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Abstract

Stereoscopic video has long been the subject of research due to its
ability to deliver immersive three-dimensional content to a wide
range of applications. The dual-view format inherently provides
binocular disparity cues that enhance depth perception and real-
ism, making it indispensable for fields such as telepresence, 3D
mapping, and robotic vision. Until recently, however, end-to-end
pipelines for capturing, encoding, and viewing high-quality stereo-
scopic video were neither widely accessible nor optimized for
consumer-grade devices. Today’s smartphones, such as the iPhone
Pro and modern Head-Mounted Displays (HMDs) like the Apple
Vision Pro (AVP), offer built-in support for stereoscopic video cap-
ture, hardware-accelerated encoding, and seamless playback on
devices like the AVP and Meta Quest 3, which require minimal user
intervention. Apple refers to this streamlined workflow as spatial
Video. Making the full stereoscopic video process available to ev-
eryone has made new applications possible. Despite these advances,
there remains a notable absence of publicly available datasets that
include the complete spatial video pipeline on consumer platforms,
hindering reproducibility and comparative evaluation of emerging
algorithms.

In this paper, we introduce SVD, a spatial video dataset com-
prising 300 five-second video sequences, i.e., 150 captured using
an iPhone Pro and 150 with an AVP. Additionally, 10 longer videos
with durations ranging from 2 min 29 s to 5 min have been recorded.
The SVD dataset is publicly released to facilitate research in codec
performance evaluation, subjective and objective Quality of Ex-
perience assessment, depth-based computer vision, stereoscopic
video streaming, and other emerging 3D applications such as neural
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rendering and volumetric capture. Link to the dataset: https://cd-
athena.github.io/SVD/.
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1 Introduction

Immersive media technologies [1] are redefining how digital con-
tent is experienced by delivering more realistic and visually com-
pelling representations of scenes. Advances in virtual [2, 3], aug-
mented [4], and mixed reality [5] have driven the development of
high-resolution HMD [6, 7], spatial audio integration, and improved
stereoscopic rendering. These technologies enable engaging experi-
ences across domains such as entertainment, education, and visual
communication, where realism and a strong sense of presence are
essential.

A key component of immersive media is stereoscopic video,
which enhances realism by replicating the way human vision per-
ceives depth through binocular disparity. In practice, this involves
capturing two slightly offset views of a scene — one corresponding
to the left eye and one to the right - using a dual-lens or two-camera
rig that is carefully calibrated to maintain known baseline distance
and optical parameters. During capture, precise synchronization
and geometric calibration ensure that corresponding pixels in each
view lie on the same epipolar line, facilitating accurate disparity es-
timation. During playback, specialized display technologies present
each view to the appropriate eye. The human visual system then


https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
https://doi.org/10.1145/3746027.3758246
https://cd-athena.github.io/SVD/
https://cd-athena.github.io/SVD/
https://doi.org/10.1145/3746027.3758246
https://doi.org/10.1145/3746027.3758246
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3746027.3758246&domain=pdf&date_stamp=2025-10-27

MM °25, October 27-31, 2025, Dublin, Ireland

MohammadHossein Izadimehr et al.

Table 1: Overview of stereoscopic video datasets.

Dataset Name Year Resolution Description
KITTI Stereo 2012 [8] 2012 1226x370 Outdoor driving scenes
KITTI Stereo 2015 [9] 2015 1242x375 Outdoor driving scenes with dynamic scenes with objects
SceneFlow [10] 2016 960x540 Synthetic stereo sequences
MPI-Sintel [11] 2012 1024x436 (24fps)  Synthetic scenes with complex motion and visual effects
RMIT3DV HD 3D Video [12] 2012  1920x1080 (25fps) Thirty-one diverse urban scenes
EPFL MMSPG 3DVQA [13] 2010  1920x1080 (25fp) Six high-quality visual variations
Stereo Video Database [14] 2010  1920x1080 (25fps) Stereo cinema post-production
NAMAD3D [15] 2012 1920x1080(25fps) Natural 3D scenes with twin-lens camera
SVSR-Set [16] 2022 1920%1080 (30fps) Indoor/outdoor with varied motion and lighting
SVD (Ours) 2025 19201080 (30fps) Indoor and outdoor, captured with iPhone Pro

2025 2200%2200 (30fps) Indoor and outdoor, captured with AVP

fuses these two images, leveraging small interocular differences to
reconstruct a coherent depth map and evoke a convincing sense of
three-dimensional space [1].

Despite its clear benefits for depth perception, stereoscopic video
production has historically been constrained by increased capture
complexity, the need for rigorous calibration, higher data rates to
accommodate dual streams, and display hardware requirements that
have, until recently, limited its adoption in consumer and broadcast
contexts.

Recently, this barrier has been significantly lowered through con-
sumer devices that support native stereoscopic video workflows.
Smartphones such as the iPhone Pro now offer built-in dual-camera
setups for spatial video capture, while headsets like the AVP and
Meta Quest 3 provide native playback support. These devices also
include hardware-accelerated encoding, enabling efficient compres-
sion using state-of-the-art codecs like High Efficency Video Cod-
ing (HEVC). Apple has introduced the term spatial video to describe
this tightly integrated pipeline from capture to playback, which
allows users to create and experience 3D content with minimal
technical effort.

While there are many well-established 2D video datasets [17—
19], the availability of high-quality stereoscopic video datasets has
remained limited. This scarcity is largely due to the challenges
associated with stereo video capture, the lack of accessible stereo-
scopic displays, and the need for optimized stereo video encoders.
However, with recent advances in capture technologies and wider
availability of immersive displays, these barriers have significantly
diminished. To drive research in stereoscopic video processing,
we introduce the Spatial Video Dataset (SVD) as a comprehen-
sive collection of high-quality stereoscopic video clips captured
using the latest iPhone 16 Pro and AVP devices. The dataset com-
prises 150 short 5 s videos from each device totalling to 300 spatial
video sequences, along with 10 long-form sequences ranging from
2min 29 s to 5 min captured with both, covering a diverse range of
indoor and outdoor environments, varied motion dynamics, and
unique capture scenarios. SVD is specifically designed to support a
broad spectrum of applications, including stereoscopic image and
video coding, streaming, Quality of Experience (QoE) assessment,
and stereoscopic image and video quality evaluation, providing re-
searchers with a powerful resource for advancing immersive media
technologies.

2 Related Work

In this section, we introduce relevant existing stereoscopic video
datasets from the literature. The KITTI Stereo 2012 dataset [8]
serves as a key benchmark for stereo vision in autonomous driving.
It contains stereo videos of road scenes captured from a calibrated
pair of cameras mounted on a car. It includes 194 training and 195
test scenes with resolutions of 1226370, captured in outdoor envi-
ronments with high-resolution stereo cameras. The KITTI Stereo
2015 dataset [9] builds upon its predecessor by adding 200 train-
ing and 200 test scenes with a resolution of 1242375 in dynamic
environments with moving objects, enhancing its relevance for
real-world driving scenarios.

SceneFlow [10] provides a dataset containing synthetic stereo-
scopic videos with a resolution of 960x540. The RMIT3DV HD 3D
Video database [12] is a comprehensive dataset designed to rep-
resent diverse content and visual conditions for various research
applications. It comprises 31 stereoscopic video sequences filmed
across multiple locations at RMIT University and Melbourne CBD,
with durations ranging from 17 s to 2.5 min. All videos are recorded
using a stereoscopic camera (Panasonic AG-3DA1) in 1920x1080
resolution with 10-bit YUV 4:2:2 encoding at 25 fps, ensuring high
visual fidelity and uncompressed quality. This dataset is particularly
valuable for studies involving stereo video quality assessment, dis-
parity estimation, and 3D visual analysis, providing high-resolution,
uncompressed stereoscopic content for reliable experimental evalu-
ation.

The MPI-Sintel dataset [11], derived from the open-source ani-
mated film Sintel, is a widely used benchmark originally developed
for optical flow evaluation, but also highly relevant for stereoscopic
research. It includes stereo video sequences rendered at a resolution
of 1024436 with rich visual effects such as motion blur, specular re-
flections, and atmospheric conditions, closely mimicking real-world
scenes. Despite being synthetic, its image and motion statistics align
well with those of natural videos, making it a credible proxy for
stereo vision tasks. With dense ground truth, multiple rendering
passes, and long sequences, MPI-Sintel provides a flexible and re-
producible resource for benchmarking stereo matching, disparity
estimation, and depth-aware video analysis.

The EPFL MMSPG HD 3D Video Database (3DVQA) [13] com-
prises six stereoscopic video scenes, each lasting 10 s and capturing
a variety of colors, textures, motion, and depth variations. Recorded
with a resolution of 1920x 1080 at 25 fps, the videos are stored in
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AVCHD format and compressed with MPEG-4 Advanced Video
Coding (AVC) at 24 Mbps. Despite its compression, 3DVQA pre-
serves high visual quality, making it an ideal resource for stereo
video quality assessment, disparity estimation, and depth-aware
encoding techniques. Its controlled yet diverse visual content sup-
ports reliable benchmarking in 3D video quality evaluation and
computer vision research.

The Stereo Video Database [14] is specifically designed as a
test resource for research and development in stereo cinema post-
production. It features a diverse collection of sequences shot in
both indoor and outdoor environments under controlled and un-
controlled lighting conditions, capturing various real-world scenar-
ios. The footage includes both steadicam and tripod-based shots,
providing different levels of motion dynamics. The experimental
setup employs a dual-camera rig with two Iconix HD-RH1 cameras
mounted on an Inition ‘bolt’ side-by-side rig. Data is recorded using
Flash XDR units in 4:2:2 XDCAM format with the xd5e codec at a
bitrate of 100 Mbps. All sequences are captured in 1920x 1080 reso-
lution at 25 fps, ensuring high-quality stereoscopic content suitable
for post-production analysis and stereo depth processing.

In NAMAD3D [15], the sequences were captured using a Pana-
sonic AG-3DAIE twin-lens camera, which features two synchro-
nized lenses with a 60 mm separation, closely matching the hu-
man interpupillary distance for natural-looking 3D content. The
sequences are recorded in 1920x1080 at 25 fps. When feasible, un-
compressed dual SDI streams were sent to a Clearview Extreme
system for high-quality recording, applied to sequences like Barrier
gate, Hall, News report, Phone call, Soccer, Tree branches, and Um-
brella. In cases where streaming to Clearview was impractical, like
for Basket, Boxer, and Lab, the content was saved directly onto SD
cards in AVC High-Profile format at a maximum bitrate of 24 Mbps
(average 21 Mbps).

The SVSR-Set [16] dataset consists of 71 stereo videos captured
with a ZED 2 stereoscopic camera. Videos are recorded in 1920x1080
resolution at 30 fps for a duration of 20 s and are available in SVO
and AVI formats, respectively. The dataset includes a wide range
of indoor and outdoor settings, with variations in motion levels
and illumination conditions. To ensure accuracy, the camera was
subjected to a detailed calibration process to correct potential shifts
in its internal parts. The calibration file, generated once and reused
for all recordings, contains the exact locations of the left and right
cameras and their optical properties.

3 Spatial Video Dataset

In this section, we introduce our SVD, which contains stereoscopic
video sequences captured using both the iPhone Pro and the AVP.
We recorded a diverse subset of spatial video sequences with each
device, covering a variety of indoor and outdoor scenarios to en-
sure content variability across lighting conditions, environments,
and motion characteristics. Specifically, we captured 150 short video
clips of 5 s each, along with 10 longer sequences, tailored to streaming-
oriented use cases. A grid of the first frames of 35 randomly selected
videos recorded with the iPhone Pro setup is shown in Fig. 1, pro-
viding a visual summary of the diversity within our dataset.

We begin by detailing the camera configurations and recording
capabilities of the two devices, highlighting their roles in enabling
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high-quality spatial video capture without the need for external
calibration or rigs. We then describe the set of low-level features
extracted from the dataset, including spatial and temporal complex-
ity, colorfulness, and luminance statistics, providing a quantitative
characterization of the visual content.

3.1 Camera Configurations

Stereoscopic video capture has traditionally required complex and
carefully calibrated hardware configurations [20, 21]. Conventional
stereoscopic rigs often employ two physically separate cameras
mounted on a rail or a rigid rig. These configurations typically
required manual alignment, synchronization, and post-processing
to ensure temporal and geometric consistency between the two
video streams. Moreover, ensuring perfect lens matching, exposure
control, and white balance between the cameras was necessary to
avoid visual discomfort or depth perception errors during playback.

While effective in controlled studio environments, these tradi-
tional systems were bulky, expensive, and impractical for casual
or mobile content capture. Their complexity created a barrier to
the broader adoption of stereoscopic video, particularly among
non-professional users.

Recent innovations in consumer electronics have dramatically
simplified stereoscopic video capture. Modern devices such as the
iPhone Pro and the AVP integrate dual-camera systems and ad-
vanced computational photography pipelines that enable spatial
video recording without the need for external rigs or manual cali-
bration.

3.1.1 iPhone Pro Camera System. The iPhone Pro features native
spatial video recording using its precisely calibrated wide and ultra-
wide rear cameras, which are spaced 19.2 mm apart to produce
depth cues suitable for small screens and HMDs. Apple’s spatial
video system integrates real-time depth estimation, optical stabi-
lization, and synchronized exposure control to ensure high-quality
stereo capture. Videos are recorded in 1080p at 30 fps in standard
dynamic range (SDR) and encoded in HEVC with stereoscopic meta-
data, enabling seamless playback on devices like the AVP. For spatial
video capture on the iPhone Pro, the concept of "hero eye" refers to
the primary camera (the wide (1x) lens) that records the main view.
This lens provides a higher-quality image, while the ultra-wide
(0.5x) lens captures a secondary view that is cropped and scaled to
match the primary perspective.

3.1.2  Apple Vision Pro Camera System. The AVP represents a sig-
nificant advancement in immersive media, offering both playback
and recording capabilities for spatial video. Equipped with a stereo-
scopic 3D main camera system featuring 18 mm lenses with an
f/2.0 aperture, the AVP captures spatial videos at a resolution
of 2200 X 2200 per eye at 30fps in SDR. Spatial videos on the
AVP are encoded using the Multiview High-Efficiency Video Cod-
ing (MV-HEVC) format. This format stores stereoscopic views in
separate layers (i.e., one for each eye) within a single video file,
accompanied by spatial metadata that enables immersive playback
experiences. Table 2 compares the spatial video recording capabili-
ties of the iPhone Pro and the AVP.



MM °25, October 27-31, 2025, Dublin, Ireland

MohammadHossein Izadimehr et al.

Figure 1: Grid of the first frames from 35 randomly selected spatial videos recorded using the iPhone Pro.

Table 2: Spatial Video Recording: iPhone 16 Pro vs. AVP.

Feature iPhone 16 Pro Apple Vision Pro
Resolution & Frame Rate 1920x1080 px @ 30fps (SDR) 2200%2200 px @ 30fps (SDR)
Video Format MV-HEVC MV-HEVC

Horizontal Field of View (FOV) 63.4° 71.6°

Baseline (Interaxial Distance) 19.2mm 63.8mm

Hero Eye Concept

Recording Orientation Requirement Landscape

Yes (“hero eye” from Wide camera);

No (both eye streams equal quality)

3.2 Low-Level Video Features

For each video, we extract a comprehensive set of low-level fea-
tures on a per-frame basis and include them alongside the original
video in our released dataset. These features are widely used in
video analysis and objective quality assessment, and cover spatial,
temporal, stereo-view, and perceptual dimensions.

3.2.1 Spatial Complexity. Spatial complexity is a fundamental as-
pect of video content that significantly impacts both perceptual
quality and compression efficiency. Scenes with high spatial detail,
such as textures, edges, and fine patterns, are more challenging
to compress without introducing visible artifacts, while simpler,
smoother areas are easier to encode efficiently. For this reason,
spatial complexity is widely used in video quality assessment and
adaptive encoding strategies.

In our dataset, we quantify spatial complexity [22] using two
complementary features: (i) Spatial Information (SI) and (ii) Spatial
Complexity (SC). SI measures edge strength by applying a Sobel
filter to each frame, capturing local contrast and sharpness. SI is
standardized in ITU-T P.910 and is strongly correlated with spa-
tial complexity [23]. SC, on the other hand, is derived from the
Enhanced Video Complexity Analyzer (EVCA) framework [24] and
operates in the Discrete Cosine Transformation (DCT) domain, cap-
turing frequency-based spatial variation and block-level detail. It
computes the spatial complexity by applying a weighted sum to
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the DCT coefficients of each block, where higher-frequency com-
ponents are given greater emphasis to reflect the contribution of
fine textures and detailed patterns within the frame.

3.2.2  Temporal Complexity. Temporal complexity reflects the amount
of motion and dynamic change within a video, which significantly
affects both perceived quality and compression performance. Videos
with fast-moving objects, frequent cuts, or high activity between
frames typically demand more resources for encoding and are more
susceptible to motion-related artifacts.

To capture temporal complexity in our dataset, we use two com-
plementary metrics: (i) Temporal Information (TI) and (ii) Temporal
Complexity (TC). TL is defined in ITU-T P.910 and computed as the
standard deviation of pixel-wise differences between consecutive
frames, providing a frame-level measure of motion intensity. Higher
TI values indicate stronger temporal variation, which is critical for
tasks like motion-aware encoding, frame rate control, and adaptive
streaming.

In addition to TI, we include TC, a motion-sensitive feature in-
troduced in the EVCA framework [24]. Unlike TI, which operates
in the pixel domain, TC is calculated in the DCT domain by comput-
ing the Sum of Absolute Differences (SAD) between the weighted
DCT coefficients of corresponding blocks across consecutive frames.
This weighting scheme emphasizes high-frequency components
and, thus, captures subtle motion details and structural changes
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Figure 2: Comparison of feature distributions from AVP and iPhone sequences.

more effectively. TC has been shown to correlate more strongly
with perceptual temporal complexity than earlier pixel-domain
metrics [24].

3.2.3 Colorfulness. Colorfulness is a perceptual attribute that re-
flects the intensity and diversity of colors within a video frame. It
plays an important role in visual quality perception, content clas-
sification, and aesthetic evaluation. Videos with rich and varied
colors tend to be perceived as more vivid and engaging, while those
with dull or limited color ranges may appear flat or less appealing.
In our dataset, we include a colorfulness metric introduced in [25],
which combines the mean and standard deviation of red-green and
yellow-blue color differences. The colorfulness feature is computed
for each frame of both left and right views, allowing for the analysis
of color consistency across stereo pairs.

3.24 Luminance. In addition to spatial, temporal, and color fea-
tures, we also include luminance-based metrics to capture the over-
all brightness and contrast characteristics of each frame. Specifically,
we compute the mean and variance of the luminance (Y) channel for
both left and right views. These features provide insight into light-
ing conditions, exposure balance, and perceptual contrast within
the video, which can influence both encoding efficiency and visual
quality perception.

3.25 Disparity. Disparity refers to the horizontal offset between
corresponding points in the left and right views of a stereoscopic
video, and it provides a key cue for depth perception. To capture
disparity information in our dataset, we compute dense disparity
maps for each video frame using the Stereo Semi-Global Block
Matching (StereoSGBM) algorithm [26], as implemented in OpenCV.
This method balances local accuracy with global smoothness by
aggregating matching costs along multiple paths, making it suitable
for high-resolution stereo content.

3.2.6 SSIM. In addition to disparity, we compute the inter-view
Structural Similarity Index (SSIM) [27] between the left and right
views of each video frame to assess their perceptual correspon-
dence. SSIM is a widely used image quality metric that evaluates
luminance, contrast, and structural similarity, providing a more per-
ceptually relevant comparison than pixel-wise differences. In our
context, it serves as a complementary feature of disparity, offering
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a view-independent measure of stereo consistency. High SSIM val-
ues indicate strong structural alignment between the views, while
lower values may signal mismatches, occlusions, or inconsistencies
in stereo rendering.

Fig. 2 shows the distribution of the extracted low-level features
for videos captured with the AVP and iPhone Pro devices using Ker-
nel Density Estimation (KDE) plots. All features, including spatial
complexity, temporal complexity, luminance, disparity, and SSIM
(scaled by 100 for better visual representation), are computed on
a per-frame basis for both the left and right views. The values are
then averaged across all frames to produce a single representative
feature vector per sequence. These KDE plots highlight the differ-
ences in content characteristics and capture profiles between the
two devices, offering insights into the diversity and quality of the
dataset.

Fig. 3 shows the Pearson correlation between corresponding low-
level features extracted from the left and right views, along with
the average SSIM values, for both the AVP and iPhone Pro devices.
This analysis provides insight into the consistency of stereo con-
tent captured by each device. The results indicate that the AVP
exhibits stronger correlations between views across most features,
as well as higher SSIM scores, suggesting more consistent stereo
alignment and better structural similarity. This highlights the su-
perior stereo capture quality of the AVP compared to the iPhone
Pro in our dataset. The lower consistency observed in the iPhone
Pro recordings may be attributed to the "hero eye" concept, where
the wide (1x) camera serves as the primary view and the ultra-wide
(0.5x) camera is cropped and aligned post-capture. This asymmetric
processing can introduce disparities in quality and content between
the two views.

4 Potential Applications

The rich set of features and high-quality stereoscopic content in-
cluded in our dataset enables a wide range of research and de-
velopment applications across multimedia, computer vision, and
immersive media domains. In the following, we outline several key
areas where this dataset can be effectively leveraged.
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4.1 Codec Development and Comparison

This dataset serves as a practical benchmark for codec develop-
ment and evaluation, particularly for stereoscopic and multiview
content. Earlier standards, such as Multiview Video Coding (MVC)
in AVC [28] and MV-HEVC in HEVC [29], introduced inter-view
prediction to improve compression efficiency for stereo video. More
recently, Apple adopted MV-HEVC for its Spatial Video format, and
as of version 4.1, the x265 encoder added support for MV-HEVC,
enabling optimized stereoscopic encoding within its efficient com-
pression framework.

With rich diversity, including spatial and temporal complexities,
colorfulness, luminance, disparity, and SSIM, our dataset allows
for comprehensive codec comparisons in terms of rate-distortion
performance, view consistency, and encoding speed. It also sup-
ports the evaluation of fast encoding algorithms and learning-based
strategies for content-adaptive compression.

4.2 Monoscopic-to-Stereoscopic Video
Conversion

Our dataset can be used to train and evaluate models that convert
monoscopic (2D) videos into stereoscopic (3D) formats, which is
an increasingly important task for supplying immersive content
in AR/VR applications [30, 31]. As an inherently ill-posed prob-
lem, stereo conversion has evolved significantly with deep learn-
ing, progressing from early convolutional approaches to advanced
diffusion-based models. These methods typically generate the right
view from the left by estimating monocular depth and compensat-
ing for occluded regions through inpainting or generative synthesis.
However, they often suffer from artifacts and lack control over struc-
tural accuracy. By offering high-quality stereo pairs, dense disparity
maps, and perceptual similarity metrics such as SSIM, our dataset
provides strong supervision and validation tools for improving the
realism, consistency, and fidelity of stereoscopic view synthesis.
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4.3 Video Quality Assessment

Our dataset is well-suited for conducting subjective quality assess-
ments of stereoscopic video, thanks to its diversity in various fea-
tures. This variability enables controlled experiments that evaluate
how different content characteristics influence human perception
of 3D video quality under various viewing conditions, including
HMDs and stereoscopic monitors [32]. The results of such subjec-
tive studies can be used to develop and validate both full-reference
and no-reference video quality metrics tailored for stereoscopic
content [33].

4.4 Video Streaming

The longer video sequences in our dataset make it particularly suit-
able for streaming applications, enabling realistic evaluations of
adaptive delivery strategies over time [34, 35]. These clips support
research in content-aware bitrate ladder construction [36], where
spatial, temporal, and disparity features can inform optimal quality
tiers for stereoscopic video. The dataset also facilitates per-title
encoding [37-41], allowing encoding parameters to be tailored to
individual content characteristics for improved compression effi-
ciency and visual quality. Furthermore, it enables studies on QoE
in 3D streaming, including the effects of bitrate fluctuations, depth
artifacts, and inter-view inconsistencies. By combining objective
features with potential subjective evaluations, the dataset offers
a comprehensive foundation for developing and testing adaptive
streaming algorithms for stereoscopic and immersive video ser-
vices.

5 Conclusions

We presented SVD, a publicly available spatial video dataset de-
signed to support a broad range of research in stereoscopic and
immersive media technologies. Captured using consumer-grade
devices (iPhone Pro and AVP), the dataset includes both short and
long-form high-quality stereoscopic video sequences, covering a
wide range of real-world scenes. Alongside the raw videos, we pro-
vide a rich set of low-level features including spatial and temporal
complexity, colorfulness, luminance, disparity, and inter-view SSIM,
enabling in-depth analysis across multiple application domains.

SVD is specifically tailored for tasks such as codec development
and benchmarking, monoscopic-to-stereoscopic video synthesis,
video quality assessment (both subjective and objective), and adap-
tive streaming. Its inclusion of diverse content types, extended
sequence durations, and per-frame metrics makes it an ideal re-
source for training, evaluating, and comparing algorithms in both
traditional and emerging 3D video processing tasks. The dataset is
available at https://cd-athena.github.io/SVD/.
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