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Figure 1: Quality evaluation of 2D and stereoscopic videos on the Apple Vision Pro (AVP).

Abstract

Immersive stereoscopic (3D) video experiences have entered a new
era with the advent of smartphones capable of capturing stereo-
scopic videos, advanced video codecs optimized for multiview con-
tent, and Head Mounted Displays (HMDs) that natively support
stereoscopic video playback. In particular, Apple’s recent introduc-
tion of spatial video capture on the recent iPhone Pro series and
immersive playback on the Apple Vision Pro (AVP) has acceler-
ated the mainstream adoption of stereoscopic content. In this work,
we evaluate the quality of spatial videos encoded using optimized
x265 software implementations of Multiview HEVC (MV-HEVC) on
the AVP and compare them with their corresponding 2D versions
through a subjective test.

To support this study, we introduce SV-QoE, a novel dataset
comprising video clips rendered with a twin-camera setup that
replicates the human inter-pupillary distance. Our analysis reveals
that spatial videos consistently deliver a superior Quality of Expe-
rience (QoE) when encoded at similar bitrates, with the benefits
becoming more pronounced at higher bitrates. Additionally, render-
ings at closer distances exhibit significantly enhanced video quality
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and depth perception, highlighting the impact of spatial proximity
on immersive viewing experiences.

We further analyze the impact of disparity on depth perception
and examine the correlation between Mean Opinion Score (MOS)
and established objective quality metrics such as PSNR, SSIM, MS-
SSIM, VMAF, and AVQT. Additionally, we explore how video quality
and depth perception together influence overall quality judgments.
The complete dataset, including videos and subjective scores, is
publicly available at https://github.com/cd-athena/SV-QoE.
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1 Introduction

Immersive media has transformed how users engage with digital
content, extending beyond traditional viewing to provide highly in-
teractive and engaging experiences [1, 2]. Advances in Virtual Real-
ity (VR), Augmented Reality (AR), and Mixed Reality (MR) have led
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to the development of immersive environments that enhance user
presence and interaction. As display hardware continues to evolve,
with innovations such as high-resolution HMDs, eye-tracking, and
spatial audio, immersive media is becoming increasingly realistic
and accessible. Additionally, improvements in content creation tools
are pushing the boundaries of digital storytelling, gaming, train-
ing simulations, and remote collaboration [3-5]. With the growing
demand for lifelike and interactive experiences, immersive media
is reshaping entertainment, education, and professional applica-
tions [6].

Among the various forms of immersive media, stereoscopic
videos have regained popularity thanks to their ability to enhance
realism through depth perception. Stereoscopic imaging works by
capturing two slightly different perspectives of a scene (i.e., one
for the left eye and one for the right eye), mimicking the natural
disparity of human vision [7]. This disparity allows the brain to in-
terpret depth, resulting in a 3D perception of the content. Typically,
stereoscopic videos are recorded using a dual-camera setup. During
playback, these two images are displayed separately to each eye,
either through passive polarization, active shutter glasses, or direct
display on head-mounted devices [8].

Widespread adoption of this format has historically been limited
by challenges across the entire multimedia pipeline, including con-
tent creation, efficient encoding, and display compatibility. Recent
advancements have significantly lowered these barriers, making
stereoscopic video a more accessible and scalable format for im-
mersive media. The integration of stereoscopic video capture into
consumer-grade devices, such as the iPhone Pro, has enabled effort-
less content creation without the need for specialized camera setups.
On the encoding side, optimized HEVC-based [19] compression
software, such as x265, ensures that high-quality stereoscopic video
can be efficiently stored and streamed while maintaining perceptual
quality. Furthermore, the emergence of HMDs with native support
for stereoscopic video playback, such as the AVP and Meta Quest
3, has provided a dedicated ecosystem for consuming stereoscopic
content. These developments have effectively bridged the gap be-
tween content creation, encoding, and rendering, thus enabling
stereoscopic videos to become a viable and accessible format for
next-generation multimedia applications.

While in Apple’s definition, spatial videos refer to videos recorded
with the iPhone Pro or AVP [18], encoded with their MV-HEVC [20]
codec and displayed on the AVP, in this paper, we define spatial
videos as stereoscopic content encoded using the MV-HEVC format
and designed for seamless playback on the AVP.

Despite the advances in spatial video capture and display, there
remains a significant gap in the research on spatial videos for im-
mersive platforms, as most studies focus primarily on traditional 2D
videos. While objective and subjective quality evaluation method-
ologies are well established for conventional video formats, their
applicability to spatial videos, particularly on HMDs, remains less
explored. Factors such as depth perception, binocular disparity,
compression artifacts, and motion cues all influence the perceptual
quality of spatial video in ways that differ from 2D content [21, 22].
Another key challenge in this domain is the lack of publicly avail-
able datasets for spatial video quality assessment. Existing datasets
primarily focus on 2D content and do not adequately capture the
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perceptual nuances of spatial formats. Moreover, most of the stereo-
scopic datasets are limited to standard resolutions and frame rates,
lacking high-resolution (e.g., 4K) and high frame-rate (e.g., 60fps)
content, which are increasingly common in modern immersive
video applications.

To address these limitations, (i) we introduce a novel dataset,
SV-QoE, specifically designed for spatial video quality assessment,
featuring diverse high-resolution 4K and high-frame-rate 60fps
video sequences encoded at multiple quality levels (available at
https://github.com/cd-athena/SV-QoE.) Furthermore, (ii) this paper
bridges the research gap by conducting a comprehensive subjective
evaluation of both 2D and spatial video quality on the AVP. We
systematically assess viewer responses across three distinct quality
levels, ensuring that all content is encoded using the same opti-
mized open-source x265 codec at similar bitrates. Our experimental
design involves controlled subjective tests, where participants ex-
perience a series of video sequences in both 2D and spatial formats.
To comprehensively assess the viewing experience, participants
evaluate three key aspects:

(1) video quality (Q1),
(2) depth perception (Q2), and
(3) overall quality (Q3).

(iii) We also evaluate the correlation between disparity and per-
ceived depth, shedding light on how disparity cues affect depth
perception and contribute to overall quality in stereoscopic content.
(iv) Additionally, we examine the correlation between well-known
objective quality metrics (i.e., PSNR, SSIM, VMAF, and AVQT) and
subjective video quality scores, offering a deeper understanding of
the reliability and applicability of existing objective models in eval-
uating 2D and spatial video content on AVP. (v) Finally, we analyze
the impact of video quality and depth perception on overall quality,
providing insights into how these factors influence the immersive
viewing experience.

2 Related Work

The stereoscopic video pipeline comprises several key modules:
creation, encoding, delivery, rendering, and quality evaluation. The
creation phase involves capturing left and right views using dual-
camera systems, which require precise calibration and synchro-
nization to ensure consistency. Existing stereoscopic video datasets
have been summarized in Table 1. These datasets typically lack
high-resolution and high frame-rate content, which limits their
applicability to modern immersive viewing scenarios.

Recently, deep learning methods have also been applied to gen-
erate stereoscopic videos. For example, Zhang et al. [23] introduced
a novel framework for converting 2D videos into stereo videos.
Their approach employs depth-warping and blend-inpainting tech-
niques, incorporating a mask-based hierarchical feature update
refiner and a disparity expansion strategy to improve inpainting
accuracy and reduce foreground bleeding. During the encoding
stage, advanced compression methods are utilized to maintain high
perceptual quality while reducing bitrate. In particular, inter-view
redundancy between the left and right views is exploited to en-
hance compression efficiency, as explored in MV-HEVC [20] and
its optimized variants [24, 25]. The delivery phase focuses on re-
liably transmitting this content over varying network conditions
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Table 1: Overview of stereoscopic video datasets.

Dataset Name Year Resolution Description

KITTI Stereo 2012 [9] 2012 1226x370 Outdoor driving scenes

KITTI Stereo 2015 [10] 2015 1242x375 Outdoor driving scenes with dynamic scenes with objects
SceneFlow [11] 2016 960%540 Synthetic stereo sequences

MPI-Sintel [12] 2012 1024x436 (24fps) Synthetic scenes with complex motion and visual effects
RMIT3DV HD 3D Video [13] 2012  1920x1080 (25fps) Diverse urban scenes

EPFL MMSPG 3DVQA [14] 2010 19201080 (25fp) High-quality visual variations

Stereo Video Database [15] 2010  1920x1080 (25fps) Stereo cinema post-production

NAMAD3D [16] 2012 1920%1080(25fps) Natural 3D scenes with twin-lens camera
SVSR-Set [17] 2022 1920x1080 (30fps) Indoor/outdoor with varied motion and lighting
SVD [18] 2025 1920x1080 (30fps) Spatial videos taken by iPhone and Apple Vision Pro
SV-QoE (Ours) 2025 3840%2160 (60fps) High resolution, high frame-rate synthetic sequences captured from two distances

by employing adaptive streaming protocols [26] and network op-
timization strategies, as explored by Chen et al. [27]. Finally, the
quality evaluation module employs both subjective assessments
and objective metrics to gauge the perceptual impact of distortions
unique to stereoscopic content [21].

The quality evaluation of stereoscopic multimedia involves mul-
tiple parameters, including video quality, depth perception, and
overall satisfaction. Goldmann et al. [28] investigated the impact
of acquisition distortions, such as the baseline distance between
left and right cameras, on the perceived quality of stereoscopic im-
ages and videos. Their findings indicate that as the camera baseline
distance increases, perceived quality decreases, highlighting the
critical role of acquisition setup in maintaining high-quality stereo-
scopic content. Zhou et al. [21] presented a comprehensive study
on the visual quality assessment of 3D-HEVC compressed stereo-
scopic videos. They analyzed the impact of video compression and
depth quality on the overall QoE. They develop a No Reference (NR)
bitstream-level objective quality assessment model that extracts key
features from 3D-HEVC bitstreams, such as quantization param-
eters and prediction residuals, to predict perceived video quality.
Chen et al. [29] introduced a depth perception quality metric and
extended it to an NR stereoscopic video quality assessment. Wan et
al. [30] analyzed the impact of coding artifacts on depth perception
in stereoscopic 3D videos, revealing that compression distortions
introduced by the Advanced Video Coding (AVC) standard can sig-
nificantly alter depth quality. Their subjective experiments showed
that coding artifacts affect different spatial frequency components
unequally, with high-pass and band-pass components being more
crucial for depth perception than low-pass components. They also
found that horizontal orientation structures play a dominant role
in depth perception, and distortions in these components lead to
more noticeable depth degradation.

Compared to 2D images, a 3D image consists of two 2D images —
left and right views — introducing additional challenges in objective
quality assessment. When the left and right views exhibit different
types and levels of artifacts, asymmetric distortions occur, making
it more complex to evaluate the quality of 3D images [31]. The
simple average of the predicted quality scores from both views
does not account for the binocular processing mechanisms of the
Human Visual System (HVS) [32, 33]. To address these challenges,
various 3D image quality assessment (IQA) methods have been
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developed, incorporating specific 3D characteristics. Notable ap-
proaches include the cyclopean model [34], weighted SSIM (W-
SSIM), and weighted FSIM (W-FSIM) [35]. For 3D omnidirectional
image quality assessment (OIQA), a multi-viewport-based model
has been introduced [36], while the stereoscopic omnidirectional
image quality evaluator (SOIQE) was designed based on predictive
coding theory [37]. Galkandage et al. [38] introduced a novel HVS
model inspired by physiological findings characterizing the motion-
sensitive response of complex cells in the primary visual cortex.
The proposed full-reference stereoscopic video quality assessment
method leverages this model to enhance the prediction accuracy of
perceived video quality.

3 Dataset Creation

In this paper, we present SV-QoE, a dataset that includes 12 scenes
created using Unity engine 6 (Version: 6000.0.28f1) to showcase a
variety of artistic styles, ensuring accurate depth representation
and minimizing capturing distortions. Each scene was recorded as
a 10-second clip. The Unity engine camera was configured with a
perspective projection to ensure realistic depth perception, with
a 137° horizontal Field of View (FoV) for a wide yet natural per-
spective, chosen to closely match the effective horizontal viewing
range of the human visual system and modern VR headsets, thereby
providing an immersive experience without introducing noticeable
geometric distortion.

To capture both 2D and spatial video content, we employed a
three-virtual camera setup. The central camera, located at the origin
(0,0,0), was used to create the 2D content. Meanwhile, a stereo pair
was placed 65 mm apart to replicate the human interocular distance,
capturing the left and right views for immersive spatial video. All
videos were rendered in 4K resolution at 60 fps. Sample frames from
these videos are presented in Figure 2. To incorporate variations in
object distance, five scenes (AsgardianToy, AVP, CommaDotStudio,
NewAtlantis, and UninvitedGuest) were captured twice to represent
both ‘near’ and ‘far’ perspectives. The ‘near’ perspective features
objects positioned close to the camera, emphasizing fine spatial
details and depth, while the ‘far’ perspective captures the same
scenes with objects located farther away, offering a broader and
more distant view of the environment. To maintain a consistent
compression standard across formats, both 2D and spatial videos
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Figure 2: Sample frames of the created SV-QoE dataset.

were encoded using the open-source x265 encoder (version 4.1)!.

The x265 encoder was chosen for its efficiency in high-quality video
compression and its support for both standard 2D encoding and
multiview coding, allowing MV-HEVC compatibility for spatial
content. A Constant Rate Factor (CRF) quality control approach
was employed during encoding. For spatial videos, three quality
levels (i.e., low, medium, high) were generated, while for 2D videos,
the CRF values were selected to closely match the corresponding
bitrates of these levels. High quality corresponds to a VMAF [39]
score of 95, medium to 85, and low to approximately 75, with VMAF
being the average of the left and right views.

4 Testing Procedure

We conducted a subjective test using the 5-point Absolute Category
Rating (ACR) [40] methodology to evaluate the perceived quality of
both 2D and spatial video content. In this test, participants viewed a
series of 10-second video sequences and rated each on three distinct
aspects: video quality, perceived depth, and overall quality using
a five-point categorical scale. In this study, video quality refers to
the fidelity of the videos (e.g., compression artifacts), while overall
quality captures the way the viewer experiences the content as a
combination of video quality with perceived depth and immersion.
Prior to the main test, participants underwent a training session
designed to familiarize them with the rating procedure and the
different video formats they would encounter. In addition, a Snellen
visual acuity test was administered to ensure that all participants
had normal vision. A total of 30 participants (11 females and 19
males; average age: 31 + 6 years) took part in the study, and the
entire testing session took, on average, 31 minutes to complete. Each
participant rated each video six times: three times in spatial video
encoded at three quality levels, and three times in 2D encoded at the

Ihttps://bitbucket.org/multicoreware/x265_git/src/Release_4.1/
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corresponding bitrates of the spatial videos. To mitigate ordering
effects, the presentation order of the videos was randomized for
each participant.

5 Evaluation and Results

In this section, we analyze the results of the subjective test. First,
we identify and remove any outliers from the collected data. Outlier
detection was conducted using statistical methods, including the Z-
score and Interquartile Range (IQR) [41], to identify extreme values
that deviate significantly from the dataset’s central distribution. As
a result, three outlier responses were excluded from the analysis,
and the subsequent results are based on data from 27 subjects.

5.1 Integrated perceptual quality analysis

Figure 3 shows the integrated results from the subjective test. In
terms of video quality, both 2D and spatial formats were perceived
similarly by the participants. However, depth perception showed
a significant difference between the two modalities, with spatial
content providing a notably enhanced depth experience. Addition-
ally, overall quality ratings were higher for spatial videos compared
to 2D videos. ANOVA [42] results further confirmed these find-
ings, i.e., video quality showed no significant difference (p = 0.479),
while depth perception and overall quality exhibited significant
differences (p < 0.0001 for both).

5.2 Perceptual quality analysis across different
quality levels

Figure 4 shows that the perceived video quality at medium and
high quality levels is similar for 2D and spatial videos encoded
at the same bitrate. However, all other metrics exhibit statistically
significant differences (see Table 2). This outcome may be attributed
to the use of the default player in AVP, where the combination of
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Table 2: ANOVA significance test results for different quality levels. A significance level of « = 0.05 was used.

Quality level Video quality Depth perception Overall quality

Low Significant (p = 1.90 x 10~ %) Significant (p = 1.23 x 10~-2%) | Significant (p = 1.10 x 10~%)

Medium Not Significant (p = 1.60 x 10~ 1) | Significant (p = 3.69 X 1073°) | Significant (p = 5.12 x 10™°)

High Not Significant (p = 2.45 X 1071) | Significant (p = 1.27 X 10~2%) [ Significant (p = 7.06 x 10~ 1T)
4.0 using the Stereo Semi-Global Block Matching (StereoSGBM) algo-
35 rithm [44]. We then trained regression models on the full dataset
30 and evaluated the Pearson Linear Correlation Coefficient (PLCC)
s and the coefficient of determination (R?). These metrics respectively
w quantify the linear correlation and the proportion of variance in
g20 Q2 MOS explained by the average disparity. The results are pre-
15 sented in Table 3. All models exhibit a positive correlation, with
10 performance steadily improving from simple linear models to more
. b complex regressors. The highest accuracy is achieved by the Ran-
0 == 3 dom Forest model, which yields a PLCC of 0.9184 and an R? of

0.0

video quality depth perception overall quality

Figure 3: Integrated results: video quality is perceived simi-
larly for both 2D and spatial formats, while depth perception
is significantly enhanced in spatial content (3D), leading to

higher overall quality ratings.

viewing distance [43] and player size might have made it difficult
for users to notice artifacts at medium and high quality levels. This
observation highlights the need for further investigation in future
work.

Figure 5 shows sample frames from videos rendered at near
and far object distances, while Figure 6 presents the average sub-
jective ratings for five sequences, each captured with both near
and far distances from the camera. The results consistently show
that scenes featuring near object distances received significantly
higher ratings in video quality, depth perception, and overall qual-
ity compared to their far-distance counterparts. When objects are
positioned closer to the stereo cameras, the binocular disparity
between the left and right views increases. This increased disparity
enhances stereoscopic depth cues, making the 3D structure of the
scene more salient and compelling for viewers. Consequently, the
near-distance scenes produced a more immersive depth experience.
These findings highlight the critical role of object proximity in shap-
ing the viewing experience: as objects are rendered closer to the
camera, spatial cues become more prominent, thereby enhancing
perceived video quality, depth, and overall content appreciation.
One potential explanation for the improved video quality is that
closer objects occupy a larger portion of the screen and often reveal
more visual detail, which may lead viewers to perceive the image as
sharper or more vivid. However, this hypothesis warrants further
investigation in future work.

5.3 Relationship between disparity and depth
perception

To assess the strength of the relationship between stereoscopic
disparity and depth perception (Q2), we first extracted disparity
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0.8434, indicating a strong nonlinear relationship between disparity
and depth perception.

Next, to evaluate out-of-sample predictive performance, we ap-
plied a leave-one-video-out cross-validation scheme and computed
the Mean Absolute Error (MAE) for each model. MAE measures the
average magnitude of prediction errors in the same units as Q2 MOS.
Table 4 lists these MAE values, sorted from highest (worst) to lowest
(best). The MAE results follow a consistent trend: as model com-
plexity increases, prediction errors decrease. While linear models
yield relatively high MAE values (e.g., 0.3205 for linear regression),
nonlinear models such as SVR (0.2411), KNN (0.2222), and Random
Forest (0.2127) provide more accurate depth perception predictions.

5.4 Relationship between video quality and
objective quality metrics

Similar to the previous section, we evaluate the strength of the
relationship between widely used objective quality metrics—PSNR,
SSIM [45], MS-SSIM [46], VMAF [39], and AVQT?—and subjective
video quality (Q1). AVQT version 2 is specifically designed for spa-
tial video content. For all other metrics, we computed the average
scores between the left and right views.

We trained various regression models on the full dataset and com-
puted PLCC and R?. These metrics quantify the linear correlation
and the proportion of variance in Q1 explained by each objective
metric, respectively. The results are summarized in Table 5.

Among the metrics, AVQT exhibits the highest correlation with
subjective video quality, particularly when modeled with nonlinear
regressors. For instance, using Random Forest, AVQT achieves a
PLCC of 0.9650 and an R? of 0.9231, outperforming all other met-
rics. VMAF also shows strong predictive power, especially with
complex models like Random Forest (PLCC = 0.9575, R? = 0.9027).
In contrast, traditional metrics such as PSNR, SSIM, and MS-SSIM
show weaker correlations in simpler models, though their perfor-
mance improves with increased model complexity. Notably, even
with linear regression, AVQT (PLCC = 0.7302) and VMAF (PLCC
= 0.6643) demonstrate stronger alignment with subjective quality
than all other metrics.

2https://developer.apple.com/download/all/?2q=avqt
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Figure 4: Results by quality level: at lower quality, 2D content exhibits higher video quality with similar overall quality,
but immersive content provides enhanced depth perception. With increasing quality, video quality ratings converge, depth
perception remains superior in immersive content, and overall QoE improves.

N
=)
)

(a) AVP (b) CommaDotStudio (c) AsgardianToy (d) NewAtlantis (e) UninvitedGuest

Figure 5: Sample frames from videos rendered at near (upper row) and far (lower row) distances.

Table 3: PLCC and R? between disparity and depth perception. Table 4: Leave-One-Video-Out MAE Comparison.
Model PLCC R Model MAE
Linear Regression 0.4788 0.2293 Linear Regression 0.3205
Polynomial Regression (Degree 2) 0.5533  0.3062 Polynomial Regression (Degree 2) 0.3121
Polynomial Regression (Degree 3) 0.6921  0.4790 Polynomial Regression (Degree 3)  0.2879
Support Vector Regressor (SVR) 0.7673  0.5810 Support Vector Regressor (SVR) 0.2411
K-Nearest Neighbors (KNN) 0.8648 0.7393 K-Nearest Neighbors (KNN) 0.2222
Random Forest 0.9184 0.8434 Random Forest 0.2127

Table 5: PLCC and R? between objective quality metrics and Q1 across regression models.

Model PSNR SSIM MS-SSIM VMAF AVQT
PLCC  R? PLCC  R? PLCC  R? PLCC  R? PLCC R?
Linear Regression 0.4186 0.1753 | 0.4933 0.2434 | 0.3904 0.1524 | 0.6643 0.4413 | 0.7302 0.5332

Polynomial Regression (Degree 2) 0.4379 0.1917 | 0.5396 0.2912 | 0.4397 0.1934 | 0.7356 0.5412 | 0.7968 0.6349
Polynomial Regression (Degree 3) 0.4449 0.1980 | 0.5401 0.2917 | 0.4448 0.1979 | 0.7571 0.5732 | 0.8034 0.6454
Support Vector Regressor (SVR) 0.5778 0.3311 | 0.5634 0.3185 | 0.5067 0.2299 | 0.7587 0.5746 | 0.8122 0.6492

K-Nearest Neighbors (KNN) 0.5778 0.3311 | 0.5304 0.2793 | 0.5416 0.2891 | 0.7399 0.5445 | 0.8284 0.6706

Random Forest 0.9393 0.8573 | 0.9339 0.8278 | 0.9274 0.8263 | 0.9575 0.9027 | 0.9650 0.9231
We then evaluated generalization performance using leave-one- and R?, capturing prediction accuracy on unseen videos. The table
video-out cross-validation and reported the MAE for each model. highlights that AVQT consistently outperforms the other metrics
As shown in Table 6, MAE provides a complementary view to PLCC across all regression models, achieving the lowest MAEs in every
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Table 6: MAE between objective quality metrics and video quality (Q1) across regression models using leave-one-out cross-

validation.

Model PSNR SSIM MS-SSIM VMAF AvVQT
Linear Regression 0.3475 0.3334 0.3521 0.3064 0.2749
Polynomial Regression (Degree 2) 0.3500 0.3249 0.3460 0.2921 0.2462
Polynomial Regression (Degree 3) 0.3591 0.3361 0.3493 0.2884 0.2438
Support Vector Regressor (SVR) 0.3484 0.3357 0.3528 0.3005 0.2774
K-Nearest Neighbors (KNN) 0.3743 0.3763 0.3773 0.3278 0.2774
Random Forest 0.4267 0.4385 0.3889 0.3626  0.3042
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Figure 6: The average subjective results for five sequences

captured from ‘Near’ and ‘Far’ distances.

case. For example, with Polynomial Regression (Degree 3), AVQT
reaches an MAE of 0.2438, notably lower than VMAF (0.2884), MS-
SSIM (0.3493), SSIM (0.3361), and PSNR (0.3591).

5.5 Relationship between video quality, depth
perception, and overall quality

To explore how perceived video quality (Q1) and depth perception
(Q2) jointly influence overall quality (Q3), we visualize their rela-
tionship in a scatter plot. As shown in Figure 7, Q1 is plotted on
the x-axis, Q2 on the y-axis, and Q3 is encoded through both the
color and size of each circle. The plot reveals a clear trend: higher
values of Q1 and Q2 generally correspond to larger, lighter-colored
circles, indicating higher overall quality (Q3). This visual pattern
confirms that both video quality and depth perception contribute
meaningfully to the overall viewing experience.

The relationship can be approximated using a linear model, ex-
pressed as:

03 =0.4830 - Q1 +0.5234 - Q2 — 0.0663. (1)

This model explains 97.4% of the variance in Q3 (R? = 0.974),
confirming that a linear combination of Q1 and Q2 effectively cap-
tures users’ perception of overall quality. It also suggests that depth
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Figure 7: Scatter plot illustrating the relationship between
video quality (Q1) and depth perception (Q2), with circle size
and color representing overall quality (Q3). Larger and lighter
circles indicate higher perceived overall quality.

perception (Q2) has a slightly stronger influence on Q3 than video
quality (Q1), though both factors are essential.

To further assess how well Q3 can be predicted using a combina-
tion of objective quality (AVQT) and depth-related cues (disparity),
we trained several regression models and computed their PLCC
and R?. These results, summarized in Table 7, show that all models
capture a meaningful relationship between these predictors and Q3.
The Random Forest model yields the highest correlation (PLCC =
0.9822) and the greatest explained variance (R? = 0.9532), indicat-
ing its superior ability to model the nonlinear interactions between
AVQT and disparity.

To evaluate how these models generalize to unseen content,
we applied a leave-one-video-out cross-validation strategy and
measured prediction accuracy using MAE. Table 8 presents these
results. Again, Random Forest delivers the best performance with
the lowest MAE of 0.2463, followed closely by KNN and SVR. These
results confirm that leveraging both disparity and AVQT leads to
robust predictions of overall quality across diverse video content.
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Table 7: PLCC and R? for predicting Q3 using AVQT and dis-
parity.

Model PLCC R?
Linear Regression 0.6961 0.4845
Polynomial Regression (Degree 2) 0.7549  0.5699
Polynomial Regression (Degree 3) 0.8106 0.6571
Support Vector Regressor (SVR) 0.7792  0.5658
K-Nearest Neighbors (KNN) 0.8120  0.6479
Random Forest 0.9822  0.9532

Table 8: Leave-One-Video-Out MAE for predicting Q3 using
AVQT and disparity.

Model MAE
Linear Regression 0.2897
Polynomial Regression (Degree 2)  0.2732
Polynomial Regression (Degree 3)  0.3298
Support Vector Regressor (SVR) 0.2762
K-Nearest Neighbors (KNN) 0.2639
Random Forest 0.2463

6 Conclusion

This study provides a comprehensive evaluation of spatial video
quality on HMDs, addressing critical gaps in immersive multime-
dia research. Our subjective assessment using the SV-QoFE dataset
—developed as part of this work- reveals that spatial videos consis-
tently outperform their 2D counterparts in depth perception and
overall quality, especially at higher bitrates The analysis further
highlights the influence of viewing distance, with videos captured at
closer ranges offering a notably enhanced QoE. Through a rigorous
statistical analysis, we establish that both perceived video quality
(Q1) and depth perception (Q2) are significant predictors of overall
quality (Q3), with Q2 exerting a slightly stronger influence. These
findings emphasize the importance of considering depth percep-
tion alongside traditional quality metrics when evaluating spatial
content.
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