU
acceleration (García-Quirós et al. 2021; Pratten et al. 2021). Parameter estimation
application with GPU acceleration for PhenomHM has been presented in Katz et al.
(2020). Part of the improvement in efficiency is due to the “multibanding method”,
which is based on Vinciguerra et al. (2017): analytical error estimates determine the
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grid spacing for interpolation from a coarse grid, and a standard iterative scheme is
used to rapidly evaluate the complex exponentials required to compute the waveform
from the amplitude, phase, and the Euler angles used in “twisting up”.

Most recently, the time-domain PhenomT model family (Estellés et al.
2021, 2022a, b) has been constructed to mirror the features of PhenomX in the
time domain. A key motivation for the development of time domain models is that
they do not require an analytical approximation to the Fourier transform in order to
obtain explicit expressions for a “twisted-up” precessing waveform. This also
simplifies the incorporation of analytical results, e.g., concerning the precessing
ringdown frequencies; similar simplifications are hoped for when modelling
eccentricity. The time domain model has also recently been extended to include
the ‘ ¼ 2;m ¼ 0 spherical harmonic, which contains the leading contribution to the
gravitational wave memory effect (Rosselló-Sastre et al. 2024). For future
developments, it is foreseen that both frequency and time domain models will be
upgraded in parallel, and that each of the two “branches” will benefit from progress
with the other.

The historical development and current status of phenom models is sketched in
Table 11.

4.6.4 Environmental effects

The phenom approach provides significant freedom to incorporate additional
features, such as poorly known subdominant GR effects, beyond-GR effects (see
Sect. 6.6), and environmental effects. We note that analysing the presence of such
effects also requires accurate GR waveforms for comparison and will benefit from
the techniques developed for GR. Work toward tests of GR or the presence of
environmental effects may call for improving the accuracy or other features of GR
models. While the modelling of environmental effects has not yet been explored in
the phenomenological waveform program, the phenomenological models are primed
for their addition in two ways:

(i) The modular structure of phenomenological waveforms should facilitate the
incorporation of known environmental effects, e.g. by augmenting PN
information about the inspiral with information about environmental effects.

(ii) Environmental effects for which a quantitative model is not yet available
could be incorporated into the phenom ansatz in a parameterised way, similar
to existing GW tests for theory-agnostic deviations from GR.

In both cases it will be useful to have both frequency and time domain
phenomenological waveform models available, allowing one to choose the natural
domain for a given effect.

4.6.5 Challenges

Waveform modelling for comparable mass binaries in general faces four main
challenges:
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(i) The availability of a sufficient number of high-accuracy numerical relativity
waveforms throughout the parameter space, including precession and
eccentricity. (This is not specific for phenom models.)

(ii) The lack of accurate analytical descriptions, in particular for precession and
eccentricity. Here, specific challenges arise for the phenom approach, which
uses “deformed” PN expressions as the basis for constructing a computa-
tionally efficient inspiral ansatz. This will benefit in particular from further
analytical developments in precession and eccentricity.

(iii) The development of modelling techniques that can produce efficient models
from high-dimensional data sets. For the phenom approach, it may turn out
to be difficult to develop closed form expressions that accurately represent
the full morphology of precessing and eccentric binaries, and to accurately
interpolate the full parameter space without compromising computational
speed.

(iv) Development of an overall data analysis strategy and concrete code
framework. The flexibility and modularity of the phenom approach could be
exploited to develop variants of models with different tradeoffs between
accuracy and speed, or accuracy and broad coverage of parameter space,
which can then be utilised to optimise computational efficiency.

Significant coupling between these challenges is foreseen, e.g. the number and
quality of NR waveforms required will also depend on the progress with analytical
results. In addition, there will be more sophisticated data analysis approaches, which
could exploit the advantages and disadvantages of different models, or tunable
parameters, which could allow one to trade accuracy for speed. These could
eventually give guidance for the development of waveform models that are designed
as an integral part of the data analysis strategy. These challenges are not specific to
LISA, but apply in general to further model improvements. LISA, however, poses
particular challenges due to the extreme accuracies required for the loudest events,
and also due to the more complicated nature of the detector response (see e.g. Marsat
and Baker 2018). Strategies of how to best employ waveform models in data analysis
applications, resolving tradeoffs of accuracy versus computational cost, can not be
decoupled from considerations regarding the detector response, and new research
will be required to exploit the simplicity and flexibility of phenomenological
waveform models in order to accelerate the evaluation of the waveform together with
the detector response.

The non-precessing quasi-circular sector will provide important initial guidance
on how to connect with EMRI descriptions (or to which degree this is possible). This
will provide an arena for toy-model explorations of highly accurate models in limited
regions of parameter space, determining the limits of accuracy and computational
efficiency that can be achieved, as well as studying issues of accuracy and efficiency
related to the LISA detector response. It is therefore important to continue pushing to
higher accuracies with these models.

The development of accurate phenomenological models of precessing systems is
expected in both the time and frequency domains. Time-domain models will build on
Estellés et al. (2021), which is foreseen to serve as a testing ground to further extend
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the calibration to NR, and will facilitate to use time domain implementations of the
LISA response function. Further progress in the precessing inspiral will also crucially
depend on progress with approximations that reduce the need for NR calibration for
the inspiral across the large parameter space of precessing binaries, such as those
based on the MSA (Chatziioannou et al. 2017) or dynamical renormalisation group
(DRG) (Galley and Rothstein 2017; Yang and Leibovich 2019). In order to
accurately describe the late inspiral, merger and ringdown of precessing systems in
the frequency domain, further tests and implementations of the strategies discussed in
Marsat and Baker (2018) will be required, such as analytical treatments that go
beyond the SPA.

Eccentric waveform modes are again likely to require cross-pollination between
frequency and time domain models (motivating in part the development of PhenomT
in parallel to PhenomX), and significant advances in the development of analytical
descriptions for the inspiral phase of spinning and eccentric binaries. This is
particularly true where binary systems show both precession and eccentricity. It will
be important to understand whether simple approaches twisting up eccentric
waveforms will be sufficient for moderate SNR. Further investigations will determine
if these prescriptions are adequate to determine binary parameters with sufficient
accuracy, such that only a moderate number of NR waveforms is required to develop
an accurate local model for high SNR events.

A key challenge is to develop models that are accurate across a large region of
parameter space, describing well the changes of waveform morphology, e.g., as the
mass ratio increases, or as spin alignment migrates between aligned and anti-aligned
with the orbital angular momentum. For current ground-based detectors, parameter
estimation posteriors are typically rather broad, so refined models in a smaller region
of the parameter space would have very limited use. For LISA, however, it is
foreseen that a hierarchy of models will be developed: those that are sufficiently
accurate to identify signals across large portions of parameter space, and others that
further increase the accuracy for smaller regions of parameter space, which would be
used for the most accurate parameter estimation of the loudest signals. Models with
parameters allowing one to trade accuracy for computational efficiency would be
appropriate for hierarchical approaches to data analysis. This approach could also be
extended further by mixing descriptions in terms of closed-form expressions with
equation-solving, e.g. to improve the accuracy of describing eccentricity or
precession. An important open question is how to incorporate results from the
self-force program (see Sect. 4.3) into phenomenological models, and how to use
ideas developed for the phenomenological waveforms program to accelerate self-
force waveforms.

5 Waveform generation acceleration

Coordinators: Alvin Chua, Michael Katz
Contributor: S. Field
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The stringent efficiency requirements described in Sect. 3.3 naturally necessitate the
acceleration of waveform models, in order to enable the LISA science analysis. The
two main strategies to achieve this are the development of improved computational
techniques, and hardware acceleration.

5.1 Computational techniques

To maximize the science returns from highly relativistic LISA sources with exacting
modeling requirements, we require waveform-acceleration techniques that do not
compromise waveform accuracy. The general solution to this problem is to construct
interpolants or fits for high-fidelity waveform data, where the data comes from an
accurate underlying model that is too slow to use directly in data analysis studies (e.
g., as it involves solving PDEs or coupled ODEs). This data can describe either the
full time-/frequency-series representation of the waveform, or specific waveform
components that are more computationally expensive. While many waveform
acceleration techniques have appeared in the literature, most rely on the three steps
summarized below and illustrated in Fig. 11.

5.1.1 Step 1: data representation

A gravitational waveform’s parametric dependence is generally too complicated to
model directly with an acceptable degree of accuracy. Instead, the waveform is
typically decomposed into waveform data pieces that are simpler, more slowly
varying functions of parameters and time. If we were to take a machine-learning
viewpoint of the problem, data pieces are features of the data, and discovering what
problem-specific features to extract is a feature engineering task. How should we
define our features?

For non-precessing BBHs in quasi-circular orbits, an amplitude and phase
decomposition for each ð‘;mÞ angular-harmonic mode is an obvious choice for our
data pieces. For precessing systems, the problem becomes significantly more
complicated as the modes have a rich signal morphology. Here, the general approach
has been to transform the modes to a co-rotating frame where the system has
significantly reduced dynamical features (Blackman et al. 2017a, b; Varma et al.
2019a). It is often advantageous to further decompose the data into symmetric and
asymmetric mode combinations (Blackman et al. 2017a, b; Varma et al. 2019a). The
price of this simplification is that the frame dynamics must also be modeled, so that
the co-rotating modes can be transformed back into the inertial frame of the detector.
For eccentric BBH systems, which will be important for LISA science, the optimal
data representation is currently unknown.

The highly disparate masses and large separation of timescales in EMRI systems
allow their inspirals to be modeled within the two-timescale framework (Miller and
Pound 2021). This allows the trajectory of the inspiral through the orbital
configuration phase space to be computed in milliseconds (Katz et al. 2021; Wardell
et al. 2023). The waveform is then computed by sampling the metric amplitudes
along this inspiral typically by evaluating a precomputed interpolant of the
amplitudes. Most often these amplitudes are computed in the frequency domain so
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the waveform is decomposed into harmonics of not just angular dependence, but also
the fundamental frequencies in the system (Hughes 2001; Drasco and Hughes 2006).
Generically precessing and eccentric EMRI waveforms are extremely complex, but
the above description effectively breaks the waveform down into slowly evolving
sinusoids. The only drawback is that there are far more modes to compute and sum
for a typical waveform (J105), though in practice many of these do not carry much
power (Katz et al. 2021).

5.1.2 Step 2: reduced-order modeling

The waveform quantities of interest often reside in a representation space of
extremely high dimensionality D, and must generally be interpolated or fitted over a
parameter space of modest dimensionality d. For example, the full waveform itself
for strong-field LISA sources typically has DJ104 (signals of J105 s sampled at
J0:1Hz) and d� 10. These computational difficulties can often be mitigated
through the use of dimensional-reduction tools (Prud’homme et al. 2001; Barrault
et al. 2004; Binev et al. 2011; DeVore et al. 2013; Maday et al. 2002; Quarteroni et al.

Fig. 11 Waveform acceleration can be achieved by building a surrogate model through a sequence of three
steps. (Step 1) The red solid lines show the waveform training data evaluated at specific parameter values.
(Step 2) Reduced-order modeling is used to compress the waveform data through a dimensional-reduction
step, and the blue dots represent the data that needs to be modeled after compression. (Step 3) The blue
lines indicate fits for the compressed waveform data across the parameter space. The yellow dot shows a
generic parameter value, say k0, that is not in the training set. To compute the waveform for this value, each
fit is evaluated at k0 (the yellow diamonds), and then the reduced-order representation is used to reconstruct
the decompressed waveform (the dotted black line)
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2011; Cannon et al. 2010, 2011, 2012, 2013; Field et al. 2011; Herrmann et al. 2012),
the collection of which is broadly referred to as ROMs.

ROMs aim to remove redundancies in large data sets, making them more
amenable to analysis, and identifying relevant features for further approximation.
Their construction typically begins with a greedy algorithm or singular value
decomposition that identifies the set of n “most important” values in parameter space,
whose associated waveform quantities span a reduced-basis space within which the
model is well approximated (Field et al. 2011; Herrmann et al. 2012; Field et al.
2014; Pürrer 2014). This serves as both a dimensional-reduction step as well as a
parametric-sampling step.

While invaluable for reducing computational cost on the representation end
(n � D), the compression provided by ROMs does not actually lessen the intrinsic
complexity of the model. Indeed, the successful application of ROMs relies on
sufficient coverage of the parameter space with training data in the first place—or,
more realistically, on truncation of the parameter domain to compensate. ROMs
themselves also do not address the issue of interpolating or fitting the reduced
representation at high accuracy, which can be challenging even in parameter-spaces
with dJ3.

5.1.3 Step 3: interpolation and fitting

The last step is to interpolate or fit each compressed data piece (viewed as scalar- or
vector-field data) over the d[ 3 dimensions of parameter space, and to do so both
accurately (.10�6 error) and efficiently (.1 seconds). In the context of sources and
models for ground-based observing, a variety of choices have appeared, including
polynomials (Field et al. 2014), splines (Pürrer 2014), Gaussian process regres-
sion (Doctor et al. 2017), deep neural networks (Chua et al. 2019; Khan and Green
2021; Thomas et al. 2022; Khan et al. 2022), and forward stepwise greedy regression
using a custom basis (Blackman et al. 2017b). A recent review article provides
informative comparisons between some methods (Setyawati et al. 2020). The
accuracy and efficiency goals of models for ground-based observing are more
modest, however, and it is unclear if these methods will continue to work for LISA
MBHs (Pürrer and Haster 2020; Ferguson et al. 2021), or for EMRIs in full
generality (Chua et al. 2021). As such, other interpolation and regression methods
should continue to be explored.

5.1.4 Status of techniques

In the GW literature, the term surrogate modeling is sometimes used as a
generalization of ROMs (for the full waveform) to include additional steps beyond
dimensional reduction. ROM surrogates have been built for many different
waveform families, regions of parameter space, and signal durations. Early models
focused on closed-form waveform families largely as a proof-of-principle exercise
(Herrmann et al. 2012; Field et al. 2011; Caudill et al. 2012; Cannon et al.
2010, 2011, 2012). Since then, ROM techniques have been further developed and
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refined for various LVK (hence comparable-mass) applications: EOB (Field et al.
2014; Pürrer 2014, 2016; Cotesta et al. 2020; Gadre et al. 2024; Khan and Green
2021; Thomas et al. 2022), NR (Blackman et al. 2015, 2017a, b; Varma et al.
2019a, b), multiple subdominant modes (Field et al. 2014; Cotesta et al. 2020;
Blackman et al. 2015, 2017a, b; Varma et al. 2019a, b), eccentric binaries (Islam et al.
2021), frequency-domain waveforms (Pürrer 2014, 2016; Cotesta et al. 2020), time-
domain waveforms (Field et al. 2014; Blackman et al. 2015, 2017a, b; Varma et al.
2019a, b), generically precessing systems (Blackman et al. 2015, 2017a, b; Varma
et al. 2019a), neutron star inspirals with tidal effects (Lackey et al. 2017, 2019;
Barkett et al. 2020; Matas et al. 2020; Abac et al. 2024), and waveforms with � 104

cycles (Pürrer 2014, 2016; Cotesta et al. 2020; Varma et al. 2019b; Yoo et al. 2023).
When applied to computationally expensive models such as EOB or NR, ROM

surrogates can accelerate the generation of a single waveform by factors of 102 (EOB
models; described by ODEs) to 108 (NR models; described by partial differential
equations), while being nearly indistinguishable to the underlying model. EOB
surrogates are extensively used as part of LVK parameter-estimation efforts as well as
template-bank detection (Abbott et al. 2016f, 2019b, 2021b, 2023a, 2024). NR
surrogates have been used in numerous targeted follow-up studies on specific BBH
events (Abbott et al. 2020a, b; Kumar et al. 2019; Islam et al. 2023). As such, ROM
techniques have been essential to the widespread use of both EOB and NR
waveforms for realistic data analysis efforts with LVK data.

The present surrogate framework is ill-suited to EMRI waveform modeling, where
the increased duration and mode complexity combine to increase the information
content of the model by at least 20 orders of magnitude (Gair et al. 2004; Chua et al.
2017; Moore et al. 2019). Surrogates might be useful in special cases of the IMRI
regime, where these difficulties are lessened. There has been recent work on the first
models (Rifat et al. 2020; Islam et al. 2022) for quasi-circular, non-spinning IMRI
systems, based on solutions to the time-domain Teukolsky equation rescaled to fit
NR results. The latest surrogate waveform model in this series covers the last
30,000M of the inspiral-merger-ringdown signal, with mass ratios ranging from 2.5
to 104. To put this in context, for a million-Solar-mass system, this is equivalent to
approximately 2 days of signal, which is inadequate for the expected observable
duration of months to years for an EMRI of that mass. However, it should suffice to
describe an IMRI signal of similar total mass and a mass ratio of � 103.

In the angular- and frequency-based decomposition of an EMRI model, the
problem separates naturally into two main parts: that of generating the inspiral
trajectory (from which the waveform phasing is straightforwardly derived), and that
of generating the waveform amplitude for each of the � 105 constituent modes. Fast
frameworks for EMRI trajectory generation already exit (Van De Meent and
Warburton 2018; Miller and Pound 2021). They present no computational difficulties
at adiabatic order (for search); however, their extension to post-adiabatic order (for
inference) will require interpolating the first-order fluxes to a relative precision of the
mass ratio (� �) (Osburn et al. 2016). Trajectory-level interpolation with ROM is
unlikely to be of practical use, due to issues of accuracy and parameter-space
extensiveness. The accuracy requirements on the waveform amplitudes are far less
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stringent, though, and it is here that ROM compression and neural-network
interpolation has been applied to good effect (in the mode direction, rather than the
time/frequency direction) (Chua et al. 2021).

5.1.5 Future challenges

LISA data analysis has three distinctive features that will require new ideas in
waveform acceleration. First, the waveforms are significantly longer in duration,
which will stress both computational resources and current ROM techniques.
Second, as compared to LVK waveform modeling, LISA accuracy requirements are
significantly more demanding. The fitting schemes will thus need to deliver higher
accuracies while also contending with increased dimensionality. Finally, the orbital
motion of LISA introduces a time-dependency in the response of the detector, which
also needs to be modeled efficiently for data analysis applications; see, e.g., Marsat
and Baker (2018).

In terms of source-specific challenges, eccentricity is expected to play a more
important role in the modeling and interpretation of LISA MBHs. This will
necessarily increase the problem from 7 to 9 parametric dimensions. While this
should not pose significant difficulty for the dimensional-reduction step (Herrmann
et al. 2012; Blackman et al. 2014), the parameter-fitting step will be vastly more
difficult, and it is unlikely that any of the existing techniques will continue to perform
well. For EMRIs, the main difficulty is ensuring that the waveform-amplitude fit
retains its accuracy when extended from eccentric Schwarzschild orbits at present
(Chua et al. 2021) to generic Kerr orbits with a much larger parameter and
representation space.

5.2 Hardware accelerators/configurations

In addition to computational techniques, generating waveforms with a variety of
hardware accelerators can vastly improve analysis time. Hardware acceleration, in a
general sense, means hardware designed for a specific type of optimization when
compared to general-purpose CPUs. Some examples of commonly used hardware
accelerators include GPUs, Field-Programmable Gate Arrays (FPGAs) (Vander-
bauwhede and Benkrid 2013), Tensor Processing Units (TPUs) (Paper 2021), and
Artificial Intelligence (AI)-accelerators (Mishra et al. 2023).

GPUs are designed specifically for parallel computations. These devices leverage
a large number of compute cores (� 1000s) and specialized memory structure to
make a large number of independent calculations simultaneously. From an
algorithmic standpoint, many of the methods discussed in Sect. 5.1 can be
implemented on GPUs to achieve considerable gains in efficiency. These include, but
are not limited to, artificial neural networks (matrix multiplication), interpolation,
parallel sorting, and basis transformation. Additionally, some accurate waveform
calculations can be implemented in parallel, allowing for all or parts of waveforms to
be implemented entirely for GPUs. Programming for GPUs is generally performed in
C/C?? or, as of more recently, Python.
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While GPUs take advantage of their parallel architecture, they are still
programmed using specific software for a fixed hardware unit. FPGAs, on the other
hand, represent “programmable hardware.” These devices are programmed at the
device level to implement customized hardware flow designed for specific tasks.
Their most common usage is in neural networks and signal processing. Programming
on FPGAs is done in Verilog or VHDL (Chu 2011), although some wrappers in C/
C?? are starting to become available.

5.2.1 Status

Recently FPGAs have started to be used by the GW community (Que et al. 2021;
Martins et al. 2024) for data analysis but, to the best of our knowledge, they have not
been used for waveform generation. In recent years, GPUs have seen increased
interest from the community for use in waveform creation, as well as GW-related
analysis in general. GPUs have been used for precessing waveforms, as well as
population analysis related to ground-based observations from the LVK observing
network (Talbot et al. 2019; Edwards et al. 2024). In this work, the waveform and the
detector response were calculated directly on the GPU hardware. To limit the cost of
Bayesian inference in ground-based observing, GPUs were recently used to greatly
accelerate the creation of surrogate waveform models using techniques such as
artificial neural networks (Khan and Green 2021). The creation of MBHB waveforms
has also been implemented for LISA, including both the source-frame waveforms
and the LISA response function for use in LISA parameter estimation studies (Katz
et al. 2020) (� 500x acceleration). The generation scheme for this work calculated,
in parallel, accurate waveforms and LISA response information on sparse grids.
Then, to scale to the full data stream, cubic spline interpolation was leveraged. This
technique is generally well-suited for parallelization.

For EMRIs, GPUs have been used to improve the efficiency of black hole
perturbation theory calculations within the GSF community (McKennon et al. 2012;
Khanna and McKennon 2010; Field et al. 2023). In this work, the many harmonics of
EMRI metric perturbation are computed in parallel as the orbit evolves. In terms of
data-analysis related waveform creation for EMRIs, the Augmented Analytic Kludge
(AAK) (Chua et al. 2017) waveform from the EMRI Kludge Suite was
accelerated with GPUs (gpuAAK) for use in the LISA Data Challenges (� 1000x).
Additionally, the first fully relativistic fast and accurate EMRI waveform that goes
beyond the kludge approximations was implemented on GPUs resulting in a
considerable increase in efficiency (� 2000x) (Chua et al. 2021; Katz et al. 2021).
Both the gpuAAK and the fast and accurate EMRI waveforms generate sparse orbital
and phase trajectories in serial on a CPU. These sparse trajectories are then scaled
with spline interpolation to the full waveform sampling rate. This scaling is
performed for each separate harmonic mode so that they can be properly and
accurately combined into the final waveform. It is actually this summation over
� 106 � 107 time points, each with a combination of � 1000’s of harmonic modes,
that most requires the GPU architecture for optimal results.
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5.2.2 Challenges

A central challenge when working with GPUs, FPGAs, or any other specialized
hardware is the trade-off between efficiency and streamlined code creation and
maintenance. For optimal efficiency, it is generally necessary to implement code
specific to each type of hardware. This could mean implementation in an entirely
different language with, for example, an FPGA, or an adjustment for different
hardware or software requirements for each application. An example of this is the use
of shared memory in GPUs. Shared memory is a small amount of memory available
on the GPU chip, which is much faster to access in comparison to the larger global
memory located off of the chip. Leveraging shared memory is essential to achieving
optimal efficiency for many applications. There is no use of this form of shared
memory on CPUs. Therefore, it may be desirable to implement a fast GPU version
and a mirror CPU version that effectively uses the same exact code as the GPU
version with slight adjustments. On the other hand, a CPU version optimized for a
CPU may be needed, creating two separate codes. In general, it is helpful to minimize
the amount of code duplication as much as possible, but that may be governed by
efficiency requirements.

Many applications require some parallelization over CPUs in addition to specific
hardware considerations. Understanding how to best leverage all resources is key to
achieving maximal efficiency. With that said, maximal efficiency should be achieved
while maintaining a constant user interface. This allows for the application of a
waveform within a desired program while using a variety of hardware.

Another general concern about the use of specialized hardware is just that: it is
specialized. Purchasing specialized hardware in place of CPUs will penalize the
breadth at which the hardware can be used. This has generally hurt the availability of
accelerators at large. Similarly, accelerators come at a variety of prices. Academic-
grade GPUs (indicating they have strong performance in double precision) are
generally expensive. However, the newest generations of accelerators combined with
modern algorithms within the GW field have proven that efficiency is not only highly
desirable, but cost efficient when compared to the equivalent number of CPUs (up to
� 1000’s). Fortunately, researchers now often have access to clusters of CPUs,
GPUs, TPUs, and AI-accelerators through local, national, and international scale
computing centres. Ultimately, the combination of a variety of hardware will be
necessary to accomplish the scientific goals of the LISA mission.

6 Modelling for beyond GR, beyond standard model, and cosmic
string sources

Coordinators: Richard Brito and Daniele Vernieri
Contributors: J. Aurrekoetxea, L. Bernard, G. Bozzola, A. Cárdenas-Avendaño,
D. Chernoff, K. Clough, T. Helfer, T. Hinderer, E. Lim, G. Lukes-Gerakopoulos,
E. Maggio, A. Maselli, D. Nichols, J. Novák, M. Okounkova, P. Pani, G. Pappas,
V. Paschalidis, M. Ruiz, A. Toubiana, A. Tsokaros, J. Wachter, B. Wardell, H. Witek
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As explained in Sect. 2.7, the observation of gravitational waves with LISA has an
enormous potential to probe physics beyond GR and the Standard Model of particle
physics, in regimes that have so far not been explored (Barausse et al. 2020b; Arun
et al. 2022). In order to fulfill this potential, we need to construct accurate waveforms
that take into account signatures of new physics. As we will discuss in this section,
this is in fact a very challenging task that for most cases is still at its early stages of
development.

In this section we provide a brief summary of how beyond GR theories and the
effect of beyond Standard Model physics can be modelled using the techniques
presented in Sect. 4. The discussion will be mostly concerned with modelling the
generation of gravitational waves by LISA sources in the presence of new physics.
Beyond-GR effects can also affect the way gravitational waves propagate on
cosmological scales, see e.g. Mirshekari et al. (2012); Saltas et al. (2014); Belgacem
et al. (2018, 2019); Bonilla et al. (2020); D’Agostino and Nunes (2019); Allahyari
et al. (2022); D’Agostino and Nunes (2022); Auclair et al. (2023). In general,
separation of scales allows to add modifications to the GW propagation on top of any
waveform model for which the generation problem is understood and therefore we do
not discuss this possibility here. More details on this problem can be found in
Belgacem et al. (2019); Auclair et al. (2023). We will also not discuss in detail the
potential implications that LISA observations will have for fundamental physics,
since a more detailed review on this issue can be found in LISA’s Fundamental
Physics Working Group White Paper (Arun et al. 2022).

This section follows a similar structure to Sect. 4 where various modelling
approaches for compact binaries are discussed. However, the modelling of
gravitational waves emitted by cosmic strings is discussed in a separate Sect. 6.7,
mainly because these sources require modelling approaches that are specific to
cosmic strings.

6.1 Numerical relativity

6.1.1 Beyond GR

NR simulations of BBH mergers in beyond-GR theories are only at their infancy and
have only been performed in a handful of theories, e.g. Healy et al. (2012); Berti
et al. (2013); Cao et al. (2013); Okounkova et al. (2017); Hirschmann et al. (2018);
Witek et al. (2019); Okounkova et al. (2019, 2020); East and Ripley (2021b);
Figueras and França (2022); East and Ripley (2021a); Aresté Saló et al. (2022);
Ripley (2022); Cayuso et al. (2023). Even though most studies have so far focused on
proof-of-principle simulations, in recent years there has been significant improve-
ments in this topic.

The earliest NR simulations of BBH mergers in beyond GR theories focused on a
particular class of scalar-tensor theories that are known to possess a well-posed initial
value problem (Salgado et al. 2008; Healy et al. 2012; Berti et al. 2013; Cao et al.
2013). In these scalar-tensor theories, BHs satisfy no-hair theorems (Hawking 1972;
Sotiriou and Faraoni 2012), and BBH mergers are indistinguishable from GR.
However, in more complex extensions of GR, or for scalar matter with nontrivial
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boundary conditions (e.g., cosmological boundary conditions or large scalar-field
gradients), BHs can carry a scalar charge, and these solutions need not be unique.

One of the main difficulties when trying to do NR simulations in more complex
theories is the fact that the well-posedness of the initial value problem (see e.
g. Baumgarte and Shapiro 2010; Sarbach and Tiglio 2012; Hilditch 2013) in
alternative theories is for most cases particularly challenging to establish (Delsate
et al. 2015; Papallo and Reall 2017; Papallo 2017; Cayuso et al. 2017; Sarbach et al.
2019; Ripley and Pretorius 2019a, b; Kovács 2019; Kovács and Reall 2020a, b;
Witek et al. 2020; Julié and Berti 2020; Bezares et al. 2021a; ter Haar et al. 2021;
Silva et al. 2021; Aresté Saló et al. 2022; Ripley 2022; Barausse et al. 2022; de Rham
et al. 2023).

To circumvent these problems, two treatments have been proposed in which
alternative theories are considered as effective field theories of gravity. One approach
uses an order-by-order expansion (Benkel et al. 2016, 2017; Okounkova et al. 2017;
Witek et al. 2019; Okounkova et al. 2019, 2020; Doneva et al. 2022), in which the
spacetime metric and extra fields are expanded around GR, order-by-order in the
coupling constant,3 to guarantee well-posedness. The second approach, the so-called
equation-fixing method, proposes to use a scheme inspired by the Israel-Stewart
treatment of viscous relativistic hydrodynamics, in which an effective damping
controls higher frequency modes while preserving the physics of the low frequency
modes (nearly) untouched (Cayuso et al. 2017; Allwright and Lehner 2019; Cayuso
and Lehner 2020; Franchini et al. 2022; Cayuso et al. 2023). In this second approach
the alternative theory equations of motion are viewed as a low-energy effective
deviation from the Einstein equations, such that the theory can be captured by the
low-energy degrees of freedom. Although these methods are quite generic, they have
so far been mainly employed in theories with higher derivative terms in the
metric (Benkel et al. 2016, 2017; Okounkova et al. 2017; Witek et al. 2019;
Okounkova et al. 2019, 2020; Okounkova 2020; Cayuso and Lehner 2020; Silva
et al. 2021; Doneva et al. 2022; Elley et al. 2022; Cayuso et al. 2023), such as
quadratic theories of gravity with an extra scalar field (for which the order-by-order
expansion was used), namely dynamical Chern-Simons gravity (dCS) (Alexander
and Yunes 2009; Green and Schwarz 1984; Taveras and Yunes 2008; Mercuri and
Taveras 2009), Einstein dilaton Gauss-Bonnet gravity (EdGB) (Kanti et al. 1996;
Cayuso et al. 2023; Moura and Schiappa 2007; Berti et al. 2015) or more generic
Einstein scalar Gauss-Bonnet theories (ESGB) (Doneva and Yazadjiev 2018; Silva
et al. 2018; Antoniou et al. 2018). Unlike the simplest scalar-tensor theories, in dCS
and EdGB BHs naturally possess scalar “hair”, and therefore deviations from GR
naturally occur. Some ESGB theories are prone to BH scalarization, i.e., a process in
which GR BHs become unstable against the spontaneous development of scalar hair
for large enough spacetime curvatures (Doneva and Yazadjiev 2018; Silva et al.
2018; Antoniou et al. 2018; Doneva et al. 2024) (see also Dima et al. (2020);
Herdeiro et al. (2021b); Hod (2020); Berti et al. (2021); Doneva and Yazadjiev

3 Sometimes this is also called “order-reduction scheme.” This is not to be confused with order-reduction
schemes in which the field equations themselves are used to replace higher-order curvature terms that are
then kept only to a given (reduced) order in the coupling constant.

123

    9 Page 120 of 250 N. Afshordi et al.



(2021a, b); Elley et al. (2022) for a similar process but where scalarization is
controlled by the magnitude of the BH spin).

In particular, using the order-by-order expansion mentioned above, BBH
simulations were done in dCS (Okounkova et al. 2019, 2020) and EdGB (Okounkova
2020; Witek et al. 2019). Importantly, this scheme also simplifies the problem of
covering the parameter space needed to build IMR waveforms for parameter
estimation purposes. Since NR is scale-invariant and the dCS and EdGB coupling
parameters are scaled out of the order-by-order expansion scheme (Okounkova et al.
2019), a simulation for one set of BBH parameters (masses and spins) can be applied
to any total mass, and any valid value of the coupling constants. With enough NR
simulations, one can thus hope to cover the the full BBH parameter space, build a
surrogate model for parameter estimation (Varma et al. 2019a), and perform model-
dependent tests of GR with gravitational waves. Work towards model-dependent
tests using full IMR signals obtained through this method has been done in
Okounkova et al. (2023), where parameter estimation was performed on full BBH
waveforms in dCS.

Despite their promises and advantages, the schemes mentioned above also suffer
from some important problems. The main problem with the order-by-order expansion
scheme is the fact that solutions may be plagued by secularly growing solutions
signaling the breakdown of perturbation theory on long timescales. As proposed in
Gálvez Ghersi and Stein (2021), such problem could potentially be solved using
renormalization-group techniques that can be used to build solutions valid over the
secular timescale. For the equation-fixing method on the other hand, there are first
studies in spherical symmetry (Cayuso and Lehner 2020; Thaalba et al. 2024;
Franchini et al. 2022; Bezares et al. 2021b) and for BBH mergers in some beyond-
GR theories (Cayuso et al. 2023). A more detailed quantitative analysis is needed to
identify how much a given “equation-fixing” choice affects low-energy modes in
scenarios of interest, and to fully characterize the accuracy of these approximate
schemes (Coates and Ramazanoğlu 2023).

These problems can be avoided for cases where a given theory in its full form can
be shown to have a well posed initial value problem. Important work in this direction
has recently been done. For example, nonlinear evolutions of BBHs in quadratic
gravity were presented in Held and Lim (2023). Furthermore, BBHs simulations
have been performed in cubic Horndeski theories (Figueras and França 2022) which
are known to be well-posed in the standard gauges used in numerical GR (Kovács
2019). For more generic theories, it has been recently shown that, at sufficiently weak
coupling, the equations of motion for Horndeski gravity theories possess a well
posed initial value problem in a modified version of the generalized harmonic gauge
formulation (Kovács and Reall 2020a, b). Quite remarkably, using this formulation it
could in principle be possible to perform simulations in all Horndeski theories of
gravity without having to resort to the two schemes mentioned above (Ripley 2022).
In particular, (East and Ripley 2021b) used this modified generalized harmonic
(MGH) formulation to perform the first numerical simulations of BBH mergers in
shift-symmetric ESGB gravity, without approximations, which were also compared
against PN results in Corman et al. (2023). Simulations of head-on BH collisions in
ESGB theories that exhibit spontaneous BH scalarization (East and Ripley 2021a)
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and simulations of binary neutron stars in shift-symmetric Einstein-scalar-Gauss-
Bonnet (East and Pretorius 2022) have also been done. Based on the MGH
formulation, a modified version of the CCZ4 formulation of Einstein’s equations has
also been proposed, which has been used to prove the well-posedness of the most
general scalar-tensor theory of gravity with up to four derivatives, in singularity
avoiding coordinates (Aresté Saló et al. 2022). This was then used to perform
(circular and equal-mass) BBH merger simulations in such theories (Aresté Saló et al.
2022; Doneva et al. 2023). More recently, using shift-symmetric ESGB gravity as a
benchmark theory, Corman et al. (2024) compared the results obtained with the
MGH formulation against results obtained using the order-by-order expansion and
equation-fixing methods. This work confirms that the order-by-order approach
cannot faithfully track the solutions when the corrections to GR are non-negligible,
whereas the equation-fixing method is able provide consistent solutions.

Finally, NR simulations have also been done in theories in which BHs possess an
electric or magnetic charge (Zilhao et al. 2012; Zilhão et al. 2014a; Hirschmann et al.
2018; Bozzola and Paschalidis 2019, 2021; Luna et al. 2022), possibly coming from
mini-charged dark matter (Cardoso et al. 2016c), primordial magnetic mono-
poles (Preskill 1984), or in specific classes of scalar-tensor-vector modified theories
of gravity (Moffat 2006). In all these cases the field equations can be cast in a form
that is mathematically equivalent to Einstein–Maxwell theory (or to Einstein–
Maxwell with an extra scalar field for some theories (Hirschmann et al. 2018;
Fernandes et al. 2019), which is known to possess a well-posed initial boundary
value problem (Alcubierre et al. 2009).

6.1.2 Boson clouds

Simulations of BHs surrounded by massive bosonic fields have been widely studied,
focusing mostly on the evolution of bosonic fields around isolated BHs (see e.
g. Witek et al. 2013; Barranco et al. 2014; Okawa and Cardoso 2014; Okawa et al.
2014; Okawa 2015; Zilhão et al. 2015b; Sanchis-Gual et al. 2015, 2016; Clough et al.
(2019; Bamber et al. 2021; Traykova et al. 2021; Wang et al. 2022; Clough et al.
2022; East 2022). This has led to the first successful nonlinear evolution of the
superradiant instability of minimally-coupled Proca fields around a spinning BH in
East and Pretorius (2017); East (2018). These works have laid down the possibility to
study the impact of minimally-coupled bosonic fields in BBH systems within
NR (Bernard et al. 2019; Cardoso et al. 2020; Ikeda et al. 2021; Choudhary et al.
2021; Zhang et al. 2023b; Bamber et al. 2023; Cheng et al. 2024) but such studies are
still in their infancy.

6.1.3 Exotic compact objects

ECOs come in many different flavors, and the state of numerical simulations of ECO
mergers vary widely, depending on the source. For example, simulations of string-
theoretical models including fuzzballs, wormholes, firewalls or gravastars have not
yet been performed because the theoretical foundations — the field content,
equations of motion, equations of state (where applicable), solution space — are
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under active investigation. Formulations suitable for numerical relativity are not yet
available.

In contrast, binary boson stars that are compact objects composed of real or
complex bosonic (scalar or vector) fields, with and without self interaction potentials,
have received a lot of attention (Liebling and Palenzuela 2023; Palenzuela et al.
2007, 2008; Choptuik and Pretorius 2010; Brito et al. 2015a, 2016b; Cardoso et al.
2016b; Bezares et al. 2017; Palenzuela et al. 2017; Bezares and Palenzuela 2018;
Helfer et al. 2019b; Widdicombe et al. 2020; Sanchis-Gual et al. 2019;
Calderón Bustillo et al. 2021; Bezares et al. 2022b; Calderon Bustillo et al. 2023;
Sanchis-Gual et al. 2022a, b; Jaramillo et al. 2022b; Freitas et al. 2024; Croft et al.
2023; Evstafyeva et al. 2023; Siemonsen and East 2023; Siemonsen 2024). These
boson stars may be treated as potential dark matter components (see Sect. 2.7), or
simply as toy model proxies for unknown exotic objects. Some works have also
considered mixed collisions of BHs or neutron stars with these types of bosonic
ECOs (Dietrich et al. 2019a; Clough et al. 2018) as well as collisions of fermion-
boson stars (Bezares et al. 2019). Besides these, simulations of extremely compact
perfect fluid stars have also been performed in Tsokaros et al. (2019, 2020). Most
binary boson star simulations have explored new phenomena that arise during their
merger or the qualitative structure of the gravitational radiation emitted. For model
specific tests of gravity more accurate waveforms will be needed which, in turn,
requires improved initial data and more accurate numerical evolutions.

In summary, despite the progress in the last few years, most of the studies
mentioned above have only provided a proof of principle for the stable evolution of
some families of ECOs and of fundamental fields around BHs in NR, and have
primarily aimed at identifying significant qualitative differences between their signals
and those of traditional binary candidates. Key areas for improvements include the
numerical accuracy of such simulations and the quality of the initial data (Helfer et al.
2022; Aurrekoetxea et al. 2023; Bamber et al. 2023; Evstafyeva et al. 2023; Cheng
et al. 2024). For example for boson stars, a formalism is currently lacking to ensure
that the superimposed boosted objects are not in an excited state, the risk being that
such artifacts in the initial data are wrongly attributed as features of the ECO signal.
Less challenging, but equally important refinements are reducing the eccentricity of
the initial orbits (most simulations thus far have been head-on mergers, or only
achieve a few orbits before the plunge), and initial errors in the Hamiltonian and
momentum constraints (many simulations rely on constraint damping which reduces
control over the initial data parameters). Efforts to solve some of these problems are
currently underway, in particular see Aurrekoetxea et al. (2023) where a novel
method to solve the initial data constraints has been formulated and that could be
particularly useful when the sources involve fundamental fields. See also Siemonsen
and East (2023) where numerical simulations of binary boson stars were performed
using constraint satisfying initial data.

Whilst feasible given these improvements, a significant effort would be required to
create a template bank of waveforms of a similar quality to those used for BH and
neutron star mergers. This is true even if the class of objects were restricted to a
simple model, such as minimally coupled, non self-interacting, non spinning
complex scalar boson stars. Refining the NR tools with which we study such objects
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is work that is merited in the run up to the mission. In particular, key goals are (1)
unambiguously identifying characteristic deviations in the merger signals of ECOs
and of BHs surrounded by fundamental fields (e.g. to be used to motivate
parameterised deviations from vacuum BBH waveforms) and (2) expanding the
classes of objects for which simulations of mergers have been performed to
qualitative examples in all sufficiently predictive ECO cases.

6.2 Weak-field approximations

6.2.1 Beyond GR

Applying weak field approximation techniques to theories beyond GR raises several
difficulties which have prevented obtaining high-order PN results, with the exception
of a small set of alternative theories of gravity. For most cases only the leading non-
GR correction is known (see e.g. Yunes et al. 2016; Tahura and Yagi 2018). The most
advanced results concern scalar-tensor theories, for which the equations of motion
are known up to 3PN order (Mirshekari and Will 2013; Bernard 2018, 2019),
including finite-size effects (Bernard et al. 2020; van Gemeren et al. 2023). The
gravitational flux and waveform are known up to 2PN order (Lang 2014; Sennett
et al. 2016) while the scalar energy flux is known to 1.5PN order beyond the
quadrupolar formula (Lang 2015; Bernard et al. 2022). The scalar-tensor equations of
motion have been used to obtain similar results in other theories such as Einstein-
Maxwell-scalar (Julié 2018a, b) and ESGB theories (Julié and Berti 2019; Shiralilou
et al. 2021, 2022; van Gemeren et al. 2023). The main difficulty encountered in more
involved theories, such as the Horndeski family (Kobayashi 2019), is related to the
need for a mechanism to screen the fifth force in the solar system. As an example, the
Vainshtein mechanism requires to keep non-linearities in the description of the
dynamics even in the weak field limit, rendering the definition of a perturbative
method challenging (Chu and Trodden 2013; de Rham et al. 2013a, b; Barausse and
Yagi 2015; McManus et al. 2017; Dar et al. 2019; Kuntz et al. 2019; Brax et al.
2020).

Given the many different alternative theories of gravity proposed over the years
and the difficulty in constructing accurate waveforms in many of these theories, the
most common approach to build beyond GR waveforms for data analysis purposes
has been to use theory-agnostic phenomenological frameworks, such as the
parametrised post-Einsteinian (ppE) formalism (Yunes and Pretorius 2009b), the
TIGER pipeline (Agathos et al. 2014; Meidam et al. 2018) or the flexible theory-
independent (FTI) approach (Mehta et al. 2023). In these frameworks, deviations
from GR are assumed to be small and are treated as perturbative corrections to the
signal predicted by GR. For example, in the ppE formalism the inspiral phase of the
frequency domain waveform is given by:

~hðf Þ ¼ ~hGRðf Þ½1þ aiðpMf Þai �eibjðpMf Þbj ; ð22Þ

where ~hGRðf Þ is the frequency domain waveform of GR, M is the chirp mass of the
binary, while the deviations from GR are described by the dimensionless parameters
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ai,bj, ai and bj. The index i and j indicate the PN order at which the modification
enters and are also introduced as a reminder that modifications could enter at dif-
ferent PN orders, in which case we should sum over all of them. Different values for
the generic beyond GR parameters can be mapped to distinct physical effects and
gravitational theories (see e.g. Barausse et al. 2016; Yagi et al. 2012, 2016; Yunes
et al. 2010b; Yagi et al. 2011; Yunes and Stein 2011; Mirshekari et al. 2012; Carson
and Yagi 2020; Perkins et al. 2021b), allowing to use this formalism to place con-
straints on such theories. Extensions of the ppE formalism to include higher-har-
monic GW modes have also been recently formulated (Mezzasoma and Yunes 2022),
as well as an extension for precessing binaries (Loutrel et al. 2023) (the TIGER
framework already considers precessing BBH waveforms, however in this case the
modifications to the GW phase are only applied in the coprecessing frame (Meidam
et al. 2018)). The latter was based on the recent computation of time- and frequency-
domain analytical waveforms emitted for quasicircular precessing BH binaries in
dCS gravity (Loutrel and Yunes 2022) and in binaries composed of deformed
compact objects with generic mass quadrupole moments (Loutrel et al. 2022).

As final remarks, we should note that while the ppE, TIGER and FTI approaches
are very useful and powerful methods to perform null tests of GR, a qualitative and
quantitative interpretation of a constraint on the beyond GR parameters (or
measurements of a deviation from GR) only makes sense when accessed with
respect to specific theories (Chua and Vallisneri 2020); see, e.g., (Nair et al. 2019;
Perkins et al. 2021a). Theory-agnostic approaches should only be seen as
complementary, and not as alternatives, to explicit computations of waveforms in
specific alternative theories. Moreover, the mapping from the beyond GR parameters
to specific theories also comes with important caveats. In particular, typically, only
the leading-order modification to the PN coefficients is considered in the mapping
(however see Perkins and Yunes (2022), where it was shown that, for a wide class of
theories, the main effect of including higher-order terms is to mildly strengthen
constraints when compared to constraints obtained using only the leading-order
modification). Furthermore, these approaches break down in the high-frequency part
of the signal, where the PN expansion is not applicable. In both the TIGER and the
FTI framework, the beyond GR modifications to the phase are tapered off at some
transition frequency, while also assuring that the waveform remains smooth at this
transition point, to enforce that these modifications are only applied in the inspiral
regime (in the TIGER approach the beyond GR coefficients are simply set to zero at
the transition frequency between the inspiral and the “intermediate” regime, whereas
the FTI method applies a tapering function over a given frequency window that
ensures that the beyond GR coefficients smoothly transition to zero at high
frequencies). There is no guarantee that these approaches provide a good description
of specific beyond GR theories at high-frequencies. These issues motivate even
further the need for computations of full waveforms in specific alternative theories.
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6.2.2 Dark matter and boson clouds

Weak field approximations have been widely used to study the impact of dark matter
environments on binary systems (Eda et al. 2013; Barausse et al. 2014; Cardoso and
Maselli 2020). Such an environment can affect the binary dynamics through
dynamical friction (Chandrasekhar 1943), accretion and the gravitational pull of the
environment itself (Eda et al. 2013; Barausse et al. 2014; Cardoso and Maselli 2020).
These effects typically modify the waveform at negative PN orders and can be
captured within the ppE formalism presented above (Barausse et al. 2014; Cardoso
and Maselli 2020).

In this context, Newtonian approximations have also been used to study binary
systems moving inside bosonic structures, mainly motivated by the fact that ultralight
bosons are promising candidates to describe dark matter (Hui et al. 2017). For
example, Annulli et al. (2020a, b) studied how compact binaries travelling through
these structures would be affected by dynamical friction and emission of scalar
radiation. In particular, it was found that, for sources in the LISA band, scalar
radiation affects the gravitational waveform at leading -6 PN order with respect to the
dominant quadrupolar term (Annulli et al. 2020a, b). In addition, BHs surrounded by
boson clouds have been studied within a weak-field approximation (Baumann et al.
2019a, b, 2020; Zhang and Yang 2019, 2020; Berti et al. 2019; Cardoso et al. 2020;
Takahashi and Tanaka 2021; Takahashi et al. 2022; Tong et al. 2022) showing that a
plethora of signatures, including tidally induced resonances (Baumann et al.
2019a, 2020), floating and kicking orbits (Cardoso et al. 2011; Zhang and Yang
2019; Baumann et al. 2020; Ferreira et al. 2017) and ionization of the cloud (Taka-
hashi et al. 2022; Baumann et al. 2022a, b; Tomaselli et al. 2023) can occur. Finally,
it was recently shown that sufficiently light bosonic fields can also be bound to and
engulf a binary BH system as a whole, showing a rich phenomenology (Wong
2019, 2020; Ikeda et al. 2021), which could potentially lead to additional signatures
besides the ones we discussed above. A main problem with those studies is that they
have mostly been performed within a weak-field approximation, neglecting high PN
corrections and nonlinear effects close to merger. It would be especially important to
extend such studies beyond the weak-field regime and further explore the physics of
ultralight fields around binary BHs with full NR simulations (see Sect. 6.1.2 for
recent attempts).

6.2.3 Exotic compact objects

In the inspiral phase, the nature of the coalescing bodies can be studied through (i)
their multipolar structure; (ii) (the absence of) tidal heating; and (iii) their tidal
deformability. In particular, the multipole moments of an ECO will be different from
those of their Kerr counterpart (Glampedakis and Pappas 2018; Raposo et al. 2019;
Raposo and Pani 2020; Bianchi et al. 2020, 2021; Bena and Mayerson 2020, 2021;
Herdeiro et al. 2021a; Bah et al. 2021; Fransen and Mayerson 2022; Loutrel et al.
2022; Vaglio et al. 2022), which at leading order enters as a 2PN correction to the
GW phase due to the object’s quadrupole moment (Poisson 1998; Loutrel et al.
2022). We note that in many cases the multipolar structure of the ECO is only
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expected to be different from the Kerr metric if the ECO is spinning (as is the case for
the simplest boson star models (Ryan 1997; Vaglio et al. 2022)), although examples
of non-spinning (i.e. static) ECOs with a different multipolar structure from the
Schwarzschild metric also exist (Raposo et al. 2019; Herdeiro et al. 2021a, 2024). In
addition, tidal interactions during the coalescence also provide unique signatures able
to disentangle BHs from ECOs in the form of tidal heating. For BH binaries a small
fraction of the emitted radiation is lost through the horizon (Hughes 2001; Alvi 2001;
Poisson 2009; Cardoso and Pani 2013; Poisson and Corrigan 2018). Absorption at
the horizon introduces a 2.5PN (4PN) � log v correction to the GW phase of spinning
(nonspinning) binaries, relative to the leading term. On the other hand, exotic matter
is expected to weakly interact with gravitational waves, leading to a smaller
absorption during the inspiral, and therefore to a suppressed contribution to the
accumulated GW phase from tidal heating (Maggio et al. 2017; Maselli et al. 2018;
Oshita et al. 2020b; Datta et al. 2020; Datta 2020). Finally, tidal deformations can be
strong enough, especially during the late stages of the inspiral, to modify the binary’s
orbital evolution leaving an imprint on the emitted waveform encoded in the ECO’s
tidal Love numbers (Pani 2015; Cardoso et al. 2017), which at leading order
introduces a 5PN correction to the GW phase (Flanagan and Hinderer 2008). Overall
more work is needed to construct fully consistent inspiral waveforms for ECOs that
incorporate all these ingredients. For example, for the inspiral of boson stars with
quartic interactions, such a waveform was only recently constructed in Pacilio et al.
(2020); Vaglio et al. (2023). It would be important to extend this to other types of
ECOs.

6.3 Perturbation theory for post-merger waveforms

6.3.1 Beyond GR

The ringdown phase of a GW signal emitted by a BBH merger event can be
described using BH perturbation theory and is dominated by the QNMs of the
remnant (Kokkotas and Schmidt 1999; Berti et al. 2009). Owing to the very large
SNR with which LISA will be able to detect the ringdown phase of supermassive
BHs (Berti et al. 2006; Kamaretsos et al. 2012a), we expect to be able to measure
several QNMs for a single event up to very large distances (Dreyer et al. 2004; Berti
et al. 2006, 2016; Baibhav and Berti 2019). This will allow to perform precise
consistency tests of the QNMs and test the hypothesis that the remnant of a BBH
merger is well described by the Kerr metric in GR (Dreyer et al. 2004; Berti et al.
2006; Kamaretsos et al. 2012a; Gossan et al. 2012; Meidam et al. 2014; Brito et al.
2018; Carullo et al. 2018, 2019; Giesler et al. 2019; Isi et al. 2019a; Maselli et al.
2020b; Bhagwat et al. 2020; Bao et al. 2019; Ota and Chirenti 2020; Hughes et al.
2019; Jiménez Forteza et al. 2020; Ghosh et al. 2021; Bhagwat et al. 2022; Forteza
et al. 2023; Lim et al. 2022). Due to these prospects, significant work has been done
in recent years in order to accurately model the ringdown phase of BBH mergers
within GR (Damour and Nagar 2014a; London et al. 2014; London 2020; London
and Fauchon-Jones 2019; Giesler et al. 2019; Cook 2020; Dhani 2021; Finch and
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Moore 2021; Magaña Zertuche et al. 2022; Li et al. 2022; Lim et al. 2022; Mitman
et al. 2023; Cheung et al. 2023).

For beyond GR theories, however, there has been significantly less progress, even
though QNM measurements can, in principle, be powerful probes of beyond GR
physics. In particular, for beyond GR theories, the ringdown of a BBH merger is
typically expected to differ from the ringdown in GR (although not necessarily for all
non-GR theories). Computations of QNMs in beyond GR theories are very
challenging, especially for rotating BHs for which the separability of the perturbative
equations present in GR (Teukolsky 1972) is in general absent. Then, one may
employ numerical methods to compute QNMs for non-separable equations, (see, e.g.,
Dias et al. 2015, 2022a, b; Li et al. 2023; Chung et al. 2023, 2024; Chung and Yunes
2024a, b). In addition, most rotating BH solutions in alternative theories, for the
cases where they differ from Kerr, are only known either perturbatively, through a
small-spin expansion around non-spinning backgrounds (Pani et al. 2011b;
Ayzenberg and Yunes 2014; Maselli et al. 2015; Cardoso et al. 2018b; Cano et al.
2024c), or they are given in the form of numerical solutions of the field equations
(e.g., Kleihaus et al. 2011; Herdeiro and Radu 2014; Stein 2014; Herdeiro et al. 2016;
Cunha et al. 2019; Sullivan et al. 2020, 2021), complicating the problem even further.
Furthermore, BH spacetimes may change their character as compared to GR. For
example, it was shown that BHs in ESGB and dCS gravity are of Petrov-type I
(Owen et al. 2021) (instead of the more symmetric type-D spacetimes like the Kerr
metric). Therefore, even though QNMs have been computed for a handful of theories
and BH solutions (see e.g. Barausse and Sotiriou 2008; Molina et al. 2010; Barausse
et al. 2014; Blázquez-Salcedo et al. 2016; Glampedakis and Pappas 2018; Tattersall
et al. 2018; Franciolini et al. 2019; Cardoso et al. 2018b; McManus et al. 2019;
Glampedakis and Silva 2019; Cardoso et al. 2019a; Silva and Glampedakis 2020;
Pierini and Gualtieri 2021, 2022), up to very recently the vast majority of these
results either assumed non-rotating or slowly-spinning BH backgrounds or relied on
approximations such as the eikonal/geometric optics approximation. Methods to
circumvent some of these problems were formulated in Cano et al. (2020); Li et al.
(2023); Hussain and Zimmerman (2022); Ghosh et al. (2023); Wagle et al. (2024);
Cano et al. (2023a, b, 2024a, b) where modified Teukolsky equations governing the
perturbations of non-Kerr spinning BHs arising in theories beyond GR, were derived
in the case where the deviations from the Kerr geometry are small. Another approach
would be to rely on fits of time-domain waveforms computed from numerical
simulations in selected classes of theories beyond GR. However, this is quite a
challenging task, even in GR (London et al. 2014; Baibhav et al. 2018; London 2020;
London and Fauchon-Jones 2019; Giesler et al. 2019; Cook 2020; Dhani 2021; Finch
and Moore 2021; Forteza and Mourier 2021; Magaña Zertuche et al. 2022; Li et al.
2022; Mitman et al. 2023; Cheung et al. 2023), besides the fact that such simulations
are still only possible for a handful of cases, has emphasized in Sect. 6.1.1.

6.3.2 Exotic compact objects

The vibration spectra of ECOs have been computed for a wide class of models,
although mostly for spherically symmetric configurations, including: boson stars
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(Berti and Cardoso 2006b; Macedo et al. 2013a), gravastars (Chirenti and Rezzolla
2007; Pani et al. 2009; Chirenti and Rezzolla 2016; Völkel and Kokkotas 2017),
wormholes (Cardoso et al. 2016a; Konoplya and Zhidenko 2016; Bueno et al. 2018),
quantum structures (Cardoso et al. 2006; Eperon et al. 2016; Cardoso et al. 2016b;
Barceló et al. 2017; Brustein et al. 2017; Wang et al. 2020; Chakraborty et al. 2022),
and in a model-indepedent fashion using the membrane paradigm (Maggio et al.
2020). Typically, the QNMs of ECOs differ from the BH QNMs due to the presence
of a surface instead of an event horizon (Cardoso and Pani 2019) and the excitation
of the internal oscillation modes of the objects (Ferrari and Kokkotas 2000; Pani and
Ferrari 2018; Glampedakis and Pappas 2018). In addition, the isospectrality of axial
and polar modes of spherically symmetric BHs in GR (Chandrasekhar and Detweiler
1975) is broken in ECOs, which are instead expected to emit a characteristic “mode
doublet”. The detection of such doublets would be a irrevocable signature of new
physics (Berti et al. 2009; Brustein et al. 2017; Cardoso et al. 2019a; Maggio et al.
2020). The formation of an exotic ultracompact object may also lead to the emission
of GW echoes in the post-merger signal (Cardoso et al. 2016a; Cardoso and Pani
2017) (see also Sect. 2.7). Several phenomenological GW templates for echoes have
been developed based on standard GR ringdown templates with additional
parameters (Abedi et al. 2017; Nakano et al. 2017; Wang and Afshordi 2018), the
superposition of sine-Gaussians (Maselli et al. 2017), hybrid methods that put
together information from perturbation theory and the pre-merger orbital dynam-
ics (Longo Micchi et al. 2021; Ma et al. 2022b; Zhong et al. 2023), using the close-
limit approximation (Annulli et al. 2022), and analytical models that explicitly
depend on the physical parameters of the ECO (Mark et al. 2017; Testa and Pani
2018; Maggio et al. 2019b; Xin et al. 2021).

Finally, we note that although most of these works have so far relied on
perturbative methods, fully nonlinear simulations of head-on collisions of boson stars
in the large-mass-ratio regime, resulting in spinning horizonless remnants with
stable light rings, have recently been performed (Siemonsen 2024). Those
simulations confirm the picture that the prompt post-merger signal approaches that
of Kerr black holes in the large-compactness limit with the subsequent emission
containing periodically appearing bursts akin to GW echoes.

6.4 Small mass-ratio approximation

6.4.1 Beyond GR

Although there have been substantial advances in GSF models in GR (see Sect. 4.3),
self-force calculations for theories beyond GR are in their infancy. The most detailed
studies in this vein have so far investigated changes to the emitted GW flux for
scalar-tensor and higher-order curvature theories of gravity (Sopuerta and Yunes
2009; Pani et al. 2011a; Cardoso et al. 2011; Yunes et al. 2012; Canizares et al. 2012;
Blázquez-Salcedo et al. 2016; Fujita and Cardoso 2017), and for theories of massive
gravity when assuming a Schwarzschild BH background (Cardoso et al. 2018a);
there are only a few examples of formulations of a full self-force theory beyond
GR (Zimmerman 2015; Spiers et al. 2024a). But recently it has been argued that for a
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vast class of theories, no-hair theorems or separation of scales lead metric and scalar
perturbations to decouple (Maselli et al. 2020a). In particular, in the large class of
higher-derivative gravity models, the modification to GR scales with the curvature, i.
e., with the inverse of the mass. Consider, for example, the Kretschmann curvature
scalar K ¼ RlmqrRlmqr. On the horizon of a Schwarzschild BH of mass M it scales as
K�M�4. Consequently, higher-curvature modifications to a supermassive BH are
negligible. This allows the background spacetime to be treated as the Kerr solution,
and changes in the binary’s evolution to be fully controlled by the scalar field charge
of the small BH (Maselli et al. 2020a, 2022; Barsanti et al. 2022; Zhang et al. 2023a;
Guo et al. 2022). In this regard, the study of small-mass-ratio binaries in generalized
scalar-tensor theories of gravity can benefit from efforts already devoted to
investigating self-forces on scalar charges, and their orbital evolution around
BHs (Barack and Burko 2000; Detweiler et al. 2003; Diaz-Rivera et al. 2004;
Warburton and Barack 2010, 2011; Warburton 2015; Gralla et al. 2015; Castillo et al.
2018; Nasipak et al. 2019; Compère et al. 2020a; Nasipak and Evans 2021;
Heffernan 2022; Barack and Long 2022; Nasipak 2022).

6.4.2 Dark matter and boson clouds

For EMRI and IMRI systems, the largest effect of dark matter is to produce a
significant drag force through dynamical friction (Chandrasekhar 1943), which
increases the rate of inspiral of the small compact object (Macedo et al. 2013b;
Barausse et al. 2014; Eda et al. 2015; Cardoso and Maselli 2020; Vicente and
Cardoso 2022) (accretion and the usual gravitational pull of the dark matter can be
significant, but are in general subleading effects (Eda et al. 2013; Barausse et al.
2014; Yue and Han 2018; Cardoso and Maselli 2020)). This typically requires very
high densities of dark matter surrounding the intermediate or supermassive
BH (Barausse et al. 2014; Eda et al. 2015). The required densities can be achieved
when the IMBH or SMBH adiabatically grows in a dark-matter halo, and the
distribution of dark matter near the BH gets compressed into a “spike” with
significantly higher densities than the surrounding halo (Quinlan et al. 1995;
Gondolo and Silk 1999; Ullio et al. 2001; Kim et al. 2023a). Sufficiently large
densities may also be achieved for clouds of ultralight bosons formed around MBHs,
as discussed in Sect. 2.7. If they exist, these clouds would introduce additional metric
perturbations that perturb the companion’s orbit, and they would respond to the
gravity of the companion. If the cloud contributes a sizable fraction of the BH’s mass,
its gravity would necessitate a change in the background geometry (see (Collodel
et al. 2022; Delgado et al. 2023) for such an example), dramatically complicating the
GSF model. Building accurate IMRI/EMRI waveforms evolving in a dark matter
spike or boson cloud is also crucial to distinguish these environments from other
astrophysical environments, such as accretion disks. In fact, recent studies strongly
suggest that these different types of environments leave distinguishable signatures in
IMRI or EMRI waveforms (Hannuksela et al. 2019, 2020; Coogan et al. 2022; Speri
et al. 2023; Cole et al. 2023; Becker and Sagunski 2023; Kim et al. 2023a). Therefore
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the detection of such systems could also be used to identify and learn about the
environment surrounding supermassive BHs.

To date, studies of the gravitational effects of dark matter spikes and boson clouds
on binary systems, such as EMRIs and IMRIs, have mostly relied on Newtonian or
post-Newtonian approximations for the orbit and the matter distribution (Eda et al.
2013, 2015; Yue and Han 2018; Yue et al. 2019; Hannuksela et al. 2019, 2020;
Ferreira et al. 2017; Berti et al. 2019; Baumann et al. 2019a; Zhang and Yang
2019, 2020; Kavanagh et al. 2020; Baumann et al. 2022a, b; Speeney et al. 2022;
Kim et al. 2023a; Tomaselli et al. 2023). Generalizing some of these calculations to
the fully relativistic case is in principle feasible. Indeed, first steps in this direction
were recently done in Cardoso et al. (2022a); Destounis et al. (2023b); Cardoso et al.
(2022b) where a generic and fully-relativistic formalism to study EMRI systems in
spherically-symmetric, non-vacuum BH spacetimes was developed. For boson
clouds, a fully relativistic framework that assumes that the impact of the cloud on the
BH geometry can be treated perturbatively, was proposed in Brito and Shah (2023).

However, there are important open problems to be solved. First, generalizing the
formulation of Cardoso et al. (2022a); Destounis et al. (2023b); Cardoso et al.
(2022b); Brito and Shah (2023) to non-spherically-symmetric backgrounds is a non-
trivial task, and secondly, for dynamic matter distributions (Kavanagh et al. 2020),
evolving the matter environment coupled to the binary system at first post-adiabatic
order will likely be a complex problem.

Finally, it is worth noting that boson clouds themselves can also be strong sources
of nearly-monochromatic gravitational waves potentially detectable by LISA (Arvan-
itaki et al. 2010; Arvanitaki and Dubovsky 2011; Yoshino and Kodama 2014;
Arvanitaki et al. 2015; Baryakhtar et al. 2017; Brito et al. 2017a; Isi et al. 2019b;
Siemonsen and East 2020; Brito et al. 2020; Zhu et al. 2020; Siemonsen et al. 2023).
The gravitational waves emitted by these sources can be computed using the same
techniques typically used in the small mass-ratio approximation: one can consider the
cloud as being a small perturber of a Kerr background geometry and use the
Teukolsky formalism to compute GW emission from a boson cloud (Yoshino and
Kodama 2014; Brito et al. 2017a; Siemonsen and East 2020; Brito et al. 2020;
Siemonsen et al. 2023).

6.4.3 Beyond GR BHs and exotic compact objects

A key goal of the LISA mission, is to determine whether the dark central objects in
galactic cores are genuine BHs, and if so, whether they are accurately described by
GR BHs. With EMRIs we expect to be able to constrain fractional deviations from
the quadrupole moment of the Kerr solution at a level smaller than 10�4 (Barack and
Cutler 2007; Barausse et al. 2020b), which would allow to impose stringent
constraints on ECOs and non-GR BHs. Work to include these modifications in GSF
models has been done by considering the large central object as a “bumpy” BH.
Bumpy BHs are spacetimes that include the Kerr limit, but that differ in a
parameterized way, typically by modifying the spacetime’s multipole moment
structure (Manko and Novikov 1992; Ryan 1995; Collins and Hughes 2004;
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Vigeland et al. 2011; Moore et al. 2017; Xin et al. 2019; Fransen and Mayerson
2022). The “bumps” can be introduced directly into the background metric, or (if
they are sufficiently small) they can be treated as additional metric perturbations. A
benefit of the bumpy BH framework is that it is agnostic about the mechanism which
produces the BH’s bumps. They could describe non-GR physics (to exactly recover
BH solutions in specific alternative theories (Jackiw and Pi 2003; Yunes and
Pretorius 2009a; Vigeland et al. 2011), for example), or if the central object is an
ECO, they could be tidally induced by the companion, encoding the ECO’s tidal
Love numbers which are potentially detectable with EMRIs (Pani and Maselli 2019;
Datta 2022; Piovano et al. 2023). Because bumpy BHs break the symmetries of Kerr
that yield integrable motion (Carter 1968), orbits in these spacetimes are generically
chaotic (Gair et al. 2008a; Lukes-Gerakopoulos and Kopáček 2017; Destounis et al.
2020; Destounis and Kokkotas 2021) and subject to prolonged resonances (Lukes-
Gerakopoulos et al. 2010; Destounis et al. 2020, 2021; Destounis and Kokkotas
2021). Most of the work considering EMRIs around spacetimes with a multipolar
structure different from Kerr, constructed approximate “kludge” waveforms (Xin
et al. 2019; Chua et al. 2018; Fransen and Mayerson 2022) generated considering
geodesics in a perturbed Kerr spacetime with parameters evolved using post-
Newtonian equations (Glampedakis and Babak 2006; Barack and Cutler 2007; Gair
et al. 2008a; Apostolatos et al. 2009; Moore et al. 2017). While these approaches are
believed to reproduce the main features of the orbit, they will not be enough to get to
the precision required to determine that the inspiral is indeed an inspiral into a Kerr
BH or not (Sasaki and Tagoshi 2003; Gair et al. 2008a), and much more work is
needed to build such waveforms. The additional parameters in such models will also
typically increase the possibility of degeneracies, making it important to fully
understand possible discernible features, such as characteristic variations of the
amplitude and the energy emission rate (Suzuki and Maeda 2000) or the appearance
of prolonged resonances (Apostolatos et al. 2009; Destounis et al. 2021; Destounis
and Kokkotas 2021). If the central object is an ECO, in addition to nonintegrable
motion and geodesic resonances (Destounis et al. 2023a), it will also lack a true event
horizon. This causes a change in boundary conditions: in a BH spacetime, fields are
purely ingoing on the horizon, while in an ECO spacetime, fields obey a boundary
condition of (partial) reflection at the effective surface. The effect of this reflection
has been taken into account for the dissipative first-order self-force in Li and
Lovelace (2008); Cardoso et al. (2019b); Datta et al. (2020); Sago and Tanaka
(2021); Maggio et al. (2021a); Sago and Tanaka (2022). In addition, the modes of the
ECO could also be excited during the inspiral of the small compact object (Pani et al.
2010; Macedo et al. 2013a; Cardoso et al. 2019b; Asali et al. 2020; Fransen et al.
2021; Sago and Tanaka 2021; Maggio et al. 2021a; Cardoso and Duque 2022) (see
(Cardoso and Duque 2022) where the conditions for such modes to be effectively
excited during the inspiral were studied in more detail). Depending on the object’s
properties, this could cause the rate of the inspiral to change significantly in the
vicinity of each resonance. For the dissipative first-order self-force, the effect on the
emitted GW flux has been modelled for gravastars (Pani et al. 2010), boson
stars (Macedo et al. 2013a) and an exotic ultracompact object with an exterior
Schwarzschild or Kerr geometry but with a hard surface close to the would-be
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horizon (Cardoso et al. 2019b; Sago and Tanaka 2021; Maggio et al. 2021a). An
object plunging in the interior of an ECO would also be subject to additional forces
that can dominate the dynamics, such as dynamical friction (Chandrasekhar 1943)
and accretion. The impact of these effects on the orbit dynamics and GW waveforms
has been modeled for small compact objects plunging onto boson stars using a
Newtonian approximation (Macedo et al. 2013b) (see also Kesden et al. (2005) for
earlier work on the same subject where dynamical friction and accretion had been
neglected).

6.5 Effective-one-body waveform models

EOB waveforms with generic deviations from GR have been developed based on a
parameterized form for performing theory-agnostic tests. These include deformations
to the GW phase (see Eq. (22)) which are added as corrections to frequency-domain
EOB waveforms in GR (Abbott et al. 2019d; Sennett et al. 2020; Mehta et al. 2023;
Abbott et al. 2021c, d), or parameterized deformations of the QNMs in time-domain
EOB waveforms, which have been used to perform tests of the no-hair theorem in
GR and constrain higher-order curvature theories of gravity (Brito et al. 2018; Ghosh
et al. 2021; Silva et al. 2023; Abbott et al. 2021c, d; Maggio et al. 2023).

Recent work has also computed the EOB dynamics for non-spinning binaries in
various theories beyond GR as a foundational step towards enabling model-
dependent tests. Results are available for scalar-tensor theories of gravity (Julié and
Deruelle 2017; Julié 2018c; Jain et al. 2023; Julié et al. 2023; Jain 2023a, b),
Einstein-Maxwell-dilaton theories (Khalil et al. 2018) and ESGB gravity (Julié et al.
2023). The EOB approach has also been used to compute the two-body potential
energy of point-like particles in theories exhibiting a Vainshtein screening (Kuntz
2019). Developing these results into full EOB waveform models and including more
realistic physics remains a challenging task, however important steps in this direction
were recently done in Julié et al. (2025) where the first example of a full IMR
waveform model for a beyond-GR theory, namely ESGB, was built. This waveform
builds on top of SEOBNRv5PHM (Ramos-Buades et al. 2023), the state-of-the-art
EOB multipolar waveform model for spin-precessing binary BHs, and includes
corrections from ESGB gravity in both the inspiral and ringdown while also adding
nuisance parameters to marginalize over the uncertainty in the merger morphology.

For non-vacuum binaries involving e.g. ECOs or boson clouds around BHs, a
number of generic matter effects during the inspiral change the GW signals away
from those of a BH binary (see discussion in previous subsections). Several of the
dominant matter effects for neutron star binaries are included in EOB models that
could also have broader applicability to ECOs or non-vacuum BHs. These effects are
described in a parameterized form, where the nature of the object is encoded in
characteristic coefficients such as the bodies’ multipole moments, tidal and rotational
Love numbers, and QNM frequencies. Specifically, the effects of rotational
deformation and adiabatic tides are currently included in the TEOBResum family
of models discussed in Sect. 4.5 in the way described in Damour and Nagar (2010);
Bini et al. (2012); Bernuzzi et al. (2012); Bini and Damour (2014b); Bernuzzi et al.
(2015b); Nagar et al. (2018); Nagar and Rettegno (2019); Akcay et al. (2019); Nagar
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et al. (2019b); Gonzalez et al. (2023a), with the state-of-the-art models incorporating
the known adiabatic gravitoelectric and -magnetic tidal terms up to ‘ ¼ 8 and
‘ ¼ 3 (Gamba et al. 2023b), respectively, in different resummation schemes (Bernuzzi
et al. 2012; Bini and Damour 2014b; Bernuzzi et al. 2014; Akcay et al. 2019; Gamba
et al. 2023b), dynamical tides from the fundamental modes (Gamba and Bernuzzi
2023; Steinhoff et al. 2016; Hinderer et al. 2016) as well as nonlinear-in-spin effects
dependent on the nature and interior structure of the object (Nagar et al.
2018, 2019b). The SEOBNR models include tidal effects using the dynamical tidal
models for the fundamental modes from (Steinhoff et al. 2016; Hinderer et al. 2016),
which have recently been further developed (Steinhoff et al. 2021; Mandal et al.
2023; Gupta et al. 2021b). Matter effects have also been incorporated in the ROMs of
SEOBNR waveforms in the frequency domain by augmenting the ROMs developed
for BBHs with analytical closed-form expressions correcting the GW phase to
include tidal and spin-induced multipole effects based on tidal models that are
specific to calibrations to NR simulations of neutron star binaries, which could in
principle be replaced by more general frequency-domain tidal models, and PN
calculations for the spin-induced multipole effects (Dietrich et al. 2017, 2019c, b;
Abac et al. 2024).

However, significant work remains. Besides the improvement of current EOB
models already discussed in Sect. 4.5, other improvements that are specific to ECOs
or non-vacuum BHs include, for example, incorporating more effects from spins and
relativistic phenomena in the matter sector (which are likely to be more important for
compact ECOs than for neutron stars); incorporating parameterized absorption
coefficients; and the inclusion of effects specific to dark matter spikes and boson
clouds already discussed in Secs. 6.2.2 and 6.4.2. In addition, a remaining challenge
is to develop full IMR waveforms. Possible avenues for constructing full waveforms
for binaries with matter have been explored, e.g., in the context of binary neutron
stars (Breschi et al. 2019), by using NR-informed analytical models that build on
quasiuniversal features found in these systems (Bernuzzi et al. 2015a; Breschi et al.
2019, 2022), and for the tidal disruption in BH-neutron-star binaries (Zappa et al.
2019; Matas et al. 2020; Gonzalez et al. 2023a). To achieve similar complete
waveforms for ECOs, it is worth mentioning that a phenomenological model was
proposed in Toubiana et al. (2021), which used EOB waveforms with tidal effects to
describe the inspiral phase and a toy model inspired by Takami et al. (2015) to model
the post-merger dynamics of the system. Whether this model is an accurate enough
description for known ECOs, e.g. boson stars, remains to be fully studied.

6.6 Phenomenological waveform models

The phenomenological waveform models of Sect. 4.6 already provide standard tools
for tests of GR with the current generation of ground-based detectors (Abbott et al.
2016g, 2019d, e, 2021c, d). In particular, parameterized tests (in the spirit of the ppE
formalism, see Sect. 6.2.1) have been employed to probe theory-agnostic deviations
from GR in the Phenom ansatz describing the phase evolution of an observed signal,
namely using the TIGER pipeline (Agathos et al. 2014; Meidam et al. 2018)
although, as shown in Mehta et al. (2023), the FTI framework can also be applied to
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Phenom waveform models (note that in all LVK papers so far the FTI framework has
only been applied on EOB waveforms, whereas parameterized tests with Phenom
waveforms typically use the TIGER approach (Abbott et al. 2019d, e, 2021c, d)).
Moreover, Phenom models have also been used to test the BH nature of compact
binaries from waveform signatures of spin-induced quadrupole moments (Krishnendu
et al. 2019). At a more fundamental level, such tests depend on the parameterization
of the waveform model, and face a number of practical and conceptual problems, e.
g., varying the phenomenological coefficients in such models by amounts that are too
large, pathologies may arise in the waveform (see, e.g., Johnson-McDaniel et al.
2022). Some improvements can be expected from adding time domain mod-
els (Estellés et al. 2021, 2022a, b) to the existing frequency domain models, thus
providing very different waveform parameterizations to be varied. Going beyond
theory agnostic tests, the flexibility of phenomenological models also provides a
natural ground to develop models for beyond GR theories or “exotic” physics, such
as boson stars and boson clouds around BHs, possibly starting from recent work on
BNS and BHNS models (Colleoni et al. 2023; Abac et al. 2024). A key problem is
the very large parameter space for such theories, and significant technical and
conceptual progress will be required to develop mature approaches. Natural first
steps for the near future would be, for example, to calibrate accurate models to small
“toy model” regions of some beyond GR theories, and to develop simple toy models
that do not require any calibration to numerical waveforms.

6.7 Modeling cosmic strings

Waveform models for GW emission from cosmic strings are needed for LISA for
three types of anticipated searches: for the stochastic background, for individual
bursts and for individual, coherent, nonlinear oscillatory waveforms. There are
significant uncertainties in the properties of the underlying string elements (the
number of objects, the presence of cusps, kinks and small scale structure, the size
distribution of the objects, the spatial and velocity distribution of the objects). Here,
however, we concentrate on the modeling of the waveforms generated by one or
more loops while also mentioning some of the incompletely known loop properties
that will influence the waveforms.

6.7.1 Nambu–Goto, smooth loops with cusp/kink features

We begin with minimally coupled string networks with loops that are smooth on
large scales and include cusps or kinks but no other small scale structure.

Early research on this topic focused on computing the individual loop waveforms
to lowest order in the string tension lS , by considering relatively simple loops and
using standard weak-field approximations for GW generation (Garfinkle and
Vachaspati 1988; Vachaspati 1987; Burden 1985; Garfinkle and Vachaspati 1987;
Allen and Shellard 1992; Allen et al. 1995; Allen and Casper 1994; Casper and Allen
1995; Allen and Ottewill 2001). Both the burst waveforms and the relevant statistical
averages for the background implicitly follow. FFT techniques work well to estimate
the power at low to moderate harmonics (Allen and Shellard 1992; Blanco-Pillado
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and Olum 2017) and additional numerical techniques have been devised specifically
to handle higher harmonics (Suresh and Chernoff 2024).

In the case of LVK, small scale features dominate emission at high frequencies. A
similar situation pertains to LISA, which will be sensitive to the high frequencies of
the astrophysically relevant low tension strings. The development of an asymptotic
approach (Damour and Vilenkin 2000, 2001, 2005) was an important quantitative
and qualitative advance. High frequency emission sourced by cusps and kinks is
approximately independent of the large scale loop structure. The important features
of cusp waveforms in this limit are that (1) the cusp power spectrum falls off at high
frequencies as f �4=3; and (2) the GWs from the cusp are strongly beamed in the

direction of cusp motion and exponentially suppressed at frequencies fJ1=ðh3TÞ for
angle h with respect to that direction (with T the periodicity of the string). The

waveform’s time dependence is / jt � tcj1=3, where tc is the time at which the cusp
formation event is noted by an observer situated in the beam of emission (h ¼ 0), and
so the cusp waveform is called sharp or spiky. This sharpness is softened for
0\h � 1. Similar analyses are applicable to kinks.

The genericity of the high frequency predictions for cusps and kinks, the
independence with respect to the large scale loop structure and the simplicity of the
templates are all important, and the results have been exploited in astrophysically-
motivated searches (Siemens et al. 2006; Shapiro Key and Cornish 2009; Abbott
et al. 2009b, 2019a).

The outlook and need for waveforms is as follows:

1. The existing asymptotic treatments of kink and cusp emission are likely to be
sufficient for modeling an unresolved stochastic wave background. That is
because the energy flux derived from averaging over time, space and angle,
which is implicit in such a calculation, depends upon low-order moments of the
loop’s full beam pattern that can be derived from the asymptotic results.

2. More refined models of the burst waveform that do not, strictly speaking, lie in
the asymptotic regime are needed. Such waveforms can account for geometric
effects when the observer does not lie directly in the cusp direction and for
anisotropies in the beam shape. These can be found by extending the asymptotic
treatment.

3. Existing calculational methodologies for full loops are accurate and efficient at
low to moderate modes. LISA and pulsar timing arrays will probe both low and
high order modes. Hybridization methods giving models of the beam that span
the full range of modes will be required for any loop sources that stand out above
the stochastic background (Suresh and Chernoff 2024).

6.7.2 Nambu–Goto, small-scale structure

Each time a long horizon-crossing string intercommutes it gains two kinks. Small
scale structure builds up on the string (Austin et al. 1993; Polchinski and Rocha
2007; Martins et al. 2014; Vieira et al. 2016; Martins et al. 2021). Gravitational
backreaction probably smoothens the string at small scales (Bennett and Bouchet
1989; Quashnock and Spergel 1990; Siemens and Olum 2001; Siemens et al. 2002).
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The wigglyness that remains has been evaluated (Austin et al. 1993; Polchinski and
Rocha 2007) but never determined directly by simulation. Siemens and Olum (2003)
found that small-scale structure near the cusp rounded off the sharpness of the cusp
waveform but affected only observers very near to the direction of cusp motion.
Alternatively, Polchinski and Rocha (2007) found that the small scale structure
enhanced intercommutation on a newly formed loop and excised the cusp when it
first begins to form. It will be important to investigate the effect of small structure on
loop dynamics and the resultant waveforms. This can be done parametrically as the
amount and character of the wigglyness increases on otherwise simple loops.

6.7.3 Nambu–Goto for Pseudocusps

As a last note, in addition to cusp waveforms, some authors (Stott et al. 2017) have
studied the bursts due to “pseudocusps”, i.e., string trajectories which very closely
approach, but do not strictly reach, the cusp configuration. These pseudocusp burst
waveforms are of lower amplitude than true cusps, and follow the same power
spectrum decay of f �4=3 at high frequencies. Accounting for them in a search can
lead to an enhancement in the number of expected burst events.

6.7.4 Beyond Nambu–Goto for cusps

Gauge theory strings with energy scale l1=2S have a characteristic core width � l�1=2
S

whereas classical superstrings are always well-represented by the zero thickness
Nambu–Goto limit. When a cusp forms the string instantaneously doubles back upon
itself. Blanco-Pillado and Olum (1999) predicts that a region of string around the
cusp, of the order of the string thickness, will annihilate into particles due to overlap.
For strings with large tensions (near that of the GUT scale) this modification to the
cusp shape is at a small enough scale that it does not meaningfully affect the cusp
waveform. However, as tension decreases the physical scale increases. It may prove
useful to compare the waveform of the gauge theory cusp to the superstring cusp.
This can be done by parametrically varying the core width in Abelian-Higgs
simulations.

A final assumption about the standard cusp waveform model is that it relies only
on properties universal to all strings. However, superstrings possess additional
features that could modify their cusp waveforms. Damour and Vilenkin (2005)
suggested modifications to the amplitude based on the dimensionless loop-length
parameter a. For example, cusps very near to Y-junctions will have their burst
amplitude modified by a correction factor that depends on the nearby string
geometry (Binetruy et al. 2009, 2010b, a), while the extra degrees of freedom on
superstrings (extra dimensions) can lead to a strong suppression of both cusp rate and
burst amplitude (O’Callaghan et al. 2010).
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6.7.5 Cosmic strings and GW production in numerical relativity

While in most cases, perturbative methods (e.g., Nambu–Goto strings coupled to
perturbative gravity (Quashnock and Spergel 1990)) are sufficient, situations may
arise when perturbative methods are insufficient and gravitational backreaction
becomes of Oð1Þ, even if the string tension GlS is small. For example, a string with a
sharp kink can easily lead to a locally strong field situation (Jenkins and
Sakellariadou 2020). In such strong field limits, the full machinery of NR must be
employed. The construction of full NR solutions for cosmic strings was recently
achieved by Helfer et al. (2019a); Aurrekoetxea et al. (2020), where stable dynamical
solutions for an Abelian-Higgs string minimally coupled to gravity was found. This
opens the door to not just the detailed exploration of the string dynamics, but also the
characterization of the GW signals that can then be searched for.

The Abelian-Higgs model minimally coupled to gravity can be recast into the
standard BSSN/CCZ4 formalism, and solved using finite differences (we refer the
reader to Helfer et al. (2019a) for details). Presently, solutions for infinite static
strings, planar loops (Helfer et al. 2019a) and single traveling wave solutions
(Garfinkle and Vachaspati 1990) have been constructed. Once a string configuration
is constructed and successfully evolved, the work required to extract useful GW
signals from them follows very similarly to that of any standard NR simulations, see
Sect. 4.1.

As an example, in Aurrekoetxea et al. (2020), the gravitational waveform emitted
during the BH formation of a collapsing circular cosmic string was computed, and it
was shown that the waveform is dominated by the BH formation and ringdown
phase, with the primary contribution being the ‘ ¼ 2, m ¼ 0 mode (as opposed to
quasi-circular compact binary merger signals which are dominated by the ‘ ¼ 2,
m ¼ 2 mode). Intriguingly, due to the large asymmetric ejection of material in the
formation process, a large GW memory was also seen.

The future prospects for using NR to compute GW signals from such strong
gravity events is very promising. For example, a full general relativistic treatment of
the GW emission from cosmic string cusps and kinks is long overdue, but is now
within reach. Presently, the main obstacle to explore more complicated string
configurations is the need for the construction of accurate initial conditions – a usual
problem in any NR endeavor, here made more difficult by the presence of
fundamental matter fields. Nevertheless, this area is ripe for further exploration.

7 Afterword

LISA will usher in an era of millihertz GW astronomy that will open a window to
new classes of sources and offer unprecedented opportunities to probe our
understanding of the universe. Integral to this scientific vision are predictions of
the source waveforms, which are necessary for the detection and interpretation of
GW events.

This White Paper has analyzed the question of waveform preparedness in the
LISA era. It has reviewed the modelling requirements from astrophysical and data
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analysis perspectives, and has analyzed the status of the main approaches to
modelling waveforms from compact binaries both in vacuum GR and in the presence
of environmental influences or effects from new physics beyond GR and the
Standard Model. This white paper also provides guidance on new developments that
are needed for the different approaches, both in terms of modelling accuracy and the
covered parameter space, so that gravitational wave models will be ready for the
LISA era.

The experience with ground-based GW detectors has to some extent prepared the
community. For example, several approaches that predict the waveforms for
comparable mass black hole binaries can be applied directly to massive black hole
binaries due to the simple mass scaling of GR. However, these models are not
currently sufficient to fully realize LISA’s science goals. In particular they
insufficiently cover the parameters of eccentricity, highly asymmetric mass-ratios,
and high spin magnitudes. In addition, the possibility of very strong massive black
hole binary signals places additional demands on the accuracy of these models, well
beyond what can currently be achieved.

For extreme-mass-ratio inspirals, leading-order (adiabatic) models that are
sufficient to enable some LISA science are becoming available, and these models
can be evaluted fast enough for use in LISA data analysis. In order to enable the full
spectrum of LISA science with EMRIs post-adiabatic models are needed. These have
recently been developed for the simplest orbital configurations (non-spinning, quasi-
circular). It also looks likely that these models can cover much of the intermediate
mass ratio parameter space. Significant work remains to extend these post-adiabatic
models to cover the full parameter space of precessing and eccentric parameter
binaries where both components are spinning.

The modelling of sources in theories beyond GR is still in its infancy with
significant effort needed. For example, the majority of computations have focused on
higher derivative gravity, that are most interesting in the high curvature regime, or on
Horndeski models. Moreover, simulations of compact binaries in extensions of GR
are, at the time of writing this white paper, proof-of-concept. That is, they have been
done for nearly equal-mass binaries, typically of non spinning black holes, and at
relatively low resolution. This is comparable to the state of numerical relativity in GR
about 15 years ago (i.e., few years after the breakthrough in 2005). Likewise,
perturbative or PN calculations have only started to go beyond the leading order in
the correction. To perform theory-specific tests of gravity, more work is needed, both
in terms of modelling accuracy and in covering (parts of) the parameter space of
black hole masses, spins and additional theory-specific parameters.

The good news is that in all approaches there are clear ideas of what needs to be
done in order to reach the modelling requirements for LISA. Doing so will require a
concerted effort over the next decade. Given sufficient resources, we are positive that
all goals can be achieved.

We particularly recommend that the community conduct more investigations into
the waveform standards and waveform interface. While lessons have been learned
from ground-based detectors, LISA will offer unique challenges that will need to be
addressed by the waveform and data analysis communities working together.
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Appendix A: Descriptions of NR codes

Description of some numerical relativity codes that focus, in particular, on modelling
LISA sources. A more extensive list is given in Table 7.

BAM BAM is a modular code framework initially developed at the
University of Jena and is now maintained and further devel-
oped by the CoRe (Computational Relativity) Collabora-
tion (Brügmann et al. 2008b; Husa et al. 2008; Thierfelder
et al. 2011; Dietrich et al. 2015a). BAM employs finite dif-
ferences for the discretization of spacetime fields, and high-
resolution shock-capturing methods for the evolution of
general relativistic hydrodynamics variables. It features
automated code generation with Mathematica, adaptive mesh
refinement (AMR) in space and time, and parallelization with
MPI and OpenMP for large scale HPC, recently at 70% on up
to 50k cores. BAM is employed for the simulation of compact
binary mergers, e.g., Hamilton et al. (2024); Bernuzzi et al.
(2012); Dietrich et al. (2015b); Kölsch et al. (2022). A major
focus is on binary black hole, binary neutron star, and black
hole - neutron star systems Chaurasia et al. (2021), plus more
exotic compact objects or merger scenarios (Dietrich et al.
2019a). Recent updates allow the study of radiation hydro-
dynamics (Gieg et al. 2022), magnetohydrodynam-
ics (Neuweiler et al. 2024), and the usage of an entropy-
viscosity limiter for the flux computation (Doulis et al. 2022).
BAM has contributed numerical data for the development and
validation of e.g. Phenom-type and EOB waveform models.
Several hundred binary neutron star merger simulations are
available as part of the existing CoRe database (Dietrich et al.
2018; Gonzalez et al. 2023b).

BAMPS The Jena-Lisbon collaboration is developing the code bamps,
a new and highly scalable NR code for exascale applications
using pseudo-spectral and DG methods (Hilditch et al. 2016;
Bugner et al. 2016). A key feature is hp-refinement for
spectral element methods (Renkhoff et al. 2023), which
allows highly scalable and accurate simulations, currently
with a focus on smooth fields. To date, bamps has already
been employed for the study of GW collapse (Hilditch et al.
2016; Fernández et al. 2022), simulations with scalar fields for
collapse and for boson stars are in development. Further
applications include simple neutron star spacetimes (Bugner
et al. 2016), and studies of new techniques regarding the dual
foliation framework (Bhattacharyya et al. 2021).
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Dendro-GR Dendro-GR (Fernando et al. 2017, 2019a, b) uses an
unstructured grid with a localized, wavelet-based refinement
scheme to evolve the BSSN formulation of the Einstein
equations using moving punctures. In test simulations of a
BBH with a mass ratio of 10 : 1, Dendro-GR shows good
scaling to over 105 cores.

Einstein Toolkit The Einstein Toolkit (Löffler et al. 2012; Einstein Toolkit
2024) is an open-source cyberinfrastructure for computational
astrophysics, with more than 300 registered users worldwide.
It implements Einstein’s equations, or extensions thereof, in
the BSSN or CCZ4 formulation together with the moving
puncture gauge. It employs the method of lines, in which

spatial derivatives are implemented as up to 8th order finite
differences together with a collection of direct time integration
techniques (e.g., fourth order Runge–Kutta integrator). The
Einstein Toolkit is based on the Cactus computational
toolkit (Cactus Development Team 2024) and the Carpet
boxes-in-boxes AMR package (Schnetter et al. 2004; Carpet
developers 2024). It also provides a multipatch infrastructure
consisting of Cartesian boxes-in-boxes meshes in the region
where the binaries evolve (typical size � 50. . .100M ), and a
spherical outer region in the wave zone (typical radius
� 1000. . .2000M ) provided by the Llama code (LlamaWeb
2024).
Kreiss-Oliger dissipation is employed to reduce high fre-
quency noise at refinement boundaries. The toolkit uses
hybrid MPI/OpenMP parallelization.
The Einstein Toolkit has been a broad community project with
a multitude of software that is based on its infrastructure or
that has been developed within its framework. The additional
software is indicated by asterisks in Table 7.

Einstein Toolkit –
CarpetX

The Einstein Toolkit consortium is developing a new AMR
driver, CarpetX (Haas et al. 2022), for the Einstein Toolkit.
CarpetX leverages the AMReX framework (Zhang et al.
2019) to provide scalable adaptive mesh refinement for phy-
sics modules. CarpetX will provide: efficient support for both
CPUs and GPUs; parallelization via MPI and OpenMP; SIMD
vectorization; scalable I/O based on the ADIOS2 file for-
mat (Godoy et al. 2020) and the openPMD metadata standard;
and more. CarpetX offers block-structured AMR based on
local error estimates, exact conservation across mesh inter-
faces, higher order prolongation operators, and scalable
elliptic solvers based on PETSc (Balay et al. 2022). CarpetX
is available as open source and was used in production in
Shankar et al. (2023).
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GR-Athena11 Another example is GR-Athena??(Daszuta et al. 2021)
based on the astrophysical (radiation) magnetohydrodynamics
code Athena?? (Stone et al. 2020). GR-Athena?? leverages
on Athena??’s oct-tree AMR and exploits hybrid parallelism
at different levels. The standard distributed approach is aug-
mented by a dynamical tasklist for the procedures in each
mesh block that overlaps calculation and communication
(thus mitigating some of the overhead associated with high
order finite differencing). In-core vectorization and other
optimization techniques of the basic kernels (Alfieri et al.
2018) are also employed. This approach leads to a high par-
allel efficiency, with strong scaling efficiencies above 95% for
up to 104 CPUs and excellent weak scaling is up to 105 CPUs
measured in a production BBH setup with AMR.

GRChombo GRChombo (Clough et al. 2015; Andrade et al. 2021;
GRChombo 2024) is an open-source NR code built using an
optimized version of the publicly available library Chombo
(Adams et al. 2024) developed at LBNL. It is based on
established methods of solving the Einstein equations, but the
highly flexible AMR capability and templating over physics
classes makes it suited to strong gravity problems in beyond-
GR scenarios (e.g. Horndeski gravity (Figueras and França
2020), cosmic strings (Aurrekoetxea et al. 2020)), which have
been key targets of the code. GRChombo is written entirely in
C??14, using hybrid MPI/OpenMP parallelism and vector
intrinsics (in particular, the evolution calculations are explic-
itly vectorised) to achieve improved performance on the latest
architectures. It has good strong scaling up to around 4,000
cores for typical binary BH problems, at which point it
becomes limited by problem size as with most traditional
codes.
The next release of Chombo is designed to be performance
portable to different heterogeneous architectures (including
GPUs), which GRChombo should be able to leverage to
improve scaling further.
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Illinois GRMHD The Illinois GRMHD evolution code (Duez et al. 2005; Eti-
enne et al. 2010; Sun et al. 2022) solves the Einstein field
equations via the BSSN scheme with puncture gauge condi-
tions, utilizes a conservative high-resolution, shock-capturing
(HRSC) scheme for the matter and adapts the Carpet infras-
tructure to implement AMR. The code solves the magnetic
induction equation by introducing a magnetic vector potential,
which guarantees that the B-field remains divergence-free for
any interpolation scheme used on refinement level bound-
aries. This formulation reduces to a standard constrained
transport (CT) scheme on uniform grids. An improved Lorenz
gauge condition for evolving the vector potential in AMR
without the appearance of spurious B-fields on refinement
level boundaries is implemented. This gauge exhibits no zero-
speed modes, enabling spurious magnetic effects to propagate
off the grid quickly. The GRMHD code recently added a
radiation module (Ruiz et al. 2023) built to handle transport
(photons or neutrinos) via the M1 moment formalism. A
version of the Illinois GRMHD code has been released as an
open-source module that has been ported to the Einstein
Toolkit (Etienne et al. 2015), where it has been documented
and rewritten to make it more user-friendly, modular and
efficient. The code has been used to simulate numerous sce-
narios related to LISA sources (e.g., BHBH mergers, BHBH
mergers in gaseous clouds and magnetized disks, etc.) and
their associated gravitational waveforms.

MHDuet The publicly available code MHDUET (MHDuet Code 2024;
Palenzuela et al. 2018; Liebling et al. 2020; Viganò et al.
2020; Bezares et al. 2022a) is generated by the open-source
platform SIMFLOWNY (Palenzuela et al. 2021) to run under the
SAMRAI (SamraiWeb 2024) infrastructure, which provides the
parallelization and the adaptive mesh refinement. There are
different versions of the code, either to study alternative
gravity theories or to include large-eddy-simulations and
neutrino transport.
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SACRA The SimulAtor for Compact objects in Relativistic Astro-
physics (SACRA) code solves Einstein’s equation with the
BSSN-puncture formulation together with a Z4c constraint
propagation prescription and the relativistic hydrodynamics
equation with the HRSC scheme (Yamamoto et al. 2008;
Kiuchi et al. 2017). It implements the box-in-box conservative
AMR with parallelization by MPI and OpenMP. The code has
been used to simulate compact binary mergers such as NSNS
mergers, BHNS mergers, and BHBH mergers. The NSNS
waveform catalog SACRA Gravitational Wave Data Bank is
available at (SACRA 2024). The latest version of SACRA has
a couple of branches, such as SACRA-TD, to simulate the
tidal disruption of an ordinary star by the SMBH (Lam et al.
2023), or SACRA-MG to simulate a compact object in scalar-
Gauss-Bonnet theory (Kuan et al. 2023) and scalar-tensor
theory (Shibata and Traykova 2023). SACRA also has a
version to solve high-dimensional Einstein’s equation (Shi-
bata and Yoshino 2010). In addition, it features modules for
neutrino radiation transport (Sekiguchi et al. 2012),
MHD (Shibata and Sekiguchi 2005; Kiuchi et al. 2022) and
viscous hydrodynamics (Shibata et al. 2017).

SACRA-SFS2D is a viscous-radiation hydrodynamics (Fujibayashi et al. 2018)
in axisymmetry and radiation magnetohydrodynamics
code (Shibata et al. 2021) in full general relativity. These
codes can be applied to the collapse of massive stars and
supermassive stars to a stellar-mass and supermassive black
hole (Uchida et al. 2017), to the post-merger evolution of the
neutron-star binaries (Fujibayashi et al. 2023), and to col-
lapsar modeling (Fujibayashi et al. 2024).
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SpEC The Spectral Einstein Code (SpEC) (SpEC 2024) is a pseudo-
spectral GR code developed by the Simulating eXtreme
Spacetimes collaboration. SpEC is capable of evolving BBH
and binaries with neutron stars. It incorporates an elliptic
solver to construct initial data (Pfeiffer et al. 2003; Foucart
et al. 2008; Ossokine et al. 2015), eccentricity reduc-
tion (Pfeiffer et al. 2007; Buonanno et al. 2011; Mroue and
Pfeiffer 2012), constraint -preserving and non-reflective outer
boundary conditions (Lindblom et al. 2006; Rinne 2006;
Rinne et al. 2007), and implements hp-AMR (Lovelace et al.
2011; Szilágyi 2014). Extracted gravitational waves are
extrapolated to future null infinity (Boyle and Mroue 2009;
Taylor et al. 2013; Boyle et al. 2019) and corrected for center-
of-mass drift (Woodford et al. 2019). SpEC is a highly
accurate NR code for BBH, and has computed large wave-
form catalogs of BBH inspirals encompassing several tens of
orbits (Mroue et al. 2013; Boyle et al. 2019). SpEC has
evolved BBH with spins as large as 0.998 (Chatziioannou
et al. 2018), inspirals as long as 170 orbits (Szilágyi et al.
2015) as well as eccentric binaries (Ramos-Buades et al.
2022b).

SpECTRE The Simulating eXtreme Spacetimes collaboration is devel-
oping the next-generation code SpECTRE (Deppe et al. 2023;
Kidder et al. 2017), which uses a discontinuous-Galerkin-
finite-difference hybrid method (Deppe et al. 2022a, b; Legred
et al. 2023) for accurate and robust neutron star simulations
combined with task-based parallelism, showing good scaling
to over 600, 000 cores (Kidder et al. 2017). Using Cauchy-
Characteristic extraction, SpECTRE is able to resolve gravi-
tational wave memory (Moxon et al. 2023; Mitman et al.
2020) and improve hybridization with post-Newtonian
waveforms by ensuring numerical relativity waveforms are in
the same BMS frame as the post-Newtonian wave-
forms (Mitman et al. 2022). Improvements for efficiently
simulating binary black holes with mass ratios q[ 10 aim to
reduce the computational cost of such simulations by a factor
of q (Wittek et al. 2023). SpECTRE also incorporates a
flexible elliptic solver (Fischer and Pfeiffer 2022; Vu et al.
2022, 2023).
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Spritz Spritz is an open-source code that solves the equations of
general relativistic magnetohydrodynamics and that can take
into account finite temperature nuclear equations of state and
neutrino emission (Cipolletta et al. 2020, 2021; Kalinani et al.
2022). The code is based on the Einstein Toolkit framework
and implements also high-order methods for the hydrody-
namic equations.

WhiskyMHD WhiskyMHD is a fully general relativistic magnetohydrody-
namic code based on the Einstein Toolkit (Giacomazzo and
Rezzolla 2007). The code has been used mainly to perform
simulations of binary neutron star mergers, but it has also
been used to perform the first simulations of magnetized
plasma around merging supermassive black holes in the ideal
magnetohydrodynamic approximation (Giacomazzo et al.
2012).
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