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Abstract
Vital sign monitoring and body composition analysis are

both used for various medical applications. However, there

is a lack of devices capable of conducting continuous vital

sign monitoring and body composition analysis simultane-

ously during daily activities. We present a wearable device

named ’OxBioZ’, capable of performing (i) continuous single-

frequency bioimpedance analysis, (ii) multi-frequency bio-

impedance analysis, (iii) electrocardiography (ECG), and (iv)

inertial measurements. This allows continuous estimation of

cardiac function, respiration analysis and total body water

(TBW) during daily activities without the needs for multi-

ple devices or specialized monitoring protocols. Leveraging

OxBioZ, we collected a comprehensive multi-activity dataset

from 21 participants, totaling over 1000min of synchronized

bioimpedance, motion, and ground-truth physiological mea-

surements. Baseline studies on vital sign estimation and

TBW assessment demonstrate the platform’s feasibility and

provide a benchmark dataset for advancing bioimpedance-

driven wearable health analytics.
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1 Introduction
Continuous monitoring of physiological signals is critical

for diverse domains, ranging from medical diagnostics [7],

chronic disease management [3], and telemedicine [14] to

emergency response [17]. Body composition analysis, which

quantifies parameters such as fat mass, muscle mass, and

total body water (TBW) [12], provides complementary in-

sights into an individual’s health status and functional ca-

pacity. In many high-stakes scenarios—e.g., monitoring fire-

fighters to prevent heat-related injuries—both continuous

vital sign tracking (e.g., heart rate, breathing rate) and body

composition assessment (e.g., TBW) are required simulta-

neously. However, existing solutions typically target either

physiological signal monitoring or body composition estima-

tion, and often rely on bulky, non-wearable systems, limiting

their applicability in daily-life or work environments. More

noninvasive, unobtrusive, and lightweight options include

consumer-grade wearables such as smartwatches [8] and

patches [13], yet they seldom support body composition

analysis alongside continuous vital-sign monitoring.

To address this gap, we present OxBioZ, a wearable, unob-

trusive sensing platform capable of capturing multi-modal

physiological and motion signals in real time. OxBioZ in-

tegrates: (i) continuous single-frequency bioimpedance, (ii)

multi-frequency bioimpedance sweeps, (iii) electrocardiog-

raphy (ECG), and (iv) inertial measurements, enabling both

vital sign analysis and body composition estimation without

the need for multiple devices or special monitoring setups.

Leveraging this platform, we collected a comprehensive

multi-activity dataset from 21 participants, totaling over

1000min of synchronized bioimpedance, inertial, and ground-

truth physiological measurements. We showcase its potential

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3737903.3768566
https://doi.org/10.1145/3737903.3768566


SmartWear ’25, November 4–8, 2025, Hong Kong, China Hou et al.

through baseline evaluations spanning both frequency-based

and sequence-based physiological monitoring, as well as

body composition estimation. These studies validate the fea-

sibility of OxBioZ for a broad spectrum of wearable health

analytics and establish a benchmark resource for future re-

search in bioimpedance-driven sensing.

2 Background
Bioimpedance refers to the electrical properties (resistance

and reactance, specifically) of biological tissue, which can

be measured by applying a known current to a biosample

and recording the voltage drop. The resistance in bioimpe-

dance comes mainly from extracellular and intracellular flu-

ids, while cellular membranes act similarly to capacitors [11].

Different body compositions result in distinct bioimpedance

values, making it a widely used noninvasive method.

Bioimpedancemeasurements are commonly performed us-

ing tetrapolar impedance sensors with one pair of electrodes

for current injection and another pair for the voltage drop

measurement. The separation of injection and measurement

electrode pairs helps to minimise the impact of fluctuating

contact impedance between the electrodes and the skin [18].

Different current frequencies are used for bioimpedance

measurements because tissues and their components (e.g.,

cells and fluids) respond differently to varying frequencies [12].

Bioimpedance can be used to estimate TBW as an indicator

of hydration [15]. This method is based on the concept that

body tissue can be modeled as an electrical circuit consisting

of resistances and capacitance [10]. It has been validated to be

as accurate as blood sampling techniques in measuring acute

hydration changes [9]. Current medical-grade bioimpedance

analysers normally use eight electrodes on ankles and wrists,

which requires a complex setup and cannot be measured

continuously in real-time.

Wearable hydration monitoring devices on the market

use, e.g., hand-to-hand bioimpedance via wristbands to es-

timate body water levels [1], though this method requires

manual contact for 30 seconds and cannot support real-time

or activity-based monitoring.

3 Hardware
We place the electronic components for acquiring, process-

ing, and transmitting the biosignal data on a series of printed

circuit boards (PCBs), see Figure 1. All PCBs are small, mea-

suring only 37mm × 22.5mm or less. This form factor allows

the electronics to be worn unobtrusively.

3.1 Data Collection System
The first PCB comprises the electronics necessary for bioim-

pedance data acquisition. The bioimpedance analog front-

end (BioZ AFE) is a low-power Analog Devices MAX30009

Figure 1: Trunk-facing side of measurement belt.

integrated circuit (IC). It measures 2mm × 2mm. In addi-

tion to its small form factor, its low power consumption of

about 250 µW renders it particularly suitable for a wearable,

battery-powered device. Four electrodes are wired to the data

acquisition PCB. The two outer electrodes are connected to

an AC current source that is part of the MAX30009. They ap-

ply a sinusoidal stimulation current with a root-mean-square

(RMS) value of up to 1mA and a frequency of 51 200 kHz in

regular intervals. The two inner electrodes are connected to

the analog front end of the MAX30009 IC. The signals are

high-pass filtered and amplified using an instrumentation

amplifier. Since the measurements are done for AC stimula-

tion signals, the measurement signals are differential signals

and require the removal of DC and low-frequency AC signals.

A demodulator splits the signals from the two measurement

electrodes into a real and an imaginary (I and Q) signal to

facilitate the measurement of the complex impedance. The

same process also down-converts the signal frequency to

DC. These analog DC signals are then sampled and digitised

by a 20-bit analog-to-digital converter (ADC) for the I and Q

signal, respectively. Their sampling frequency is 200Hz. For

a stimulation current with a given amplitude, the measured

DC voltage is proportional to the real and imaginary part of

the bioimpedance, respectively. Before data acquisition, we

calibrate the AFE using an on-board resistor. We use a single

resistor to calibrate both, the I and the Q channel. We first

programmatically connect it to the I channel and then to the

Q channel. For each channel, we estimate a fixed offset as

well as scaling coefficients for the magnitude and phase.

The BioZ AFE PCB is connected to a second PCB, see Fig-

ure 1, which has a microcontroller (MCU) that schedules the

data acquisition and transmission. The BioZ AFE connects

to the MCU via a Serial Peripheral Interface (SPI). The MCU

buffers the measurement data and sends it in real-time via a

Bluetooth
®
Low Energy (BLE) connection to a PC.

A rechargeable lithium-ion polymer battery powers both

aforementioned PCBs. It is permanently connected to a PCB
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Figure 2: Custom-made OxBioZ v0.2 board combining
bioimpedance analog front-end (BioZ AFE), inertial
measurement unit (IMU), and microcontroller (MCU).

with a charging circuit and a USB connector for power supply

while charging. We choose lithium-ion polymer batteries

with 250mAh to 320mAh capacity. One powers the entire

belt during several hours of continuous data acquisition.

We collect inertial data from the trunk, 3D accelerome-

ter and 3D gyroscope data, to be specific. We use either a

STMicroelectronics LSM9DS1 or a Bosch BMI270 inter-

nal measurement unit (IMU) operating at 60Hz, respectively,

and transmit the data in real time via BLE to a PC, too.

3.2 Belt
The wearable belt that holds the measurement electronics is

shown in Figure 1. For the experiments, we use two different

electrode setups. For most of the data collection, we employ

commercial foam gel electrodes (Skintact
®
FS-TC1/10up),

which are widely used for monitoring electrical biosignals

in clinical applications. This choice aids the generalisability

of the published dataset. We choose 20 cm for the distance

between the measurement electrodes because the apex of the

heart (the most inferior, anterior, and lateral part of the heart)

usually lies 10.5 cm to 11.5 cm from the midsternal line [16].

Therefore, the center of the heart will be located between the

electrodes, allowing for the capture of strong heart signals

in the sensed data, signals of potential interest. In addition,

we also collect some data with a novel design consisting of

electrodes made of woven conductive fabric (ShzhouWanhe

Electronic Co., Ltd. PT230), see Figure 1. We cut a 2 cm ×
2 cm piece of cloth for each of the four electrodes and sew

it with conductive stainless thread (DFROBOT FIT0743) to

the belt. We pad the space between the electrode fabric and

the belt with a 5mm layer of visco-elastic cool gel memory

foam (Hanson and Langford B08LF42W4G) [4]. The belt

electrodes have the advantage comparing to gel electrodes

that they are reusable, washable, and easier to wear. A central

inelastic segment keeps the distance between the electrodes

and, hence, the length of the current path approximately

constant. This reduces the bioimpedance noise introduced

by varying electrode placement. The distances are the same

as the gel electrodes’ distances. The remainder of the belt is

stretchable to adjust to the subject’s chest circumference.

3.3 Combined BioZ AFE, IMU, and MCU
We executed the data collection in Section 4 using the elec-

tronics described in Section 3.1. Encouraged by the results,

we also developed a single small PCB that integrates BioZ

AFE, IMU, and MCU, see Figure 2. The electronics are built

around an STMicroelectronics STM32U575RI MCU with

an Arm
®
Cortex

®
-M33 core, which is a capable processor

with a 32-bit floating point unit allowing the implementa-

tion of complex signal processing routines. However, the

low power consumption of the MCU still allows for ex-

tended battery-powered operation, which is crucial for a

wearable continuous monitoring system. The MCU acquires

accelerometer and gyroscope measurements from a low-

power TDK InvenSense ICM-20948 IMU via I2C. The bioim-

pedance analog front-end is the low-power MAX30009 IC,

which we already describe in Section 3.1 and is connected

to the MCU via an SPI interface. In addition to I2C and SPI,

the PCB also exposes the MCU’s serial wire debug (SWD)

interface for programming the device, a low-power UART

(LPUART) interface for inter-board communication with a

wireless connectivity board, and a standard UART interface

for debugging.

The firmware for the MCU is entirely written in C++. It

acquires the data with the same sampling frequency as the

prototype belt described in Section 3.1 and also includes

a BioZ AFE calibration routine as described in Section 3.1.

When continuously acquiring and streaming BioZ and IMU

data at 200Hz via Bluetooth, the current consumption is

about 43mA at 3.7 V supply voltage. The chosen lithium-ion

polymer batteries have a maximum charge of up to 320mAh.

Hence, data acquisition could last for more than 7 h. Overall,

this PCB is small, measuring only 37mm× 22.5mm, allowing

for even less obtrusive continuous monitoring while provid-

ing a powerful platform for onboard signal processing.

4 Dataset
We use our system to record over 1000min of trunk bio-

impedance together with various physiological and motion

signals of 21 subjects performing a range of different daily

activities. The dataset can be found at https://github.com/

XinyuHou97/OxBioZ. All subjects gave their informed con-

sent for the study, which as been approved by the Research

Ethics Committee of the Departmernt of Computer Science

of the University of Oxford. Statistics about the physical

characteristics are provided together with the dataset.

https://github.com/XinyuHou97/OxBioZ
https://github.com/XinyuHou97/OxBioZ
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Table 1: Additional data collection devices.

Sensor type Sensor model FrequencyData

Spirometer

Go Direct Spirometer

Vernier

50Hz

Volume, Differential pressure

Adjusted volume, Cycle volume

Respiration rate, Flow Rate

IMU

Arduino Nano 33

BLE Sense

60Hz
3-axis acceleration

3-axis angular velocity

Oximeter Apple watch 0.2Hz Heart rate

BCA
mBCA 525

Seca

-

Total body water (TBW)

Extra cellular water (ECW)

Fat / muscle mass, etc...

ECG Heal Force ECG Monitor - 3-lead ECG signal

Table 2: Data collection protocol.

Period Time Device Description
Measure 1 - BCA

BioZ AFE

Measure body composition with BCA.

Measure MF-BIA with BioZ AFE at 12 frequencies

(𝐹𝐼 =819200, 409600, 204800, 102400, 51200, 25600,

12800, 6400, 3200, 1600, 800, 40Hz).

Measure weight.

Short test 1 5 min BioZ AFE

IMU

Oximeter

Spirometer

Five 1-min activities:

lying, sitting, standing, walking, running.

BioZ AFE collects in single-frequency mode

SF-BIA: 𝐼 = 32.00 𝜇A𝑟𝑚𝑠, 𝐹𝐼 = 51 200Hz .

Long test 1 20 min BioZ AFE

IMU

Oximeter

0-3 min: warm-up, (walk 6 km/h).

3-17 min: walk/jog/run at set speed.

17-20 min: cool-down (reduce speed).

Record Borg Rated Perceived Exertion (RPE) score.

Measure 2 - Same as Measure 1

Long test 2 20 min Same as Long test 1

Short test 2 5 min Same as Short test 1

Measure 3 - Same as Measure 1

4.1 Devices
For the large-scale data collection, we used the OxBioZ to-

gether with gel electrodes on 20 subjects, to ensure a better

signal-to-noise ratio for wider applications and more differ-

ent electrode types in future research. On one subject, we

tested the fabric cloth electrodes. In addition, we employed

a spirometer, a pulse oximeter, a body composition analyzer

(BCA), and an ECG to collect additional physiological signals

and ground truth, see Table 1.

4.2 Protocol
Before data collection, subjects completed Perceived Func-

tional Ability (PFA) and Physical Activity Rating (PAR) ques-

tionnaires. The scores also determined the assigned running

speed in the following experiments. Next, height and circum-

ferences were measured. Then a 1-min ECG signal was col-

lected with both, the ground-truth ECG device and OxBioZ,

together at the same time. The following multi-activity ex-

periments are listed in Table 2. If the average PFA1 and PFA2

score of the subject was in the range of 1-5, speed 6.5 km/h
was adopted in the long test’s running phase; in the range

of 5-11, speed 8 km/h; in the range of 11-13, speed 12 km/h.
After each long test, subjects were shown a 0-10 Borg rating

form of Rated Perceived Exertion (RPE) [2] and asked to

choose the score that matches their fatigue status.

Figure 3 shows a subject in a data collection phase where

gel electrodes are used together with the OxBioZ electronics

and another subject wearing the OxBioZ belt in the same

experiment phase.

5 Sample Tasks on Dataset and Device
We present several sample tasks to demonstrate the capabili-

ties of both the OxBioZ device and the associated dataset.

5.1 ECG Signal Recording
The OxBioZ device is capable of recording ECG signals by

disabling the demodulation current output and directly mea-

suring the heart’s electrical activity. Figure 4 shows a com-

parison between ECG signals recorded simultaneously by

OxBioZ and a professional 3-lead ECG device. The P wave,

QRS complex, and T wave are clearly visible in the OxBioZ

recordings, demonstrating the device’s ability to capture

high-quality ECG data.

Figure 3: Two different electrode setups are used with
OxBioZ hardware. For most of the data collection, gel
electrodes were used (left). Our designed wearable elec-
trode belt was also tested (right).

Figure 4: ECG recorded simultaneously by OxBioZ and
a reference ECG device. Characteristic waves (P, QRS,
T) are clearly visible in OxBioZ measurements.
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Figure 5: VMD decomposition results. IMF2 corre-
sponds to cardiac activity, IMF3 to respiratory activity,
while IMF4 captures slow-varying baseline trends.

5.2 Spectral Analysis for Cardiorespiratory
Parameter Estimation

Estimating heart rate (HR) and breathing rate (BR) from

wearable signals is a fundamental task in physiological mon-

itoring. To assess the capability of our dataset and device

outputs for frequency-domain analysis, we apply Variational

Mode Decomposition (VMD) [6] to the raw bioimpedance

(BioZ) signals. VMD decomposes an input signal into a prede-

fined set of Intrinsic Mode Functions (IMFs), each represent-

ing a narrow-band oscillatory mode, enabling fine-grained

separation of overlapping physiological rhythms.

In our setting, the BioZ signal is decomposed into four

IMFs: IMF1 captures high-frequency noise components, IMF2

corresponds to cardiac oscillations (1–3.6 Hz), IMF3 reflects

respiratory oscillations (0.1–1 Hz), and IMF4 contains slow-

varying baseline trends, which may relate to hydration level.

The decomposition preserves physiologically interpretable

waveforms, demonstrating that the signal quality from the

OxBioZ device and dataset is sufficient for precise spectral

separation of cardiorespiratory components.

Figure 5 illustrates the decomposition output, where dis-

tinct cardiac and respiratory components are clearly resolved.

This demonstrates both the effectiveness of VMD in iso-

lating physiological rhythms and the ability of our device

and dataset to capture high-quality signals suitable for fine-

grained spectral analysis.

5.3 Breathing Volume Estimation
Breathing volume (BV) prediction from wearable sensing

data is a representative temporal regression problem in phys-

iological monitoring. To examine whether our dataset and

device outputs can support deep learning–based modeling of

such tasks, we implement a baseline study using three repre-

sentative sequence learning architectures: Recurrent Neural

Network (RNN), Long Short-TermMemory (LSTM), and Tem-

poral Convolutional Network (TCN). Each model takes syn-

chronized IMU and BioZ signals as input, augmented with

personal attributes (height, weight, sex, age) to account for

inter-subject variability. No task-specific feature engineer-

ing or architecture tuning is applied, as the objective is to

establish a transparent baseline demonstrating the dataset’s

applicability to end-to-end temporal modeling.

Table 3 reports the BV estimation performance of the

three models in terms of mean absolute error (MAE). These

results provide a reference point for future studies exploring

more advanced architectures, multimodal fusion strategies,

or domain-specific inductive biases using our dataset.

Table 3: BV estimation baseline using deep learning.

Vital sign Model MAE ↓

BV (L)

RNN 0.33

LSTM 0.52

TCN 0.66

5.4 Total Body Water Estimation
We demonstrate TBW estimation using two baseline ap-

proaches, a physics-informed model and a data-driven model.

5.4.1 Physics-Informed Linear Regression.
Building on established bioimpedance theory [5], we de-

rive analytical features that link body geometry and resis-

tance to TBW, and use them within a linear regression frame-

work. Classical studies have shown that

ℎ2

body

𝑅body

is a strong in-

dependent predictor of TBW, where ℎbody is subject height

and 𝑅body the hand–foot AC bioresistance. This follows from

modeling lean tissue as a low-resistance conductor:

𝑅 = 𝜌lean
𝑙

𝐴
lean

= 𝜌lean
𝑙2

𝐴
lean

𝑙
= 𝜌lean

𝑙2

𝑉
lean

,

with 𝜌lean the resistivity of lean tissue, 𝑙 its length, and

𝐴lean its cross-section. Since lean tissue is mostly water,

TBW ≈ 𝑉lean = 𝜌lean
𝑙2

𝑅
. In our belt configuration, the elec-

trode spacing 𝑑elec ≪ ℎbody measures only the trunk volume

𝑉lean,elec: 𝑅elec = 𝜌lean
𝑑2

elec

𝑉
lean,elec

If the local tissue water fraction matches the whole-body

TBW percentage TBW%, and approximating the body as a

cylinder with waist circumference 𝑐waist and height ℎbody:

TBW% = TBW

𝑉
body

≈ 𝑉
lean

𝑉
body

≈ 𝑉
lean,elec

𝑉
elec

≈ 𝜌lean
𝑑2

elec

𝑅
elec

𝑉
elec

∝ 1

𝑅elec

TBW ≈ TBW% ·𝑉body ∝
𝑐2
waist

ℎ
body

𝑅
elec
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This scaling term
𝑐2ℎ
𝑅
, together with PAR, PFA1, PFA2, age,

height ℎ, and sex (male:1, female:0), forms the input to a

multiple linear regression (MLR):

TBW = −59.28+2.5057 · 10−4 · 𝑐2ℎ
𝑅

−0.3092 ·𝑃𝐴𝑅−0.2134 ·
𝑃𝐹𝐴1 + 0.7488 · 𝑃𝐹𝐴2 + 0.081 · Age + 0.501 · ℎ + 3.6376 · Sex

Figure 6 shows predicted vs. ground-truth TBW.

Figure 6: Predicted total body water (TBW) results com-
pared to the ground truth TBW.

5.4.2 Data-Driven End-to-End Learning.
We implement three sequence-based deep learning architec-

tures RNN, LSTM, and TCN in an end-to-end manner. These

models serve as baselines for assessing the feasibility of TBW

estimation directly from raw measurements, see Table 4.

6 Conclusion
In this study, we addressed the challenge of simultaneous

continuous vital sign monitoring and body composition anal-

ysis during daily activities by developing the wearable device

’OxBioZ’. Its ability to perform multiple types of bioimpe-

dance analysis and ECG monitoring continuously, while

continuously estimating vital signs and TBW during daily

activities, has not been achieved previously. Potential appli-

cation areas include healthcare, athletics, elderly and chronic

care, occupational health (e.g., firefighters, miners), and re-

search. The comprehensive dataset created using OxBioZ

provides a novel resource for future research on trunk bio-

impedance across various tasks.

Table 4: Results of deep learningmethod for estimating
total body water on the data collected by belt.

Vital sign Model MAE↓

TBW (L)

RNN 2.11

LSTM 3.07

TCN 2.80

MLR 1.04

With the comprehensive dataset, various future research

could be conducted, including on (i) body composition esti-

mation (beyond TBW), (ii) body water volume change esti-

mation, and (iii) human activity recognition.
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