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Abstract Bioimpedance Monitoring System and Multi-Activity Dataset with

Vital sign monitoring and body composition analysis are
both used for various medical applications. However, there
is a lack of devices capable of conducting continuous vital
sign monitoring and body composition analysis simultane-
ously during daily activities. We present a wearable device
named ’OxBioZ’, capable of performing (i) continuous single-
frequency bioimpedance analysis, (ii) multi-frequency bio-
impedance analysis, (iii) electrocardiography (ECG), and (iv)
inertial measurements. This allows continuous estimation of
cardiac function, respiration analysis and total body water
(TBW) during daily activities without the needs for multi-
ple devices or specialized monitoring protocols. Leveraging
OxBioZ, we collected a comprehensive multi-activity dataset
from 21 participants, totaling over 1000 min of synchronized
bioimpedance, motion, and ground-truth physiological mea-
surements. Baseline studies on vital sign estimation and
TBW assessment demonstrate the platform’s feasibility and
provide a benchmark dataset for advancing bioimpedance-
driven wearable health analytics.
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1 Introduction

Continuous monitoring of physiological signals is critical
for diverse domains, ranging from medical diagnostics [7],
chronic disease management [3], and telemedicine [14] to
emergency response [17]. Body composition analysis, which
quantifies parameters such as fat mass, muscle mass, and
total body water (TBW) [12], provides complementary in-
sights into an individual’s health status and functional ca-
pacity. In many high-stakes scenarios—e.g., monitoring fire-
fighters to prevent heat-related injuries—both continuous
vital sign tracking (e.g., heart rate, breathing rate) and body
composition assessment (e.g., TBW) are required simulta-
neously. However, existing solutions typically target either
physiological signal monitoring or body composition estima-
tion, and often rely on bulky, non-wearable systems, limiting
their applicability in daily-life or work environments. More
noninvasive, unobtrusive, and lightweight options include
consumer-grade wearables such as smartwatches [8] and
patches [13], yet they seldom support body composition
analysis alongside continuous vital-sign monitoring,.

To address this gap, we present OxBioZ, a wearable, unob-
trusive sensing platform capable of capturing multi-modal
physiological and motion signals in real time. OxBioZ in-
tegrates: (i) continuous single-frequency bioimpedance, (ii)
multi-frequency bioimpedance sweeps, (iii) electrocardiog-
raphy (ECG), and (iv) inertial measurements, enabling both
vital sign analysis and body composition estimation without
the need for multiple devices or special monitoring setups.

Leveraging this platform, we collected a comprehensive
multi-activity dataset from 21 participants, totaling over
1000 min of synchronized bioimpedance, inertial, and ground-
truth physiological measurements. We showcase its potential
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through baseline evaluations spanning both frequency-based
and sequence-based physiological monitoring, as well as
body composition estimation. These studies validate the fea-
sibility of OxBioZ for a broad spectrum of wearable health
analytics and establish a benchmark resource for future re-
search in bioimpedance-driven sensing.

2 Background

Bioimpedance refers to the electrical properties (resistance
and reactance, specifically) of biological tissue, which can
be measured by applying a known current to a biosample
and recording the voltage drop. The resistance in bioimpe-
dance comes mainly from extracellular and intracellular flu-
ids, while cellular membranes act similarly to capacitors [11].
Different body compositions result in distinct bioimpedance
values, making it a widely used noninvasive method.
Bioimpedance measurements are commonly performed us-
ing tetrapolar impedance sensors with one pair of electrodes
for current injection and another pair for the voltage drop
measurement. The separation of injection and measurement
electrode pairs helps to minimise the impact of fluctuating
contact impedance between the electrodes and the skin [18].
Different current frequencies are used for bioimpedance
measurements because tissues and their components (e.g.,

cells and fluids) respond differently to varying frequencies [12].

Bioimpedance can be used to estimate TBW as an indicator
of hydration [15]. This method is based on the concept that
body tissue can be modeled as an electrical circuit consisting
of resistances and capacitance [10]. It has been validated to be
as accurate as blood sampling techniques in measuring acute
hydration changes [9]. Current medical-grade bioimpedance
analysers normally use eight electrodes on ankles and wrists,
which requires a complex setup and cannot be measured
continuously in real-time.

Wearable hydration monitoring devices on the market
use, e.g., hand-to-hand bioimpedance via wristbands to es-
timate body water levels [1], though this method requires
manual contact for 30 seconds and cannot support real-time
or activity-based monitoring.

3 Hardware

We place the electronic components for acquiring, process-
ing, and transmitting the biosignal data on a series of printed
circuit boards (PCBs), see Figure 1. All PCBs are small, mea-
suring only 37 mm X 22.5 mm or less. This form factor allows
the electronics to be worn unobtrusively.

3.1 Data Collection System

The first PCB comprises the electronics necessary for bioim-
pedance data acquisition. The bioimpedance analog front-
end (BioZ AFE) is a low-power ANALOG DEVICES MAX30009
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Figure 1: Trunk-facing side of measurement belt.

integrated circuit (IC). It measures 2mm X 2 mm. In addi-
tion to its small form factor, its low power consumption of
about 250 pW renders it particularly suitable for a wearable,
battery-powered device. Four electrodes are wired to the data
acquisition PCB. The two outer electrodes are connected to
an AC current source that is part of the MAX30009. They ap-
ply a sinusoidal stimulation current with a root-mean-square
(RMS) value of up to 1 mA and a frequency of 51 200 kHz in
regular intervals. The two inner electrodes are connected to
the analog front end of the MAX30009 IC. The signals are
high-pass filtered and amplified using an instrumentation
amplifier. Since the measurements are done for AC stimula-
tion signals, the measurement signals are differential signals
and require the removal of DC and low-frequency AC signals.
A demodulator splits the signals from the two measurement
electrodes into a real and an imaginary (I and Q) signal to
facilitate the measurement of the complex impedance. The
same process also down-converts the signal frequency to
DC. These analog DC signals are then sampled and digitised
by a 20-bit analog-to-digital converter (ADC) for the I and Q
signal, respectively. Their sampling frequency is 200 Hz. For
a stimulation current with a given amplitude, the measured
DC voltage is proportional to the real and imaginary part of
the bioimpedance, respectively. Before data acquisition, we
calibrate the AFE using an on-board resistor. We use a single
resistor to calibrate both, the I and the Q channel. We first
programmatically connect it to the I channel and then to the
Q channel. For each channel, we estimate a fixed offset as
well as scaling coefficients for the magnitude and phase.

The BioZ AFE PCB is connected to a second PCB, see Fig-
ure 1, which has a microcontroller (MCU) that schedules the
data acquisition and transmission. The BioZ AFE connects
to the MCU via a Serial Peripheral Interface (SPI). The MCU
buffers the measurement data and sends it in real-time via a
Bluetooth® Low Energy (BLE) connection to a PC.

A rechargeable lithium-ion polymer battery powers both
aforementioned PCBs. It is permanently connected to a PCB
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Figure 2: Custom-made OxBioZ v0.2 board combining
bioimpedance analog front-end (BioZ AFE), inertial
measurement unit (IMU), and microcontroller (MCU).

with a charging circuit and a USB connector for power supply
while charging. We choose lithium-ion polymer batteries
with 250 mA h to 320 mA h capacity. One powers the entire
belt during several hours of continuous data acquisition.

We collect inertial data from the trunk, 3D accelerome-
ter and 3D gyroscope data, to be specific. We use either a
STMICROELECTRONICS LSM9DS1 or a BoscH BMI270 inter-
nal measurement unit (IMU) operating at 60 Hz, respectively,
and transmit the data in real time via BLE to a PC, too.

3.2 Belt

The wearable belt that holds the measurement electronics is
shown in Figure 1. For the experiments, we use two different
electrode setups. For most of the data collection, we employ
commercial foam gel electrodes (SkinTacT® FS-TC1/10up),
which are widely used for monitoring electrical biosignals
in clinical applications. This choice aids the generalisability
of the published dataset. We choose 20 cm for the distance
between the measurement electrodes because the apex of the
heart (the most inferior, anterior, and lateral part of the heart)
usually lies 10.5 cm to 11.5 cm from the midsternal line [16].
Therefore, the center of the heart will be located between the
electrodes, allowing for the capture of strong heart signals
in the sensed data, signals of potential interest. In addition,
we also collect some data with a novel design consisting of
electrodes made of woven conductive fabric (SHzHOU WANHE
ELecTRONIC CO., LTD. PT230), see Figure 1. We cut a 2 cm X
2 cm piece of cloth for each of the four electrodes and sew
it with conductive stainless thread (DFROBOT FIT0743) to
the belt. We pad the space between the electrode fabric and
the belt with a 5 mm layer of visco-elastic cool gel memory
foam (HANSON AND LANGFORD BO8LF42W4G) [4]. The belt
electrodes have the advantage comparing to gel electrodes
that they are reusable, washable, and easier to wear. A central
inelastic segment keeps the distance between the electrodes
and, hence, the length of the current path approximately
constant. This reduces the bioimpedance noise introduced
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by varying electrode placement. The distances are the same
as the gel electrodes’ distances. The remainder of the belt is
stretchable to adjust to the subject’s chest circumference.

3.3 Combined BioZ AFE, IMU, and MCU

We executed the data collection in Section 4 using the elec-
tronics described in Section 3.1. Encouraged by the results,
we also developed a single small PCB that integrates BioZ
AFE, IMU, and MCU, see Figure 2. The electronics are built
around an STMICROELECTRONICS STM32U575RI MCU with
an Arm® Cortex®-M33 core, which is a capable processor
with a 32-bit floating point unit allowing the implementa-
tion of complex signal processing routines. However, the
low power consumption of the MCU still allows for ex-
tended battery-powered operation, which is crucial for a
wearable continuous monitoring system. The MCU acquires
accelerometer and gyroscope measurements from a low-
power TDK INVENSENSE ICM-20948 IMU via I2C. The bioim-
pedance analog front-end is the low-power MAX30009 IC,
which we already describe in Section 3.1 and is connected
to the MCU via an SPI interface. In addition to I2C and SPI,
the PCB also exposes the MCU’s serial wire debug (SWD)
interface for programming the device, a low-power UART
(LPUART) interface for inter-board communication with a
wireless connectivity board, and a standard UART interface
for debugging.

The firmware for the MCU is entirely written in C++. It
acquires the data with the same sampling frequency as the
prototype belt described in Section 3.1 and also includes
a BioZ AFE calibration routine as described in Section 3.1.
When continuously acquiring and streaming BioZ and IMU
data at 200 Hz via Bluetooth, the current consumption is
about 43 mA at 3.7V supply voltage. The chosen lithium-ion
polymer batteries have a maximum charge of up to 320 mA h.
Hence, data acquisition could last for more than 7 h. Overall,
this PCB is small, measuring only 37 mm X 22.5 mm, allowing
for even less obtrusive continuous monitoring while provid-
ing a powerful platform for onboard signal processing.

4 Dataset

We use our system to record over 1000 min of trunk bio-
impedance together with various physiological and motion
signals of 21 subjects performing a range of different daily
activities. The dataset can be found at https://github.com/
XinyuHou97/0OxBioZ. All subjects gave their informed con-
sent for the study, which as been approved by the Research
Ethics Committee of the Departmernt of Computer Science
of the University of Oxford. Statistics about the physical
characteristics are provided together with the dataset.
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Table 1: Additional data collection devices.

Sensor type Sensor model FrequencyData
Volume, Differential pressure

50Hz  Adjusted volume, Cycle volume

Spirometer Go Direct Spirometer

Vernier Respiration rate, Flow Rate
Arduino Nano 33 3-axis acceleration
MU BLE Sense 60Hz 3-axis angular velocity
Oximeter Apple watch 0.2Hz Heart rate
Total body water (TBW)
BCA mBsCe 123525 - Extra cellular water (ECW)

Fat / muscle mass, etc...
3-lead ECG signal

ECG  Heal Force ECG Monitor

Table 2: Data collection protocol.

Period Time Device Description
Measure 1 - BCA Measure body composition with BCA.
BioZ AFE  Measure MF-BIA with BioZ AFE at 12 frequencies
(Fr =819200, 409600, 204800, 102400, 51200, 25600,
12800, 6400, 3200, 1600, 800, 40 Hz).
Measure weight.
Short test 1 5min BioZ AFE  Five 1-min activities:
IMU lying, sitting, standing, walking, running.
Oximeter  BioZ AFE collects in single-frequency mode
Spirometer SF-BIA: I = 32.00 uArms, Ff =51200Hz .
Long test 1 20 min BioZ AFE  0-3 min: warm-up, (walk 6 km/h).
IMU 3-17 min: walk/jog/run at set speed.
Oximeter ~ 17-20 min: cool-down (reduce speed).
Record Borg Rated Perceived Exertion (RPE) score.
Same as Measure 1
Same as Long test 1
Same as Short test 1
Same as Measure 1

Measure 2
Long test 2 20 min
Short test 2 5 min
Measure 3

4.1 Devices

For the large-scale data collection, we used the OxBioZ to-
gether with gel electrodes on 20 subjects, to ensure a better
signal-to-noise ratio for wider applications and more differ-
ent electrode types in future research. On one subject, we
tested the fabric cloth electrodes. In addition, we employed
a spirometer, a pulse oximeter, a body composition analyzer
(BCA), and an ECG to collect additional physiological signals
and ground truth, see Table 1.

4.2 Protocol

Before data collection, subjects completed Perceived Func-
tional Ability (PFA) and Physical Activity Rating (PAR) ques-
tionnaires. The scores also determined the assigned running
speed in the following experiments. Next, height and circum-
ferences were measured. Then a 1-min ECG signal was col-
lected with both, the ground-truth ECG device and OxBioZ,
together at the same time. The following multi-activity ex-
periments are listed in Table 2. If the average PFA1 and PFA2
score of the subject was in the range of 1-5, speed 6.5 km/h
was adopted in the long test’s running phase; in the range
of 5-11, speed 8 km/h; in the range of 11-13, speed 12 km/h.
After each long test, subjects were shown a 0-10 Borg rating
form of Rated Perceived Exertion (RPE) [2] and asked to
choose the score that matches their fatigue status.
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Figure 3 shows a subject in a data collection phase where
gel electrodes are used together with the OxBioZ electronics
and another subject wearing the OxBioZ belt in the same
experiment phase.

5 Sample Tasks on Dataset and Device

We present several sample tasks to demonstrate the capabili-
ties of both the OxBioZ device and the associated dataset.

5.1 ECG Signal Recording

The OxBioZ device is capable of recording ECG signals by
disabling the demodulation current output and directly mea-
suring the heart’s electrical activity. Figure 4 shows a com-
parison between ECG signals recorded simultaneously by
OxBioZ and a professional 3-lead ECG device. The P wave,
QRS complex, and T wave are clearly visible in the OxBioZ
recordings, demonstrating the device’s ability to capture
high-quality ECG data.

OxBioZ Belt

Figure 3: Two different electrode setups are used with
OxBioZ hardware. For most of the data collection, gel
electrodes were used (left). Our designed wearable elec-
trode belt was also tested (right).

xBioZ ECG.

Time (5)

Figure 4: ECG recorded simultaneously by OxBioZ and
a reference ECG device. Characteristic waves (P, QRS,
T) are clearly visible in OxBioZ measurements.
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Figure 5: VMD decomposition results. IMF2 corre-
sponds to cardiac activity, IMF3 to respiratory activity,
while IMF4 captures slow-varying baseline trends.

5.2 Spectral Analysis for Cardiorespiratory
Parameter Estimation

Estimating heart rate (HR) and breathing rate (BR) from
wearable signals is a fundamental task in physiological mon-
itoring. To assess the capability of our dataset and device
outputs for frequency-domain analysis, we apply Variational
Mode Decomposition (VMD) [6] to the raw bioimpedance
(BioZ) signals. VMD decomposes an input signal into a prede-
fined set of Intrinsic Mode Functions (IMFs), each represent-
ing a narrow-band oscillatory mode, enabling fine-grained
separation of overlapping physiological rhythms.

In our setting, the BioZ signal is decomposed into four
IMFs: IMF1 captures high-frequency noise components, IMF2
corresponds to cardiac oscillations (1-3.6 Hz), IMF3 reflects
respiratory oscillations (0.1-1 Hz), and IMF4 contains slow-
varying baseline trends, which may relate to hydration level.
The decomposition preserves physiologically interpretable
waveforms, demonstrating that the signal quality from the
OxBioZ device and dataset is sufficient for precise spectral
separation of cardiorespiratory components.

Figure 5 illustrates the decomposition output, where dis-
tinct cardiac and respiratory components are clearly resolved.
This demonstrates both the effectiveness of VMD in iso-
lating physiological rhythms and the ability of our device
and dataset to capture high-quality signals suitable for fine-
grained spectral analysis.

5.3 Breathing Volume Estimation

Breathing volume (BV) prediction from wearable sensing
data is a representative temporal regression problem in phys-
iological monitoring. To examine whether our dataset and
device outputs can support deep learning-based modeling of
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such tasks, we implement a baseline study using three repre-
sentative sequence learning architectures: Recurrent Neural
Network (RNN), Long Short-Term Memory (LSTM), and Tem-
poral Convolutional Network (TCN). Each model takes syn-
chronized IMU and BioZ signals as input, augmented with
personal attributes (height, weight, sex, age) to account for
inter-subject variability. No task-specific feature engineer-
ing or architecture tuning is applied, as the objective is to
establish a transparent baseline demonstrating the dataset’s
applicability to end-to-end temporal modeling.

Table 3 reports the BV estimation performance of the
three models in terms of mean absolute error (MAE). These
results provide a reference point for future studies exploring
more advanced architectures, multimodal fusion strategies,
or domain-specific inductive biases using our dataset.

Table 3: BV estimation baseline using deep learning,.

Vital sign Model MAE |

RNN 0.33
BV(@L) ILSTM 052
TCN 0.66

5.4 Total Body Water Estimation

We demonstrate TBW estimation using two baseline ap-
proaches, a physics-informed model and a data-driven model.

5.4.1 Physics-Informed Linear Regression.

Building on established bioimpedance theory [5], we de-
rive analytical features that link body geometry and resis-
tance to TBW, and use them within a linear regression frame-

2
ﬁzzz is a strong in-
dependent predictor of TBW, where hyoqy is subject height
and Ry,ody the hand—foot AC bioresistance. This follows from

modeling lean tissue as a low-resistance conductor:
2

— I _ ?_ I
R= Pleanz, — = Pleanz, 7 = Pleany__>
with plean the resistivity of lean tissue, [ its length, and
Alean its cross-section. Since lean tissue is mostly water,

work. Classical studies have shown that

TBW = Viean = plean%. In our belt configuration, the elec-
trode spacing delec < hpody measures only the trunk volume
2

elec

Viean,elect Relec = Plean Viean.elec

If the local tissue water fraction matches the whole-body
TBW percentage TBW%, and approximating the body as a
cylinder with waist circumference cyaist and height hpogy:

2
Ve Viean,elec d lec 1
TBW7 - TBW ~ lean ~ , ~ elec oc
® ™ Vhody  Vhody Velec Plean R Ve ™ Roree

2
P
TBW =~ TBW% - Viody Cwallstl body
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This scaling term C%h, together with PAR, PFA1, PFA2, age,
height h, and sex (male:1, female:0), forms the input to a
multiple linear regression (MLR):

TBW = —59.28+2.5057-107%- czTh —0.3092- PAR—-0.2134-
PFA1+0.7488 - PFA2 +0.081 - Age + 0.501 - h + 3.6376 - Sex

Figure 6 shows predicted vs. ground-truth TBW.

60 -

o Female, gel electrodes
o Male, gel electrodes
Male, belt

)

«
S
°

40 -

Estimated TBW (L

1‘0 Z‘O 3‘0 4b 5‘0 6‘0
Ground Truth TBW (L)
Figure 6: Predicted total body water (TBW) results com-
pared to the ground truth TBW.

5.4.2 Data-Driven End-to-End Learning.

We implement three sequence-based deep learning architec-
tures RNN, LSTM, and TCN in an end-to-end manner. These
models serve as baselines for assessing the feasibility of TBW
estimation directly from raw measurements, see Table 4.

6 Conclusion

In this study, we addressed the challenge of simultaneous
continuous vital sign monitoring and body composition anal-
ysis during daily activities by developing the wearable device
’OxBioZ’. Its ability to perform multiple types of bioimpe-
dance analysis and ECG monitoring continuously, while
continuously estimating vital signs and TBW during daily
activities, has not been achieved previously. Potential appli-
cation areas include healthcare, athletics, elderly and chronic
care, occupational health (e.g., firefighters, miners), and re-
search. The comprehensive dataset created using OxBioZ
provides a novel resource for future research on trunk bio-
impedance across various tasks.

Table 4: Results of deep learning method for estimating
total body water on the data collected by belt.

Vital sign Model MAE]|

RNN 211
LSTM  3.07
TBW (L) TCN  2.80

MLR  1.04

Hou et al.

With the comprehensive dataset, various future research
could be conducted, including on (i) body composition esti-
mation (beyond TBW), (ii) body water volume change esti-
mation, and (iii) human activity recognition.
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